JPH08136618A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPH08136618A
JPH08136618A JP6273912A JP27391294A JPH08136618A JP H08136618 A JPH08136618 A JP H08136618A JP 6273912 A JP6273912 A JP 6273912A JP 27391294 A JP27391294 A JP 27391294A JP H08136618 A JPH08136618 A JP H08136618A
Authority
JP
Japan
Prior art keywords
circuit
lsi
timing signals
output
logic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6273912A
Other languages
Japanese (ja)
Inventor
Takeshi Nishigami
武司 西上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Computer Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Computer Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Computer Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP6273912A priority Critical patent/JPH08136618A/en
Publication of JPH08136618A publication Critical patent/JPH08136618A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To highly accurately and highly efficiently inspect the phase variation of timing signals even under a high-speed condition by incorporating a phase shift detecting circuit in an LSI which generates and processes a plurality of timing signals. CONSTITUTION: An LSI 100 is a clock distributing LSI which generates and outputs a plurality of timing signals (clock signals) Al-An of the uniform phase. In the LSI 100, a signal processing circuit 101 which generates the timing signals A1-An and a phase shift detecting circuit 1 which detects whether or not the maximum phase difference among the signals A1-An exceeds a prescribed range and outputs detected results to the outside are integrally formed. Therefore, the phase fluctuation of the timing signals generated and processed by the LSI 100 can be inspected in the LSI 100 with high accuracy and high efficiency without receiving any influence from the characteristic of the transmission line between the LSI 100 and a tester.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体集積回路装置、
さらには高速論理LSI(大規模半導体集積回路装置)
に適用して有効な技術に関するものであって、たとえば
クロック分配用LSIに利用して有効な技術に関するも
のである。
BACKGROUND OF THE INVENTION The present invention relates to a semiconductor integrated circuit device,
Furthermore, high-speed logic LSI (large-scale semiconductor integrated circuit device)
The present invention relates to a technology effective when applied to, for example, a technology effectively applied to a clock distribution LSI.

【0002】[0002]

【従来の技術】論理システムでは、そのシステム内の動
作タイミングを合わせるために、互いに位相の揃った複
数のタイミング信号(クロック信号)を生成してシステ
ム内の各部に分配することが行われる。この場合、その
複数のタイミング信号間の位相バラツキは、できるだけ
小さくする必要があり、とくに、タイミング信号が高速
になるほど、その位相バラツキの許容条件が厳しくな
る。
2. Description of the Related Art In a logic system, in order to match the operation timing in the system, a plurality of timing signals (clock signals) in phase with each other are generated and distributed to each part in the system. In this case, the phase variation between the plurality of timing signals needs to be made as small as possible, and in particular, the higher the timing signal becomes, the stricter the condition for allowing the phase variation becomes.

【0003】したがって、たとえばクロック分配用LS
Iなどのように、複数のタイミング信号を生成して外部
へ出力するLSIについては、そのタイミング信号間の
位相バラツキが所定の許容範囲内にあるか否かの診断が
必要になる。
Therefore, for example, an LS for clock distribution
For an LSI that generates a plurality of timing signals and outputs them to the outside, such as I, it is necessary to diagnose whether the phase variation between the timing signals is within a predetermined allowable range.

【0004】従来のLSIにおいて、上記位相バラツキ
の診断は、図6に示すように、LSI100の外部端子
に接続されたテスタ200によって行われていた(たと
えば、日経BP社刊行「日経エレクトロニクス 198
7年2月9日号 No.414」265〜268ペー
ジ:LSIテスタを参照)。
In the conventional LSI, the diagnosis of the phase variation is performed by a tester 200 connected to an external terminal of the LSI 100, as shown in FIG.
February 9, 7 issue No. 414 "265-268: See LSI Tester).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述し
た技術には、次のような問題のあることが本発明者らに
よってあきらかとされた。
However, the present inventors have clarified that the above-mentioned technique has the following problems.

【0006】すなわち、タイミング信号が高速化して、
その位相バラツキの許容範囲がたとえば数十ps程度に
まで及んでくると、LSIの外部端子に接続されたテス
タでは、LSIとテスタとの間の伝送路特性の影響が大
きくなって、その位相バラツキを正確に検査することが
できなくなる。つまり、タイミング信号が高速化する
と、その位相バラツキの検査がテスタの測定限界を越え
るようになってしまい、このことが検査工程の安定化お
よび効率化を妨げ、さらにはLSIの性能安定化および
高速化を妨げる阻害要因にもなる、という問題を生じる
ことがあきらかにされた。
That is, the timing signal becomes faster,
When the permissible range of the phase variation reaches several tens ps, for example, in the tester connected to the external terminal of the LSI, the influence of the transmission path characteristic between the LSI and the tester becomes large, and the phase variation becomes large. Will not be able to be inspected accurately. In other words, when the speed of the timing signal is increased, the inspection of the phase variation exceeds the measurement limit of the tester, which hinders the stabilization and efficiency of the inspection process, and further the stabilization of the LSI performance and the high speed. It became clear that this would cause a problem that it would also become a hindrance factor that hinders the realization.

【0007】本発明の目的は、たとえばクロック分配用
LSIのように、複数のタイミング信号を扱うLSIに
あって、そのタイミング信号の位相バラツキを高速条件
下でも高精度かつ高効率に検査できるようにする、とい
う技術を提供することにある。
An object of the present invention is to provide an LSI that handles a plurality of timing signals, such as an LSI for clock distribution, so that the phase variation of the timing signals can be inspected with high accuracy and efficiency even under a high speed condition. To provide the technology to do.

【0008】本発明の前記ならびにそのほかの目的と特
徴は、本明細書の記述および添付図面からあきらかにな
るであろう。
The above and other objects and characteristics of the present invention will be apparent from the description of this specification and the accompanying drawings.

【0009】[0009]

【課題を解決するための手段】本願において開示される
発明のうち、代表的なものの概要を簡単に説明すれば、
下記のとおりである。
Of the inventions disclosed in the present application, a representative one will be briefly described below.
It is as follows.

【0010】すなわち、互いに位相の揃った複数のタイ
ミング信号を生成処理するLSI内に、上記複数のタイ
ミング信号間の最大位相差が所定の許容範囲を越えたか
否かを検出して上記LSI外部へ出力する位相ずれ検出
回路を内蔵させる、というものである。
That is, whether or not the maximum phase difference between the plurality of timing signals exceeds a predetermined permissible range is detected in the LSI for generating and processing a plurality of timing signals whose phases are aligned with each other, and then the LSI is output to the outside of the LSI. The phase shift detection circuit for outputting is built in.

【0011】[0011]

【作用】上述した手段によれば、LSI内にて生成処理
される複数のタイミング信号の位相バラツキを、LSI
とテスタとの間の伝送路特性の影響を受けることなく、
そのLSI内にて高精度かつ高効率に検査することがで
きる。
According to the above-mentioned means, the phase variation of a plurality of timing signals generated and processed in the LSI can be eliminated by the LSI.
Without being affected by the characteristics of the transmission line between the tester and the tester,
It is possible to perform inspection with high accuracy and high efficiency in the LSI.

【0012】これにより、たとえばクロック分配用LS
Iのように、複数のタイミング信号を扱うLSIにあっ
て、そのタイミング信号の位相バラツキを高速条件下で
も高精度かつ高効率に検査できるようにする、という目
的が達成される。
Thus, for example, the clock distribution LS
In the LSI that handles a plurality of timing signals, such as I, it is possible to achieve an object of enabling the phase variation of the timing signals to be inspected with high accuracy and efficiency even under a high speed condition.

【0013】[0013]

【実施例】以下、本発明の好適な実施例を図面を参照し
ながら説明する。なお、図において、同一符号は同一あ
るいは相当部分を示すものとする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the drawings. In the drawings, the same reference numerals denote the same or corresponding parts.

【0014】図1は本発明の技術が適用された高速論理
LSIの一実施例を示す。同図に示すLSI100は、
互いに位相の揃った複数のタイミング信号(クロック信
号)A1〜Anを生成して出力するクロック分配用LS
Iであって、このLSI100内には、タイミング信号
A1〜Anを生成する信号処理回路101とともに、そ
の複数のタイミング信号A1〜An間の最大位相差が所
定の許容範囲を越えたか否かを検出してLSI100の
外部へ出力する位相ずれ検出回路1とが、一緒に集積形
成されている。
FIG. 1 shows an embodiment of a high speed logic LSI to which the technique of the present invention is applied. The LSI 100 shown in FIG.
Clock distribution LS that generates and outputs a plurality of timing signals (clock signals) A1 to An whose phases are aligned with each other.
In the LSI 100, it is detected in the LSI 100, together with the signal processing circuit 101 that generates the timing signals A1 to An, whether the maximum phase difference between the plurality of timing signals A1 to An exceeds a predetermined allowable range. Then, the phase shift detection circuit 1 for outputting to the outside of the LSI 100 is integrally formed together.

【0015】図2は上記位相ずれ検出回路1の具体的な
実施例を示し、図3はその動作波形チャートを示す。図
2に示す位相ずれ検出回路1は、複数のタイミング信号
A1〜An間の論理不一致区間wを検出する論理回路1
1と、この論理回路11の出力Dを積分する積分回路1
2と、この積分回路12の出力レベルVwが所定のしき
い値Vthを越えたか否かを検出するレベル検出回路1
3とによって構成される。
FIG. 2 shows a specific embodiment of the phase shift detection circuit 1 and FIG. 3 shows its operation waveform chart. The phase shift detection circuit 1 shown in FIG. 2 is a logic circuit 1 that detects a logic mismatch section w between a plurality of timing signals A1 to An.
1 and an integrating circuit 1 for integrating the output D of the logic circuit 11
2 and a level detection circuit 1 for detecting whether the output level Vw of the integration circuit 12 exceeds a predetermined threshold value Vth.
3 and 3.

【0016】この場合、論理不一致区間wを検出する論
理回路11は、複数のタイミング信号A1〜Anの総論
理和をとる第1論理ゲートG1と、上記タイミング信号
A1〜Anの否定論理積をとる第2論理ゲートG2と、
第1論理ゲートG1の出力Bと第2論理ゲートG2の出
力Cとの間の論理積をとる第3論理ゲートG3とからな
り、この第3論理ゲートG3の出力Dが上記論理不一致
区間wの検出出力として積分回路12へ伝達される。
In this case, the logic circuit 11 for detecting the logic non-coincidence section w takes the negative logical product of the above timing signals A1 to An and the first logic gate G1 which takes the total logical sum of the plurality of timing signals A1 to An. A second logic gate G2,
It is composed of a third logic gate G3 which takes a logical product between the output B of the first logic gate G1 and the output C of the second logic gate G2, and the output D of the third logic gate G3 is in the logic mismatch section w. It is transmitted to the integration circuit 12 as a detection output.

【0017】このとき、図3に示すように、上記検出出
力DのH(高レベル)で示される論理不一致区間wが、
上記タイミング信号A1〜An間の最大位相差いわゆる
位相バラツキ量を示す。
At this time, as shown in FIG. 3, the logical mismatch section w indicated by H (high level) of the detection output D is
The maximum phase difference between the timing signals A1 to An is the so-called phase variation amount.

【0018】積分回路12は、時定数素子として抵抗R
tおよび容量素子Ctを用いて構成され、上記論理回路
11の出力DがH(高レベル)のときに容量素子Ctを
高側電源電位Vccに充電する一方、上記論理回路11
からの出力DがL(低レベル)のときにその容量素子C
tを低側電源電位Veeに放電する。
The integrating circuit 12 has a resistor R as a time constant element.
t and the capacitance element Ct, the capacitance element Ct is charged to the high-side power supply potential Vcc when the output D of the logic circuit 11 is H (high level), while the logic circuit 11 is
When the output D from is at L (low level), the capacitance element C
t is discharged to the low-side power supply potential Vee.

【0019】これにより、図3に示すように、上記論理
回路11からの出力DがH(高レベル)となる論理不一
致区間wが短いとき、つまり上記タイミング信号A1〜
An間の最大位相差が小さいときは、容量素子Ctの放
電が充電よりも優勢になって、積分回路12の出力レベ
ルVwは低下する。他方、上記論理回路11からの出力
DがH(高レベル)となる論理不一致区間wが長くなる
と、つまり上記タイミング信号A1〜An間の最大位相
差が大きくなると、容量素子Ctの充電が充電よりも優
勢になって、積分回路12の出力レベルVwが上昇す
る。
As a result, as shown in FIG. 3, when the logic disagreement section w in which the output D from the logic circuit 11 becomes H (high level) is short, that is, the timing signals A1 to A1.
When the maximum phase difference between An is small, the discharge of the capacitive element Ct becomes more dominant than the charge, and the output level Vw of the integrating circuit 12 decreases. On the other hand, when the logic disagreement section w in which the output D from the logic circuit 11 becomes H (high level) becomes long, that is, when the maximum phase difference between the timing signals A1 to An becomes large, the charging of the capacitive element Ct is more than the charging. Also becomes dominant, and the output level Vw of the integrating circuit 12 rises.

【0020】レベル検出回路13は、エミッタ結合され
た差動バイポーラ・トランジスタQ31,Q32と、所
定の検出しきい値Vthを分圧する抵抗R33,R34
と、エミッタフォロワ出力回路Q33を形成するバイポ
ーラ・トランジスタQ32などによって構成され、図3
に示すように、上記積分回路12の出力レベルVwが所
定の検出しきい値Vth以上になったかどうかを検出
し、この検出結果を位相バラツキの診断出力としてLS
I外部へ出力する。
The level detection circuit 13 includes emitter-coupled differential bipolar transistors Q31 and Q32 and resistors R33 and R34 for dividing a predetermined detection threshold Vth.
And a bipolar transistor Q32 forming an emitter follower output circuit Q33.
As shown in FIG. 5, it is detected whether the output level Vw of the integrating circuit 12 becomes equal to or higher than a predetermined detection threshold value Vth, and the detection result is used as a diagnostic output for phase variation LS.
I Output to outside.

【0021】以上のようにして、上述したクロック分配
用LSI100では、その内部で生成された複数のタイ
ミング信号A1〜An間の最大位相差すなわち不一致区
間wが所定の許容範囲を越えたか否かをLSI100の
内部にて検出し、この検出結果を位相バラツキの診断出
力として外部へ出力する。
As described above, in the above-described clock distribution LSI 100, it is determined whether or not the maximum phase difference between the plurality of timing signals A1 to An internally generated, that is, the non-coincidence section w exceeds the predetermined allowable range. The detection is performed inside the LSI 100, and the detection result is output to the outside as a phase variation diagnostic output.

【0022】これにより、LSI100内にて生成処理
される複数のタイミング信号A1〜An間の位相バラツ
キは、外部のテスタに依存することなく、そのLSI1
00内にて高精度かつ高効率に検査される。したがっ
て、LSIとテスタとの間の伝送路特性の影響を受ける
ことなく、位相バラツキ不良の診断を的確に行うことが
できる。
As a result, the phase variation among the plurality of timing signals A1 to An generated and processed in the LSI 100 does not depend on the external tester, and the LSI 1 does not depend on the external tester.
It is inspected in 00 with high accuracy and high efficiency. Therefore, the phase variation defect can be accurately diagnosed without being affected by the characteristics of the transmission line between the LSI and the tester.

【0023】図4は上記位相ずれ検出回路1の別の実施
例示し、図5はその動作波形チャートを示す。図4に示
す位相ずれ検出回路1は、複数のタイミング信号A1〜
An間の論理不一致区間wを検出する論理回路11と、
この論理回路の出力Dを遅延伝達する遅延回路14と、
この遅延回路14の出力Eと上記論理回路の出力Dとの
間の論理積をとる論理ゲートG4と、この論理ゲートG
4の出力Fによってセットされる保持回路15とによっ
て構成される。
FIG. 4 shows another embodiment of the phase shift detection circuit 1, and FIG. 5 shows its operation waveform chart. The phase shift detection circuit 1 shown in FIG. 4 has a plurality of timing signals A1 to A1.
A logic circuit 11 for detecting a logic mismatch section w between An;
A delay circuit 14 for delaying and transmitting the output D of this logic circuit;
A logic gate G4 which takes a logical product between the output E of the delay circuit 14 and the output D of the logic circuit, and the logic gate G4.
4 and the holding circuit 15 which is set by the output F of 4.

【0024】図5に示すように、論理回路11によって
検出された論理不一致区間wが遅延回路14の遅延量t
dよりも大きくなると、論理ゲートG4の出力FにH
(高レベル)が現れるようになり、このH(高レベル)
によって保持回路15がセットされ、この保持回路15
のセット出力Qが位相バラツキの診断出力としてLSI
外部へ出力される。
As shown in FIG. 5, the logic mismatch section w detected by the logic circuit 11 is the delay amount t of the delay circuit 14.
When it becomes larger than d, the output F of the logic gate G4 becomes H
(High level) comes to appear, and this H (high level)
The holding circuit 15 is set by the holding circuit 15
The set output Q of the LSI is used as a diagnostic output of phase variation.
Output to the outside.

【0025】この場合、遅延回路14の遅延量tdは、
上記論理不一致区間wすなわち最大位相差の許容範囲に
相当する大きさに設定されている。論理不一致区間wが
遅延量tdよりも小さい場合、遅延回路14の出力Eと
論理回路11の出力Dは時間的に重なり合わず、したが
って論理ゲートG4の出力FはH(高レベル)にならな
い。
In this case, the delay amount td of the delay circuit 14 is
It is set to a size corresponding to the above logical non-matching section w, that is, the allowable range of the maximum phase difference. When the logic non-coincidence section w is smaller than the delay amount td, the output E of the delay circuit 14 and the output D of the logic circuit 11 do not temporally overlap with each other, and therefore the output F of the logic gate G4 does not become H (high level).

【0026】しかし、論理不一致区間wが遅延量tdよ
りも大きくなると、図5に示すように、遅延回路14の
出力Eと論理回路11の出力Dは時間的に重なり合うよ
うになって、その重なり区間で論理ゲートG4の出力F
がH(高レベル)になり、このH(高レベル)によって
保持回路15がセットされる。なお、保持回路15は電
源投入時にリセット状態に初期化されるようになってい
るものとする(パワーオン・リセット)。
However, when the logic non-coincidence section w becomes larger than the delay amount td, the output E of the delay circuit 14 and the output D of the logic circuit 11 temporally overlap with each other, as shown in FIG. Output F of logic gate G4 in the interval
Becomes H (high level), and the holding circuit 15 is set by this H (high level). The holding circuit 15 is assumed to be initialized to a reset state when the power is turned on (power-on reset).

【0027】以上のようにして、LSI100の内部で
生成された複数のタイミング信号A1〜An間の最大位
相差すなわち論理不一致区間wが所定の許容範囲を越え
たか否かがLSI100の内部にて検出され、この検出
結果が位相バラツキの診断出力として外部へ出力され
る。
As described above, it is detected inside the LSI 100 whether or not the maximum phase difference between the plurality of timing signals A1 to An generated inside the LSI 100, that is, the logic non-matching section w exceeds a predetermined allowable range. The detection result is output to the outside as a phase variation diagnostic output.

【0028】これにより、LSI100内にて生成処理
される複数のタイミング信号A1〜An間の位相バラツ
キは、外部のテスタに依存することなく、そのLSI1
00内にて高精度かつ高効率に検査される。
As a result, the phase variation among the plurality of timing signals A1 to An generated and processed in the LSI 100 does not depend on the external tester, and the LSI 1 does not depend on the external tester.
It is inspected in 00 with high accuracy and high efficiency.

【0029】さらに、この実施例では、位相バラツキの
診断出力が保持回路15のセット出力Qによって、H
(高レベル)またはL(低レベル)の2値レベルで与え
られるため、位相バラツキ不良の判定が非常に簡単かつ
明確に行えるという利点もある。
Further, in this embodiment, the diagnostic output of the phase variation is set to H by the set output Q of the holding circuit 15.
Since it is given at a binary level of (high level) or L (low level), there is also an advantage that the determination of the phase variation defect can be performed very easily and clearly.

【0030】以上、本発明者によってなされた発明を実
施例にもとづき具体的に説明したが、本発明は上記実施
例に限定されるものではなく、その要旨を逸脱しない範
囲で種々変更可能であることはいうまでもない。
The invention made by the present inventor has been specifically described above based on the embodiments, but the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the invention. Needless to say.

【0031】たとえば、論理ゲートG1〜G4にワイヤ
ード論理を用いることにより、論理不一致区間wの検出
速度を高め、これにより位相バラツキの検出精度をさら
に高めることができる。
For example, by using the wired logic for the logic gates G1 to G4, the detection speed of the logic disagreement section w can be increased, thereby further improving the detection accuracy of the phase variation.

【0032】以上の説明では主として、本発明者によっ
てなされた発明をその背景となった利用分野であるクロ
ック分配用LSIに適用した場合について説明したが、
それに限定されるものではなく、たとえば論理信号の並
列処理を行う機能論理LSIなどにも適用できる。
In the above description, the case where the invention made by the present inventor is mainly applied to the clock distribution LSI which is the background field of application has been described.
The present invention is not limited to this, and can be applied to, for example, a functional logic LSI that performs parallel processing of logic signals.

【0033】[0033]

【発明の効果】本願において開示される発明のうち、代
表的なものの効果を簡単に説明すれば、下記のとおりで
ある。
The effects of the typical ones of the inventions disclosed in this application will be briefly described as follows.

【0034】すなわち、クロック分配用LSIのよう
に、複数のタイミング信号を扱うLSIにあって、その
タイミング信号の位相バラツキを高速条件下でも高精度
かつ高効率に検査することができるようになる、という
効果が得られる。
That is, in an LSI that handles a plurality of timing signals, such as a clock distribution LSI, the phase variation of the timing signals can be inspected with high accuracy and efficiency even under high speed conditions. The effect is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の技術が適用された半導体集積回路装置
の一実施例を示すブロック図
FIG. 1 is a block diagram showing an embodiment of a semiconductor integrated circuit device to which the technique of the present invention is applied.

【図2】図1に示した位相ずれ検出回路の具体的な回路
例を示す図
FIG. 2 is a diagram showing a specific circuit example of the phase shift detection circuit shown in FIG.

【図3】図2に示した位相ずれ検出回路の動作を示す波
形チャート
FIG. 3 is a waveform chart showing the operation of the phase shift detection circuit shown in FIG.

【図4】図3に示した位相ずれ検出回路の具体的な回路
例を示す図
FIG. 4 is a diagram showing a specific circuit example of the phase shift detection circuit shown in FIG.

【図5】図4に示した位相ずれ検出回路の動作を示す波
形チャート
5 is a waveform chart showing the operation of the phase shift detection circuit shown in FIG.

【図6】従来の半導体集積回路装置での位相バラツキ検
査方法を示すブロック図
FIG. 6 is a block diagram showing a conventional phase variation inspection method in a semiconductor integrated circuit device.

【符号の説明】[Explanation of symbols]

100 半導体集積回路装置 101 信号処理回路 1 位相ずれ検出回路 11 論理回路 12 積分回路 13 レベル検出回路 14 遅延回路 15 保持回路 100 semiconductor integrated circuit device 101 signal processing circuit 1 phase shift detection circuit 11 logic circuit 12 integration circuit 13 level detection circuit 14 delay circuit 15 holding circuit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 互いに位相の揃った複数のタイミング信
号を生成して外部へ出力する信号処理回路と、上記複数
のタイミング信号間の最大位相差が所定の許容範囲を越
えたか否かを検出して半導体集積回路外部へ出力する位
相ずれ検出回路とを内蔵したことを特徴とする半導体集
積回路装置。
1. A signal processing circuit for generating a plurality of timing signals in phase with each other and outputting the timing signals to the outside, and detecting whether or not the maximum phase difference between the plurality of timing signals exceeds a predetermined allowable range. And a phase shift detection circuit for outputting the semiconductor integrated circuit to the outside of the semiconductor integrated circuit.
【請求項2】 位相ずれ検出回路として、複数のタイミ
ング信号間の論理不一致区間を検出する論理回路と、こ
の論理回路の出力を積分する積分回路と、この積分回路
の出力レベルが所定のしきい値を越えたか否かを検出す
るレベル検出回路とを備えたことを特徴とする半導体集
積回路装置。
2. A phase shift detection circuit, a logic circuit for detecting a logic mismatch section between a plurality of timing signals, an integration circuit for integrating the output of the logic circuit, and an output level of the integration circuit having a predetermined threshold. A semiconductor integrated circuit device, comprising: a level detection circuit for detecting whether or not a value is exceeded.
【請求項3】 位相ずれ検出回路として、複数のタイミ
ング信号間の論理不一致区間を検出する論理回路と、こ
の論理回路の出力を遅延伝達する遅延回路と、この遅延
回路の出力と上記論理回路の出力と間の論理積によって
セットされる保持回路とを備えたことを特徴とする半導
体集積回路装置。
3. A phase shift detection circuit, a logic circuit for detecting a logic mismatch section between a plurality of timing signals, a delay circuit for delaying and transmitting the output of the logic circuit, an output of the delay circuit and the logic circuit. A semiconductor integrated circuit device, comprising: a holding circuit set by a logical product between the output and the output.
JP6273912A 1994-11-08 1994-11-08 Semiconductor integrated circuit device Pending JPH08136618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6273912A JPH08136618A (en) 1994-11-08 1994-11-08 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6273912A JPH08136618A (en) 1994-11-08 1994-11-08 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPH08136618A true JPH08136618A (en) 1996-05-31

Family

ID=17534308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6273912A Pending JPH08136618A (en) 1994-11-08 1994-11-08 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH08136618A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171528A (en) * 1998-12-08 2000-06-23 Samsung Electronics Co Ltd Tester
CN109471015A (en) * 2018-10-09 2019-03-15 佛山中科芯蔚科技有限公司 A kind of formulating method and system of chip product test specification

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171528A (en) * 1998-12-08 2000-06-23 Samsung Electronics Co Ltd Tester
CN109471015A (en) * 2018-10-09 2019-03-15 佛山中科芯蔚科技有限公司 A kind of formulating method and system of chip product test specification
CN109471015B (en) * 2018-10-09 2021-07-20 佛山中科芯蔚科技有限公司 Method and system for making chip product test specification

Similar Documents

Publication Publication Date Title
US7373574B2 (en) Semiconductor testing apparatus and method of testing semiconductor
KR100260989B1 (en) Input buffer circuit
US5111136A (en) Semiconductor circuit
US6370676B1 (en) On-demand process sorting method and apparatus
US5672982A (en) Semiconductor integrated circuit
US4633102A (en) High speed address transition detector circuit for dynamic read/write memory
JPH08136618A (en) Semiconductor integrated circuit device
US5343479A (en) Semiconductor integrated circuit having therein circuit for detecting abnormality of logical levels outputted from input buffers
EP0595748A1 (en) Power up detection circuits
US5381418A (en) Testable latch self checker
US4924117A (en) Logic circuit having an error detection function
US4638482A (en) Random logic error detecting system for differential logic networks
US5046048A (en) Semiconductor integrated circuit including output buffer
JPH05129920A (en) Voltage detection circuit
JPH04372222A (en) Semiconductor circuit device
US5130575A (en) Testable latch self checker
JP2885135B2 (en) Semiconductor integrated circuit
JPH10253710A (en) Semiconductor device and measuring method thereof
JP3117404B2 (en) Input circuit and semiconductor integrated circuit including the same
JPH07146343A (en) Malfunction preventing test circuit
JP2671547B2 (en) CMOS digital integrated circuit
JPH06313787A (en) Estimating circuit of semiconductor device
JP2008053885A (en) Ternary input circuit
JPH0599987A (en) Test circuit
JPH04312950A (en) Semiconductor integrated circuit