JPH08136077A - Heat pump type air conditioner - Google Patents

Heat pump type air conditioner

Info

Publication number
JPH08136077A
JPH08136077A JP27128494A JP27128494A JPH08136077A JP H08136077 A JPH08136077 A JP H08136077A JP 27128494 A JP27128494 A JP 27128494A JP 27128494 A JP27128494 A JP 27128494A JP H08136077 A JPH08136077 A JP H08136077A
Authority
JP
Japan
Prior art keywords
expansion valve
indoor
outdoor
refrigerant
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27128494A
Other languages
Japanese (ja)
Inventor
Shigeo Aoyama
繁男 青山
Kazuhiko Machida
和彦 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP27128494A priority Critical patent/JPH08136077A/en
Publication of JPH08136077A publication Critical patent/JPH08136077A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE: To operate an optimum refrigerating cycle by suitably holding a pressure reduced amount for the changes of operating conditions and the length of a refrigerant tube for coupling an outdoor unit to an indoor unit and to apply in the case of a plurality of indoor units. CONSTITUTION: A heat pump type air conditioner comprises an outdoor expansion valve Exp1 installed in an outdoor unit A', a first differential pressure detector Dp1 for detecting the refrigerant pressure difference between the inlet and the outlet sides of the valve Exp1, and an outdoor expansion valve controller Cnt1 for controlling the opening of the valve Exp1 so that the refrigerant pressure difference by the detector Dp1 falls within a predetermined range.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空気を熱源とするヒー
トポンプ式空気調和機において、冷暖房運転時の冷凍サ
イクル制御に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration cycle control during cooling / heating operation in a heat pump type air conditioner using air as a heat source.

【0002】[0002]

【従来の技術】ヒートポンプ式空気調和機については、
既にさまざまな開発がなされており、例えば、特開昭6
2−158958号公報に示されているようなヒートポ
ンプ式空気調和機がある。
2. Description of the Related Art For heat pump type air conditioners,
Various developments have already been made.
There is a heat pump type air conditioner as disclosed in Japanese Patent Laid-Open No. 2-158958.

【0003】その基本的な技術について以下述べる。上
記従来のヒートポンプ式空気調和機は図5に示すよう
に、室外ユニットA、及び室内ユニットBから構成され
ている。
The basic technique will be described below. As shown in FIG. 5, the conventional heat pump type air conditioner includes an outdoor unit A and an indoor unit B.

【0004】室外ユニットAは、圧縮機1,四方弁2,
室外熱交換器3,第1減圧用毛細管4a,第1逆止弁7
a,アキュームレータ6からなり、そして室内ユニット
Bは室内熱交換器5,第2減圧用毛細管4b,第2逆止
弁7bから構成されている。
The outdoor unit A includes a compressor 1, a four-way valve 2,
Outdoor heat exchanger 3, first pressure reducing capillary tube 4a, first check valve 7
a, an accumulator 6, and the indoor unit B is composed of an indoor heat exchanger 5, a second pressure reducing capillary tube 4b, and a second check valve 7b.

【0005】そして、圧縮機1,四方弁2,室外熱交換
器3,第1減圧用毛細管4a,第2減圧用毛細管4a,
室内熱交換器5,アキュームレータ6を冷媒配管にて環
状に順次接続して冷凍サイクルを形成している。
The compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the first pressure reducing capillary 4a, the second pressure reducing capillary 4a,
The indoor heat exchanger 5 and the accumulator 6 are sequentially connected in an annular shape by a refrigerant pipe to form a refrigeration cycle.

【0006】以上のように構成されたヒートポンプ式空
気調和機について、その動作を説明する。
The operation of the heat pump type air conditioner configured as described above will be described.

【0007】まず、冷房運転の場合、四方弁2によって
冷房回路に切り替えられ、図中の実線矢印の方向に冷媒
が流れて冷房サイクルが形成され、室外熱交換器3を凝
縮器、室内熱交換器5を蒸発器として作用させる。
First, in the cooling operation, the four-way valve 2 is switched to the cooling circuit, the refrigerant flows in the direction of the solid line arrow in the figure to form the cooling cycle, and the outdoor heat exchanger 3 is connected to the condenser and the indoor heat exchange. The vessel 5 acts as an evaporator.

【0008】上記冷房サイクルにおいて、圧縮機1を出
た高温高圧のガス冷媒は室外熱交換器3にて凝縮して高
温高圧の液冷媒となり、第1減圧用毛細管4aにより減
圧膨張されて二相冷媒となって室外ユニットAを出て、
その後冷媒配管中の管内抵抗により更に減圧膨張しなが
ら、室内ユニットBへ流入し、室内熱交換器5にて蒸発
することにより室内空気から吸熱(冷房運転)するとい
うサイクルを繰り返す。
In the cooling cycle, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 is condensed in the outdoor heat exchanger 3 to become a high-temperature and high-pressure liquid refrigerant, which is decompressed and expanded by the first pressure-reducing capillary tube 4a to form a two-phase. It becomes a refrigerant and exits the outdoor unit A,
After that, the cycle in which the refrigerant flows into the indoor unit B while further decompressing and expanding due to the resistance in the refrigerant piping and evaporating in the indoor heat exchanger 5 to absorb heat from the indoor air (cooling operation) is repeated.

【0009】一方、暖房運転の場合、四方弁2によって
暖房回路に切り替えられ、図中の破線矢印の方向に冷媒
が流れて暖房サイクルが形成され、室内熱交換器5を凝
縮器、室外熱交換器3を蒸発器として作用させる。
On the other hand, in the heating operation, the four-way valve 2 is switched to the heating circuit, the refrigerant flows in the direction of the broken line arrow in the figure to form the heating cycle, and the indoor heat exchanger 5 is replaced with the condenser and the outdoor heat exchanger. The vessel 3 acts as an evaporator.

【0010】上記暖房サイクルにおいて、圧縮機1を出
た高温高圧のガス冷媒は室内熱交換器5にて凝縮するこ
とにより室内空気へ放熱(暖房運転)して高温高圧の液
冷媒となり、第2減圧用毛細管4bにより減圧膨張され
て二相冷媒となって室内ユニットBを出て、その後冷媒
配管中の管内抵抗により更に減圧膨張しながら、室外ユ
ニットAへ流入し、室外熱交換器3にて蒸発するという
サイクルを繰り返す。
In the heating cycle, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 is condensed in the indoor heat exchanger 5 to radiate heat to indoor air (heating operation) to become a high-temperature and high-pressure liquid refrigerant. The decompression capillary 4b decompresses and expands to become a two-phase refrigerant, which leaves the indoor unit B and then further decompresses and expands due to internal resistance in the refrigerant pipe, and then flows into the outdoor unit A, where the outdoor heat exchanger 3 The cycle of evaporation is repeated.

【0011】以上のようなヒートポンプ式空気調和機で
は、室外ユニットAと室内ユニットBとを結ぶ2本の冷
媒配管内を流動する冷媒はガス冷媒、及び二相冷媒とで
きるため、冷媒の比重量が小さく、冷凍サイクルとして
必要となる冷媒量が少なくて済み、配管長が長くなる場
合においても冷媒追加が不要となる。
In the heat pump type air conditioner as described above, since the refrigerant flowing in the two refrigerant pipes connecting the outdoor unit A and the indoor unit B can be a gas refrigerant and a two-phase refrigerant, the specific weight of the refrigerant is Is small, the amount of refrigerant required for the refrigeration cycle is small, and no additional refrigerant is required even when the pipe length is long.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、前述の
従来の構成は、冷房,暖房運転共、減圧装置として毛細
管4a,4bを使用しているために減圧量が固定されて
いるために、運転条件や室外ユニットAと室内ユニット
Bとを結ぶ冷媒配管長によっては、減圧量が過大になっ
たり、過小になったりして、冷凍サイクルを最適状態で
運転できない場合が生じるだけでなく、室外ユニット1
台に対して室内ユニットを複数台設置する場合には適用
できないという欠点を有していた。
However, in the above-mentioned conventional configuration, since the capillaries 4a and 4b are used as the decompression device for both the cooling and heating operations, the decompression amount is fixed, so that the operating condition is reduced. Depending on the length of the refrigerant pipe connecting the outdoor unit A and the indoor unit B, the decompression amount may become excessively large or excessively small, and the refrigeration cycle may not be operated in an optimum state.
It has a drawback that it cannot be applied when a plurality of indoor units are installed with respect to the table.

【0013】そこで、本発明は従来の課題を解決するも
ので、運転条件や室外ユニットと室内ユニットとを結ぶ
冷媒配管長の変化に対して、減圧量を適正に保持するこ
とにより最適な冷凍サイクルで運転でき、かつ複数室内
ユニットの場合にも適用し得るヒートポンプ式空気調和
機を提供することを目的とする。
Therefore, the present invention solves the conventional problems, and an optimum refrigeration cycle is obtained by appropriately maintaining the pressure reduction amount with respect to changes in operating conditions and the length of the refrigerant pipe connecting the outdoor unit and the indoor unit. It is an object of the present invention to provide a heat pump type air conditioner that can be operated in a room and can be applied to a case of a plurality of indoor units.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
の本発明の技術的手段は、室外ユニット内に室外膨張弁
を設置し、かつ室外膨張弁の入口側と出口側の冷媒圧力
差を検出する第1差圧検知装置と、冷房運転時に前記第
1差圧検知装置による冷媒圧力差が所定範囲内に収まる
ように室外膨張弁の開度を制御する室外膨張弁制御装置
とを備えるものである。
The technical means of the present invention for achieving the above object is to install an outdoor expansion valve in an outdoor unit, and to adjust the refrigerant pressure difference between the inlet side and the outlet side of the outdoor expansion valve. A first differential pressure detection device for detecting, and an outdoor expansion valve control device for controlling the opening of the outdoor expansion valve so that the refrigerant pressure difference by the first differential pressure detection device falls within a predetermined range during cooling operation. Is.

【0015】また、第1差圧演算装置の代わりに室外膨
張弁の入口側と出口側の冷媒温度から室外膨張弁の入口
側と出口側の冷媒圧力差を算出する第1差圧演算装置を
設け、冷房運転時に第1差圧演算装置による冷媒圧力差
が所定範囲内に収まるように室外膨張弁の開度を制御す
る室外膨張弁制御装置とを備えるものである。
Further, instead of the first differential pressure calculating device, a first differential pressure calculating device for calculating the refrigerant pressure difference between the inlet side and the outlet side of the outdoor expansion valve from the refrigerant temperature at the inlet side and the outlet side of the outdoor expansion valve is provided. The outdoor expansion valve control device is provided to control the opening of the outdoor expansion valve so that the refrigerant pressure difference by the first differential pressure calculation device falls within a predetermined range during the cooling operation.

【0016】また、室内ユニット内に室内膨張弁を設置
し、かつ室内膨張弁の入口側と出口側の冷媒圧力差を検
出する第2差圧検知装置と、暖房運転時に前記第2差圧
検知装置による冷媒圧力差が所定範囲内に収まるように
室内膨張弁の開度を制御する室内膨張弁制御装置とを備
えるものである。
Also, a second differential pressure detecting device, which is provided with an indoor expansion valve in the indoor unit and detects a refrigerant pressure difference between the inlet side and the outlet side of the indoor expansion valve, and the second differential pressure detection during heating operation. An indoor expansion valve control device that controls the opening degree of the indoor expansion valve so that the refrigerant pressure difference due to the device falls within a predetermined range.

【0017】また、第2差圧演算装置の代わりに室内膨
張弁の入口側と出口側の冷媒温度から室内膨張弁の入口
側と出口側の冷媒圧力差を算出する第2差圧演算装置を
設け、暖房運転時に前記第2差圧演算装置による冷媒圧
力差が所定範囲内に収まるように室内膨張弁の開度を制
御する室内膨張弁制御装置とを備えるものである。
Further, instead of the second differential pressure calculating device, there is provided a second differential pressure calculating device for calculating the refrigerant pressure difference between the inlet side and the outlet side of the indoor expansion valve from the refrigerant temperature at the inlet side and the outlet side of the indoor expansion valve. The indoor expansion valve control device is provided to control the opening of the indoor expansion valve so that the refrigerant pressure difference by the second differential pressure calculation device falls within a predetermined range during the heating operation.

【0018】[0018]

【作用】本発明のヒートポンプ式空気調和機は、上記構
成により、冷房運転の場合、室外膨張弁における減圧量
を、第1差圧検知装置、または第1差圧演算装置による
室外膨張弁の入口側と出口側の冷媒圧力差で検出するこ
とができ、その冷媒圧力差が所定範囲内に収まるように
室外膨張弁の開度を任意に制御できる。
According to the heat pump type air conditioner of the present invention, in the cooling operation, the pressure reduction amount in the outdoor expansion valve is controlled by the first differential pressure detecting device or the first differential pressure calculating device at the inlet of the outdoor expansion valve. It can be detected by the refrigerant pressure difference between the side and the outlet side, and the opening degree of the outdoor expansion valve can be arbitrarily controlled so that the refrigerant pressure difference falls within a predetermined range.

【0019】その結果、運転条件や室外ユニットと室内
ユニットとを結ぶ冷媒配管長の変化に対して、室外膨張
弁による減圧量を適正に保持することにより、室内膨張
弁にて室内熱交換器での蒸発圧力を適正に制御すること
ができ、また、複数の室内ユニットを設置する場合でも
適用できる。
As a result, by properly maintaining the decompression amount by the outdoor expansion valve in response to changes in operating conditions and the length of the refrigerant pipe connecting the outdoor unit and the indoor unit, the indoor expansion valve can be used in the indoor heat exchanger. The evaporation pressure can be controlled appropriately, and it can be applied even when a plurality of indoor units are installed.

【0020】また、暖房運転の場合、室内膨張弁におけ
る減圧量を、第2差圧検知装置、または第2差圧演算装
置による室内膨張弁の入口側と出口側の冷媒圧力差で検
出することができ、その冷媒圧力差が所定範囲内に収ま
るように室内膨張弁の開度を任意に制御できる。
Further, in the heating operation, the pressure reduction amount in the indoor expansion valve is detected by the refrigerant pressure difference between the inlet side and the outlet side of the indoor expansion valve by the second differential pressure detecting device or the second differential pressure calculating device. Therefore, the opening degree of the indoor expansion valve can be arbitrarily controlled so that the refrigerant pressure difference falls within a predetermined range.

【0021】その結果、運転条件や室外ユニットと室内
ユニットとを結ぶ冷媒配管長の変化に対して、室内膨張
弁による減圧量を適正に保持することにより、室外膨張
弁にて室外熱交換器での蒸発圧力を適正に制御すること
ができ、また、複数の室内ユニットを設置する場合でも
適用できる。
As a result, by appropriately maintaining the decompression amount by the indoor expansion valve in response to changes in operating conditions and the length of the refrigerant pipe connecting the outdoor unit and the indoor unit, the outdoor heat exchanger can be used in the outdoor heat exchanger. The evaporation pressure can be controlled appropriately, and it can be applied even when a plurality of indoor units are installed.

【0022】[0022]

【実施例】以下、本発明によるヒートポンプ式空気調和
機の第1の実施例について、図面を参照しながら説明す
る。なお、従来例と同一構成については同一符号を付し
て詳細な説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of a heat pump type air conditioner according to the present invention will be described below with reference to the drawings. The same components as those of the conventional example are designated by the same reference numerals, and detailed description thereof will be omitted.

【0023】図1は、本発明の第1の実施例のヒートポ
ンプ式空気調和機の冷凍サイクル図である。
FIG. 1 is a refrigeration cycle diagram of the heat pump type air conditioner of the first embodiment of the present invention.

【0024】図1において、ヒートポンプ式空気調和機
は室外ユニットA’と、室内ユニットB’とから構成さ
れている。
In FIG. 1, the heat pump type air conditioner comprises an outdoor unit A'and an indoor unit B '.

【0025】室外ユニットA’は、圧縮機1、四方弁
2、室外熱交換器3、室外膨張弁Exp1、アキューム
レータ6、室外膨張弁Exp1の入口側と出口側の冷媒
圧力差△P1を検出する第1差圧検知装置Dp1と、冷
房運転時に第1差圧検知装置Dp1による冷媒圧力差が
所定範囲内に収まるように室外膨張弁Exp1の開度を
制御する室外膨張弁制御装置Cnt1から構成されてい
る。
The outdoor unit A'detects the refrigerant pressure difference ΔP1 between the inlet side and the outlet side of the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the outdoor expansion valve Exp1, the accumulator 6, and the outdoor expansion valve Exp1. A first differential pressure detection device Dp1 and an outdoor expansion valve control device Cnt1 that controls the opening of the outdoor expansion valve Exp1 so that the refrigerant pressure difference by the first differential pressure detection device Dp1 falls within a predetermined range during cooling operation. ing.

【0026】室内ユニットB’は、室内熱交換器5、及
び室内流量弁Exp2とから構成されている。
The indoor unit B'includes an indoor heat exchanger 5 and an indoor flow valve Exp2.

【0027】以上のように構成されたヒートポンプ式空
気調和機について、以下その動作を説明する。
The operation of the heat pump type air conditioner configured as described above will be described below.

【0028】冷房運転の場合、四方弁2によって冷房回
路に切り替えられ、図中の実線矢印の方向に冷媒が流れ
て冷房サイクルが形成され、室外熱交換器3を凝縮器、
室内熱交換器5を蒸発器として作用させる。
In the case of the cooling operation, the four-way valve 2 is switched to the cooling circuit, the refrigerant flows in the direction of the solid line arrow in the figure to form the cooling cycle, and the outdoor heat exchanger 3 is connected to the condenser,
The indoor heat exchanger 5 acts as an evaporator.

【0029】上記冷房サイクルにおいて、圧縮機1を出
た高温高圧のガス冷媒は室外熱交換器3にて凝縮して高
温高圧の液冷媒となり、室外膨張弁Exp1により減圧
膨張されて二相冷媒となる。
In the cooling cycle, the high-temperature and high-pressure gas refrigerant leaving the compressor 1 is condensed in the outdoor heat exchanger 3 to become a high-temperature and high-pressure liquid refrigerant, which is decompressed and expanded by the outdoor expansion valve Exp1 to form a two-phase refrigerant. Become.

【0030】その後、室外ユニットA’を出て、その後
冷媒配管中の管内抵抗により更に減圧膨張しながら、室
内ユニットB’へ流入し、室内熱交換器5にて蒸発する
ことにより室内空気から吸熱(冷房運転)する。
Thereafter, the outdoor unit A'is exited, and thereafter, while being further decompressed and expanded by the internal resistance in the refrigerant pipe, it flows into the indoor unit B'and evaporated in the indoor heat exchanger 5 to absorb heat from the indoor air. (Cooling operation).

【0031】この際、室内ユニットB’を複数台設置す
る場合でも各室内ユニットB’での能力制御を可能にす
るためには、室内ユニットB’内の室内膨張弁Exp2
に流入する冷媒圧力が室内膨張弁Exp2での減圧性能
範囲内にある必要がある。
At this time, even if a plurality of indoor units B'are installed, in order to enable the capacity control in each indoor unit B ', the indoor expansion valve Exp2 in the indoor unit B'is provided.
It is necessary that the pressure of the refrigerant flowing into is within the pressure reducing performance range of the indoor expansion valve Exp2.

【0032】そのために、第1差圧検知装置Dp1によ
り、室外膨張弁Exp1の入口側と出口側の冷媒圧力差
△P1を検出し、冷媒圧力差△P1が所定範囲内に収ま
るように室外膨張弁Exp1の開度を室外膨張弁制御装
置Cnt1により制御する。
Therefore, the first differential pressure detection device Dp1 detects the refrigerant pressure difference ΔP1 between the inlet side and the outlet side of the outdoor expansion valve Exp1 and the outdoor expansion is performed so that the refrigerant pressure difference ΔP1 falls within a predetermined range. The opening degree of the valve Exp1 is controlled by the outdoor expansion valve control device Cnt1.

【0033】従って、室外ユニットA’〜室内ユニット
B’間の冷媒配管長の長短に拘らず、室内ユニットB’
内の室内膨張弁Exp2に流入する冷媒圧力が室内膨張
弁Exp2での減圧性能範囲内にあるため、室内膨張弁
Exp2にて室内ユニットの冷房能力制御を最適に行う
ことができる。
Therefore, regardless of the length of the refrigerant pipe between the outdoor unit A'and the indoor unit B ', the indoor unit B'is
Since the refrigerant pressure flowing into the indoor expansion valve Exp2 therein is within the decompression performance range of the indoor expansion valve Exp2, the indoor expansion valve Exp2 can optimally control the cooling capacity of the indoor unit.

【0034】以上のように本実施例のヒートポンプ式空
気調和機は、圧縮機1、四方弁2、室外熱交換器3、室
外膨張弁Exp1、アキュームレータ6、室外膨張弁E
xp1の入口側と出口側の冷媒圧力差△P1を検出する
第1差圧検知装置Dp1と、冷房運転時に第1差圧検知
装置Dp1による冷媒圧力差が所定範囲内に収まるよう
に室外膨張弁Exp1の開度を制御する室外膨張弁制御
装置Cnt1からなる室外ユニットA’と、室内熱交換
器5、及び室内流量弁Exp2とからなる室内ユニット
B’とから構成されているので、冷房運転条件や室外ユ
ニットと室内ユニットとを結ぶ冷媒配管長の変化に対し
て、室外膨張弁による減圧量を適正に保持することによ
り、室内膨張弁にて室内熱交換器での蒸発圧力を適正に
制御することができ、また、複数の室内ユニットを設置
する場合でも適用できる。
As described above, the heat pump type air conditioner of this embodiment has the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the outdoor expansion valve Exp1, the accumulator 6, and the outdoor expansion valve E.
The first differential pressure detection device Dp1 that detects the refrigerant pressure difference ΔP1 between the inlet side and the outlet side of xp1 and the outdoor expansion valve so that the refrigerant pressure difference by the first differential pressure detection device Dp1 during cooling operation falls within a predetermined range. Since the outdoor unit A'composed of the outdoor expansion valve control device Cnt1 for controlling the opening degree of the Exp1 and the indoor unit B'composed of the indoor heat exchanger 5 and the indoor flow rate valve Exp2 are constituted, And the amount of decompression by the outdoor expansion valve is properly maintained against changes in the length of the refrigerant pipe connecting the outdoor unit and the indoor unit, so that the evaporation pressure in the indoor heat exchanger is appropriately controlled by the indoor expansion valve. It is also possible to apply when installing a plurality of indoor units.

【0035】次に、本発明によるヒートポンプ式空気調
和機の第2の実施例について図面を参照しながら説明す
る。なお、第1の実施例と同一構成については同一符号
を付して詳細な説明を省略する。
Next, a second embodiment of the heat pump type air conditioner according to the present invention will be described with reference to the drawings. The same components as those in the first embodiment are designated by the same reference numerals and detailed description thereof will be omitted.

【0036】図2は第2の実施例のヒートポンプ式空気
調和機の冷凍サイクルである。図2に示すように、本実
施例では、室外ユニットA’内における室外膨張弁Ex
p1の入口側、及び出口側には、第1差圧検出装置Dp
1の代わりに、冷媒温度を検出する第1温度センサーT
h1、及び第2温度センサーTh2と、第1温度センサ
ーTh1、及び第2温度センサーTh2による冷媒温度
から冷媒飽和圧力Ps、及び両者の冷媒圧力差△P1を
算出し、室外膨張弁制御装置Cnt1へ出力する第1差
圧演算装置Cal1を設置しており、この場合において
も第1の実施例と同様の効果が得られる。
FIG. 2 shows the refrigeration cycle of the heat pump type air conditioner of the second embodiment. As shown in FIG. 2, in the present embodiment, the outdoor expansion valve Ex in the outdoor unit A ′ is
The first differential pressure detection device Dp is provided on the inlet side and the outlet side of p1.
Instead of 1, the first temperature sensor T for detecting the temperature of the refrigerant
The refrigerant saturation pressure Ps and the refrigerant pressure difference ΔP1 between the refrigerant temperature h1 and the second temperature sensor Th2, the first temperature sensor Th1 and the second temperature sensor Th2 are calculated from the refrigerant temperatures to the outdoor expansion valve control device Cnt1. The first differential pressure calculating device Cal1 for outputting is installed, and in this case, the same effect as that of the first embodiment can be obtained.

【0037】即ち、室外膨張弁Exp1の入口側、及び
出口側における冷媒は二相状態であるため、その温度を
検出して冷媒飽和圧力Psを演算することにより、冷媒
圧力を検出できるからである。
That is, since the refrigerant on the inlet side and the outlet side of the outdoor expansion valve Exp1 is in a two-phase state, the refrigerant pressure can be detected by detecting the temperature and calculating the refrigerant saturation pressure Ps. .

【0038】次に本発明によるヒートポンプ式空気調和
機の第3の実施例について、図面を参照しながら説明す
る。なお、第1の実施例と同一構成については、同一符
号を付して詳細な説明を省略する。
Next, a third embodiment of the heat pump type air conditioner according to the present invention will be described with reference to the drawings. The same components as those in the first embodiment are designated by the same reference numerals and detailed description thereof will be omitted.

【0039】図3は、本発明の第3の実施例のヒートポ
ンプ式空気調和機の冷凍サイクル図である。
FIG. 3 is a refrigeration cycle diagram of the heat pump type air conditioner of the third embodiment of the present invention.

【0040】図3において、ヒートポンプ式空気調和機
は室外ユニットA’と、室内ユニットB”とから構成さ
れている。
In FIG. 3, the heat pump type air conditioner comprises an outdoor unit A'and an indoor unit B ".

【0041】室外ユニットB”は、室内熱交換器5、室
内膨張弁Exp2、室内膨張弁Exp2の入口側と出口
側の冷媒圧力差△P2を検出する第2差圧検知装置Dp
2と、暖房運転時に第2差圧検知装置Dp2による冷媒
圧力差が所定範囲内に収まるように室内膨張弁Exp2
の開度を制御する室内膨張弁制御装置Cnt2から構成
されている。
The outdoor unit B "includes the indoor heat exchanger 5, the indoor expansion valve Exp2, and the second differential pressure detecting device Dp for detecting the refrigerant pressure difference ΔP2 between the inlet side and the outlet side of the indoor expansion valve Exp2.
2 and the indoor expansion valve Exp2 so that the refrigerant pressure difference by the second differential pressure detection device Dp2 during the heating operation falls within a predetermined range.
The indoor expansion valve control device Cnt2 for controlling the opening degree of Cnt2.

【0042】以上のように構成されたヒートポンプ式空
気調和機について、以下その動作を説明する。
The operation of the heat pump type air conditioner constructed as above will be described below.

【0043】暖房運転の場合、四方弁2によって暖房回
路に切り替えられ、図中の破線矢印の方向に冷媒が流れ
て暖房サイクルが形成され、室内熱交換器5を凝縮器、
室外熱交換器3を蒸発器として作用させる。
In the heating operation, the four-way valve 2 is switched to the heating circuit, the refrigerant flows in the direction of the broken line arrow in the drawing to form the heating cycle, and the indoor heat exchanger 5 is connected to the condenser.
The outdoor heat exchanger 3 acts as an evaporator.

【0044】上記暖房サイクルにおいて、圧縮機1を出
た高温高圧のガス冷媒は室内熱交換器5にて凝縮するこ
とにより室内空気へ放熱(暖房運転)して高温高圧の液
冷媒となり、室内膨張弁Exp2により減圧膨張されて
二相冷媒となる。
In the above heating cycle, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 is condensed in the indoor heat exchanger 5 to radiate heat to the indoor air (heating operation) to become a high-temperature and high-pressure liquid refrigerant, and expand indoors. It is decompressed and expanded by the valve Exp2 to become a two-phase refrigerant.

【0045】その後、室内ユニットB”を出て、その後
冷媒配管中の管内抵抗により更に減圧膨張しながら、室
外ユニットA’へ流入し、室外熱交換器3にて蒸発する
ことにより室外空気から吸熱する。
After that, the indoor unit B ″ is discharged, and thereafter, while being further decompressed and expanded by the internal resistance in the refrigerant pipe, the refrigerant flows into the outdoor unit A ′ and evaporates in the outdoor heat exchanger 3 to absorb heat from the outdoor air. To do.

【0046】この際、室内ユニットB”を複数台設置す
る場合でも各室内ユニットB”での能力制御を可能にす
るためには、室外ユニットA’内の室外膨張弁Exp1
に流入する冷媒圧力が室外膨張弁Exp1での減圧性能
範囲内にある必要がある。
At this time, even when a plurality of indoor units B ″ are installed, in order to enable the capacity control in each indoor unit B ″, the outdoor expansion valve Exp1 in the outdoor unit A ′ is provided.
The pressure of the refrigerant flowing into the outdoor expansion valve Exp1 needs to be within the pressure reducing performance range.

【0047】そのために、第2差圧検知装置Dp2によ
り、室内膨張弁Exp2の入口側と出口側の冷媒圧力差
△P2を検出し、冷媒圧力差△P2が所定範囲内に収ま
るように室内膨張弁Exp2の開度を室内膨張弁制御装
置Cnt2により制御する。
Therefore, the second differential pressure detecting device Dp2 detects the refrigerant pressure difference ΔP2 between the inlet side and the outlet side of the indoor expansion valve Exp2 and the indoor expansion is performed so that the refrigerant pressure difference ΔP2 falls within a predetermined range. The opening degree of the valve Exp2 is controlled by the indoor expansion valve control device Cnt2.

【0048】従って、室外ユニットA’〜室内ユニット
B”間の冷媒配管長の長短に拘らず、室外ユニットA’
内の室外膨張弁Exp1に流入する冷媒圧力が室外膨張
弁Exp1での減圧性能範囲内にあるため、室外膨張弁
Exp1にて室外ユニットの蒸発能力制御を最適に行う
ことができる。
Therefore, regardless of the length of the refrigerant pipe between the outdoor unit A'and the indoor unit B ", the outdoor unit A '
Since the pressure of the refrigerant flowing into the outdoor expansion valve Exp1 therein is within the pressure reducing performance range of the outdoor expansion valve Exp1, it is possible to optimally control the evaporation capacity of the outdoor unit by the outdoor expansion valve Exp1.

【0049】以上のように本実施例のヒートポンプ式空
気調和機は、室外ユニットA’と、室内熱交換器5、室
内膨張弁Exp2、室内膨張弁Exp2の入口側と出口
側の冷媒圧力差△P2を検出する第2差圧検知装置Dp
2と、暖房運転時に第2差圧検知装置Dp2による冷媒
圧力差が所定範囲内に収まるように室内膨張弁Exp2
の開度を制御する室内膨張弁制御装置Cnt2からなる
室内ユニットB”から構成されているので、暖房運転条
件や室外ユニットと室内ユニットとを結ぶ冷媒配管長の
変化に対して、室外膨張弁による減圧量を適正に保持す
ることにより、室外膨張弁にて室外熱交換器での蒸発圧
力を適正に制御することができ、また、複数の室内ユニ
ットを設置する場合でも適用できる。
As described above, in the heat pump type air conditioner of the present embodiment, the outdoor unit A ', the indoor heat exchanger 5, the indoor expansion valve Exp2, and the refrigerant pressure difference Δ between the inlet side and the outlet side of the indoor expansion valve Exp2. Second differential pressure detection device Dp for detecting P2
2 and the indoor expansion valve Exp2 so that the refrigerant pressure difference by the second differential pressure detection device Dp2 during the heating operation falls within a predetermined range.
The indoor expansion valve control device Cnt2 for controlling the opening degree of the indoor expansion unit B ″ is used, and therefore the outdoor expansion valve is used for the heating operation condition and the change of the refrigerant pipe length connecting the outdoor unit and the indoor unit. By properly holding the decompression amount, the outdoor expansion valve can appropriately control the evaporation pressure in the outdoor heat exchanger, and can also be applied when a plurality of indoor units are installed.

【0050】次に、本発明によるヒートポンプ式空気調
和機の第4の実施例について図面を参照しながら説明す
る。なお、第3の実施例と同一構成については同一符号
を付して詳細な説明を省略する。
Next, a fourth embodiment of the heat pump type air conditioner according to the present invention will be described with reference to the drawings. The same components as those in the third embodiment are designated by the same reference numerals and detailed description thereof will be omitted.

【0051】図4は第4の実施例のヒートポンプ式空気
調和機の冷凍サイクルである。図4に示すように、本実
施例では室内ユニットB”内における室内膨張弁Exp
2の入口側、及び出口側には、第2差圧検出装置Dp2
の代わりに、冷媒温度を検出する第3温度センサーTh
3、及び第4温度センサーTh4と、第3温度センサー
Th3、及び第4温度センサーTh4による冷媒温度か
ら冷媒飽和圧力Ps、及び両者の冷媒圧力差△P2を算
出し、室外膨張弁制御装置Cnt2へ出力する第2差圧
演算装置Cal2を設置しており、この場合においても
第3の実施例と同様の効果が得られる。
FIG. 4 shows a refrigeration cycle of the heat pump type air conditioner of the fourth embodiment. As shown in FIG. 4, in this embodiment, the indoor expansion valve Exp in the indoor unit B ″ is
The second differential pressure detection device Dp2 is provided on the inlet side and the outlet side of
Instead of, a third temperature sensor Th for detecting the refrigerant temperature
The refrigerant saturation pressure Ps and the refrigerant pressure difference ΔP2 between the third and fourth temperature sensors Th4, the third temperature sensor Th3, and the fourth temperature sensor Th4 are calculated from the refrigerant temperatures to the outdoor expansion valve control device Cnt2. The second differential pressure calculation device Cal2 for outputting is installed, and in this case, the same effect as that of the third embodiment can be obtained.

【0052】即ち、室内膨張弁Exp2の入口側、及び
出口側における冷媒は二相状態であるため、その温度を
検出して冷媒飽和圧力Psを演算することにより、冷媒
圧力を検出できるからである。
That is, since the refrigerant on the inlet side and the outlet side of the indoor expansion valve Exp2 is in a two-phase state, the refrigerant pressure can be detected by detecting the temperature and calculating the refrigerant saturation pressure Ps. .

【0053】[0053]

【発明の効果】以上のように本発明は、室外ユニット内
に室外膨張弁を設置し、かつ室外膨張弁の入口側と出口
側の冷媒圧力差を検出する第1差圧検知装置、または室
外膨張弁の入口側と出口側の冷媒温度から冷媒圧力差を
検出する第1差圧演算装置と、冷房運転時に前記第1差
圧検知装置、または第1差圧演算装置による冷媒圧力差
が所定範囲内に収まるように室外膨張弁の開度を制御す
る室外膨張弁制御装置とを備えているために、冷房運転
条件や室外ユニットと室内ユニットとを結ぶ冷媒配管長
の変化に対して、室外膨張弁による減圧量を適正に保持
することにより、室内膨張弁にて室内熱交換器での蒸発
圧力を適正に制御することができ、また、複数の室内ユ
ニットを設置する場合でも適用できるものである。
As described above, according to the present invention, the outdoor expansion valve is installed in the outdoor unit, and the first differential pressure detecting device for detecting the refrigerant pressure difference between the inlet side and the outlet side of the outdoor expansion valve or the outdoor unit. A first differential pressure calculation device that detects a refrigerant pressure difference from the refrigerant temperatures of the inlet side and the outlet side of the expansion valve, and the refrigerant pressure difference between the first differential pressure detection device or the first differential pressure calculation device during cooling operation is predetermined. Since the outdoor expansion valve control device that controls the opening of the outdoor expansion valve so as to be within the range is provided, the outdoor expansion valve control device controls the outdoor operation in response to cooling operation conditions and changes in the refrigerant pipe length that connects the outdoor unit and the indoor unit. By properly holding the amount of pressure reduction by the expansion valve, the indoor expansion valve can properly control the evaporation pressure in the indoor heat exchanger, and it can also be applied when installing multiple indoor units. is there.

【0054】また、室内ユニット内に室内膨張弁を設置
し、かつ室内膨張弁の入口側と出口側の冷媒圧力差を検
出する第2差圧検知装置、または室内膨張弁の入口側と
出口側の冷媒温度から冷媒圧力差を検出する第2差圧演
算装置と、暖房運転時に前記第2差圧検知装置、または
第2差圧演算装置による冷媒圧力差が所定範囲内に収ま
るように室内膨張弁の開度を制御する室内膨張弁制御装
置とを備えているために、暖房運転条件や室外ユニット
と室内ユニットとを結ぶ冷媒配管長の変化に対して、室
内膨張弁による減圧量を適正に保持することにより、室
外膨張弁にて室外熱交換器での蒸発圧力を適正に制御す
ることができ、また、複数の室内ユニットを設置する場
合でも適用できるものである。
A second differential pressure detector for installing an indoor expansion valve in the indoor unit and detecting the refrigerant pressure difference between the inlet side and the outlet side of the indoor expansion valve, or the inlet side and the outlet side of the indoor expansion valve. Second differential pressure calculation device for detecting the refrigerant pressure difference from the refrigerant temperature of the second indoor expansion, and indoor expansion so that the refrigerant pressure difference by the second differential pressure detection device or the second differential pressure calculation device during heating operation falls within a predetermined range. Since the indoor expansion valve control device for controlling the opening degree of the valve is provided, the amount of decompression by the indoor expansion valve can be appropriately adjusted with respect to changes in the heating operation conditions and the length of the refrigerant pipe connecting the outdoor unit and the indoor unit. By holding it, the evaporation pressure in the outdoor heat exchanger can be appropriately controlled by the outdoor expansion valve, and it can be applied even when a plurality of indoor units are installed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるヒートポンプ式空気調和機の第1
の実施例の冷凍サイクル図
FIG. 1 is a first heat pump type air conditioner according to the present invention.
Refrigeration cycle diagram of Example

【図2】本発明によるヒートポンプ式空気調和機の第2
の実施例の冷凍サイクル図
FIG. 2 is a second heat pump type air conditioner according to the present invention.
Refrigeration cycle diagram of Example

【図3】本発明によるヒートポンプ式空気調和機の第3
の実施例の冷凍サイクル図
FIG. 3 is a third heat pump type air conditioner according to the present invention.
Refrigeration cycle diagram of Example

【図4】本発明によるヒートポンプ式空気調和機の第4
の実施例の冷凍サイクル図
FIG. 4 is a fourth heat pump type air conditioner according to the present invention.
Refrigeration cycle diagram of Example

【図5】従来のヒートポンプ式空気調和機の冷凍サイク
ル図
FIG. 5 is a refrigeration cycle diagram of a conventional heat pump type air conditioner.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 四方弁 3 室外熱交換器 5 室内膨張弁 6 アキュームレータ Exp1 室外膨張弁 Exp2 室内膨張弁 Dp1 第1差圧検出装置 Dp2 第2差圧検出装置 Cnt1 室外膨張弁制御装置 Cnt2 室内膨張弁制御装置 Th1 第1温度センサー Th2 第2温度センサー Th3 第3温度センサー Th4 第4温度センサー Cal1 第1差圧演算装置 Cal2 第2差圧演算装置 A’ 室外ユニット B’,B” 室内ユニット 1 Compressor 2 Four-way valve 3 Outdoor heat exchanger 5 Indoor expansion valve 6 Accumulator Exp1 Outdoor expansion valve Exp2 Indoor expansion valve Dp1 First differential pressure detection device Dp2 Second differential pressure detection device Cnt1 Outdoor expansion valve control device Cnt2 Indoor expansion valve control Device Th1 1st temperature sensor Th2 2nd temperature sensor Th3 3rd temperature sensor Th4 4th temperature sensor Cal1 1st differential pressure calculation device Cal2 2nd differential pressure calculation device A'outdoor unit B ', B "indoor unit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機と、四方弁と、室外熱交換器と、
室外膨張弁と、アキュームレータとからなる室外ユニッ
トと、室内膨張弁と、室内熱交換器とからなる室内ユニ
ットとから構成され、 前記圧縮機,四方弁,室外熱交換器,室外膨張弁,室内
膨張弁,室内熱交換器,アキュームレータを順次冷媒配
管にて環状に接続してなる冷凍サイクルにおける室外膨
張弁の入口側と出口側の冷媒圧力差を検出する第1差圧
検知装置と、 冷房運転時に前記第1差圧検知装置による冷媒圧力差が
所定範囲内に収まるように室外膨張弁の開度を制御する
室外膨張弁制御装置とを備えたヒートポンプ式空気調和
機。
1. A compressor, a four-way valve, an outdoor heat exchanger,
An outdoor unit including an outdoor expansion valve, an accumulator, an indoor expansion valve, and an indoor unit including an indoor heat exchanger. The compressor, the four-way valve, the outdoor heat exchanger, the outdoor expansion valve, and the indoor expansion unit. A first differential pressure detection device that detects the refrigerant pressure difference between the inlet side and the outlet side of an outdoor expansion valve in a refrigeration cycle in which a valve, an indoor heat exchanger, and an accumulator are sequentially connected by a refrigerant pipe in an annular shape, and during cooling operation. A heat pump type air conditioner comprising: an outdoor expansion valve control device that controls the opening degree of the outdoor expansion valve so that the refrigerant pressure difference by the first differential pressure detection device falls within a predetermined range.
【請求項2】 圧縮機と、四方弁と、室外熱交換器と、
室外膨張弁と、アキュームレータとからなる室外ユニッ
トと、室内膨張弁と、室内熱交換器とからなる室内ユニ
ットとから構成され、かつ圧縮機,四方弁,室外熱交換
器,室外膨張弁,室内膨張弁,室内熱交換器,アキュー
ムレータを順次冷媒配管にて環状に接続してなる冷凍サ
イクルにおける室外膨張弁の入口側、及び出口側の冷媒
温度を検出する第1温度センサー、及び第2温度センサ
ーと、前記第1温度センサー、及び第2温度センサーに
よる冷媒温度から冷媒飽和圧力、及び両者の冷媒圧力差
を算出する第1差圧演算装置と、冷房運転時に第1差圧
演算装置による冷媒圧力差が所定範囲内に収まるように
室外膨張弁の開度を制御する室外膨張弁制御装置とを備
えたヒートポンプ式空気調和機。
2. A compressor, a four-way valve, an outdoor heat exchanger,
An outdoor expansion valve, an outdoor unit including an accumulator, an indoor expansion valve, and an indoor unit including an indoor heat exchanger, and a compressor, a four-way valve, an outdoor heat exchanger, an outdoor expansion valve, and an indoor expansion. A first temperature sensor for detecting the refrigerant temperature at the inlet side and the outlet side of an outdoor expansion valve in a refrigeration cycle in which a valve, an indoor heat exchanger, and an accumulator are sequentially connected in an annular shape by a refrigerant pipe; A first differential pressure calculation device for calculating a refrigerant saturation pressure and a refrigerant pressure difference between the first temperature sensor and the second temperature sensor, and a refrigerant pressure difference calculated by the first differential pressure calculation device during cooling operation. A heat pump type air conditioner including an outdoor expansion valve control device that controls the opening degree of the outdoor expansion valve so that is within a predetermined range.
【請求項3】 室外ユニットと室内ユニットとから構成
され、かつ圧縮機,四方弁,室外熱交換器,室外膨張
弁,室内膨張弁,室内熱交換器,アキュームレータを順
次冷媒配管にて環状に接続してなる冷凍サイクルにおけ
る室内膨張弁の入口側と出口側の冷媒圧力差を検出する
第2差圧検知装置と、 暖房運転時に前記第2差圧検知装置による冷媒圧力差が
所定範囲内に収まるように室内膨張弁の開度を制御する
室内膨張弁制御装置とを備えた請求項1記載のヒートポ
ンプ式空気調和機。
3. An outdoor unit and an indoor unit, wherein a compressor, a four-way valve, an outdoor heat exchanger, an outdoor expansion valve, an indoor expansion valve, an indoor heat exchanger, and an accumulator are sequentially connected in a ring by a refrigerant pipe. And a second differential pressure detection device for detecting the refrigerant pressure difference between the inlet side and the outlet side of the indoor expansion valve in the refrigeration cycle, and the refrigerant pressure difference by the second differential pressure detection device during heating operation falls within a predetermined range. The heat pump type air conditioner according to claim 1, further comprising an indoor expansion valve control device for controlling the opening degree of the indoor expansion valve.
【請求項4】 冷凍サイクルにおける室内膨張弁の入口
側、及び出口側の冷媒温度を検出する第3温度センサ
ー、及び第4温度センサーと、前記第3温度センサー、
及び第4温度センサーによる冷媒温度から冷媒飽和圧
力、及び両者の冷媒圧力差を算出する第2差圧演算装置
と、暖房運転時に第2差圧演算装置による冷媒圧力差が
所定範囲内に収まるように室内膨張弁の開度を制御する
室内膨張弁制御装置とを備えた請求項1記載のヒートポ
ンプ式空気調和機。
4. A third temperature sensor for detecting a refrigerant temperature at an inlet side and an outlet side of an indoor expansion valve in a refrigeration cycle, a fourth temperature sensor, and the third temperature sensor,
And a second differential pressure calculation device for calculating the refrigerant saturation pressure and the refrigerant pressure difference between the two from the refrigerant temperature by the fourth temperature sensor and the refrigerant pressure difference by the second differential pressure calculation device during the heating operation so that they fall within a predetermined range. The heat pump type air conditioner according to claim 1, further comprising: an indoor expansion valve control device that controls an opening degree of the indoor expansion valve.
JP27128494A 1994-11-04 1994-11-04 Heat pump type air conditioner Pending JPH08136077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27128494A JPH08136077A (en) 1994-11-04 1994-11-04 Heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27128494A JPH08136077A (en) 1994-11-04 1994-11-04 Heat pump type air conditioner

Publications (1)

Publication Number Publication Date
JPH08136077A true JPH08136077A (en) 1996-05-31

Family

ID=17497925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27128494A Pending JPH08136077A (en) 1994-11-04 1994-11-04 Heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPH08136077A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150338120A1 (en) * 2013-01-07 2015-11-26 Mitsubishi Electric Corporation Air-conditioning apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150338120A1 (en) * 2013-01-07 2015-11-26 Mitsubishi Electric Corporation Air-conditioning apparatus
GB2524184B (en) * 2013-01-07 2019-11-20 Mitsubishi Electric Corp Air conditioning apparatus

Similar Documents

Publication Publication Date Title
CA2530895C (en) Air-conditioning system with multiple indoor and outdoor units and control system therefore
AU2011357097B2 (en) Air-conditioning apparatus
JP6223469B2 (en) Air conditioner
JP4462435B2 (en) Refrigeration equipment
EP3228951B1 (en) Refrigeration cycle apparatus
JP2005226950A (en) Refrigerating air conditioner
JP2019158308A (en) Refrigeration cycle device
JP2006250480A (en) Refrigeration device
JPH08189717A (en) Heat pump type air-conditioner
JP3356485B2 (en) Multi-room air conditioner
JPH08136077A (en) Heat pump type air conditioner
JPH07332795A (en) Multiroom type air-conditioning system
JP2823068B2 (en) Heat pump type air conditioner
KR100441008B1 (en) Cooling and heating air conditioning system
JPH1038422A (en) Air conditioner
KR20070038287A (en) Air conditioner having volume variableness type condenser and method of control thereof
JP3134388B2 (en) Air conditioner
JPS6018757Y2 (en) air conditioner
JPS6327626B2 (en)
JPH085184A (en) Multi-room type air conditioner
JP2000105027A (en) Method for executing air conditioning device
JPS63290368A (en) Heat pump type air conditioner
JP2005241169A (en) Refrigerant circuit of air conditioner
JP2005233451A (en) Air conditioner
JPH03191266A (en) Air conditioner