JPH08135409A - Refuse incinerating gas turbine combined power generation system - Google Patents

Refuse incinerating gas turbine combined power generation system

Info

Publication number
JPH08135409A
JPH08135409A JP27471294A JP27471294A JPH08135409A JP H08135409 A JPH08135409 A JP H08135409A JP 27471294 A JP27471294 A JP 27471294A JP 27471294 A JP27471294 A JP 27471294A JP H08135409 A JPH08135409 A JP H08135409A
Authority
JP
Japan
Prior art keywords
steam
refuse
gas turbine
superheater
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27471294A
Other languages
Japanese (ja)
Inventor
Harumi Wakana
晴美 若菜
Koichi Chino
耕一 千野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27471294A priority Critical patent/JPH08135409A/en
Publication of JPH08135409A publication Critical patent/JPH08135409A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE: To improve plant efficiency by way of preventing high temperature corrosion in a refuse incinerating boiler by heating a combustor by way of leading water or steam heated by a refuse incinerator to the combustor attached to a gas turbine in a combined power generation system including the refuse incinerator and the gas turbine. CONSTITUTION: Gas generated in a refuse incinerator 3 is discharged from a chimney 6 through an exhaust gas processing device 5 after it is heat- exchanged by a refuse incinerating boiler 4. In the meantime, most of feedwater 18 boosted by a high pressure feedwater pump 17 becomes superheated steam 19 as it is led to a superheater 11 after it is heated by the refuse incinerating boiler 4 until it becomes saturated steam 25, and it is introduced to a steam turbine 20. At this time, a part of the feedwater 18 is heat-exchanged by an exhaust heat recovery boiler 15 and made to be the superheated steam 19, led to the steam turbine 20 with the superheated steam from the superheater 11 and it drives a power generator 13. Thereafter, the steam is condensed by a condenser 16. Additionally, the saturated steam 25 is introduced to the superheater 11 and made to be the superheated steam 19.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ごみ焼却炉とガスター
ビンで発生した蒸気を利用する複合発電に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combined power generation system utilizing steam generated in a refuse incinerator and a gas turbine.

【0002】[0002]

【従来の技術】多くの自治体でごみ焼却熱を有効に活用
して発電を行っている。その時、燃料となるごみの中の
プラスチックの一種である塩化ビニールや厨芥に含まれ
る食塩などから塩素が発生するため、燃焼ガス中に塩素
が多く含まれることになる。この塩素ガスが高温になる
とボイラチューブの腐食を進行させることが、ごみ焼却
熱を利用する場合に問題となる。そのため、ごみ焼却熱
を利用した発電では、ボイラで取り出せる蒸気の温度を
300℃以下にする必要があり、通常の火力発電所で利
用する蒸気の温度480℃に比べて低く、そのため発電
効率が低いという問題点があった。
2. Description of the Related Art Many local governments make effective use of waste incineration heat to generate electricity. At that time, chlorine is generated in the combustion gas because a large amount of chlorine is generated from vinyl chloride, which is a kind of plastic in the garbage that becomes fuel, and salt contained in the garbage. When the chlorine gas reaches a high temperature, the corrosion of the boiler tube progresses, which is a problem when the waste incineration heat is used. Therefore, in power generation using waste incineration heat, the temperature of the steam that can be taken out by the boiler must be 300 ° C or lower, which is lower than the steam temperature of 480 ° C used in ordinary thermal power plants, and therefore the power generation efficiency is low. There was a problem.

【0003】そこで、発電効率を改善する方法として、
塩素を含まない燃料で蒸気を高温化するために、ごみ焼
却炉から独立した過熱器を設置するという方法が提案さ
れている。例えば、過熱器の熱源として特開平5−59905
号公報に記載のようにごみ焼却炉に併設したガスター
ビンから出る排ガス等を利用する方法や、特開昭59−21
5503号公報に記載の塩素を含まない燃料を燃焼させる加
熱炉を設置しそこで発生する燃焼ガスを利用するという
ものがある。
Therefore, as a method for improving power generation efficiency,
It has been proposed to install a superheater independent of the refuse incinerator in order to raise the temperature of the steam with a chlorine-free fuel. For example, as a heat source for a superheater, JP-A-5-59905
Japanese Patent Laid-Open No. 59-21 / 1999, a method of utilizing exhaust gas from a gas turbine attached to a refuse incinerator as described in Japanese Patent Publication No. 59-21
There is a method in which a heating furnace for burning a chlorine-free fuel described in Japanese Patent No. 5503 is installed and combustion gas generated therein is used.

【0004】[0004]

【発明が解決しようとする課題】特開平5−59905号公報
に記載の方法はガスタービンと蒸気タービンの複合化で
あり、発電プラントとしては大幅な効率向上が期待でき
る。しかし、発熱量や処理量に変動の激しいごみ焼却炉
では発生する蒸気量も大きく変動するため、ガスタービ
ンの排熱回収ボイラに設置した過熱器の運転状態も大き
く変化し、安定した排熱回収ボイラの性能が得られな
い。この方式の問題点は、変動に応じた制御をするには
排熱回収ボイラに、従来の複合発電プラントには存在し
ない助燃バーナを設置しなければならないという事であ
る。また、特開昭59−215503号公報に記載の方法はごみ
焼却ボイラの発熱量変動に応じて加熱炉で燃焼させる燃
料の量を調節して過熱蒸気とするため、制御はしやすい
が効率は複合発電ほどには向上しない。
The method described in Japanese Patent Laid-Open No. 5-59905 is a combination of a gas turbine and a steam turbine, and a power plant can be expected to have a significant improvement in efficiency. However, since the amount of steam generated in a waste incinerator, whose heat generation amount and treatment amount fluctuate greatly, also changes the operating state of the superheater installed in the exhaust heat recovery boiler of the gas turbine, resulting in stable exhaust heat recovery. Boiler performance cannot be obtained. The problem with this method is that in order to control according to fluctuations, it is necessary to install an auxiliary combustion burner, which does not exist in conventional combined cycle power plants, in the exhaust heat recovery boiler. Further, in the method described in JP-A-59-215503, the amount of fuel burned in the heating furnace is adjusted to superheated steam according to the fluctuation of the heat generation amount of the refuse incineration boiler, so that it is easy to control but the efficiency is low. Does not improve as much as combined power generation.

【0005】本発明の目的は、効率が良く、しかも安定
した蒸気を蒸気タービンに供給できるシステムを提供す
ることにある。
It is an object of the present invention to provide a system which is efficient and can supply stable steam to a steam turbine.

【0006】[0006]

【課題を解決するための手段】本発明は、従来の課題を
解決するための方策として、ガスタービンの燃焼器内に
過熱器を設け、ごみ焼却炉の変動に対応してこの燃焼器
の発熱量を変化させる。
As a measure for solving the conventional problems, the present invention provides a superheater in the combustor of a gas turbine to generate heat in the combustor in response to fluctuations in the refuse incinerator. Change the amount.

【0007】[0007]

【作用】本発明では、過熱器をガスタービンの燃焼器内
に設けるので、ごみ焼却炉における高温腐食を防止し、
従来のごみ焼却プラントでは得られなかった高温の蒸気
を回収することができ、高効率化が達成される。また、
ごみ焼却ボイラの負荷変動に応じて燃焼器へ供給する燃
料と圧縮空気の分量を制御する事により安定した過熱蒸
気を蒸気タービンへ供給することができる。また、ガス
タービンの排熱は従来通り安定しているので従来のガス
タービンプラントと同一仕様の排熱回収ボイラを設ける
事もできる。
In the present invention, since the superheater is provided in the combustor of the gas turbine, the high temperature corrosion in the refuse incinerator is prevented,
High-temperature steam, which could not be obtained by conventional waste incineration plants, can be recovered, and high efficiency can be achieved. Also,
Stable superheated steam can be supplied to the steam turbine by controlling the amount of fuel and compressed air supplied to the combustor according to the load fluctuation of the refuse incineration boiler. Further, since the exhaust heat of the gas turbine is stable as before, an exhaust heat recovery boiler having the same specifications as the conventional gas turbine plant can be installed.

【0008】[0008]

【実施例】図1に本発明の一実施例としてガスタービン
とごみ焼却炉を組み合わせたシステムの系統図を示す。
ガスタービンの系統では、空気吸入系統から取り入れら
れた空気7は空気圧縮機8により圧縮され、燃料供給系
統から供給される塩素を含まない燃料9と共に燃焼器1
0で燃焼する。その際、燃焼器10の内部に設置された
過熱器11と熱交換し、ガスタービン12の入口設定温
度まで減温される。ガスタービン12で仕事をし発電機
13に電力をおこさせた燃焼ガス14は、排熱回収ボイ
ラ15で熱交換したのち煙突6より大気中に放出され
る。次に、ごみ供給系統から供給されるごみ1は、燃焼
用空気2と共にごみ焼却炉3で燃焼される。燃焼により
生じたガスはごみ焼却ボイラ4で熱交換した後に、排ガ
ス処理装置5を通って煙突6へ導かれ大気へと放出され
る。一方、復水器16から高圧給水ポンプ17により昇
圧された給水18の大部分は、ごみ焼却ボイラ4で飽和
蒸気25となるまで加熱された後、過熱器11へと導か
れ過熱蒸気19となって蒸気タービン20へと導入され
る。高圧給水ポンプ17で昇圧された給水18の一部
は、排熱回収ボイラ15で熱交換し過熱蒸気19となっ
て、燃焼器内の過熱器で生成された過熱蒸気とともに蒸
気タービン20へ導かれる。蒸気タービン20による仕
事は発電機13により電力へと変換され、仕事を終えた
蒸気は復水器16で復水される。
FIG. 1 shows a system diagram of a system in which a gas turbine and a refuse incinerator are combined as one embodiment of the present invention.
In the gas turbine system, the air 7 taken in from the air intake system is compressed by the air compressor 8 and the combustor 1 together with the chlorine-free fuel 9 supplied from the fuel supply system.
Burns at 0. At that time, heat is exchanged with the superheater 11 installed inside the combustor 10, and the temperature is reduced to the preset temperature at the inlet of the gas turbine 12. The combustion gas 14 that has worked in the gas turbine 12 and caused the generator 13 to generate electric power is heat-exchanged in the exhaust heat recovery boiler 15 and then discharged from the chimney 6 into the atmosphere. Next, the refuse 1 supplied from the refuse supply system is burned in the refuse incinerator 3 together with the combustion air 2. The gas generated by the combustion is heat-exchanged in the refuse incineration boiler 4, then is guided to the chimney 6 through the exhaust gas treatment device 5, and is discharged to the atmosphere. On the other hand, most of the feed water 18 pressurized from the condenser 16 by the high-pressure feed pump 17 is heated in the refuse incineration boiler 4 until it becomes saturated steam 25, and then is guided to the superheater 11 to become superheated steam 19. And is introduced into the steam turbine 20. Part of the feed water 18 pressurized by the high-pressure feed water pump 17 exchanges heat with the exhaust heat recovery boiler 15 to become superheated steam 19, which is guided to the steam turbine 20 together with the superheated steam generated by the superheater in the combustor. . The work by the steam turbine 20 is converted into electric power by the generator 13, and the steam that has finished the work is condensed by the condenser 16.

【0009】空気7と燃料9の流量は、ごみ焼却ボイラ
4と過熱器11との間に設置された蒸気流量計21の値
を感知した流量制御装置22によって制御される。
The flow rates of the air 7 and the fuel 9 are controlled by a flow rate control device 22 which senses the value of a steam flow meter 21 installed between the refuse incineration boiler 4 and the superheater 11.

【0010】過熱器の形状の一実施例として、燃焼器壁
に過熱器を設置した場合を図2に示す。燃焼器10へ導
かれた燃料9と圧縮空気7は保炎器26の作用により安
定化した火炎27となって燃焼する。図2中のA−A′
断面を拡大して図3に示す。燃焼器内は1MPaほどの
高圧なのでその圧力に対する耐圧は外壁30にもたせ、
蒸気と火炎間に存在する火炉壁28は薄くして蒸気への
熱伝達を良好にする。一般に火炎27から火炉壁28へ
の伝熱は輻射によるので高い熱流束が得られるため、内
面には特にフィン等を設ける必要はない。一方、蒸気と
火炉壁間の熱伝達は輻射伝熱より小さいので、火炉壁に
フィン29を設け、実効的な伝熱面積を大きくすること
で、伝熱の促進を図っている。また、フィン29は蒸気
の圧力を支える強度部材の役割も担っている。
As an example of the shape of the superheater, a case where the superheater is installed on the combustor wall is shown in FIG. The fuel 9 and the compressed air 7 introduced to the combustor 10 are combusted as a stabilized flame 27 by the action of the flame stabilizer 26. AA 'in FIG.
An enlarged cross section is shown in FIG. Since the inside of the combustor has a high pressure of about 1 MPa, the outer wall 30 is to withstand the pressure,
The furnace wall 28 present between the steam and flame is thinned to provide good heat transfer to the steam. Generally, since heat is transferred from the flame 27 to the furnace wall 28 by radiation, a high heat flux can be obtained, so that it is not necessary to provide fins or the like on the inner surface. On the other hand, since the heat transfer between the steam and the furnace wall is smaller than the radiant heat transfer, the fins 29 are provided on the furnace wall to increase the effective heat transfer area to promote the heat transfer. The fins 29 also play a role of a strength member that supports the pressure of steam.

【0011】図1のシステムを実際に運転する場合の例
を以下に述べる。一日のごみ処理量1000t,ごみの
平均発熱量2000kcal/kgと仮定し、蒸気タービン入
口の圧力を3MPa,温度350℃とし、ガスタービン
入口の圧力を1MPa,温度1100℃とした場合、蒸
気発生量はごみ焼却炉と過熱器により120t/h,排
熱回収ボイラにより50t/hとなり、プラント効率は
35%が得られる。その際、ごみ焼却ボイラ出口の蒸気
温度は240℃程度であるため塩素による高温腐食の問
題は回避できる。また、ガスタービンの燃焼器へ供給さ
れる燃料をLNGとした場合、燃料流量は平均2.0kg/s
,約170t/日程度となる。
An example of actual operation of the system shown in FIG. 1 will be described below. Assuming that the amount of waste treated per day is 1,000 tons and the average calorific value of waste is 2000 kcal / kg, the steam turbine inlet pressure is 3 MPa, the temperature is 350 ° C., the gas turbine inlet pressure is 1 MPa, and the temperature is 1100 ° C. The amount is 120 t / h by the waste incinerator and superheater, and 50 t / h by the exhaust heat recovery boiler, and the plant efficiency is 35%. At that time, since the steam temperature at the outlet of the refuse incineration boiler is about 240 ° C, the problem of high temperature corrosion due to chlorine can be avoided. When LNG is used as the fuel supplied to the combustor of the gas turbine, the fuel flow rate is 2.0 kg / s on average.
, About 170t / day.

【0012】本発明の他の実施例として、ガスタービン
12の燃焼ガスの温度と蒸気タービン20の仕様の選択
条件によっては、図4の様に蒸気タービン20を複圧式
とし、低圧給水ポンプ23からの給水を排熱回収ボイラ
15へと導き低圧蒸気24として蒸気タービン20へ与
えるということも考えられる。
As another embodiment of the present invention, depending on the temperature of the combustion gas of the gas turbine 12 and the selection conditions of the specifications of the steam turbine 20, the steam turbine 20 is of a double pressure type as shown in FIG. It is also conceivable that the feed water of the above is led to the exhaust heat recovery boiler 15 and given to the steam turbine 20 as the low pressure steam 24.

【0013】[0013]

【発明の効果】本発明によれば、ごみ焼却ボイラに高温
腐食を発生させることなくプラント効率を格段に向上さ
せることができ、ごみ焼却熱を活用した大規模発電が実
現する。
According to the present invention, plant efficiency can be remarkably improved without causing high temperature corrosion in the refuse incineration boiler, and large-scale power generation utilizing the refuse incineration heat can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す系統図。FIG. 1 is a system diagram showing an embodiment of the present invention.

【図2】過熱器の形状の一実施例の説明図。FIG. 2 is an explanatory diagram of an example of the shape of a superheater.

【図3】過熱器の形状の一実施例の説明図。FIG. 3 is an explanatory diagram of an example of the shape of a superheater.

【図4】本発明の他の実施例を示す系統図。FIG. 4 is a system diagram showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

3…ごみ焼却炉、10…燃焼器、12…ガスタービン。 3 ... refuse incinerator, 10 ... combustor, 12 ... gas turbine.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ごみ焼却炉とガスタービンとを含む複合発
電システムにおいて、前記ごみ焼却炉で加熱された水ま
たは蒸気を前記ガスタービンに付属する燃焼器に導き、
前記燃焼器を加熱することを特徴とするごみ焼却ガスタ
ービン複合発電システム。
1. In a combined power generation system including a refuse incinerator and a gas turbine, water or steam heated in the refuse incinerator is guided to a combustor attached to the gas turbine,
A waste incineration gas turbine combined cycle power generation system characterized by heating the combustor.
JP27471294A 1994-11-09 1994-11-09 Refuse incinerating gas turbine combined power generation system Pending JPH08135409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27471294A JPH08135409A (en) 1994-11-09 1994-11-09 Refuse incinerating gas turbine combined power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27471294A JPH08135409A (en) 1994-11-09 1994-11-09 Refuse incinerating gas turbine combined power generation system

Publications (1)

Publication Number Publication Date
JPH08135409A true JPH08135409A (en) 1996-05-28

Family

ID=17545524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27471294A Pending JPH08135409A (en) 1994-11-09 1994-11-09 Refuse incinerating gas turbine combined power generation system

Country Status (1)

Country Link
JP (1) JPH08135409A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109539216A (en) * 2018-12-18 2019-03-29 华北电力大学 A kind of combined generating system of integrated garbage burning boiler and coal-burning boiler
CN109958535A (en) * 2019-03-29 2019-07-02 上海康恒环境股份有限公司 A kind of system for waste incineration and combustion turbine combined power generation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109539216A (en) * 2018-12-18 2019-03-29 华北电力大学 A kind of combined generating system of integrated garbage burning boiler and coal-burning boiler
CN109539216B (en) * 2018-12-18 2023-09-05 华北电力大学 Combined power generation system integrating garbage incineration boiler and coal-fired boiler
CN109958535A (en) * 2019-03-29 2019-07-02 上海康恒环境股份有限公司 A kind of system for waste incineration and combustion turbine combined power generation

Similar Documents

Publication Publication Date Title
US5623822A (en) Method of operating a waste-to-energy plant having a waste boiler and gas turbine cycle
JP3783195B2 (en) Current generation in a combined power plant with gas and steam turbines.
EP0900921A3 (en) Hydrogen burning turbine plant
CN109958535A (en) A kind of system for waste incineration and combustion turbine combined power generation
CN110397481A (en) Promote the waste incineration and generating electricity device of main steam condition
CN209976638U (en) System for be used for waste incineration and gas turbine combined power generation
JPH01203802A (en) Steam production system at high pressure and high temperature level
JPH08135409A (en) Refuse incinerating gas turbine combined power generation system
CN206281365U (en) A kind of high-temp waste gas afterheat utilizing system
CN110608431A (en) Waste incineration power generation system with external independent superheater
CN209557055U (en) High-efficiency refuse power generation by waste combustion system
JPH11294111A (en) Refuse burning power generation method and independent a superheater
JPH0559905A (en) Refuse incinerating gas turbine composite plate
CN218721493U (en) Novel waste incineration boiler
CN218409878U (en) Subcritical gas power generation system
CN217737175U (en) Novel superheater for improving power generation efficiency of garbage power plant
CN211450944U (en) Biomass incineration power generation system
CN218154255U (en) Self-balancing reheating system of waste incineration disposal power station
CN212205692U (en) Device for efficiently generating power by using waste heat steam of converter
RU2700320C2 (en) Thermal vapor installation with a steam turbine drive of a compressor
CN212408610U (en) Biomass supercritical boiler superheated side steam coupling coal-fired power generation system
CN111473314B (en) Ultrahigh-pressure one-time reheating power generation system
JPS5820914A (en) Power generating plant using blast furnace gas as fuel
CN2357216Y (en) Special boiler for refuse power station
SU657180A1 (en) Steam-gas installation