JPH08138733A - Nonaqueous electrolyte - Google Patents

Nonaqueous electrolyte

Info

Publication number
JPH08138733A
JPH08138733A JP6272481A JP27248194A JPH08138733A JP H08138733 A JPH08138733 A JP H08138733A JP 6272481 A JP6272481 A JP 6272481A JP 27248194 A JP27248194 A JP 27248194A JP H08138733 A JPH08138733 A JP H08138733A
Authority
JP
Japan
Prior art keywords
electrolyte
electrolytic solution
group
lithium
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6272481A
Other languages
Japanese (ja)
Other versions
JP3294446B2 (en
Inventor
Akio Hibara
昭男 檜原
Keiichi Yokoyama
恵一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP27248194A priority Critical patent/JP3294446B2/en
Publication of JPH08138733A publication Critical patent/JPH08138733A/en
Application granted granted Critical
Publication of JP3294446B2 publication Critical patent/JP3294446B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE: To provide a nonaqueous electrolyte having self fire extinguishing action, high withstand voltage, and excellent application to a battery such as charge/discharge performance. CONSTITUTION: Lithium salt of phosphoric ester in a general formula is added to a nonaqueous electrolyte including preferably chainlike ester and/or annular ester as an organic solvent, and also including the lithium salt, preferably LiPF6 , as an electrolyte. In the formula, R<1> and R<2> can be the same or different to express an alkyl group having a number of carbon of 1-4 or a halogen atom substituting alkyl group having a number of carbon of 2-3 respectively, and any one of the R<1> and R<2> can be a lithium ion.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、新規な非水電解液に関
する。
FIELD OF THE INVENTION The present invention relates to a novel non-aqueous electrolyte.

【0002】[0002]

【従来の技術】一般に電解質は、電池において負極と正
極間のイオンの受け渡しを担っているもので、非水電解
液、高分子電解質、イオン電導性ガラスなどが挙げられ
る。これらの中で、高分子電解質、イオン電導性ガラス
などの固体電解質は、電導性は非水電解液に劣るもの
の、電池の液漏れの心配が無く、また引火しやすい有機
溶媒を使用しないため電池の安全性が向上するなどの特
徴がある。一方、非水電解液は、最も電導性が高く、電
極との密着性が優れており、これを使用した電池の内部
抵抗が最も低くなるため、広く一般に用いられている。
従って、非水電解液を用いた電池は、高電圧、高エネル
ギー密度を有し、かつ貯蔵性などの信頼性に優れてるた
め、広く民生用電子機器の電源に用いられている。
2. Description of the Related Art Generally, an electrolyte is responsible for transferring ions between a negative electrode and a positive electrode in a battery, and examples thereof include a non-aqueous electrolytic solution, a polymer electrolyte, and an ion conductive glass. Among these, solid electrolytes such as polymer electrolytes and ionic conductive glass have inferior electrical conductivity to non-aqueous electrolytes, but there is no concern about battery leakage and the use of organic solvents that are easy to catch fire does not It has features such as improved safety. On the other hand, the non-aqueous electrolyte is the most widely used because it has the highest conductivity and the excellent adhesion to the electrode, and the battery having the same has the lowest internal resistance.
Therefore, a battery using a non-aqueous electrolyte has a high voltage, a high energy density, and excellent reliability such as storability, and is widely used as a power source for consumer electronic devices.

【0003】非水電解液としては、一般に高誘電率の溶
媒である炭酸プロピレン、γ−ブチロラクトン、スルホ
ラン等に低粘度溶媒であるジメトキシエタン、テトラヒ
ドロエタン、または1、3−ジオキソラン等を混合した
溶媒にLiBF4、LiPF6 LiClO4、LiAs
6、LiCF3SO3、LiN(CF3SO22、LiA
lCl4、LiSiF6などの電解質を混合したものが用
いられている。
The non-aqueous electrolyte is generally a solvent obtained by mixing propylene carbonate, γ-butyrolactone, sulfolane, etc., which is a solvent having a high dielectric constant, with dimethoxyethane, tetrahydroethane, 1,3-dioxolane, etc., which are low-viscosity solvents. LiBF 4 , LiPF 6 , LiClO 4 , LiAs
F 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiA
A mixture of electrolytes such as lCl 4 and LiSiF 6 is used.

【0004】しかし、このような非水電解液の溶媒は耐
電圧の低いものが多く、耐電圧の低い電解液を二次電池
に使用した場合、充放電を繰り返すと溶媒が電気分解さ
れ、そのために発生したガスにより電池の内圧が上昇し
たり、生成物が重合反応を起こし、電極に付着する等の
事態が生じる可能性があった。このような電池の充放電
効率の低下、電池エネルギー密度の低下は、結果的に電
池寿命を短くする。
However, many of the solvents for such non-aqueous electrolytes have a low withstand voltage, and when an electrolyte with a low withstand voltage is used for a secondary battery, the solvent is electrolyzed when charging and discharging are repeated, so that There is a possibility that the internal pressure of the battery may rise due to the gas generated in the above, or the product may undergo a polymerization reaction and adhere to the electrode. Such a decrease in the charge / discharge efficiency of the battery and a decrease in the battery energy density result in a shortened battery life.

【0005】電解液の耐久性を向上させる試みとして
は、従来用いられていたγ−ブチロラクトン、エチルア
セテート等のエステル類や1、3−ジオキソラン、テト
ラヒドロフラン、ジメトキシエタン等のエーテル類等の
耐電圧の低い溶媒の代わりに耐電圧の高い炭酸ジエチル
等の炭酸エステルを使用することによって、充放電を繰
り返した後の電池エネルギー密度低下の制御がなされて
いる(例えば特開平4−184872号公報)。
In an attempt to improve the durability of the electrolytic solution, the withstand voltage of conventionally used esters such as γ-butyrolactone and ethyl acetate, and ethers such as 1,3-dioxolane, tetrahydrofuran and dimethoxyethane is used. By using a carbonic acid ester such as diethyl carbonate having a high withstand voltage instead of a low solvent, it is possible to control the decrease in battery energy density after repeated charging and discharging (for example, Japanese Patent Laid-Open No. 184872/1992).

【0006】[0006]

【発明が解決すべき課題】ところで、エネルギー密度の
高い電池が望まれていることから、高電圧電池について
各方面から研究が進められている。例えば、電池の正極
にLiCoO2、LiNiO2、LiMn24等のリチウ
ムと遷移金属との複合酸化物を使用し、負極に炭素材料
を使用した、ロッキングチェア型と呼ばれる二次電池が
研究されてきた。この場合、電池電圧は4V以上を発生
することができ、しかも、金属リチウムの析出がないた
め、過充電、外部ショート、釘刺し、押しつぶし等の実
験によって安全性が確認され、民生用として出回るよう
になっている。
By the way, since a battery having a high energy density is desired, research on a high-voltage battery is being promoted from various fields. For example, a secondary battery called a rocking chair type using a composite oxide of lithium and a transition metal such as LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 for the positive electrode of the battery and a carbon material for the negative electrode has been studied. Came. In this case, the battery voltage can generate 4V or more, and since there is no deposition of metallic lithium, safety has been confirmed by experiments such as overcharging, external short circuit, nail piercing, crushing, etc. It has become.

【0007】このような電池の高エネルギー密度化、ま
た大型化に伴い、電池に用いられる電解液についても一
層の難燃化などの性能の向上が求められている。このた
め、自己消火性のある化合物として知られているリン酸
エステル類を電解液に添加することが提案されている
(特開平4−184870号公報)。しかしながら、こ
の種の化合物を15%以上添加した電解液は、難燃性は
クリアーされるが、電池充放電効率、電池のエネルギー
密度、電池寿命の点で必ずしも十分ではない。
With the increase in energy density and the increase in size of such batteries, further improvement in performance such as flame retardancy is required for the electrolytic solution used in the batteries. Therefore, it has been proposed to add phosphoric acid esters, which are known as self-extinguishing compounds, to the electrolytic solution (JP-A-4-184870). However, although an electrolyte containing 15% or more of this type of compound clears flame retardancy, it is not always sufficient in terms of battery charge / discharge efficiency, battery energy density, and battery life.

【0008】また、電池の液漏れを防ぐ目的でリン酸エ
ステル類とアルカリ金属塩の反応物からなる固体状電解
質を得ることが提案されているが(特公平6−4232
5号公報)、この電解質は固体であるため、現在主流の
円筒型電池においては電解液に比べて製造上不利な点が
ある。またこの固体電解質では未反応のリン酸エステル
類が残留するため、この電解質を、前述の負極にリチウ
ムイオンをドープ・アンドープ可能な炭素を使用したロ
ッキングチェア型の電池に用いた場合には、充放電効
率、エネルギー密度、寿命の点で問題があると思われ
る。
Further, it has been proposed to obtain a solid electrolyte composed of a reaction product of a phosphoric acid ester and an alkali metal salt for the purpose of preventing liquid leakage of the battery (Japanese Patent Publication No. 6-4232).
No. 5), this electrolyte is solid, and therefore, there is a manufacturing disadvantage in the currently mainstream cylindrical batteries as compared with the electrolytic solution. Further, since unreacted phosphoric acid esters remain in this solid electrolyte, when this electrolyte is used in a rocking chair type battery using carbon capable of doping / undoping with lithium ions in the above-mentioned negative electrode, it is charged. It seems that there are problems in terms of discharge efficiency, energy density, and life.

【0009】本発明は上記の問題点に鑑みなされたもの
で、高エネルギー密度の電池に好適で、耐電圧、負荷特
性、低温特性に優れ且つ自己消火性を有する非水電解液
を提供することを目的とする。また本発明は、電池に用
いた場合に、充放電の繰返しによっても電池エネルギー
密度の低下を生じることが少なく、高い電池性能を確保
できる非水電解液を提供することを目的とする。
The present invention has been made in view of the above problems, and provides a non-aqueous electrolyte suitable for a battery having a high energy density, excellent in withstand voltage, load characteristics, low temperature characteristics, and self-extinguishing. With the goal. It is another object of the present invention to provide a non-aqueous electrolyte solution which, when used in a battery, is less likely to cause a decrease in battery energy density even after repeated charging / discharging and ensures high battery performance.

【0010】[0010]

【課題を解決すべき手段】発明者らは耐電圧が高く、電
導性に優れ、高エネルギー密度電池への適用性等に優れ
た非水電解液を作るために、高い自己消火作用を持つリ
ン酸エステル化合物について鋭意検討を行った。その結
果、置換基の少なくとも1つをリチウムイオンで置換し
たリン酸エステル化合物を添加することによって、自己
消火性を示し、充放電サイクル特性など電池用電解液と
しての性能にも優れた非水電解液が得られることを見出
した。
The inventors of the present invention have developed a phosphorus having a high self-extinguishing action in order to produce a non-aqueous electrolyte having a high withstand voltage, an excellent electric conductivity and an excellent applicability to a high energy density battery. An intensive study was conducted on the acid ester compound. As a result, by adding a phosphoric acid ester compound in which at least one of the substituents is substituted with lithium ion, non-aqueous electrolysis showing self-extinguishing property and excellent performance as a battery electrolyte such as charge / discharge cycle characteristics. It was found that a liquid was obtained.

【0011】本発明の非水電解液では、リン酸エステル
をアニオン化することによって耐還元性が増し、負極と
の反応性が低下し、また静電反発によって負極との接近
が妨げられることから上記性能が向上すると考えられ
る。すなわち本発明の非水電解液は、有機溶媒と電解質
と一般式[1]のリン酸エステル化合物のリチウム塩と
を含有するものである。
In the non-aqueous electrolytic solution of the present invention, the reduction resistance is increased by anionizing the phosphoric acid ester, the reactivity with the negative electrode is lowered, and the electrostatic repulsion prevents the approach with the negative electrode. It is considered that the above performance is improved. That is, the non-aqueous electrolytic solution of the present invention contains an organic solvent, an electrolyte, and a lithium salt of a phosphoric acid ester compound represented by the general formula [1].

【0012】[0012]

【化3】 Embedded image

【0013】(式中R1、R2は同一或いは異なっていて
もよく、それぞれ炭素数1〜4個の低級アルキル基、炭
素数2〜4個のハロゲン置換アルキル基又はリチウムイ
オンを表し、R1、R2の少なくとも一方はリチウムイオ
ンではない置換基である。) 本発明の電解液において、リン酸エステルの自己消火作
用はリン酸エステル中のリン含量が高いほど、すなわ
ち、置換基のR1、R2の分子量が小さいほど大きく、ま
た添加量が多いほど大きい。しかし分子量が大きいリン
酸エステルの添加量を増やすことは、その添加によって
電解液の粘度増加が大きくなり電導度が低下するため好
ましくない。したがって、R1、R2の炭素数はなるべく
小さいことが望ましく、R1、R2がアルキル基の場合、
好適には1〜4個、ハロゲン原子置換アルキル基の場合
に好適には2〜4個である。
(Wherein R 1 and R 2 may be the same or different and each represents a lower alkyl group having 1 to 4 carbon atoms, a halogen-substituted alkyl group having 2 to 4 carbon atoms or a lithium ion, At least one of R 1 and R 2 is a substituent that is not a lithium ion.) In the electrolytic solution of the present invention, the self-extinguishing action of the phosphate ester is such that the higher the phosphorus content in the phosphate ester, that is, the R of the substituent group is The smaller the molecular weight of 1 , R 2 is, the larger it is, and the larger the addition amount is, the larger it is. However, it is not preferable to increase the addition amount of the phosphoric acid ester having a large molecular weight because the addition of the phosphoric acid ester increases the viscosity of the electrolytic solution and decreases the conductivity. Thus, R 1, the number of carbon atoms of R 2 is desirably as small as possible, if R 1, R 2 is an alkyl group,
The number is preferably 1 to 4 and, in the case of a halogen atom-substituted alkyl group, preferably 2 to 4.

【0014】R1、R2はアルキル基でもハロゲン置換ア
ルキル基でもよいが、いずれか一方はリチウムイオンで
あってもよい。但し、好適にはR1、R2は共にアルキル
基またはハロゲン置換アルキル基であることが好まし
い。これにより、電解液への溶解性を良好に維持したま
まで、リン酸エステルにリチウムイオンを導入した効果
を得ることができる。
R 1 and R 2 may be an alkyl group or a halogen-substituted alkyl group, but either one may be a lithium ion. However, it is preferable that both R 1 and R 2 are alkyl groups or halogen-substituted alkyl groups. This makes it possible to obtain the effect of introducing lithium ions into the phosphate ester while maintaining good solubility in the electrolytic solution.

【0015】アルキル基としてはメチル基、エチル基、
n−プロピル基、イソプロピル基、n−ブチル基、イソ
ブチル基、t−ブチル基等が挙げられる。またハロゲン
置換アルキル基のハロゲンとしては、フッ素、塩素、臭
素が挙げられるが、安定性の点からフッ素が最も好まし
い。このようなフッ素置換アルキル基として、トリフル
オロエチル基、ジフルオロエチル基、モノフルオロエチ
ル基、ペンタフルオロプロピル基、2、2、3、3−テ
トラフルオロプロピル基、1、1、1−トリフルオロイ
ソプロピル基、1、3−ジフルオロ−2−プロピル基、
ヘキサフルオロイソプロピル基、2、2、3、3、4、
4、4−ヘプタフルオロブチル基、2、2、3、4、
4、4−ヘキサフルオロブチル基、ヘキサフルオロ−2
−メチルイソプロピル基、3、3、4、4、4−ペンタ
フルオロ−2−ブチル基、4、4、4−トリフルオロブ
チル基、パーフルオロ−t−ブチル基などが挙げられ
る。その他、上記と同様の構造でフッ素の代りに塩素、
臭素で置換したものも例示される。また1つの置換基に
2種以上のハロゲンが混在していても良い。
As the alkyl group, a methyl group, an ethyl group,
Examples thereof include n-propyl group, isopropyl group, n-butyl group, isobutyl group and t-butyl group. Examples of the halogen of the halogen-substituted alkyl group include fluorine, chlorine and bromine, and fluorine is most preferable from the viewpoint of stability. Examples of such a fluorine-substituted alkyl group include trifluoroethyl group, difluoroethyl group, monofluoroethyl group, pentafluoropropyl group, 2,2,3,3-tetrafluoropropyl group, 1,1,1-trifluoroisopropyl group. Group, 1,3-difluoro-2-propyl group,
Hexafluoroisopropyl group, 2, 2, 3, 3, 4,
4,4-heptafluorobutyl group, 2, 2, 3, 4,
4,4-hexafluorobutyl group, hexafluoro-2
-Methylisopropyl group, 3,3,4,4,4-pentafluoro-2-butyl group, 4,4,4-trifluorobutyl group, perfluoro-t-butyl group and the like. In addition, chlorine having the same structure as above, instead of fluorine,
Those substituted with bromine are also exemplified. Further, two or more kinds of halogen may be mixed in one substituent.

【0016】このような置換基を有する本発明のリン酸
エステルのリチウム塩としては、リン酸ジメチルリチウ
ム、リン酸ジエチルリチウム、リン酸ジプロピルリチウ
ム、リン酸ジブチルリチウム、リン酸メチルエチルリチ
ウム、リン酸メチルプロピルリチウム、リン酸エチルプ
ロピルリチウム、リン酸エチルブチルリチウム、リン酸
プロピルブチルリチウム、リン酸ジ(2、2、2−トリ
フルオロエチル)リチウム、リン酸ジ(2、2、2−ト
リクロロエチル)リチウム、リン酸ジ(2、2、2−ト
リブロモエチル)リチウム、そのほか上記に例示したア
ルキル基、ハロゲン置換アルキル基を組み合わせたもの
が挙げられる。
Examples of the lithium salt of the phosphate ester of the present invention having such a substituent include dimethyllithium phosphate, diethyllithium phosphate, dipropyllithium phosphate, dibutyllithium phosphate, methylethyllithium phosphate and phosphorus. Acid methylpropyl lithium, ethyl propyl lithium phosphate, ethyl butyl lithium phosphate, propyl butyl lithium phosphate, di (2,2,2-trifluoroethyl) lithium phosphate, di (2,2,2-trichloro phosphate) Examples include ethyl) lithium, di (2,2,2-tribromoethyl) lithium phosphate, and combinations of the alkyl groups and halogen-substituted alkyl groups exemplified above.

【0017】リン酸エステルリチウム塩は溶媒を燃えに
くくする作用がある一方、同時に電解液の電導度を低下
する性質をもつため、本発明の非水電解液を実用的な二
次電池用電解液として使用するためには、適量使用する
ことが重要である。即ち、二次電池用電解液として実用
的な電導度が得られ、かつ自己消火作用を得るために、
リン酸エステルリチウム塩の添加量は、電解液に対し体
積比で0.1〜2.0モル/リットル添加されていれば
よく、望ましくは0.2〜1.0モル/リットル添加さ
れていればよい。
Since the lithium phosphate salt has the function of making the solvent difficult to burn, and at the same time has the property of lowering the electrical conductivity of the electrolytic solution, the non-aqueous electrolytic solution of the present invention is used as a practical electrolytic solution for a secondary battery. It is important to use an appropriate amount for use as. That is, in order to obtain a practical conductivity as an electrolytic solution for a secondary battery, and to obtain a self-extinguishing action,
The phosphoric acid ester lithium salt may be added in a volume ratio of 0.1 to 2.0 mol / liter to the electrolytic solution, and preferably 0.2 to 1.0 mol / liter. Good.

【0018】本発明の非水電解液の溶媒としては、従来
より用いられている、ジメトキシエタンなどの鎖状エー
テル類、テトラヒドロフランなどの環状エーテル類、ジ
メチルホルムアミド類、メチル−N,N−ジメチルカー
バメートなどのカーバメート類、炭酸ジエチル等の鎖状
エステル類、炭酸プロピレン等の環状エステル類を一種
または二種以上混合して用いることができる。
As the solvent of the non-aqueous electrolyte of the present invention, conventionally used chain ethers such as dimethoxyethane, cyclic ethers such as tetrahydrofuran, dimethylformamides, methyl-N, N-dimethylcarbamate. Carbamates such as, chain esters such as diethyl carbonate, and cyclic esters such as propylene carbonate can be used alone or in combination of two or more.

【0019】特に鎖状エステル、環状エステルまたはこ
の両者の混合溶媒を用いることが好ましい。鎖状エステ
ルとしては一般式[2]で表される化合物の一種または
二種以上の混合物を用いることができる。
It is particularly preferable to use a chain ester, a cyclic ester or a mixed solvent of both. As the chain ester, one kind of the compound represented by the general formula [2] or a mixture of two or more kinds can be used.

【0020】[0020]

【化4】 [Chemical 4]

【0021】(式中、R3はメチル基、エチル基、プロ
ピル基、メトキシ基又はエトキシ基を表し、R4は炭素
数1から3の鎖状あるいは分枝状アルキル基を表す) 溶媒として一般式[2]で表される鎖状エステルを用い
ることにより、粘度が低く常温から低温での電気伝導性
に優れた電解液が得られる。このような鎖状エステルと
しては、蟻酸メチル、蟻酸エチル、蟻酸プロピル、酢酸
メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチ
ル、プロピオン酸エチルなどのエステル類、ジメチルカ
ーボネート、メチルエチルカーボネート、ジエチルカー
ボネート、メチルプロピルカーボネート、メチルイソプ
ロピルカーボネート、エチルプロピルカーボネートなど
のカーボネート類を例示することができる。特に電池の
正極として、4Vを発生できるLiCoO2、LiMn
2、LiNiO2、LiMn24等を用いた電池の電解
液に適用する場合は、耐酸化安定性から、ジメチルカー
ボネート、ジエチルカーボネート、メチルエチルカーボ
ネートなどのカーボネート等が好ましい。
(In the formula, R 3 represents a methyl group, an ethyl group, a propyl group, a methoxy group or an ethoxy group, and R 4 represents a chain or branched alkyl group having 1 to 3 carbon atoms) By using the chain ester represented by the formula [2], an electrolytic solution having low viscosity and excellent electric conductivity at room temperature to low temperature can be obtained. Examples of such a chain ester include esters such as methyl formate, ethyl formate, propyl formate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, and ethyl propionate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl. Carbonates such as propyl carbonate, methyl isopropyl carbonate and ethyl propyl carbonate can be exemplified. In particular, as the positive electrode of the battery, LiCoO 2 , LiMn capable of generating 4 V
When applied to an electrolytic solution of a battery using O 2 , LiNiO 2 , LiMn 2 O 4, etc., carbonates such as dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate are preferable from the viewpoint of oxidation resistance stability.

【0022】また、環状エステルとしては、プロピレン
カーボネート、エチレンカーボネート、ブチレンカーボ
ネート、ビニレンカーボネート、γ−ブチロラクトンま
たはスルホランから選ばれる1種または2種以上を混合
したものが用いられ、好ましくはプロピレンカーボネー
トやエチレンカーボネートの環状カーボネートが選ばれ
る。このような環状エステルは電解質の解離性を高める
ことができ、電解液の電導度を高めることができる。
As the cyclic ester, one or a mixture of two or more selected from propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, γ-butyrolactone or sulfolane is used, and preferably propylene carbonate or ethylene. A cyclic carbonate of carbonates is selected. Such a cyclic ester can enhance the dissociation property of the electrolyte and can enhance the conductivity of the electrolytic solution.

【0023】また、鎖状エステルと環状エステルを混合
して使用すると粘度低下の効果と電解質の解離性向上の
効果が相乗されるため、電解液の電導度が向上し、電池
の負荷特性、低温特性を向上できるので更に好ましい。
混合溶媒とする場合、電解液溶媒中の鎖状エステルの濃
度は通常20〜90体積%の範囲で用いることができ、
好ましくは40〜75体積%の範囲で用いることができ
る。電解質溶媒中の環状エステルの濃度は通常10〜8
0体積%の範囲で用いることができ、好ましくは25〜
60体積%の範囲で用いることができる。
When a chain ester and a cyclic ester are mixed and used, the effect of lowering the viscosity and the effect of improving the dissociation property of the electrolyte are synergized, so that the electric conductivity of the electrolytic solution is improved, the load characteristics of the battery and the low temperature It is more preferable because the characteristics can be improved.
When the mixed solvent is used, the concentration of the chain ester in the electrolytic solution solvent can be usually used in the range of 20 to 90% by volume,
Preferably, it can be used in the range of 40 to 75% by volume. The concentration of cyclic ester in the electrolyte solvent is usually 10-8.
It can be used in the range of 0% by volume, preferably 25 to
It can be used in the range of 60% by volume.

【0024】尚、電池の正極として、3V程度の電圧を
発生するV25、TiS2、ポリアニリン等を用いた電
池の電解液の場合は、上記鎖状エステル及び環状エステ
ルの代りに或いは併用して、ジメトキシエタンなどの鎖
状エーテル類、テトラヒドロフランなどの環状エーテル
類、ジメチルホルムアミドなどのアミド類、メチル−
N、N−ジメチルカーバメートなどのカーバメート類、
N−メチルオキサゾリドン、N−メチルピロリドンなど
の環状のカーバメートやアミドも使用できる。
In the case of a battery electrolyte using V 2 O 5 , TiS 2 , polyaniline or the like which generates a voltage of about 3 V as the positive electrode of the battery, instead of or in combination with the above chain ester and cyclic ester. Chain ethers such as dimethoxyethane, cyclic ethers such as tetrahydrofuran, amides such as dimethylformamide, methyl-
Carbamates such as N, N-dimethyl carbamate,
Cyclic carbamates and amides such as N-methyloxazolidone and N-methylpyrrolidone can also be used.

【0025】本発明の電解液に用いる電解質としては、
LiBF4、LiPF6、LiClO 4、LiAsF6、L
iCF3SO3、LiN(CF3SO22、LiAlC
4、LiSiF6などのリチウム塩を挙げることがで
き、特にLiPF6が好ましい。電解質としてLiPF6
を用いた場合、本発明のリン酸エステルのリチウム塩の
含有量を低くしても高い自己消火性を保持できる。具体
的にはLiPF6を用いた場合には、リン酸エステルリ
チウム塩の添加量が1.0モル/リットル以下であって
も十分な自己消火性を発揮させることができるので、リ
ン酸エステルリチウム塩を多量に添加することに起因す
る電導度の低下を防ぐことができる。電解液中の電解質
濃度は通常、0.1〜3モル/リットルの濃度範囲で使
用することができ、好ましくは、0.5〜2.0モル/
リットルの濃度範囲で用いる。
As the electrolyte used in the electrolytic solution of the present invention,
LiBFFour, LiPF6, LiClO Four, LiAsF6, L
iCF3SO3, LiN (CF3SO2)2, LiAlC
lFour, LiSiF6Lithium salts such as
Especially LiPF6Is preferred. LiPF6 as electrolyte6
Of the lithium salt of the phosphoric acid ester of the present invention,
High self-extinguishing property can be maintained even if the content is lowered. Concrete
LiPF6When used, phosphate ester
The addition amount of thium salt is less than 1.0 mol / liter
Can also exert sufficient self-extinguishing property, so
Attributed to the addition of a large amount of lithium ester salt
It is possible to prevent a decrease in conductivity. Electrolyte in electrolyte
The concentration is usually within the range of 0.1 to 3 mol / liter.
Can be used, and preferably 0.5 to 2.0 mol /
Used in the concentration range of 1 liter.

【0026】本発明の非水電解液は、特にリチウム二次
電池用の電解液として好適に用いることができるが、そ
れ以外の電池用電解液として、更に電解コンデンサ等の
電解液として用いることができる。
The non-aqueous electrolytic solution of the present invention can be preferably used as an electrolytic solution for a lithium secondary battery in particular, but can also be used as an electrolytic solution for other batteries and as an electrolytic solution for electrolytic capacitors and the like. it can.

【0027】[0027]

【実施例】以下に実施例を挙げて本発明を具体的に説明
するが、本発明はこれら実施例により何ら限定されるも
のではない。尚、以下の説明において溶媒名は以下の略
号を用いた。 PC:プロピレンカーボネート、EC:エチレンカーボ
ネート、TMPA:リン酸トリメチル、MEC:メチル
エチルカーボネート、DEPALi:リン酸ジエチルリ
チウム 1.電解液の調製 十分に脱水、蒸留精製したECとMECの体積比4:6
の混合溶媒にLiPF 6を1モル/リットルで溶解した
電解液に、DEPALiを0.1モル/リットル(実施
例1)、0.2モル/リットル(実施例2)、5%
(0.3モル/リットル:実施例3)、10%(0.6
モル/リットル:実施例4)、15%(0.8モル/リ
ットル:実施例5)添加し、終夜撹拌して溶解させて電
解液を調製した。尚、DEPALiは真空乾燥器で12
0℃で10時間乾燥したものを使用した。
EXAMPLES The present invention will be specifically described with reference to the following examples.
However, the present invention is not limited to these examples.
Not of. In the following description, solvent names are abbreviated as follows.
No. was used. PC: Propylene carbonate, EC: Ethylene carbo
Nate, TMPA: trimethyl phosphate, MEC: methyl
Ethyl carbonate, DEPALi: Diethyl phosphate
Tium 1. Preparation of electrolyte solution Volume ratio of fully dehydrated and distilled / purified EC and MEC 4: 6
LiPF as a mixed solvent of 6Was dissolved at 1 mol / liter
0.1 mol / liter (implementation of DEPALi in the electrolyte)
Example 1), 0.2 mol / liter (Example 2), 5%
(0.3 mol / liter: Example 3), 10% (0.6
Mol / liter: Example 4), 15% (0.8 mol / liter)
Example 5) Add and stir overnight to dissolve and charge.
A lysate was prepared. In addition, DEPALi is 12 in a vacuum dryer.
The one dried at 0 ° C. for 10 hours was used.

【0028】また比較電解液として、ECとMECの体
積比4:6の混合溶媒にLiPF6を1モル/リットル
溶解したもの(比較例1)、ECとMECとTMPAの
体積比4:4:2の混合溶媒にLiPF6を1モル/リ
ットル溶解したもの(比較例2)を用意した。 2.電解液の自己消火性評価 セパレーター用マニラ紙を幅1.5cm、長さ30c
m、厚さ0.04mmの短冊状に切断し、これを上記の
ように調整した電解液が入ったビーカーに1分以上浸し
た。マニラ紙から滴り落ちる過剰の試料をビーカー壁で
拭い、マニラ紙を2.5cm間隔で支持針を有するサン
プル台の支持針に刺して水平に固定した。マニラ紙とサ
ンプル台を25cm×25cm×50cmの金属製の箱
に入れ、一端にライターで着火し、マニラ紙の燃えた長
さおよび最初の針から最後の針までの30cmの間マニ
ラ紙の燃えるのに要した時間を各3回測定した。燃えた
長さと燃焼に要する時間の平均値および燃焼速度を表1
に示した。
Further, as a comparative electrolyte, LiPF 6 was dissolved in a mixed solvent of EC and MEC in a volume ratio of 4: 6 at 1 mol / liter (Comparative Example 1), and the volume ratio of EC, MEC and TMPA was 4: 4: A solution (Comparative Example 2) in which 1 mol / liter of LiPF 6 was dissolved in the mixed solvent of 2 was prepared. 2. Evaluation of self-extinguishing property of electrolyte solution Manila paper for separator is 1.5cm in width and 30c in length.
m, a 0.04 mm thick strip was cut, and this was dipped in a beaker containing the electrolytic solution prepared as described above for 1 minute or more. Excess sample dripping from the manila paper was wiped with a beaker wall, and the manila paper was stuck at 2.5 cm intervals to a supporting needle of a sample stage having a supporting needle and fixed horizontally. Put the manila paper and sample stand in a 25 cm x 25 cm x 50 cm metal box, ignite with a lighter at one end, and burn the manila paper for the burning length of the manila paper and 30 cm from the first needle to the last needle The time required for the measurement was measured 3 times each. Table 1 shows the average length of burning, the time required for burning, and burning rate.
It was shown to.

【0029】[0029]

【表1】 [Table 1]

【0030】尚、表中燃焼速度「0」は燃焼しなかった
ことを示す。表1に示したように本発明のリン酸エステ
ルのリチウム塩を添加した電解液は、自己消火性、難燃
性を示し、特に実施例3〜5ではリン酸トリメチルを2
0体積%含む電解液と同様の自己消火性、難燃性を示し
た。 3.電解液の耐電圧と電気伝導度の測定 上記のように調整した電解液を用いて、耐電圧及び電気
伝導度を測定した。電解液の電気伝導度はインピーダン
スメーターを用い、10kHzで測定した。電解液の耐
電圧は、作用極にグラッシーカーボン、対極に白金、参
照極にリチウム金属を用いた三極式耐電圧測定セルに電
解液を入れ、ポテンシオガルバノスタットで10mV/
secで電位の走引を行い、リチウム金属の電位を基準
として酸化分解電流が0.1mA以上流れなかった電位
を耐電圧域とした。結果を表2に示した。
The burning velocity "0" in the table means that the burning did not occur. As shown in Table 1, the electrolytic solution to which the lithium salt of the phosphoric acid ester of the present invention is added exhibits self-extinguishing property and flame retardancy, and particularly, in Examples 3 to 5, trimethyl phosphate is 2%.
It showed the same self-extinguishing property and flame retardancy as the electrolytic solution containing 0% by volume. 3. Measurement of Withstand Voltage and Electric Conductivity of Electrolyte Solution The withstand voltage and electric conductivity were measured using the electrolyte solution prepared as described above. The electric conductivity of the electrolytic solution was measured at 10 kHz using an impedance meter. The withstand voltage of the electrolytic solution was 10 mV with a potentiogalvanostat when the electrolytic solution was placed in a triode type withstand voltage measuring cell using glassy carbon for the working electrode, platinum for the counter electrode, and lithium metal for the reference electrode.
The electric potential was swept in sec, and the electric potential at which the oxidative decomposition current did not flow by 0.1 mA or more was set as the withstand voltage region based on the electric potential of the lithium metal. The results are shown in Table 2.

【0031】[0031]

【表2】 [Table 2]

【0032】表2に示したように本発明のリン酸エステ
ルのリチウム塩を添加した電解液は高い耐電圧と、実用
レベルの高い電導度を示した。 4.リチウムイオンの炭素への充放電評価 正極1として炭素極を、負極2としてリチウム金属を使
用し、以下のように作成した試験セルを用いて、正極へ
のリチウムイオン充放電特性を評価した。電解液として
は前述のように調整した実施例3〜5の電解液を使用し
た。 [炭素極の作製]平均粒子系50μmの黒鉛粉末をテフ
ロン水性ディスパージョン中で撹拌し、黒鉛/テフロン
の混合物(黒鉛に対するテフロンの混合量:2重量%)
を得た。この混合物を銅メッシュに塗り付けコイン型に
打ち抜いたのち、1t/cm2でプレスし、120℃で
真空乾燥して直径13mm、炭素重量15mgの炭素極
を作成した。 [セルの作製]図1に示すように、電解液を含浸したセ
パレーター(セルガード3601)3を介して、リチウ
ム極2と炭素極1を対向して配置し、更に電解液0.2
mlを炭素極側に加えて、上下から集電極4でプレスし
て、絶縁パッキン5で封止しセルを作製した。 [充放電試験]上記セルを充放電装置6に接続し、定電
流(0.33mA、0.25mA/cm2)の条件の下
で、0Vから1.5Vの電圧範囲で充電放電サイクルを
50回繰り返した。この結果を図2に示した。
As shown in Table 2, the electrolytic solution to which the lithium salt of the phosphoric acid ester of the present invention was added exhibited a high withstand voltage and a high practical level of electrical conductivity. 4. Evaluation of Charge / Discharge of Lithium Ion to Carbon Using a carbon electrode as the positive electrode 1 and lithium metal as the negative electrode 2, the charge / discharge characteristics of the lithium ion to the positive electrode were evaluated using a test cell prepared as follows. As the electrolytic solution, the electrolytic solutions of Examples 3 to 5 prepared as described above were used. [Preparation of Carbon Electrode] Graphite powder having an average particle size of 50 μm was stirred in a Teflon aqueous dispersion to prepare a graphite / Teflon mixture (mixing amount of Teflon to graphite: 2% by weight).
I got This mixture was applied on a copper mesh, punched out into a coin mold, pressed at 1 t / cm 2 , and vacuum dried at 120 ° C. to prepare a carbon electrode having a diameter of 13 mm and a carbon weight of 15 mg. [Fabrication of Cell] As shown in FIG. 1, a lithium electrode 2 and a carbon electrode 1 are arranged so as to face each other through a separator (Celguard 3601) 3 impregnated with an electrolytic solution.
A cell was prepared by adding ml to the carbon electrode side, pressing the collector electrode 4 from above and below, and sealing with an insulating packing 5. [Charge / Discharge Test] The above cell was connected to a charge / discharge device 6, and a charge / discharge cycle was performed in a voltage range of 0 V to 1.5 V under a constant current (0.33 mA, 0.25 mA / cm 2 ) condition for 50 times. Repeated times. The result is shown in FIG.

【0033】図2から分かるように、TMPAを添加し
た電解液(比較例2)は、何も添加しなかった電解液
(比較例1)に比べて1サイクル目から放電容量が低下
したが、本発明のリン酸エステルのリチウム塩を添加し
た電解液(実施例3〜5)では、比較例1の電解液に比
べて容量の減少が殆ど認められなかった。
As can be seen from FIG. 2, the electrolytic solution containing TMPA (Comparative Example 2) had a lower discharge capacity from the first cycle as compared with the electrolytic solution containing nothing (Comparative Example 1). In the electrolytic solutions (Examples 3 to 5) to which the lithium salt of the phosphoric acid ester of the present invention was added, almost no decrease in capacity was recognized as compared with the electrolytic solution of Comparative Example 1.

【0034】[0034]

【発明の効果】以上の説明からも明らかなように、本発
明によれば、有機溶媒と電解質とからなる非水電解液に
リン酸エステルのリチウム塩を添加することによって、
自己消火作用を示し難燃性でかつ、高電圧に耐えること
ができ、電池充放電性能の優れた非水電解液を提供する
ことができる。
As is apparent from the above description, according to the present invention, by adding a lithium salt of a phosphoric acid ester to a non-aqueous electrolytic solution containing an organic solvent and an electrolyte,
It is possible to provide a non-aqueous electrolyte that exhibits a self-extinguishing action, is flame-retardant, can withstand high voltage, and has excellent battery charge / discharge performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の非水電解液の充放電試験のために用
いたコイル型試験セルを示す図。
FIG. 1 is a view showing a coil-type test cell used for a charge / discharge test of a non-aqueous electrolyte solution of the present invention.

【図2】 本発明の非水電解液の充放電サイクル特性を
示す図。
FIG. 2 is a diagram showing charge / discharge cycle characteristics of the non-aqueous electrolyte solution of the present invention.

【符号の説明】[Explanation of symbols]

1・・・・・・正極 2・・・・・・負極 1 ・ ・ ・ ・ Positive electrode 2 ・ ・ ・ ・ Negative electrode

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】有機溶媒に電解質としてリチウム塩を溶解
した非水電解液において、一般式[1]で表されるリン
酸エステルのリチウム塩を含有することを特徴とする非
水電解液。 【化1】 (式中、R1、R2は同一或いは異なっていてもよく、そ
れぞれ炭素数1〜4個の低級アルキル基、炭素数2〜4
個のハロゲン原子置換アルキル基またはリチウムイオン
を表し、R1、R2の少なくとも一方はリチウムイオン以
外の置換基である。)
1. A non-aqueous electrolytic solution obtained by dissolving a lithium salt as an electrolyte in an organic solvent, which contains a lithium salt of a phosphoric acid ester represented by the general formula [1]. Embedded image (In the formula, R 1 and R 2 may be the same or different and each is a lower alkyl group having 1 to 4 carbon atoms or 2 to 4 carbon atoms.
Represents one halogen atom-substituted alkyl group or lithium ion, and at least one of R 1 and R 2 is a substituent other than lithium ion. )
【請求項2】前記リン酸エステルのリチウム塩が、リン
酸ジエチルリチウムであることを特徴とする請求項1記
載の非水電解液。
2. The non-aqueous electrolyte solution according to claim 1, wherein the lithium salt of the phosphoric acid ester is diethyl lithium phosphate.
【請求項3】前記有機溶媒が、一般式[2]で表される
化合物、エチレンカーボネート、プロピレンカーボネー
ト、ブチレンカーボネート、ビニレンカーボネート、γ
−ブチロラクトン及びスルホランのうちから選ばれる1
種または2種以上を混合した溶媒であることを特徴とす
る請求項1又は2記載の非水電解液。 【化2】 (式中、R3はメチル基、エチル基、プロピル基、メト
キシ基又はエトキシ基を表し、R4は炭素数1から3の
鎖状あるいは分枝状アルキル基を表す。)
3. The organic solvent is a compound represented by the general formula [2], ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, γ.
1 selected from butyrolactone and sulfolane
The non-aqueous electrolytic solution according to claim 1 or 2, which is a solvent of one kind or a mixture of two or more kinds. Embedded image (In the formula, R 3 represents a methyl group, an ethyl group, a propyl group, a methoxy group or an ethoxy group, and R 4 represents a chain or branched alkyl group having 1 to 3 carbon atoms.)
【請求項4】前記リン酸エステルのリチウム塩の濃度
が、0.1〜2.0モル/リットルの範囲であることを
特徴とする請求項1ないし3いずれか1項記載の非水電
解液。
4. The non-aqueous electrolytic solution according to claim 1, wherein the concentration of the lithium salt of the phosphoric acid ester is in the range of 0.1 to 2.0 mol / liter. .
【請求項5】前記電解質がLiPF6である請求項1な
いし4いずれか1項記載の非水電解液。
5. The non-aqueous electrolytic solution according to claim 1, wherein the electrolyte is LiPF 6 .
【請求項6】電解質濃度が0.1〜3.0モル/リット
ルの範囲であることを特徴とする請求項1ないし5いず
れか1項記載の非水電解液。
6. The non-aqueous electrolyte solution according to claim 1, wherein the electrolyte concentration is in the range of 0.1 to 3.0 mol / liter.
JP27248194A 1994-11-07 1994-11-07 Non-aqueous electrolyte Expired - Lifetime JP3294446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27248194A JP3294446B2 (en) 1994-11-07 1994-11-07 Non-aqueous electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27248194A JP3294446B2 (en) 1994-11-07 1994-11-07 Non-aqueous electrolyte

Publications (2)

Publication Number Publication Date
JPH08138733A true JPH08138733A (en) 1996-05-31
JP3294446B2 JP3294446B2 (en) 2002-06-24

Family

ID=17514534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27248194A Expired - Lifetime JP3294446B2 (en) 1994-11-07 1994-11-07 Non-aqueous electrolyte

Country Status (1)

Country Link
JP (1) JP3294446B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5986879A (en) * 1997-12-31 1999-11-16 Covalent Associates Asymmetric organic alkyl ethyl carbonates for non-aqueous power sources
US5994000A (en) * 1997-12-31 1999-11-30 Covalent Associates, Inc. Asymmetric organic alkyl methyl carbonates for non-aqueous power sources
JP2002110232A (en) * 2000-09-29 2002-04-12 Yuasa Corp Non-aqueous electrolyte and lithium battery using the same
JP2006147513A (en) * 2004-11-22 2006-06-08 Nippon Tomuseru:Kk Cell for electrochemical property measurement and electrochemical property measuring method using same
JP2014022333A (en) * 2012-07-23 2014-02-03 Asahi Kasei Corp Electrolyte for nonaqueous electricity storage device
WO2015122512A1 (en) * 2014-02-14 2015-08-20 ステラケミファ株式会社 Nonaqueous electrolyte solution for secondary batteries, and secondary battery provided with same
WO2016199823A1 (en) * 2015-06-09 2016-12-15 ステラケミファ株式会社 Nonaqueous electrolyte solution for secondary batteries and secondary battery provided with same
WO2017006977A1 (en) * 2015-07-07 2017-01-12 ステラケミファ株式会社 Non-aqueous electrolyte solution for secondary battery, method for producing same, and secondary battery provided with same
JPWO2016006607A1 (en) * 2014-07-07 2017-04-27 ダイキン工業株式会社 Electrolytic solution and method for producing phosphate
JP2017120780A (en) * 2015-12-25 2017-07-06 ステラケミファ株式会社 Nonaqueous electrolyte for secondary battery and secondary battery including the same
CN107431245A (en) * 2015-02-04 2017-12-01 斯泰拉化工公司 Non-aqueous electrolyte for secondary battery and the secondary cell for possessing it
JP2019215961A (en) * 2018-06-11 2019-12-19 エルジー・ケム・リミテッド Non-aqueous electrolyte for secondary battery including specific additive and secondary battery using the same
US11605509B2 (en) * 2017-04-04 2023-03-14 Daikin Industries, Ltd. Electrolytic solution, electrochemical device, lithium-ion secondary cell, and module

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5986879A (en) * 1997-12-31 1999-11-16 Covalent Associates Asymmetric organic alkyl ethyl carbonates for non-aqueous power sources
US5994000A (en) * 1997-12-31 1999-11-30 Covalent Associates, Inc. Asymmetric organic alkyl methyl carbonates for non-aqueous power sources
JP2002110232A (en) * 2000-09-29 2002-04-12 Yuasa Corp Non-aqueous electrolyte and lithium battery using the same
JP2006147513A (en) * 2004-11-22 2006-06-08 Nippon Tomuseru:Kk Cell for electrochemical property measurement and electrochemical property measuring method using same
JP4580751B2 (en) * 2004-11-22 2010-11-17 有限会社日本トムセル Electrochemical property measuring cell and electrochemical property measuring method using the same
JP2014022333A (en) * 2012-07-23 2014-02-03 Asahi Kasei Corp Electrolyte for nonaqueous electricity storage device
WO2015122512A1 (en) * 2014-02-14 2015-08-20 ステラケミファ株式会社 Nonaqueous electrolyte solution for secondary batteries, and secondary battery provided with same
JP2015167129A (en) * 2014-02-14 2015-09-24 ステラケミファ株式会社 Nonaqueous electrolyte for secondary battery and secondary battery including the same
KR20160121521A (en) * 2014-02-14 2016-10-19 스텔라 케미파 코포레이션 Nonaqueous electrolyte solution for secondary batteries, and secondary battery provided with same
CN106170885A (en) * 2014-02-14 2016-11-30 斯泰拉化工公司 Non-aqueous electrolyte for secondary battery and possess its secondary cell
US10938066B2 (en) 2014-02-14 2021-03-02 Stella Chemifa Corporation Nonaqueous electrolyte solution for secondary batteries and secondary battery provided with same
GB2539821A (en) * 2014-02-14 2016-12-28 Stella Chemifa Kk Nonaqueous electrolyte solution for secondary batteries, and secondary battery provided with same
EP3435472A1 (en) * 2014-07-07 2019-01-30 Daikin Industries, Ltd. Liquid electrolyte comprising an alkali metal salt of a phosphate compound
US10396399B2 (en) 2014-07-07 2019-08-27 Daikin Industries, Ltd. Liquid electrolyte, and method for manufacturing phosphate
JPWO2016006607A1 (en) * 2014-07-07 2017-04-27 ダイキン工業株式会社 Electrolytic solution and method for producing phosphate
US20170149087A1 (en) * 2014-07-07 2017-05-25 Daikin Industries, Ltd. Liquid electrolyte, and method for manufacturing phosphate
EP3168917A4 (en) * 2014-07-07 2018-04-04 Daikin Industries, Ltd. Liquid electrolyte, and method for manufacturing phosphate
US10686222B2 (en) 2014-07-07 2020-06-16 Daikin Industries, Ltd. Liquid electrolyte, and method for manufacturing phosphate
CN107431245B (en) * 2015-02-04 2021-08-10 斯泰拉化工公司 Nonaqueous electrolyte solution for secondary battery and secondary battery provided with same
US11005125B2 (en) 2015-02-04 2021-05-11 Stella Chemifa Corporation Nonaqueous electrolyte solution for secondary batteries and secondary battery provided with same
CN107431245A (en) * 2015-02-04 2017-12-01 斯泰拉化工公司 Non-aqueous electrolyte for secondary battery and the secondary cell for possessing it
JP2020170734A (en) * 2015-02-04 2020-10-15 ステラケミファ株式会社 Nonaqueous electrolyte for secondary battery and secondary battery including the same
JP2017004947A (en) * 2015-06-09 2017-01-05 ステラケミファ株式会社 Nonaqueous electrolyte solution for secondary batteries and secondary battery comprising the same
WO2016199823A1 (en) * 2015-06-09 2016-12-15 ステラケミファ株式会社 Nonaqueous electrolyte solution for secondary batteries and secondary battery provided with same
WO2017006977A1 (en) * 2015-07-07 2017-01-12 ステラケミファ株式会社 Non-aqueous electrolyte solution for secondary battery, method for producing same, and secondary battery provided with same
JP2017022108A (en) * 2015-07-07 2017-01-26 ステラケミファ株式会社 Nonaqueous electrolytic solution for secondary battery, method for producing the same, and secondary battery including the same
EP3396768A4 (en) * 2015-12-25 2018-12-05 Stella Chemifa Corporation Nonaqueous electrolyte solution for secondary battery, and secondary battery provided with said solution
JP2017120780A (en) * 2015-12-25 2017-07-06 ステラケミファ株式会社 Nonaqueous electrolyte for secondary battery and secondary battery including the same
US11605509B2 (en) * 2017-04-04 2023-03-14 Daikin Industries, Ltd. Electrolytic solution, electrochemical device, lithium-ion secondary cell, and module
JP2019215961A (en) * 2018-06-11 2019-12-19 エルジー・ケム・リミテッド Non-aqueous electrolyte for secondary battery including specific additive and secondary battery using the same

Also Published As

Publication number Publication date
JP3294446B2 (en) 2002-06-24

Similar Documents

Publication Publication Date Title
JP3821495B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
EP0825664B1 (en) Non-aqueous electrolytic solutions and non-aqueous electrolyte cells comprising the same
KR100644850B1 (en) Non-Aqueous Electrolyte Secondary Cell
JP5315674B2 (en) Non-aqueous battery electrolyte and non-aqueous battery using the same
JP4463333B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP3961597B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP5134770B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery including the same
JP4911888B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the same
KR100775566B1 (en) Non-aqueous electrolyte secondary cell and, deterioration-preventing agent for non-aqueous electrolyte secondary cell and additive for non-aqueous electrolyte secondary cell for use therein
JP3294400B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP3294446B2 (en) Non-aqueous electrolyte
JP2007200605A (en) Nonaqueous electrolyte solution and nonaqueous electrolyte solution battery equipped with it
JPH10189039A (en) Nonaqueous electrolyte and nonaqueous electrolytic secondary battery
JP2000195544A (en) Nonaqueous electrolyte and secondary battery using it
JP5093992B2 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery provided with the same
JP4671693B2 (en) Non-aqueous electrolyte additive for secondary battery and non-aqueous electrolyte secondary battery
JP4785735B2 (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same
JP4179521B2 (en) Flame retardant electrolyte and non-aqueous electrolyte secondary battery
JPH10223257A (en) Nonaqueous electrolyte for secondary battery
JP3730830B2 (en) Electrolyte for electrochemical devices
JP2006286277A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having it
JP2008112681A (en) Nonaqueous electrolyte solution for battery and nonaqueous electrolyte solution battery equipped with it
JP5134783B2 (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same
JP3571762B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JPH10189038A (en) Nonaqueous electrolyte and nonaqueous electrolytic secondary battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100405

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110405

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120405

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120405

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130405

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130405

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140405

Year of fee payment: 12

EXPY Cancellation because of completion of term