JPH08136207A - Position detector - Google Patents

Position detector

Info

Publication number
JPH08136207A
JPH08136207A JP29804794A JP29804794A JPH08136207A JP H08136207 A JPH08136207 A JP H08136207A JP 29804794 A JP29804794 A JP 29804794A JP 29804794 A JP29804794 A JP 29804794A JP H08136207 A JPH08136207 A JP H08136207A
Authority
JP
Japan
Prior art keywords
magnet
pole
apex angle
magnets
hall element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29804794A
Other languages
Japanese (ja)
Other versions
JP3332620B2 (en
Inventor
Kazuhiro Noguchi
和宏 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP29804794A priority Critical patent/JP3332620B2/en
Publication of JPH08136207A publication Critical patent/JPH08136207A/en
Application granted granted Critical
Publication of JP3332620B2 publication Critical patent/JP3332620B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE: To perform the position detection of a member having the relatively large amount of movement in high accuracy by a simple constitution. CONSTITUTION: Magnets 8Pb and 8Yb having the S poles and the N poles are arranged in the neighboring pattern. At least one or more magnetic detecting means 9P and 9Y are fixed to members, which can be relatively moved with respect to the magnets 8Pb and 8Yb so that the detecting means are located between the magnets at the initial state, and detect the relative positions of the above described members. These parts are provided. A part without a magnetic pole, which has the size corresponding to the range for assuring the relative position detection of the magnets 8Pb and 8Yb and the above described members, is provided between the magnets 8Pb and 8Yb having the S poles and the N poles. The range of the linear changing part of the outputs of the magnetic detecting means 9P and 9Y with respect to the relative moving amount of each magnet and the member is expanded.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ホール素子等の磁気検
出手段により、相対的に移動する着磁部材の位置を検出
する位置検出装置の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a position detecting device for detecting the position of a magnetizing member which moves relatively by a magnetic detecting means such as a Hall element.

【0002】[0002]

【従来の技術】従来、ホール素子等の磁気検出センサ
は、VTRなどのAV機器やハードディスク装置,フロ
ッピーディスク装置など、OA機器のブラシレスモータ
の回転制御に広く用いられてきた。
2. Description of the Related Art Conventionally, magnetic detection sensors such as Hall elements have been widely used for rotation control of brushless motors in AV equipment such as VTRs, hard disk devices, floppy disk devices and other OA equipment.

【0003】図14は3相ブラシレスモータの構造を示
しており、図14(a)は断面図、図14(b)は平面
図である。
FIG. 14 shows the structure of a three-phase brushless motor. FIG. 14 (a) is a sectional view and FIG. 14 (b) is a plan view.

【0004】図14において、101は継鉄を兼ねる固
定部材、102a,102b,102c,102d,1
02e,102fは前記固定部材101に固定された駆
動用コイル、103は前記固定部材101に固定された
軸受部であり、これら固定部材101から駆動用コイル
103までによって固定子を構成している。
In FIG. 14, 101 is a fixing member which also serves as a yoke, and 102a, 102b, 102c, 102d, 1
Reference numerals 02e and 102f denote driving coils fixed to the fixing member 101, and 103 denotes a bearing portion fixed to the fixing member 101. The fixing member 101 to the driving coil 103 form a stator.

【0005】104は8極に着磁された磁石(マグネッ
トとも記す)、105は前記マグネット104のバック
ヨーク、106は回転軸であり、これらマグネット10
4から回転軸106までによって回転子を構成してい
る。
Reference numeral 104 denotes a magnet (also referred to as a magnet) magnetized to have eight poles, 105 denotes a back yoke of the magnet 104, and 106 denotes a rotating shaft.
The rotor is composed of 4 to the rotating shaft 106.

【0006】107a,107b,107cは前記固定
部材101に配置されたホール素子であり、この出力に
よりマグネット104の磁極の境界を検出し、順次励磁
する駆動コイル102a〜102fを切り換える事によ
り、回転子は回転する。
Hall elements 107a, 107b and 107c are arranged on the fixed member 101. The output detects the boundary between the magnetic poles of the magnet 104, and the drive coils 102a to 102f that are sequentially excited are switched, thereby rotating the rotor. Rotates.

【0007】また、比較的大きな変位をホール素子で検
出する例として、民生用カムコーダの光量制御手段であ
る絞り装置が挙げられる。2極に着磁されたマグネット
回転子の位置をホール素子により検出し、演算により絞
り値を得ている。
Further, as an example of detecting a relatively large displacement with a Hall element, there is a diaphragm device which is a light quantity control means of a consumer camcorder. The position of the magnet rotor magnetized in two poles is detected by the Hall element, and the aperture value is obtained by calculation.

【0008】さらに、駆動用コイル及びホール素子を具
備した固定部材に対し、ある間隔を持って平行移動する
被検出部材に、N極とS極が接合されて成る板状の磁石
を設け、前記被検出部材の移動による磁束の変化を前記
ホール素子にて検出することで、前記被検出部材の位置
を監視する装置が、特開昭59−88602号公報にて
開示されている。
Further, a plate-shaped magnet having an N-pole and an S-pole joined to a member to be detected which moves in parallel with a fixed member provided with a driving coil and a Hall element is provided. Japanese Unexamined Patent Publication No. 59-88602 discloses a device for monitoring the position of the detected member by detecting the change of the magnetic flux due to the movement of the detected member with the Hall element.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記従
来例では、ホール素子が検出しているマグネット回転子
の磁束は空間的に非線形で変化している為に、該回転子
の移動量に対するホール素子の出力は直線性が悪く、ブ
ラシレスモータの様に磁極の境界のみを検出する様な用
途や、カムコーダの絞り値検出の様な概略の位置を検出
する用途に限られていた。
However, in the above-mentioned conventional example, since the magnetic flux of the magnet rotor detected by the Hall element changes spatially in a non-linear manner, the Hall element with respect to the moving amount of the rotor is changed. Output is poor in linearity, and was limited to applications such as brushless motors that detect only the boundaries of magnetic poles, and applications that detect approximate positions such as aperture value detection of camcorders.

【0010】また、特開昭59−88602号の装置に
よれば、各磁石の接合部付近の合成磁界の磁束密度には
かなりの範囲で直線性が存在すること着目し、この部分
を利用することで、精度の良い位置制御を可能にしてい
るが、前記各磁石による磁束密度の直線的変化部分の範
囲が狭いため、微少位置変化しか検出できず、その用途
は極めて限られたものとなっていた。
Further, according to the apparatus of Japanese Patent Laid-Open No. 59-88602, attention is paid to the fact that the magnetic flux density of the composite magnetic field near the joint of each magnet has linearity in a considerable range, and this portion is used. This enables accurate position control, but since the range of the linear change portion of the magnetic flux density by each magnet is narrow, only minute position changes can be detected, and its application is extremely limited. Was there.

【0011】(発明の目的)本発明の目的は、簡単な構
成により、比較的大きな移動量を持つ部材の位置検出
を、精度よく行うことのできる位置検出装置を提供する
ことである。
(Object of the Invention) An object of the present invention is to provide a position detecting device having a simple structure and capable of accurately detecting the position of a member having a relatively large movement amount.

【0012】[0012]

【課題を解決するための手段】上記の目的を達成するた
めに、請求項1〜5記載の本発明は、隣接して配置され
たS極とN極の磁石と、これら磁石に対して相対的に移
動可能な部材に、初期状態で前記各磁石の間に位置する
ように固定され、前記部材の相対位置を検出する為の少
なくとも1個以上の磁気検出手段とを備えた位置検出装
置において、前記S極とN極の磁石の間に、これら磁石
と前記部材の相対位置検出保証範囲に応じた大きさを持
つ無磁極部分を設け、各磁石と部材の相対移動量に対す
る、磁気検出手段の出力の直線的変化部分の範囲を広げ
るようにしている。
In order to achieve the above-mentioned object, the present invention according to claims 1 to 5 provides an S-pole magnet and an N-pole magnet which are arranged adjacent to each other, and a magnet relative to these magnets. A position detecting device fixed to a movable member in an initial state so as to be positioned between the magnets, and at least one magnetic detecting means for detecting a relative position of the member. Between the S-pole magnet and the N-pole magnet, a non-magnetic pole portion having a size corresponding to the relative position detection guaranteed range of these magnets and the member is provided, and the magnetic detection means for the relative movement amount of each magnet and the member. The range of the linear change part of the output of is expanded.

【0013】[0013]

【実施例】以下、本発明を図示の実施例に基づいて詳細
に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below based on the illustrated embodiments.

【0014】図1及び図2は、本発明をビデオカメラ等
の光学機器の像振れ補正装置に適用した第1の実施例を
示すものであり、図1は主要部の断面図を、図2は可動
部分の分解斜視図を、それぞれ示している。
1 and 2 show a first embodiment in which the present invention is applied to an image blur correction device for an optical device such as a video camera. FIG. 1 is a sectional view of a main portion, and FIG. Shows an exploded perspective view of a movable part, respectively.

【0015】これらの図において、1は可変頂角プリズ
ムであり、ガラス等の透明板である1a,1b、この透
明板1a,1bを支持する支持枠1c,1d、この支持
枠1c,1dを補強している補強リング1e,1f、前
記支持枠1c,1dを連結している蛇腹状フィルム1
g、及び、形成された内部空間に満たされた図示しない
高屈折率の透明液体より構成されている。
In these figures, 1 is a variable apex angle prism, which is a transparent plate 1a, 1b such as glass, supporting frames 1c, 1d for supporting the transparent plates 1a, 1b, and supporting frames 1c, 1d. A bellows-shaped film 1 connecting the reinforcing rings 1e and 1f for reinforcement and the support frames 1c and 1d.
g, and a transparent liquid with a high refractive index (not shown) filled in the formed internal space.

【0016】2は可変頂角プリズム1を用いた像振れ補
正装置を組み込むレンズ鏡筒の一部であり、3a,3
b,3cは該光学系のレンズ群の一部である。4はレン
ズ鏡筒2に固定された支持体、5は可変頂角プリズム1
の片面を支持体4へ固定する為の固定枠、6は可変頂角
プリズム1の他方の面に固着された支持枠である。
Reference numeral 2 is a part of a lens barrel incorporating an image blur correction device using the variable apex angle prism 1.
Reference numerals b and 3c are parts of the lens group of the optical system. 4 is a support fixed to the lens barrel 2 and 5 is a variable apex angle prism 1.
A fixed frame for fixing one surface of the variable angle prism 1 to the support 4, and a support frame 6 fixed to the other surface of the variable apex angle prism 1.

【0017】前記支持枠6にはコイル7P及び7Y(図
1には図示せず)が直角を成して接着等により固着され
ている。又、コイル7Pの両面にはあるギャップを保っ
て、上ヨーク8Pa、マグネット8Pb、このマグネッ
ト8Pbのバックヨークである下ヨーク8Pcが配置さ
れ、磁気回路を形成し、アクチュエータ8Pを構成して
いる。(上ヨーク及びマグネット,下ヨークは図示しな
いスペース部材により保持されている)。
Coils 7P and 7Y (not shown in FIG. 1) are fixed to the support frame 6 at right angles by adhesion or the like. An upper yoke 8Pa, a magnet 8Pb, and a lower yoke 8Pc that is a back yoke of this magnet 8Pb are arranged with a certain gap maintained on both sides of the coil 7P to form a magnetic circuit to form an actuator 8P. (The upper yoke, the magnet, and the lower yoke are held by a space member (not shown)).

【0018】前記コイル7Pに通電すると、ローレンツ
力を発生し、支持枠6を駆動する。又、コイル7Yにも
同様な構成でアクチュエータ8Y(図2参照)が配置し
てあり、アクチュエータ8P及び8Yの合成力が支持枠
6に作用する。
When the coil 7P is energized, a Lorentz force is generated to drive the support frame 6. An actuator 8Y (see FIG. 2) is also arranged in the coil 7Y in a similar configuration, and the combined force of the actuators 8P and 8Y acts on the support frame 6.

【0019】9P及び9Y(図2参照)は、それぞれコ
イル7P及び7Yの中央部分に位置する磁気検出素子で
あるホール素子であり、アクチュエータ8P及び8Yの
ギャップ内の磁束を検出して、可変頂角プリズム1のピ
ッチ及びヨー方向の頂角を検出する頂角センサを成す。
Reference numerals 9P and 9Y (see FIG. 2) are Hall elements, which are magnetic detection elements located in the central portions of the coils 7P and 7Y, respectively, and detect the magnetic flux in the gaps of the actuators 8P and 8Y to change the variable top. It constitutes an apex angle sensor for detecting the pitch of the angular prism 1 and the apex angle in the yaw direction.

【0020】次に、図3により、可変頂角プリズム1に
ピッチ及びヨー方向のアクチュエータ8P,8Yにより
合成力が作用した時の,該可変頂角プリズム1の両面の
変形について説明する。
Next, the deformation of both sides of the variable apex angle prism 1 when a combined force is applied to the variable apex angle prism 1 by the actuators 8P and 8Y in the pitch and yaw directions will be described with reference to FIG.

【0021】可変頂角プリズム1の片面を固定し、他方
の面を可動とする時、該可変頂角プリズム1の中心面内
で直交する軸を図示する様に軸X,Yとし、この軸X,
Yに直交する軸をZとすると、可動面の動きの自由度は
各軸方向への移動とそれぞれの軸まわりの回転の6自由
度が考えられる。ここで、可動面は固定面に対してZ軸
方向への伸縮性の高い構成の蛇腹状フィルム(図1の1
g)で結合され、尚かつ、その内部に液体が満たされて
いる。したがって、X,Y軸方向の移動は蛇腹状フィル
ムにより規制され、Z軸方向への移動は密封された液体
の非圧縮性と該蛇腹状フィルムの張力により、規制され
ている。
When one surface of the variable apex angle prism 1 is fixed and the other surface is movable, axes perpendicular to each other in the center plane of the variable apex angle prism 1 are axes X and Y as shown in the drawing. X,
When the axis orthogonal to Y is Z, the degree of freedom of movement of the movable surface is considered to be six degrees of freedom of movement in each axis direction and rotation about each axis. Here, the movable surface is a bellows-like film (see FIG.
g), and the inside is filled with liquid. Therefore, movement in the X and Y axis directions is regulated by the bellows film, and movement in the Z axis direction is regulated by the incompressibility of the sealed liquid and the tension of the bellows film.

【0022】また、Z軸まわりの回転の自由度(rol
l)も蛇腹状フィルムによって規制されているので、結
局、可動面が固定面に対して容易に変形可能な変形の自
由度は、X軸まわりの回転(pitch)とY軸まわり
の回転(yaw)の2自由度に限定され、又その回転軸
は、蛇腹状フィルムの対称形状により、可変頂角プリズ
ム1の中心平面上に位置する。
The degree of freedom of rotation about the Z axis (roll
Since l) is also regulated by the bellows film, the degree of freedom of deformation in which the movable surface can be easily deformed with respect to the fixed surface is, after all, rotation about the X axis (pitch) and rotation about the Y axis (yaw). 2), and its rotation axis is located on the central plane of the variable apex angle prism 1 due to the symmetrical shape of the bellows film.

【0023】すなわち、アクチュエータ8(8P及び8
Y)の発生する合成力が支持枠6に作用すると、可変頂
角プリズム1の固定面に対して可動面が合成力の作用す
る方向に回動し、プリズム頂角を形成する。
That is, the actuator 8 (8P and 8
When the combined force generated by Y) acts on the support frame 6, the movable surface rotates with respect to the fixed surface of the variable apex angle prism 1 in the direction in which the combined force acts to form the prism apex angle.

【0024】次に、ホール素子9(9P,9Y)による
可変頂角プリズム1の頂角検出について、図4及び図5
を用いて説明する。
Next, the detection of the apex angle of the variable apex angle prism 1 by the Hall element 9 (9P, 9Y) will be described with reference to FIGS.
Will be explained.

【0025】図4は、マグネット8b(8Pb,8Y
b)及びホール素子9をアクチュエータ8のギャップ方
向より見た平面図であり、図示のホール素子9の位置は
初期位置(可変頂角プリズム1の頂角が0)を示し、可
変頂角プリズム1の可動面の回動により矢印の様に移動
する。
FIG. 4 shows a magnet 8b (8Pb, 8Y).
3B is a plan view of the Hall element 9 as viewed from the gap direction of the actuator 8. The position of the Hall element 9 shown in the figure shows the initial position (the apex angle of the variable apex angle prism 1 is 0), and the variable apex angle prism 1 is shown. It moves as shown by the arrow by the rotation of the movable surface of.

【0026】図5は、可変頂角プリズム1の頂角(横
軸)に対するホール素子9の出力(縦軸)の関係を示す
図であり、プリズム頂角が大きくなると、マグネット8
bの磁極(N又はS極)の方へホール素子9が移動し、
該ホール素子9を垂直に通る磁束が飽和するので、この
ホール素子出力は検出感度が低下する。
FIG. 5 is a diagram showing the relationship between the vertical angle (horizontal axis) of the variable vertical angle prism 1 and the output (vertical axis) of the Hall element 9. As the vertical angle of the prism increases, the magnet 8 moves.
Hall element 9 moves toward the magnetic pole (N or S pole) of b,
Since the magnetic flux passing vertically through the Hall element 9 is saturated, the detection sensitivity of this Hall element output is lowered.

【0027】図5における破線の範囲内は、プリズム頂
角に対するホール素子出力の直線性を保証すべき範囲で
あり、図4で示す破線の範囲内(マグネット8bの無着
磁部分)に関連している。その幅は、ホール素子9の移
動量、すなわち回転中心からの距離とホール素子出力の
プリズム頂角に対する直線性を保証する角度範囲に応じ
て設定される。
The range within the broken line in FIG. 5 is the range in which the linearity of the Hall element output with respect to the prism apex angle should be guaranteed, and is related to the range within the broken line shown in FIG. 4 (the non-magnetized portion of the magnet 8b). ing. The width is set according to the amount of movement of the Hall element 9, that is, the distance from the center of rotation and the angular range that guarantees the linearity of the Hall element output with respect to the prism apex angle.

【0028】次に、図6により、ピッチ及びヨー方向の
頂角センサの独立性について説明する。X軸,Y軸は図
3に示すものと同じであり、可変頂角プリズム1の中心
面内に設定されている。
Next, the independence of the apex angle sensors in the pitch and yaw directions will be described with reference to FIG. The X axis and the Y axis are the same as those shown in FIG. 3, and are set in the center plane of the variable apex angle prism 1.

【0029】今、可変頂角プリズム1の可動面が図示す
る様に、Y軸(ヨー軸)より角度φの軸で、角度θ揺動
した場合について考える。この時のピッチ及びヨー方向
の可動面の傾きがそれぞれ α=θ・sinφ ,β=θ・cosφ であり、α,βの角度がそれぞれ頂角センサで検出でき
れば、ピッチ及びヨー方向の頂角センサの独立性は完全
に保たれる。頂角センサの出力は、2つのホール素子の
紙面垂直方向の移動量で得られる。ホール素子9P,9
Yの移動量はそれぞれ γ・sinφ・sinθ ,γcosφ・sinθ となる。但し、γは可変頂角プリズム1からホール素子
9P,9Yまでの距離である。
Now, let us consider a case where the movable surface of the variable apex angle prism 1 oscillates by an angle θ from the Y axis (yaw axis) as shown in the figure. At this time, the inclinations of the movable surface in the pitch and yaw directions are α = θ · sinφ and β = θ · cosφ, respectively, and if the angles of α and β can be detected by the apex angle sensors, the apex angle sensors in the pitch and yaw directions can be detected. The independence of is completely preserved. The output of the apex angle sensor is obtained by the amount of movement of the two Hall elements in the direction perpendicular to the paper surface. Hall element 9P, 9
The movement amounts of Y are γ · sinφ · sinθ and γcosφ · sinθ, respectively. However, γ is the distance from the variable apex angle prism 1 to the Hall elements 9P and 9Y.

【0030】今、sinθ≒θとなる角度を考えると、
それぞれ γ・sinφ・θ=γ・α ,γcosφ・θ=γ・β となり、2つのホール素子出力は、微小角度範囲内(s
inθ≒θ)では、それぞれピッチ及びヨーの頂角のみ
に比例しており、頂角センサの2軸の独立性は保たれて
いる事になる。
Now, considering an angle such that sin θ≈θ,
Γ · sin φ · θ = γ · α and γ cos φ · θ = γ · β, respectively, and the two Hall element outputs are within the minute angle range (s
in θ≈θ), each is proportional to only the pitch and the apex angle of the yaw, and the independence of the two axes of the apex angle sensor is maintained.

【0031】図7は、可変頂角プリズム1を用いた像振
れ補正装置の構成を示すブロック図である。
FIG. 7 is a block diagram showing the arrangement of an image blur correction apparatus using the variable apex angle prism 1.

【0032】1は可変頂角プリズム、20は可変頂角プ
リズム1をその最前部に配置する撮影光学系である。2
1は角度センサである振動ジャイロで、装置の固定部材
に固定されており、装置の角速度を信号として出力す
る。この角速度信号は信号処理回路22によりBPF
(バンドパスフィルタ)等の処理を受け、積分器23に
より積分され装置の角度信号aとなる。24は前述のホ
ール素子9P,9Yより成る頂角センサであり、可変頂
角プリズム1の頂角に比例した信号を出力する。この信
号は信号処理回路25により、増幅,フィルタ処理等を
受け、頂角信号bとなる。
Reference numeral 1 is a variable apex angle prism, and 20 is a photographing optical system in which the variable apex angle prism 1 is arranged at the forefront. Two
Reference numeral 1 denotes a vibration gyro that is an angle sensor, which is fixed to a fixing member of the device and outputs the angular velocity of the device as a signal. This angular velocity signal is output to the BPF by the signal processing circuit 22.
After being subjected to processing such as (band pass filter), it is integrated by the integrator 23 and becomes the angle signal a of the device. Reference numeral 24 denotes an apex angle sensor including the above-described Hall elements 9P and 9Y, which outputs a signal proportional to the apex angle of the variable apex angle prism 1. This signal is subjected to amplification, filtering, etc. by the signal processing circuit 25 and becomes the apex angle signal b.

【0033】前記角度信号aと可変頂角プリズムの頂角
信号bが逆極性で加算回路26によって加算され、信号
cが得られる。この信号cは、増幅器27で増幅され、
駆動回路28で駆動信号に変換され、アクチュエータ2
9を駆動する事により、可変頂角プリズム1のプリズム
頂角を変化させる。
The angle signal a and the apex angle signal b of the variable apex angle prism are added in opposite polarities by the adder circuit 26 to obtain a signal c. This signal c is amplified by the amplifier 27,
The actuator 2 is converted into a drive signal by the drive circuit 28.
The prism apex angle of the variable apex angle prism 1 is changed by driving 9.

【0034】上記の回路構成では、信号cがゼロになる
様に、すなわち装置の角度信号aと可変頂角プリズム1
のプリズム頂角信号bが等しくなる様に、頂角センサ2
4からアクチュエータ29まで可変頂角プリズム1を含
めたフィードバック回路を形成している。
In the above circuit configuration, the signal c becomes zero, that is, the angle signal a of the apparatus and the variable apex angle prism 1.
Of the apex angle sensor 2 so that the prism apex angle signals b of
A feedback circuit including the variable apex angle prism 1 from 4 to the actuator 29 is formed.

【0035】装置の動きを打ち消す方向に可変頂角プリ
ズム1が駆動されるので、撮影光学系20に入射する光
束の状態が変化せず、像振れ補正が可能となる。
Since the variable apex angle prism 1 is driven in a direction in which the movement of the device is canceled, the state of the light beam incident on the photographing optical system 20 does not change, and image blur correction is possible.

【0036】図7においては、一軸(ピッチまたはヨー
方向)のみの構成を示しているが、前に説明した様に、
ピッチ及びヨー方向の頂角センサの独立性は保たれてい
るので、同様の構成をピッチ及びヨー方向についてそれ
ぞれ持ち、それぞれ独立に制御することによって可変頂
角プリズム1の片面のみの駆動で、ピッチ及びヨー方向
の像振れ補正を実現できる。
Although FIG. 7 shows the configuration of only one axis (pitch or yaw direction), as described above,
Since the independence of the apex angle sensors in the pitch and yaw directions is maintained, the same configurations are provided in the pitch and yaw directions, respectively, and by controlling them independently, only one side of the variable apex angle prism 1 can be driven. Also, image blur correction in the yaw direction can be realized.

【0037】(第2の実施例)図8は本発明の第2の実
施例に係るマグネット及びホール素子を示す、アクチュ
エータのギャップ方向より見た平面図である。
(Second Embodiment) FIG. 8 is a plan view showing a magnet and a Hall element according to a second embodiment of the present invention as viewed from the gap direction of the actuator.

【0038】図8において、8b’はマグネット、9は
ホール素子である。図示のホール素子9の位置は初期状
態(可変頂角プリズムの頂角が0)を示し、可変頂角プ
リズムの可動面の回動により矢印の方向へ移動する。
In FIG. 8, 8b 'is a magnet and 9 is a Hall element. The position of the Hall element 9 shown in the figure shows an initial state (the apex angle of the variable apex prism is 0), and the Hall element 9 moves in the direction of the arrow by the rotation of the movable surface of the variable apex prism.

【0039】第1の実施例においては、N極とS極の間
の無着磁領域はプリズム頂角に対するホール素子出力の
直線性を保証する幅で、マグネット8bの端まで広く設
定してあるが、本実施例では、ホール素子9が移動する
範囲内のみ無着磁領域を広くとり、ホール素子に影響を
与えない部分は、できるだけ無着磁領域を狭くしてい
る。したがって、マグネット8b’を有効に利用可能で
ある。
In the first embodiment, the non-magnetized region between the N pole and the S pole is a width that guarantees the linearity of the Hall element output with respect to the prism apex angle, and is set wide up to the end of the magnet 8b. However, in this embodiment, the non-magnetized region is widened only within the range in which the Hall element 9 moves, and the non-magnetized region is narrowed as much as possible in the portion that does not affect the Hall element. Therefore, the magnet 8b 'can be effectively used.

【0040】その他の構成及び動作は、上記の第1の実
施例と同様なので省略する。
Other configurations and operations are the same as those in the first embodiment described above, and will be omitted.

【0041】(第3の実施例)図9〜図11は本発明の
第3の実施例に係る図であり、図9はマグネット及びホ
ール素子を示す、アクチュエータのギャップ方向より見
た平面図である。
(Third Embodiment) FIGS. 9 to 11 are views according to a third embodiment of the present invention. FIG. 9 is a plan view showing a magnet and a Hall element as viewed from the gap direction of the actuator. is there.

【0042】図9において、38はマグネット、31a
は第1のホール素子、31bは第2のホール素子であ
る。
In FIG. 9, 38 is a magnet, 31a
Is a first hall element and 31b is a second hall element.

【0043】図示の2個のホール素子31a,31bの
位置は初期状態(可変頂角プリズムの頂角が0)を示
し、可変頂角プリズムの可動面の回動により、矢印の方
向へホール素子2個が一体で移動する。マグネット38
のN極とS極の間の無着磁領域は実施例1より狭く設定
してあり、2個のホール素子31a,31bは無着磁領
域の境界に初期状態で位置する様に配置してあり、この
ホール素子の出力のプリズム頂角に対するホール素子出
力の直線性の良い部分を切り換えて、頂角出力としてい
る。
The positions of the two Hall elements 31a and 31b shown in the figure show the initial state (the apex angle of the variable apex prism is 0), and by rotating the movable surface of the variable apex angle prism, the Hall elements are moved in the direction of the arrow. The two move together. Magnet 38
The non-magnetized region between the N pole and the S pole is set narrower than that in the first embodiment, and the two Hall elements 31a and 31b are arranged so as to be positioned in the initial state at the boundary of the non-magnetized region. Therefore, the portion of the Hall element output having a good linearity with respect to the prism vertical angle of the output is switched to obtain the vertical angle output.

【0044】図10に、その回路構成であるブロック図
を示す。
FIG. 10 shows a block diagram of the circuit configuration.

【0045】31a,31bはホール素子、32a、3
2bはホール素子入力に定電圧を抑圧する電源、33
a,33bはホール素子出力を差動する差動増幅回路、
34a,34bは差動増幅された出力のオフセットを調
整するオフセット調整回路、35a,35bは差動増幅
出力のゲインを調整するゲイン調整回路である。
31a and 31b are Hall elements, 32a and 3
2b is a power supply that suppresses a constant voltage to the Hall element input, 33
a and 33b are differential amplifier circuits that differentially output Hall elements,
Reference numerals 34a and 34b are offset adjustment circuits that adjust the offset of the differentially amplified output, and reference numerals 35a and 35b are gain adjustment circuits that adjust the gain of the differentially amplified output.

【0046】ホール素子31a,31bの出力は、この
構成で信号S1及びS2となる。図11に、横軸を可変
頂角プリズムのプリズム頂角とした場合の、前記信号S
1,S2の出力変化(縦軸)を示している。
The outputs of the Hall elements 31a and 31b become signals S1 and S2 in this configuration. FIG. 11 shows the signal S when the horizontal axis is the prism vertical angle of the variable vertical angle prism.
The output changes of 1 and S2 (vertical axis) are shown.

【0047】36は信号S1と0を比較する比較器であ
り、信号S1が0より大きい時にはスイッチ37により
信号S1を出力として、又信号S1が0より小さい時に
は信号S2を出力として選択させるものであり、選択さ
れた信号S1又はS2は頂角信号Sとて用いられる。勿
論、信号S1,S2は、図11に示す様に、2個のホー
ル素子31a,31bの初期位置での出力が共に0にな
る様にオフセット調整され、可変頂角プリズムの頂角に
対する出力ゲインが同一となる様に、ゲイン調整されて
いる。
Reference numeral 36 is a comparator for comparing the signals S1 and 0. When the signal S1 is larger than 0, the switch 37 selects the signal S1 as an output, and when the signal S1 is smaller than 0, the signal S2 is selected as an output. Yes, the selected signal S1 or S2 is used as the apex angle signal S. Of course, as shown in FIG. 11, the signals S1 and S2 are offset-adjusted so that the outputs of the two Hall elements 31a and 31b at the initial positions are both 0, and the output gain with respect to the apex angle of the variable apex angle prism. The gain is adjusted so that

【0048】以上説明した様に、複数のホール素子の出
力の直線性の良い部分を切り換えて頂角出力とする事
で、マグネット38のS極とN極の無着磁部分を狭くす
る事ができ、該マグネット38を有効に活用すること可
能となる。
As described above, the non-magnetized portions of the S pole and the N pole of the magnet 38 can be narrowed by switching the portions of the plurality of Hall elements that have good linearity to output the vertical angle. Therefore, the magnet 38 can be effectively used.

【0049】尚、その他の構成及び動作は、上記の第1
の実施例と同様なので省略する。
The other configurations and operations are the same as those of the first embodiment.
The description is omitted because it is similar to the embodiment.

【0050】(第4の実施例)図12は本発明をビデオ
カメラ等の光学機器の像振れ補正装置に適用した第4の
実施例における主要部の分解斜視図である。
(Fourth Embodiment) FIG. 12 is an exploded perspective view of a main portion of a fourth embodiment in which the present invention is applied to an image blur correction device for optical equipment such as a video camera.

【0051】51は可変頂角プリズム、52P,52Y
は前記可変頂角プリズム51を狭持する保持部材であ
り、この保持部材52P及び52Yはそれぞれ軸受穴部
52Pa,52Pb、及び、52Ya,52Ybを有
し、それぞれ軸受ピン53Pa,53Pb及び53Y
a,53Ybにより、それぞれピッチ及びヨー方向へ揺
動可能に支持されている。
51 is a variable apex angle prism, 52P, 52Y
Is a holding member that holds the variable apex angle prism 51. The holding members 52P and 52Y have bearing hole portions 52Pa and 52Pb and 52Ya and 52Yb, respectively, and bearing pins 53Pa, 53Pb and 53Y, respectively.
It is supported by a and 53Yb so as to be swingable in the pitch and yaw directions, respectively.

【0052】54Yはマグネット、55Yは前記マグネ
ット54Yのバックヨーク、56Yは上ヨークであり、
これら54Y,55Y,56Yにより閉磁路を形成して
いる。57Yは保持枠52Yに固着された駆動用コイル
であり、該コイル57Yに通電する事により、閉磁路内
でローレンツ力により駆動トルクを発生する。58Yは
ホール素子であり、閉磁路内で移動することによる磁束
の変化を検出し、可変頂角プリズムのヨー方向の頂角を
得る。
54Y is a magnet, 55Y is a back yoke of the magnet 54Y, and 56Y is an upper yoke.
These 54Y, 55Y and 56Y form a closed magnetic circuit. 57Y is a drive coil fixed to the holding frame 52Y, and when the coil 57Y is energized, a drive torque is generated by Lorentz force in the closed magnetic circuit. Reference numeral 58Y is a Hall element, which detects a change in magnetic flux due to movement within a closed magnetic path, and obtains the vertical angle in the yaw direction of the variable vertical angle prism.

【0053】駆動及び頂角検出部分については、ヨー方
向について図示しているが、ピッチ方向にも同様の構成
により駆動及び頂角検出が可能である。
The drive and apex angle detection portions are shown in the yaw direction, but the drive and apex angle detection can be performed in the pitch direction with the same configuration.

【0054】次に、図13により、頂角検出について更
に説明する。
Next, the apex angle detection will be further described with reference to FIG.

【0055】Rは揺動中心であり、図12の軸Y−Yも
しくは軸X−Xに相当する。54はマグネット,58は
ホール素子であり、図13はギャップ方向から見た平面
図である。
R is the center of swing, and corresponds to the axis YY or the axis XX in FIG. Reference numeral 54 is a magnet, 58 is a Hall element, and FIG. 13 is a plan view seen from the gap direction.

【0056】ホール素子58の位置は回転中心Rからの
距離を小さくする事により、可変頂角プリズムの必要な
頂角範囲について、該ホール素子58の出力の直線性を
得ることができる。
By making the position of the Hall element 58 smaller from the rotation center R, the linearity of the output of the Hall element 58 can be obtained in the required apex angle range of the variable apex angle prism.

【0057】振れ補正動作については、上記の第1の実
施例と同様であるので省略する。
The shake correction operation is the same as that in the first embodiment described above, and therefore its explanation is omitted.

【0058】以上の各実施例によれば、可動部材の位置
検出保証範囲内の動きに応じて、位置を検出する磁気検
出手段の出力の直線性(精度)が十分得られる様に、検
出すべき磁束を発生する固定部材に隣接して配置された
S極とN極の間に無磁極部分を設ける事により、簡単な
構成で精度良く可動部材の位置を検出可能であり、コス
ト及びスペースの削減の効果がある。
According to each of the above-described embodiments, the movement of the movable member within the guaranteed position detection range is detected so that the linearity (accuracy) of the output of the magnetic detection means for detecting the position is sufficiently obtained. By providing the non-magnetic pole portion between the S pole and the N pole, which are arranged adjacent to the fixed member that generates the ideal magnetic flux, the position of the movable member can be accurately detected with a simple configuration, and the cost and space can be saved. There is a reduction effect.

【0059】(発明と実施例の対応)本実施例におい
て、ホール素子9,31,31b,58が本発明の磁気
検出手段に相当し、マグネット8b(8Pb,8Y
b),8b’38,54が本発明の各磁石に相当する。
(Correspondence between Invention and Embodiment) In this embodiment, the Hall elements 9, 31, 31b and 58 correspond to the magnetic detecting means of the present invention, and the magnet 8b (8Pb, 8Y).
b), 8b'38, 54 correspond to each magnet of the present invention.

【0060】以上が実施例の構成と本発明の各構成の対
応関係であるが、本発明は、これら実施例の構成に限定
されるものではなく、請求項で示した機能、又は実施例
がもつ機能が達成できる構成であればどのようなもので
あってもよいことは言うまでもない。
The above is the correspondence relationship between the configurations of the embodiments and the respective configurations of the present invention, but the present invention is not limited to the configurations of these embodiments, and the functions or embodiments shown in the claims or the embodiments It goes without saying that any structure may be used as long as it can achieve the functions it has.

【0061】(変形例)以上の実施例においては、駆動
手段のマグネットの磁束をホール素子によって検出して
いるが、駆動手段とは別に位置検出専用にマグネットを
有して良い。
(Modification) In the above embodiments, the magnetic flux of the magnet of the driving means is detected by the Hall element, but a magnet dedicated to position detection may be provided separately from the driving means.

【0062】又、各実施例において、両磁極を含む磁気
回路を固定とし、ホール素子を含むコイル固定部材が可
動な、いわゆるムービングコイルタイプについて説明し
たが、コイルを固定とし、磁気回路を可動とした、いわ
ゆるムービングマグネットタイプについても、同様な構
成が可能であることは自明である。
In each of the embodiments, the so-called moving coil type in which the magnetic circuit including both magnetic poles is fixed and the coil fixing member including the Hall element is movable has been described. However, the coil is fixed and the magnetic circuit is movable. It is obvious that the same configuration can be applied to the so-called moving magnet type.

【0063】また、本実施例では、S極とN極の間を何
れにも着磁しない部分を挟んで連結された形状のマグネ
ットとしているが、これに限定されるものではなく、無
着磁部分を多角形,円,楕円等の穴部としたり、S極と
N極の間を隙間とした形状であってもよい。
Further, in the present embodiment, the magnet having a shape in which the S pole and the N pole are connected by sandwiching a portion which is not magnetized at all, is not limited to this and is not magnetized. The part may be a hole such as a polygon, a circle, an ellipse, or a shape with a gap between the S pole and the N pole.

【0064】[0064]

【発明の効果】以上説明したように、本発明によれば、
S極とN極の磁石の間に、これら磁石と部材の相対位置
検出保証範囲に応じた大きさを持つ無磁極部分を設け、
各磁石と部材の相対移動量に対する、磁気検出手段の出
力の直線的変化部分の範囲を広げるようにしている。
As described above, according to the present invention,
Between the S-pole and N-pole magnets, a non-magnetic pole portion having a size corresponding to the relative position detection guaranteed range of these magnets and members is provided,
The range of the linearly changing portion of the output of the magnetic detection means with respect to the relative movement amount of each magnet and member is widened.

【0065】よって、簡単な構成により、比較的大きな
移動量を持つ部材の位置検出を、精度よく行うことがで
きる。
Therefore, the position of a member having a relatively large amount of movement can be accurately detected with a simple structure.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例に係る位置検出装置を光
学機器の振れ補正装置に適用した場合の要部を示す断面
図である。
FIG. 1 is a cross-sectional view showing a main part when a position detection device according to a first embodiment of the present invention is applied to a shake correction device of an optical device.

【図2】図1の可動部分の分解斜視図である。FIG. 2 is an exploded perspective view of a movable part of FIG.

【図3】図2の可変頂角プリズムの可動面の自由度につ
いて説明する為の斜視図である。
FIG. 3 is a perspective view for explaining a degree of freedom of a movable surface of the variable apex angle prism shown in FIG.

【図4】本発明の第1の実施例におけるマグネットとホ
ール素子の位置関係を示す平面図である。
FIG. 4 is a plan view showing a positional relationship between a magnet and a Hall element according to the first embodiment of the present invention.

【図5】本発明の第1の実施例におけるホール素子出力
とプリズム頂角の関係を示す図である。
FIG. 5 is a diagram showing the relationship between the Hall element output and the prism apex angle in the first embodiment of the present invention.

【図6】本発明の第1の実施例におけるピッチとヨー方
向の頂角センサの独立性について説明する為の図であ
る。
FIG. 6 is a diagram for explaining the independence of the vertical angle sensors in the pitch and yaw directions in the first embodiment of the present invention.

【図7】図1の振れ補正装置の構成を示すブロック図で
ある。
7 is a block diagram showing the configuration of the shake correction apparatus in FIG.

【図8】本発明の第2の実施例における位置検出装置の
マグネットとホール素子の位置関係を示す平面図であ
る。
FIG. 8 is a plan view showing a positional relationship between a magnet and a Hall element of a position detecting device according to a second embodiment of the present invention.

【図9】本発明の第3の実施例における位置検出装置の
マグネットとホール素子の位置関係を示す平面図であ
る。
FIG. 9 is a plan view showing a positional relationship between a magnet and a Hall element of a position detecting device according to a third embodiment of the present invention.

【図10】本発明の第3の実施例における位置検出装置
の構成を示すブロック図である。
FIG. 10 is a block diagram showing a configuration of a position detection device according to a third embodiment of the present invention.

【図11】図10の信号S1,S2とプリズム頂角の関
係を示す図である。
11 is a diagram showing the relationship between the signals S1 and S2 of FIG. 10 and the prism apex angle.

【図12】本発明の第4の実施例に係る位置検出装置を
振れ補正装置に適用した場合の要部を示す分解斜視図で
ある。
FIG. 12 is an exploded perspective view showing a main part when a position detection device according to a fourth embodiment of the present invention is applied to a shake correction device.

【図13】本発明の第3の実施例における位置検出装置
のマグネットとホール素子の位置関係を示す平面図であ
る。
FIG. 13 is a plan view showing a positional relationship between a magnet and a Hall element of a position detecting device according to a third embodiment of the present invention.

【図14】一般的な3相ブラシレスモータの構造を示す
図である。
FIG. 14 is a diagram showing a structure of a general three-phase brushless motor.

【符号の説明】[Explanation of symbols]

1 可変頂角プリズム 6 支持枠 8(8P,8Y) アクチュエータ 8b(8Pb,8Yb) マグネット 8b’38,54 マグネット 9(9P,9Y) ホール素子 31,31b,58 ホール素子 1 Variable Vertical Angle Prism 6 Support Frame 8 (8P, 8Y) Actuator 8b (8Pb, 8Yb) Magnet 8b'38, 54 Magnet 9 (9P, 9Y) Hall Element 31, 31b, 58 Hall Element

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 隣接して配置されたS極とN極の磁石
と、これら磁石に対して相対的に移動可能な部材に、初
期状態で前記各磁石の間に位置するように固定され、前
記部材の相対位置を検出する為の少なくとも1個以上の
磁気検出手段とを備え、前記S極とN極の磁石の間は、
これら磁石と前記部材の相対位置検出保証範囲に応じた
大きさを持つ無磁極部分が設けられることを特徴とする
位置検出装置。
1. An S-pole magnet and an N-pole magnet that are arranged adjacent to each other, and a member that is movable relative to these magnets, and is fixed so as to be located between the magnets in an initial state. At least one or more magnetic detection means for detecting the relative position of the member, and between the magnets of the S pole and the N pole,
A position detecting device comprising a non-magnetic pole portion having a size corresponding to a relative position detection guarantee range of the magnet and the member.
【請求項2】 前記無磁極部分は、前記磁気検出手段の
対向する部分のみに存在することを特徴とする請求項1
記載の位置検出装置。
2. The non-magnetic pole portion is present only in a portion facing the magnetic detection means.
The position detection device described.
【請求項3】 前記無磁極部分は、S極とN極の各磁石
を一体的に繋ぐ着磁されていない部分であることを特徴
とする請求項1記載の位置検出装置。
3. The position detecting device according to claim 1, wherein the non-magnetic pole portion is a non-magnetized portion that integrally connects the S-pole and N-pole magnets.
【請求項4】 前記無磁極部分は、S極とN極の各磁石
の間に設けられる隙間部であることを特徴とする請求項
1記載の位置検出装置。
4. The position detecting device according to claim 1, wherein the non-magnetic pole portion is a gap portion provided between the S-pole magnet and the N-pole magnet.
【請求項5】 前記無磁極部分は、S極とN極の各磁石
の間に設けられる穴部であることを特徴とする請求項1
記載の位置検出装置。
5. The non-magnetic pole portion is a hole provided between the S-pole magnet and the N-pole magnet.
The position detection device described.
JP29804794A 1994-11-08 1994-11-08 Position detection device Expired - Fee Related JP3332620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29804794A JP3332620B2 (en) 1994-11-08 1994-11-08 Position detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29804794A JP3332620B2 (en) 1994-11-08 1994-11-08 Position detection device

Publications (2)

Publication Number Publication Date
JPH08136207A true JPH08136207A (en) 1996-05-31
JP3332620B2 JP3332620B2 (en) 2002-10-07

Family

ID=17854448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29804794A Expired - Fee Related JP3332620B2 (en) 1994-11-08 1994-11-08 Position detection device

Country Status (1)

Country Link
JP (1) JP3332620B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004245765A (en) * 2003-02-17 2004-09-02 Nikon Corp Position detection device and blur correction device
JP2006010568A (en) * 2004-06-28 2006-01-12 Canon Inc Location detection device
JP2006250857A (en) * 2005-03-14 2006-09-21 Nikon Corp Position-detecting device and blurring compensation device
JP2007121256A (en) * 2005-09-28 2007-05-17 Sharp Corp Magnetic sensor, and linear actuator provided therewith
JP2008241368A (en) * 2007-03-26 2008-10-09 Tdk Corp Magnet structure for angle sensor and angle sensor using the same
JP2010096540A (en) * 2008-10-14 2010-04-30 Asahi Kasei Electronics Co Ltd Position detection device, and electronic device using the same
JP2010097278A (en) * 2008-10-14 2010-04-30 Asahi Kasei Electronics Co Ltd Position detection device and electronic equipment using the position detection device
JP2010204157A (en) * 2009-02-27 2010-09-16 Nikon Corp Image blur correction device and optical apparatus
JP2012027051A (en) * 2010-07-20 2012-02-09 Panasonic Corp Driving device and imaging apparatus
JP2012120303A (en) * 2010-11-30 2012-06-21 Panasonic Corp Actuator, and driving device and imaging apparatus including the same
JP2015094715A (en) * 2013-11-13 2015-05-18 リコーイメージング株式会社 Position detection device, position correction device, and imaging apparatus
WO2024009984A1 (en) * 2022-07-06 2024-01-11 パナソニックIpマネジメント株式会社 Position detection system, magnetic sensor, and sensor block

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004245765A (en) * 2003-02-17 2004-09-02 Nikon Corp Position detection device and blur correction device
JP2006010568A (en) * 2004-06-28 2006-01-12 Canon Inc Location detection device
JP2006250857A (en) * 2005-03-14 2006-09-21 Nikon Corp Position-detecting device and blurring compensation device
JP4655701B2 (en) * 2005-03-14 2011-03-23 株式会社ニコン Position detection device, blur correction device, and lens barrel
JP2007121256A (en) * 2005-09-28 2007-05-17 Sharp Corp Magnetic sensor, and linear actuator provided therewith
JP2008241368A (en) * 2007-03-26 2008-10-09 Tdk Corp Magnet structure for angle sensor and angle sensor using the same
JP2010097278A (en) * 2008-10-14 2010-04-30 Asahi Kasei Electronics Co Ltd Position detection device and electronic equipment using the position detection device
JP2010096540A (en) * 2008-10-14 2010-04-30 Asahi Kasei Electronics Co Ltd Position detection device, and electronic device using the same
JP2010204157A (en) * 2009-02-27 2010-09-16 Nikon Corp Image blur correction device and optical apparatus
JP2012027051A (en) * 2010-07-20 2012-02-09 Panasonic Corp Driving device and imaging apparatus
JP2012120303A (en) * 2010-11-30 2012-06-21 Panasonic Corp Actuator, and driving device and imaging apparatus including the same
JP2015094715A (en) * 2013-11-13 2015-05-18 リコーイメージング株式会社 Position detection device, position correction device, and imaging apparatus
WO2024009984A1 (en) * 2022-07-06 2024-01-11 パナソニックIpマネジメント株式会社 Position detection system, magnetic sensor, and sensor block

Also Published As

Publication number Publication date
JP3332620B2 (en) 2002-10-07

Similar Documents

Publication Publication Date Title
JP5463583B2 (en) Anti-vibration actuator, lens unit and camera equipped with the same
JP5347193B2 (en) Anti-vibration actuator, lens unit and camera equipped with the same
JP4133990B2 (en) Actuator and lens unit and camera provided with the same
US20060127074A1 (en) Actuator, and lens unit and camera with the same
JP4740726B2 (en) Translation device and actuator, lens unit and camera equipped with the translation device
US6456444B1 (en) Lens barrel
JP5040658B2 (en) Position detection apparatus, two-dimensional position measurement apparatus, optical instrument, and position detection method
JP2007156062A (en) Parallel displacement device and actuator equipped therewith, lens unit and camera
JP3332620B2 (en) Position detection device
US8400514B2 (en) Antivibration actuator and lens unit and camera equipped with same
JP5515149B2 (en) Anti-vibration actuator, lens unit and camera equipped with the same
JP2012118517A (en) Camera shake correction unit
JP2008233525A (en) Actuator, lens unit equipped therewith and camera
US5978137A (en) Image stabilizing apparatus
JP2000039303A (en) Device and method for position detection
JP2014089357A (en) Camera shake correction device
JP2612371B2 (en) Image stabilization device
JP2008065073A (en) Actuator, lens unit having the same, and camera
JPH11109435A (en) Correcting optical device and vibration proof device
JP4951801B2 (en) Actuator, lens unit and camera equipped with the same
JPH0974779A (en) Drive control apparatus
JP4951802B2 (en) Actuator, lens unit and camera equipped with the same
JP4893954B2 (en) Image shake prevention actuator, lens unit including the same, and camera
JP2008067519A (en) Actuator, lens unit having the same, and camera
JP2009058329A (en) Magnetization yoke, magnet magnetization method, magnet, position detection device, and deflection correction device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100726

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100726

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110726

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120726

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120726

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130726

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees