JPH08133762A - Optical element forming die and its production - Google Patents

Optical element forming die and its production

Info

Publication number
JPH08133762A
JPH08133762A JP27807294A JP27807294A JPH08133762A JP H08133762 A JPH08133762 A JP H08133762A JP 27807294 A JP27807294 A JP 27807294A JP 27807294 A JP27807294 A JP 27807294A JP H08133762 A JPH08133762 A JP H08133762A
Authority
JP
Japan
Prior art keywords
optical element
film
die
face
molding die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27807294A
Other languages
Japanese (ja)
Inventor
Yasuhiro Yoneda
靖弘 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP27807294A priority Critical patent/JPH08133762A/en
Publication of JPH08133762A publication Critical patent/JPH08133762A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • C03B11/086Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/10Die base materials
    • C03B2215/12Ceramics or cermets, e.g. cemented WC, Al2O3 or TiC
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/20Oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/30Intermediate layers, e.g. graded zone of base/top material
    • C03B2215/34Intermediate layers, e.g. graded zone of base/top material of ceramic or cermet material, e.g. diamond-like carbon

Abstract

PURPOSE: To improve the die releasability and durability to the tensile stress when released from the die by forming a Cr nitride film having a specified thickness on the optical element forming face formed by press-forming a glass. CONSTITUTION: A cemented carbide consisting of WC-Ni-Cr is used as the material. A forming face 2 is mirror-finished on the upper end face of the cylindrical part of a die base 1 consisting of the integrated large-diameter disk and small-diameter cylinder on the disk, the peripheral part of the disk forms a step 3 to be used when the die is mounted in a forming machine. The position of the die in the shifting direction is controlled by the side face, and the inclination of the die to the center axis is controlled by the bottom face 5. The die base 1 with the optical element forming face 2 as a concave face of 15mm curvature and having 8mm outer diameter and finished to >=0.6μm surface roughness Rmax is cleaned with surfactant, pure water, etc., and then placed in a vacuum chamber, a Cr-N coating film 6 having >=3μm thickness is formed by ion plating for ionizing metallic Cr by an arc discharge, and the obtained forming die is kept at 600 deg.C in the atmosphere for 2hr to form Cr2 O3 on the surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、加熱軟化したガラスを
プレス成形して光学素子を製造するのに用いる光学素子
成形用型に関し、より詳しくは、良好な離型性を得るた
めに成形面に被膜を形成した光学素子成形用型に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical element molding die used for producing an optical element by press-molding heat-softened glass, and more specifically, a molding surface for obtaining a good releasability. The present invention relates to an optical element molding die having a coating formed thereon.

【0002】[0002]

【従来の技術】従来、この種の成形型としては、例えば
特開平2−221131号公報に開示されたものが知ら
れている。これは成形面にCrおよび窒素を主成分とす
る化合物を被膜することによって、ガラスに対する剥離
性を向上させた成形型である。そして被膜と型基材との
界面に、線膨張係数の値が型基材を形成する材料と被膜
を形成する材料との間の材料からなる中間層を介在さ
せ、被膜と型基材との間で生じる熱応力を緩和して被膜
の剥離を防いでいる。
2. Description of the Related Art Conventionally, as this type of molding die, for example, one disclosed in Japanese Patent Laid-Open No. 2222131/1990 is known. This is a molding die whose peelability to glass is improved by coating the molding surface with a compound containing Cr and nitrogen as main components. An intermediate layer made of a material having a linear expansion coefficient between the material forming the mold base material and the material forming the coating film is interposed at the interface between the coating film and the mold base material. The thermal stress generated between them is relaxed to prevent peeling of the coating.

【0003】[0003]

【発明が解決しようとする課題】ところが上述の従来技
術では、前記公報の実施例に記載されているように被膜
の厚さが0.3μmと薄かったため、次のような強度上
の問題点があった。
However, in the above-mentioned prior art, since the thickness of the coating film is as thin as 0.3 μm as described in the examples of the above-mentioned publications, the following strength problem occurs. there were.

【0004】成形品を離型するとき被膜に引張応力が作
用するが、0.3μmの膜厚では応力に対抗できず、被
膜が破損することがある。
Tensile stress acts on the coating when the molded product is released from the mold, but with a film thickness of 0.3 μm, the stress cannot be countered and the coating may be damaged.

【0005】被膜を成形型基材表面に形成する際、基材
表面に微小な汚れ,欠陥があると被膜が基材から浮いた
状態になる。汚れを完全に洗浄し、表面を無欠陥にする
ことは困難である。このような浮いた部分に離型力が作
用したとき、膜剥離が生ずるか否かは被膜自体の結合強
度に依存するが、被膜が薄いために強度は小さく剥離し
易いことになる。
When a coating film is formed on the surface of a molding die base material, if the surface of the base material has minute stains or defects, the coating film will float from the base material. It is difficult to thoroughly clean the dirt and make the surface defect-free. Whether or not film peeling occurs when a releasing force acts on such a floating portion depends on the bond strength of the coating film itself, but since the coating film is thin, the strength is small and peeling easily occurs.

【0006】以上のような理由から、上述の従来技術で
は被膜の剥離を防止すべく中間層を設けたものの、十分
に満足できる耐久性を得ることはできなかった。
For the above-mentioned reasons, although the above-mentioned conventional technique is provided with the intermediate layer in order to prevent the peeling of the coating film, it was not possible to obtain sufficiently satisfactory durability.

【0007】本発明は上記問題点に鑑みてなされたもの
で、良好な離型性が得られ、かつ離型時の引張応力に対
して十分な耐久性をもつ光学素子成形用型とその製造方
法を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems, and an optical element molding die having good mold releasability and having sufficient durability against tensile stress at the time of mold release, and its manufacture. The purpose is to provide a method.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に請求項1に係る本発明の光学素子成形用型は、加熱軟
化したガラスをプレス成形して光学素子を製造するのに
用いる光学素子成形用型であって、少なくとも光学素子
成形面に厚さ3μm以上のCr窒化物被膜を形成したこ
とを特徴としている。
In order to achieve the above object, the optical element molding die of the present invention according to claim 1 is an optical element used for manufacturing an optical element by press-molding glass softened by heating. The molding die is characterized in that a Cr nitride film having a thickness of 3 μm or more is formed on at least the molding surface of the optical element.

【0009】この場合、請求項2に記載したように、前
記Cr窒化物被膜の表層部にCr23 を形成するとよ
い。
In this case, it is preferable that Cr 2 O 3 is formed on the surface layer portion of the Cr nitride film as described in claim 2.

【0010】このような光学素子成形用型を製造するに
際しては、請求項3に記載したように、アーク放電によ
り金属Crをイオン化するイオンプレーティング法によ
って前記Cr窒化物被膜を形成するとよい。
When manufacturing such an optical element molding die, as described in claim 3, the Cr nitride film may be formed by an ion plating method in which metal Cr is ionized by arc discharge.

【0011】[0011]

【作用】上記構成からなる本発明のうち、請求項1に記
載した光学素子成形用型では、Cr窒化物という高硬度
で耐熱耐酸化性を有し離型性に優れた被膜を成形用型基
材の光学素子成形面に3μm以上の厚さで形成している
ために成形時に良好な離型性を有し、成形型基材の被膜
を被覆される面に欠陥や洗浄液残りがあっても、被膜自
体の結合力が大きいので剥離に至らない。
In the optical element molding die according to the first aspect of the present invention having the above-mentioned constitution, in the optical element molding die according to claim 1, a coating of Cr nitride having high hardness, heat resistance and oxidation resistance, and excellent releasability is formed. Since the optical element molding surface of the base material is formed with a thickness of 3 μm or more, it has good mold releasability at the time of molding, and the surface of the molding base material coated with the coating film has defects or residual cleaning liquid. However, since the coating itself has a large bonding force, peeling does not occur.

【0012】また請求項2では、成形面の表層部にCr
窒化物よりも標準生成自由エネルギーが小さいCr2
3 を形成したので、軟化したガラスをプレスしても融着
や反応は起こらず良好な離型性が得られる。
According to a second aspect, Cr is formed on the surface layer of the molding surface.
Cr 2 O, whose standard free energy of formation is smaller than that of nitride
Since 3 is formed, even if the softened glass is pressed, no fusion or reaction occurs, and good mold releasability is obtained.

【0013】また請求項3では、アーク放電により金属
をイオン化しているのでイオン化率が極めて高く結晶性
が極めて良好なCr窒化物の被膜が形成される。
According to the third aspect of the present invention, since the metal is ionized by arc discharge, a Cr nitride film having an extremely high ionization rate and an extremely good crystallinity is formed.

【0014】[0014]

【実施例】以下、添付図面を参照して本発明に係る光学
素子成形用型の実施例を説明する。
Embodiments of the optical element molding die according to the present invention will be described below with reference to the accompanying drawings.

【0015】(実施例1)図1は本発明の実施例1の光
学素子成形用型の構成を示す断面図である。
(Embodiment 1) FIG. 1 is a sectional view showing the structure of an optical element molding die according to Embodiment 1 of the present invention.

【0016】(構成)図において、型基材1はWC−N
i−Crからなる超硬合金を素材とし、大径の円板上に
小径の円筒を載せた形状に一体形成されたものであっ
て、前記円筒部分の上端面には所望のレンズ形状を転写
した形状の光学素子成形面2が鏡面加工され、前記大径
の円板周辺部は成形機(図示せず)に取付けるための段
部3となっている。側面4は成形型のシフト方向の位置
を規制する面で、底面5は成形型の中心軸に対する傾き
を規制する面である。本実施例では光学素子成形面2は
曲率15mmの凹面でその外径はφ8mmとし、面粗度はR
max =0.06μm以下に加工した。
(Structure) In the figure, the mold base 1 is WC-N.
It is made of a cemented carbide made of i-Cr and is integrally formed into a shape in which a small-diameter cylinder is placed on a large-diameter disk, and a desired lens shape is transferred to the upper end surface of the cylindrical portion. The optical element molding surface 2 having the above shape is mirror-finished, and the peripheral portion of the large-diameter disk serves as a step portion 3 for mounting on a molding machine (not shown). The side surface 4 is a surface that regulates the shift direction position of the molding die, and the bottom surface 5 is a surface that regulates the inclination of the molding die with respect to the central axis. In this embodiment, the optical element molding surface 2 is a concave surface having a curvature of 15 mm, the outer diameter is φ8 mm, and the surface roughness is R.
Processed to max = 0.06 μm or less.

【0017】このように加工した型基材1をアセトンお
よび界面活性剤および純水などで洗浄した後、真空チャ
ンバ内に載置する。その後、イオンビームスパッタ法に
よりCr−Nの被膜6を形成した。このときの条件を表
1に示す。
The mold base 1 thus processed is washed with acetone, a surfactant, pure water, etc., and then placed in a vacuum chamber. After that, a Cr—N coating film 6 was formed by an ion beam sputtering method. The conditions at this time are shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】本実施例ではCr−Nの結晶性が良好な膜
として成膜条件を以下のようにした。
In this embodiment, the film forming conditions were set as follows for a film of Cr-N having good crystallinity.

【0020】ガス圧力(ArとN2 の混合ガス) Ar:1.0(×10-2(Pa)) N2 :7.0(×10-2(Pa)) イオンビーム加速電圧:0.9(KV) アノード電流 :3.0(A)Gas pressure (mixed gas of Ar and N 2 ) Ar: 1.0 (× 10 -2 (Pa)) N 2 : 7.0 (× 10 -2 (Pa)) Ion beam acceleration voltage: 0. 9 (KV) Anode current: 3.0 (A)

【0021】成膜時間は5時間で膜厚は5μmであっ
た。結晶性は図2のX線回折法による分析結果のように
CrNの結晶ピークがでている。
The film formation time was 5 hours and the film thickness was 5 μm. As for the crystallinity, a crystal peak of CrN appears like the analysis result by the X-ray diffraction method in FIG.

【0022】また、Cr−N膜6を被覆した面の面粗度
は光学素子成形面2と同じであった。
The surface roughness of the surface coated with the Cr-N film 6 was the same as that of the optical element molding surface 2.

【0023】尚、Cr−N膜6は光学素子成形面2だけ
ではなく図1のように光学素子成形面2以外の面にも被
覆した。このようにして得られた成形型を大気中で60
0℃に2時間保持した。これにより、図3のX線回折に
よる分析結果のようにCr23 が形成される。このC
2 3 は膜の最表面に形成されている。また、このと
きの成形面7の面粗度はRmax =0.08μmとなって
いた。
The Cr-N film 6 covers not only the optical element molding surface 2 but also the surface other than the optical element molding surface 2 as shown in FIG. The mold obtained in this manner was used in the atmosphere at 60
Hold at 0 ° C. for 2 hours. As a result, Cr 2 O 3 is formed as shown in the analysis result by X-ray diffraction in FIG. This C
r 2 O 3 is formed on the outermost surface of the film. The surface roughness of the molding surface 7 at this time was Rmax = 0.08 µm.

【0024】(作用)上記のような構成の光学素子成形
用型は表面にCr2 3 が形成されているためにガラス
とは濡れにくく軟化したガラス素材をプレス成形しても
焼付くようなことはない。また、Cr−Nは高硬度で本
実施例の成形型ではマイクロビッカース硬度計で測定す
ると10g荷重下で1800kgf/mm2 あった。このよう
な高硬度の表面を有しているため成形時にガラスが固化
した状態でのプレス荷重でも成形面7には全く損傷はな
く、また、プレス時に金属粉などの異物を挟んでプレス
しても成形面7には圧痕が形成されず光学素子の連続成
形を行っても外観品質が良好な光学素子の製造を行うこ
とができた。
(Operation) Since the optical element molding die having the above-described structure has Cr 2 O 3 formed on the surface thereof, it does not easily get wet with glass and is likely to be seized even if press-molded on a softened glass material. There is no such thing. Cr-N has a high hardness, and in the mold of this example, it was 1800 kgf / mm 2 under a load of 10 g as measured by a micro Vickers hardness meter. Since it has such a high hardness surface, the molding surface 7 is not damaged even by a pressing load when the glass is solidified at the time of molding, and when the foreign matter such as metal powder is sandwiched and pressed at the time of pressing. However, no indentation was formed on the molding surface 7, and even if the optical element was continuously molded, it was possible to manufacture an optical element with good appearance quality.

【0025】また、膜厚が5μmあるので膜剥離の発生
を抑制できる。本実施例では膜厚を1μmとしたCr−
N膜6を被覆した光学素子成形用型との膜剥離の比較試
験を実際の光学素子の成形で行った。成形した硝材はB
SL7(小原(株)製)でこの硝材を770℃まで加熱
した後、一対の成形型で4.2kgf/mm2 のプレス圧力で
成形した。膜剥離の発生の確認は成形された光学素子に
付着したCr−N膜を実体顕微鏡で観察して行った。試
験結果は表2のようになった。
Further, since the film thickness is 5 μm, the occurrence of film peeling can be suppressed. In this embodiment, the thickness of the Cr- film is set to 1 μm.
A comparative test of film peeling with an optical element molding die coated with the N film 6 was carried out in the actual molding of the optical element. Molded glass material is B
This glass material was heated to 770 ° C. with SL7 (manufactured by Ohara Co., Ltd.) and then molded with a pair of molding dies at a pressing pressure of 4.2 kgf / mm 2 . The occurrence of film peeling was confirmed by observing the Cr-N film attached to the molded optical element with a stereoscopic microscope. The test results are shown in Table 2.

【0026】[0026]

【表2】 [Table 2]

【0027】ここで表2のNoは試験した光学素子成形
型が各3本なのでそれぞれに付けたナンバーである。表
2の結果からも明らかなように膜厚5μmの型では約3
0000ショットで膜剥離が発生するのに対して、膜厚
1μmの型では最高でも7800ショットでしかもばら
ついている。従って、本実施例の光学素子成形用型は長
寿命で品質も安定したものである。
Here, No. in Table 2 is a number given to each of the tested optical element molding dies because each of them has three molds. As is clear from the results in Table 2, it is about 3 in the mold with a film thickness of 5 μm.
The film peeling occurs in 0000 shots, whereas the maximum film thickness is 7800 shots in the mold having a film thickness of 1 μm, and the film peels. Therefore, the optical element molding die of this embodiment has a long life and stable quality.

【0028】(効果)以上のように本実施例の光学素子
成形用型は膜剥離に対して長寿命で外観品質が良好であ
る。
(Effects) As described above, the optical element molding die of this embodiment has a long service life against film peeling and good appearance quality.

【0029】尚、本実施例において型基材1は超硬合金
以外の合金や、サイアロンなどのサーメット、SiC焼
結体やCr−C焼結体やAlN焼結体などのセラミック
スでも同様の効果が得られる。この場合、セラミックス
にTiO2 やY2 3 やZrO2 などの添加物を含有さ
せると耐熱性や靭性が向上する。
In this embodiment, the mold base 1 is made of an alloy other than cemented carbide, cermet such as sialon, ceramics such as SiC sintered body, Cr-C sintered body and AlN sintered body. Is obtained. In this case, if the ceramic contains additives such as TiO 2 , Y 2 O 3 and ZrO 2 , heat resistance and toughness are improved.

【0030】また、Cr−N膜はCrNだけでもCrN
とCr2 Nの両方が含有していても良く、さらにこれに
Crが含有していても良い。Cr−N膜を成膜した後に
大気中で加熱した後の表面には本実施例ではCr2 3
が形成されたが、酸化クロムであればCr5 12などの
別の結晶が混在していても良い。
Further, even if the Cr-N film is only CrN,
And Cr 2 N may both be contained, and further Cr may be contained therein. In the present embodiment, Cr 2 O 3 is formed on the surface after heating in the atmosphere after forming the Cr-N film.
However, if it is chromium oxide, another crystal such as Cr 5 O 12 may be mixed.

【0031】また、本実施例ではCr−N膜6を成形型
基材1の全面に成膜したが成形型基材1の材質の耐熱耐
酸化性が良いものであれば光学素子成形面2のみでも良
いし光学素子成形面2以外の面の一部にも成膜しても良
い。耐熱耐酸化性が良い材料としてはSiC,AlNな
どのセラミックスやサーメットが挙げられる。さらにC
r−N膜6の膜厚は5μmとしたが光学素子成形面2に
3μm以上あれば良く、本実施例のイオンビームスパッ
タ法では、成膜速度がおよそ8nm/minなので光学素子成
形用型の生産性を考慮すると膜厚は3μm〜5μmが好
ましい。
In this embodiment, the Cr-N film 6 is formed on the entire surface of the molding die base material 1. However, if the material of the molding die base material 1 has good heat and oxidation resistance, the optical element molding surface 2 is formed. Alternatively, the film may be formed on only a part of the surface other than the optical element molding surface 2. Ceramics such as SiC and AlN and cermets are examples of materials having good heat and oxidation resistance. Furthermore C
Although the film thickness of the r-N film 6 is 5 μm, it may be 3 μm or more on the optical element molding surface 2. In the ion beam sputtering method of this embodiment, the film forming rate is about 8 nm / min, so that the optical element molding die Considering productivity, the film thickness is preferably 3 μm to 5 μm.

【0032】また、本実施例ではイオンビームスパッタ
法によりCr−N膜を成膜したが他のPVD法による成
膜方法でも良く、その方法としてマグネトロンスパッタ
法やイオンプレーティング法やホロカソード法などでも
イオンビームスパッタ法と同様の作用効果が得られる。
Further, in the present embodiment, the Cr-N film is formed by the ion beam sputtering method, but other PVD method may be used. For example, the magnetron sputtering method, the ion plating method or the hollow cathode method may be used. The same effect as that of the ion beam sputtering method can be obtained.

【0033】(実施例2) (構成)本発明の実施例2の光学素子成形用型の型基材
1の構成は図1の構成と同じである。本実施例において
はCr−N膜6をアーク放電により金属をイオン化する
イオンプレーティング法(アークイオンプレーティング
法)により形成した。この方法は以下のようである。図
4に示すように真空チャンバ8内を図示しない真空ポン
プにより排気口9から排気する。真空度は本実施例では
8.0×10-4(Pa)になるまで排気した。この真空度
は高いほど良いが、排気時間を考慮して1.0×10-3
(Pa)以下であれば良い。型基材1はターンテーブル1
0上にセットされていて図示しないヒータにより加熱さ
れている。加熱温度は600℃とした。ターンテーブル
10は図示しない駆動部により回転できるようになって
いる。本実施例で使用した型基材1の材質は実施例1と
同じ材質である。
Example 2 (Structure) The structure of the mold base 1 of the optical element molding mold of Example 2 of the present invention is the same as that shown in FIG. In this embodiment, the Cr-N film 6 is formed by an ion plating method (arc ion plating method) in which a metal is ionized by arc discharge. This method is as follows. As shown in FIG. 4, the inside of the vacuum chamber 8 is exhausted from the exhaust port 9 by a vacuum pump (not shown). In this example, the vacuum was evacuated to 8.0 × 10 −4 (Pa). The higher the degree of vacuum, the better, but 1.0 × 10 -3 in consideration of the exhaust time.
(Pa) It should be below. The mold base 1 is a turntable 1
It is set above 0 and is heated by a heater (not shown). The heating temperature was 600 ° C. The turntable 10 can be rotated by a drive unit (not shown). The material of the mold base material 1 used in this embodiment is the same as that of the first embodiment.

【0034】この状態でアーク電源12からCrからな
る蒸発源14に150(A)の電流(アーク電流)を流
し放電させる。同時にバイアス電源13によりターンテ
ーブル10を介して型基材1に−700Vの電圧(バイ
アス電圧)をかけた。この工程により蒸発源14からC
rがイオン化されて蒸発し型基材1をCrイオン21に
より60秒間ボンバードする。この後、N2 ガスを導入
口11から図示しないバルブにより流量を調整しつつ導
入し、真空チャンバ8内の真空度を1.0(Pa)で一定
になるようにした。ここで、アーク電源12からCrか
らなる蒸発源14に100(A)の電流を流し放電させ
る。同時にバイアス電源13によりターンテーブル10
を介して型基材1に−50Vのバイアス電圧をかけた。
この状態を80分続けてCr−N膜6を形成した。膜厚
は6μmであった。このようにして得られた成形型を大
気中で600℃に2時間保持し最表面にCr2 3 を形
成した。
In this state, a current (arc current) of 150 (A) is made to flow from the arc power source 12 to the evaporation source 14 made of Cr for discharging. At the same time, a voltage (bias voltage) of −700 V was applied to the mold base 1 via the turntable 10 by the bias power supply 13. By this process, the evaporation source 14 to C
r is ionized and evaporated, and the mold base 1 is bombarded with Cr ions 21 for 60 seconds. After that, N 2 gas was introduced from the inlet 11 while adjusting the flow rate by a valve (not shown) so that the degree of vacuum in the vacuum chamber 8 was kept constant at 1.0 (Pa). Here, a current of 100 (A) is caused to flow from the arc power source 12 to the evaporation source 14 made of Cr to be discharged. At the same time, the bias power supply 13 turns the turntable 10
A bias voltage of −50 V was applied to the mold base 1 via the.
This state was continued for 80 minutes to form the Cr-N film 6. The film thickness was 6 μm. The mold thus obtained was kept at 600 ° C. for 2 hours in the atmosphere to form Cr 2 O 3 on the outermost surface.

【0035】(作用)上記のアークイオンプレーティン
グ法によれば、最初のCrイオン21によるボンバード
ではアーク電流がCrからなる蒸発源のアークスポット
に集中し、そのエネルギーによりCrがイオン化して蒸
発して型基材1にかけられたバイアス電圧により型基材
1の表面がCrイオン21によりボンバードされる。こ
れにより型基材1の表面は洗浄され、場合によっては表
面に形成された薄い酸化層が除去され、膜の密着性を向
上させることができる。この後に行われる成膜工程では
2 ガス22もイオン化され、さらにバイアス電圧を−
50VにしているのでCrイオン21とN(窒素)イオ
ン23とが型基材表面に付着しCr−N膜が形成され
る。このようにして形成されたCr−N膜6はX線回折
法で分析したところ実施例1とほとんど同じ結晶ピーク
を示した。
(Operation) According to the above-mentioned arc ion plating method, in the first bombarding with Cr ions 21, the arc current is concentrated on the arc spot of the evaporation source made of Cr, and the energy thereof causes the Cr to be ionized and evaporated. The surface of the mold base 1 is bombarded with Cr ions 21 by the bias voltage applied to the mold base 1. As a result, the surface of the mold base 1 is washed and the thin oxide layer formed on the surface is removed in some cases, so that the adhesion of the film can be improved. In the film forming process performed thereafter, the N 2 gas 22 is also ionized, and the bias voltage is set to −
Since it is set to 50 V, Cr ions 21 and N (nitrogen) ions 23 adhere to the surface of the mold base material to form a Cr-N film. The Cr-N film 6 thus formed showed almost the same crystal peak as in Example 1 when analyzed by X-ray diffraction.

【0036】さらに、ESCAで組成分析を行ったとこ
ろ表面から深さ0.1μmでCrとN(窒素)の組成比
(元素数)はCr:N=1:0.88でありCrはほと
んど窒化していることになる。膜の硬度も実施例1と同
様マイクロビッカース硬度計で測定すると10g荷重下
で1900kgf/mm2 であった。この作用は実施例1と同
様である。
Further, a composition analysis by ESCA revealed that the composition ratio (the number of elements) of Cr and N (nitrogen) at the depth of 0.1 μm from the surface was Cr: N = 1: 0.88, and most of Cr was nitrided. You are doing it. The hardness of the film was also 1900 kgf / mm 2 under a load of 10 g as measured by a micro Vickers hardness meter as in Example 1. This action is similar to that of the first embodiment.

【0037】このようにして製造した光学素子成形用型
を実施例1と同様の試験を実際の光学素子の成形で行っ
た。その結果、膜剥離が発生した成形数は45000シ
ョットであった。これは、本実施例の成膜前のイオンボ
ンバードによる洗浄効果によりCr−N膜6の密着性が
向上したことによる。比較例としてイオンボンバードの
工程を省略すると膜剥離が発生した成形数は30000
ショットで実施例1のCr−N膜とほぼ同レベルの耐久
性であった。
The optical element molding die thus manufactured was subjected to the same test as in Example 1 by actually molding an optical element. As a result, the number of moldings in which film peeling occurred was 45,000 shots. This is because the adhesion of the Cr—N film 6 is improved by the cleaning effect of the ion bombardment before film formation in this example. As a comparative example, when the ion bombardment step was omitted, the number of moldings in which film peeling occurred was 30,000.
The shots had almost the same level of durability as the Cr-N film of Example 1.

【0038】(効果)本実施例においては、アークイオ
ンプレーティング法によりCr−N膜を形成したのでC
rとN(窒素)がほぼ1:1に近い元素数比のCr−N
膜となり、ほぼ完全なCrN多結晶体膜が形成できるの
で、膜の硬度が高い高耐久性を有する光学素子成形用型
を提供することができると共に、成膜前のボンバードに
より膜剥離に対して高い耐久性の光学素子成形用型を提
供することができる。
(Effect) In this embodiment, since the Cr-N film was formed by the arc ion plating method, C
Cr-N with an element number ratio in which r and N (nitrogen) are almost 1: 1
Since it becomes a film and a substantially perfect CrN polycrystal film can be formed, it is possible to provide an optical element molding die having a high hardness and high durability, and to prevent film peeling due to a bombardment before film formation. It is possible to provide a highly durable optical element molding die.

【0039】尚、本実施例において型基材1は超硬合金
以外の材料として実施例1と同様の材料を選択できる。
In this embodiment, the mold base material 1 can be made of the same material as that of the embodiment 1 except the cemented carbide.

【0040】また、Cr−N膜6はCrNだけでもCr
NとCr2 Nの両方が含有していても良く、さらにこれ
にCrが含有していても良い。Cr−N膜を成膜した後
に大気中で加熱した後の表面には本実施例ではCr2
3 が形成されたが、酸化クロムであればCr5 7 など
の別の結晶が混在していても良い。
Further, the Cr-N film 6 may be made of CrN alone.
Both N and Cr 2 N may be contained, and further Cr may be contained therein. In the present embodiment, Cr 2 O is formed on the surface after heating in the atmosphere after forming the Cr-N film.
Although 3 was formed, if it is chromium oxide, another crystal such as Cr 5 O 7 may be mixed.

【0041】また、本実施例ではCr−N膜6を成形型
基材1の全面に成膜したが、成形型基材1の材質の耐熱
耐酸化性が良いものであれば光学素子成形面2のみでも
良いし光学素子成形面2以外の面の一部にも成膜しても
良い。耐熱耐酸化性が良い材料としてはSiC,AlN
などのセラミックスやサーメットが挙げられる。
In the present embodiment, the Cr-N film 6 is formed on the entire surface of the molding die base material 1. However, if the material of the molding die base material 1 has good heat resistance and oxidation resistance, the optical element molding surface is formed. 2 may be used, or a film may be formed on a part of the surface other than the optical element molding surface 2. SiC and AlN are good materials for heat and oxidation resistance
Such as ceramics and cermet.

【0042】また、本実施例ではアークイオンプレーテ
ィング法の各条件を上記の条件で行ったが、各条件は下
記の範囲であれば光学素子成形用型としての性能を満足
する。
Further, in the present embodiment, the respective conditions of the arc ion plating method were carried out under the above conditions. However, if the respective conditions are in the following ranges, the performance as the optical element molding die is satisfied.

【0043】 アーク電流 :70〜200(A) (ボンバード時) アーク電流 :30〜200(A) (成膜時) バイアス電圧:−600〜−1000(V) (ボンバード時) バイアス電圧: −10〜 −600(V) (成膜時) N2 ガス圧力:6.0×10-3〜6.0(Pa)(成膜時)Arc current: 70 to 200 (A) (during bombarding) Arc current: 30 to 200 (A) (during film formation) Bias voltage: -600 to -1000 (V) (during bombarding) Bias voltage: -10 ~ -600 (V) (during film formation) N 2 gas pressure: 6.0 x 10 -3 to 6.0 (Pa) (during film formation)

【0044】特に好ましい範囲としては以下のようにな
る。これは、ボンバード時に型基材の表面形状や粗さを
劣化させない範囲で、成膜時には膜の硬度が比較的高く
強度も大きい条件である。
The particularly preferable range is as follows. This is a condition that the hardness of the film is relatively high and the strength is high during film formation, as long as the surface shape and roughness of the die base material are not deteriorated during bombardment.

【0045】 アーク電流 :70〜100(A) (ボンバード時) アーク電流 :30〜100(A) (成膜時) バイアス電圧:−700〜−800(V) (ボンバード時) バイアス電圧: −30〜−300(V) (成膜時) N2 ガス圧力:0.1〜6.0(Pa) (成膜時)Arc current: 70 to 100 (A) (at bombarding) Arc current: 30 to 100 (A) (at film forming) Bias voltage: -700 to -800 (V) (at bombarding) Bias voltage: -30 To -300 (V) (during film formation) N 2 gas pressure: 0.1 to 6.0 (Pa) (during film formation)

【0046】(実施例3) (構成)本発明の実施例3の光学素子成形用型の断面図
を図5に示す。型基材15はCr3 2 を主成分とした
焼結体で平均粒径は3μmでこれを実施例1と同様の形
状に加工した後、成形加工面の面粗度がRmax =0.0
5μmになるまで鏡面加工を施した。この成形加工面に
実施例2のアークイオンプレーティング法によりCr−
N膜17を厚さ60μm成膜した。成膜時間は実施例2
の条件で13時間20分であった。Cr−N膜を被覆し
た表面は面粗度がRmax =0.16μmとなっていたの
で#14000のダイヤモンドペーストで研磨加工して
表面粗度を0.05μmにした。本実施例では型基材1
5の底部側面18および底面19にはCr−N膜17が
被覆されないようにこの部分をマスクしてCr−N膜1
7を成膜した。
(Embodiment 3) (Structure) FIG. 5 shows a sectional view of an optical element molding die of Embodiment 3 of the present invention. The mold base material 15 is a sintered body containing Cr 3 O 2 as a main component and has an average grain size of 3 μm. After being processed into the same shape as in Example 1, the surface roughness of the molded surface is Rmax = 0. 0
The mirror surface processing was performed until it became 5 μm. Cr- was formed on the formed surface by the arc ion plating method of Example 2.
The N film 17 was formed to a thickness of 60 μm. The film formation time is the same as in Example 2.
Was 13 hours and 20 minutes. Since the surface coated with the Cr-N film had a surface roughness of Rmax = 0.16 µm, it was ground with a diamond paste of # 14000 to have a surface roughness of 0.05 µm. In this embodiment, the mold substrate 1
The bottom side surface 18 and the bottom surface 19 of the No. 5 mask the Cr-N film 17 so that the Cr-N film 17 is not covered with the Cr-N film 1.
7 was deposited.

【0047】(作用)上記の構成の光学素子成形用型は
Cr3 2 を主成分とした焼結体のような型基材15の
場合には軟化したガラスを成形した後の離型時に粒の脱
落が発生することがある。これはCr−N膜17を3μ
m以下の膜厚で被覆した場合に膜の結合力が弱いために
粒子脱落の影響でその部分がCr−N膜ごと脱落するの
でその部分に穴があき、このような成形面20で成形す
ると外観不良の光学素子を製造することになるのであ
る。しかし本実施例のCr−N膜17は膜厚が60μm
もあるのでCr−N膜17の結合力がその膜厚分強いの
で型基材の粒子脱落が発生しなくなる。
(Operation) In the case of the optical element molding die having the above-mentioned structure, in the case of the mold base material 15 such as a sintered body containing Cr 3 O 2 as a main component, at the time of releasing from the mold after molding the softened glass. Grains may fall off. This makes the Cr-N film 17 3 μ
When the coating is performed with a film thickness of m or less, since the bonding force of the film is weak and the part falls off together with the Cr-N film due to the effect of the particles falling off, there is a hole in that part, and when molding with such a molding surface 20 That is, an optical element having a poor appearance is manufactured. However, the Cr-N film 17 of this embodiment has a thickness of 60 μm.
Since the bonding force of the Cr-N film 17 is strong by the thickness of the Cr-N film 17, the particles of the die base material do not fall off.

【0048】(効果)本実施例の効果は焼結体のような
粉末を焼固めた材料で型基材を構成した場合にも粒子脱
落を発生させずに外観が良好な光学素子を製造すること
ができる。
(Effect) The effect of the present embodiment is to produce an optical element having a good appearance without causing particle dropout even when the mold base is made of a material obtained by sintering powder such as a sintered body. be able to.

【0049】尚、本実施例では型基材15をCr3 2
を主成分とする焼結体としたが、他のセラミックス材料
でも良く、例えばAlNを主成分にしたもの(Y
2 3 ,CaO2 ,YF3 ,CaCOなどの添加物を含
有させても良い)やZrO2 を主成分にしたものやAl
2 3 を主成分にしたものやSiCを主成分にしたもの
などのセラミックスやサイアロンなどのサーメットでも
同様の作用効果が得られる。また、Cr−N膜17の膜
厚は3μm以上あれば基本的に同様の作用効果が得られ
るが、好ましくは8μm以上あると、より粒子脱落は抑
制できる。ただし、3μm程度の膜厚の場合、成形面を
成膜後に研磨するとCr−N膜17が薄くなるので研磨
しない方が良い。
In this embodiment, the mold base material 15 is made of Cr 3 O 2
However, other ceramic materials such as those containing AlN as a main component (Y
2 O 3 , CaO 2 , YF 3 , CaCO and other additives may be included), ZrO 2 as a main component or Al
Similar effects can be obtained with ceramics such as those containing 2 O 3 as the main component or those containing SiC as the main component, or cermets such as sialon. Further, basically the same action and effect can be obtained if the film thickness of the Cr-N film 17 is 3 μm or more. However, in the case of a film thickness of about 3 μm, it is preferable not to polish since the Cr—N film 17 becomes thin if the molding surface is polished after the film formation.

【0050】[0050]

【発明の効果】以上説明したように、本発明の光学素子
成形用型によれば、次のような効果がある。
As described above, the optical element molding die of the present invention has the following effects.

【0051】請求項1によれば、Cr−Nという高硬度
で耐熱性に優れた材料の被膜で成形面を形成しているの
で繰返し光学素子を成形する場合に長寿命の光学素子成
形用型が得られる。また膜厚を3μm以上としているの
で膜剥離を防止でき、型基材の粒子脱落による光学素子
の外観不良を防止することができる。
According to the first aspect of the present invention, since the molding surface is formed of the coating film made of Cr-N, which has a high hardness and excellent heat resistance, the optical element molding die has a long life when the optical element is repeatedly molded. Is obtained. Further, since the film thickness is 3 μm or more, peeling of the film can be prevented, and appearance defects of the optical element due to the particles falling off the mold base material can be prevented.

【0052】請求項2によれば、成形面の表面に酸化ク
ロムを形成しているので成形後の離型性をより向上させ
ることができ、焼付きを防止できる。
According to the second aspect, since chromium oxide is formed on the surface of the molding surface, the releasability after molding can be further improved and seizure can be prevented.

【0053】請求項3によれば、アークイオンプレーテ
ィング法によりCr−N膜を形成したのでCrとN窒素
がほぼ1:1に近い元素数比のCr−N膜となり、ほぼ
完全なCrN多結晶体膜が形成できるので膜の硬度が高
い高耐久性を有する光学素子成形用型を提供することが
できると共に、成膜前のボンバードにより膜剥離に対し
て高い耐久性の光学素子成形用型を提供することができ
る。
According to the third aspect, since the Cr-N film is formed by the arc ion plating method, a Cr-N film having an element number ratio of Cr and N nitrogen close to about 1: 1 is formed, and a substantially complete CrN film is formed. Since a crystalline film can be formed, it is possible to provide an optical element molding die having high hardness and high durability, and an optical element molding die having high durability against film peeling due to a bombardment before film formation. Can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1による光学素子成形用型を模
式的に示す縦断面図である。
FIG. 1 is a vertical cross-sectional view schematically showing an optical element molding die according to Example 1 of the present invention.

【図2】実施例1の光学素子成形用型の成膜直後の状態
をX線回折法により分析した結果を示すグラフである。
FIG. 2 is a graph showing the result of analysis by an X-ray diffraction method of the state immediately after film formation of the optical element molding die of Example 1.

【図3】実施例1の光学素子成形用型の酸化後の状態を
X線回折法により分析した結果を示すグラフである。
FIG. 3 is a graph showing the results of analysis of the optical element molding die of Example 1 after oxidation by an X-ray diffraction method.

【図4】実施例2の光学素子成形用型の製造に使用する
真空チャンバを示す断面図である。
FIG. 4 is a cross-sectional view showing a vacuum chamber used for manufacturing an optical element molding die of Example 2.

【図5】本発明の実施例3による光学素子成形用型を模
式的に示す縦断面図である。
FIG. 5 is a vertical sectional view schematically showing an optical element molding die according to Example 3 of the present invention.

【符号の説明】[Explanation of symbols]

1 型基材 2 光学素子成形面 3 段部 4 底部側面 5 底面 6 Cr−N膜 7 成形面 8 真空チャンバ 9 排気口 10 ターンテーブル 11 導入口 12 アーク電源 13 バイアス電源 14 蒸発源 15 型基材 16 成形加工面 17 Cr−N膜 18 底部側面 19 底面 20 成形面 21 Crイオン 22 N2 ガス 23 Nイオン1 type base material 2 optical element molding surface 3 step part 4 bottom side surface 5 bottom surface 6 Cr-N film 7 molding surface 8 vacuum chamber 9 exhaust port 10 turntable 11 introduction port 12 arc power supply 13 bias power supply 14 evaporation source 15 type base material 16 Formed surface 17 Cr-N film 18 Bottom side surface 19 Bottom surface 20 Formed surface 21 Cr ion 22 N 2 gas 23 N ion

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 加熱軟化したガラスをプレス成形して光
学素子を製造するのに用いる光学素子成形用型であっ
て、少なくとも光学素子成形面に厚さ3μm以上のCr
窒化物被膜を形成したことを特徴とする光学素子成形用
型。
1. An optical element molding die used for press-molding heat-softened glass to manufacture an optical element, wherein Cr has a thickness of at least 3 μm on at least the optical element molding surface.
An optical element molding die having a nitride film formed thereon.
【請求項2】 前記Cr窒化物被膜の表層部にCr2
3 が形成されていることを特徴とする請求項1記載の光
学素子成形用型。
2. The surface layer of the Cr nitride coating is Cr 2 O.
3. The optical element molding die according to claim 1, wherein 3 is formed.
【請求項3】 請求項1記載の光学素子成形用型を製造
するに際し、アーク放電により金属Crをイオン化する
イオンプレーティング法によって前記Cr窒化物被膜を
形成することを特徴とする光学素子成形用型の製造方
法。
3. When manufacturing the optical element molding die according to claim 1, the Cr nitride film is formed by an ion plating method in which metal Cr is ionized by arc discharge. Mold manufacturing method.
JP27807294A 1994-11-11 1994-11-11 Optical element forming die and its production Withdrawn JPH08133762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27807294A JPH08133762A (en) 1994-11-11 1994-11-11 Optical element forming die and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27807294A JPH08133762A (en) 1994-11-11 1994-11-11 Optical element forming die and its production

Publications (1)

Publication Number Publication Date
JPH08133762A true JPH08133762A (en) 1996-05-28

Family

ID=17592262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27807294A Withdrawn JPH08133762A (en) 1994-11-11 1994-11-11 Optical element forming die and its production

Country Status (1)

Country Link
JP (1) JPH08133762A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097029A (en) * 2000-09-22 2002-04-02 Olympus Optical Co Ltd Forming die for optical element
JP2008110902A (en) * 2006-10-31 2008-05-15 Olympus Corp Optical element forming die and its production method
JP2008285358A (en) * 2007-05-17 2008-11-27 Olympus Corp Forming die for forming optical device and method of manufacturing the same
WO2009016993A1 (en) * 2007-08-01 2009-02-05 Konica Minolta Opto, Inc. Process for manufacturing drag, process for producing glass gob and process for producing glass molding
WO2010032671A1 (en) * 2008-09-19 2010-03-25 コニカミノルタオプト株式会社 Method for manufacturing mold, method for manufacturing glass gob, and method for manufacturing glass molded product
WO2010071050A1 (en) * 2008-12-18 2010-06-24 コニカミノルタオプト株式会社 Mold and glass molded body manufacturing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097029A (en) * 2000-09-22 2002-04-02 Olympus Optical Co Ltd Forming die for optical element
JP2008110902A (en) * 2006-10-31 2008-05-15 Olympus Corp Optical element forming die and its production method
JP2008285358A (en) * 2007-05-17 2008-11-27 Olympus Corp Forming die for forming optical device and method of manufacturing the same
WO2009016993A1 (en) * 2007-08-01 2009-02-05 Konica Minolta Opto, Inc. Process for manufacturing drag, process for producing glass gob and process for producing glass molding
US8505338B2 (en) 2007-08-01 2013-08-13 Konica Minolta Opto, Inc. Method for manufacturing lower mold, method for manufacturing glass gob, and method for manufacturing molded glass article
JP5347962B2 (en) * 2007-08-01 2013-11-20 コニカミノルタ株式会社 Lower mold manufacturing method, glass gob manufacturing method, and glass molded body manufacturing method
WO2010032671A1 (en) * 2008-09-19 2010-03-25 コニカミノルタオプト株式会社 Method for manufacturing mold, method for manufacturing glass gob, and method for manufacturing glass molded product
WO2010071050A1 (en) * 2008-12-18 2010-06-24 コニカミノルタオプト株式会社 Mold and glass molded body manufacturing method
US8857217B2 (en) 2008-12-18 2014-10-14 Konica Minolta, Inc. Mold and glass molded body manufacturing method

Similar Documents

Publication Publication Date Title
JP4560964B2 (en) Amorphous carbon coated member
EP1086797B1 (en) Resin molding mold and method of forming hard coat on resin molding mold
JP7440508B2 (en) Heat resistant carbon coating
US5626943A (en) Ultra-smooth ceramic substrates and magnetic data storage media prepared therefrom
JPH08133762A (en) Optical element forming die and its production
US20070261444A1 (en) Method for making a mold used for press-molding glass optical articles
JP4820508B2 (en) Sputtering target and manufacturing method thereof, sputtering apparatus, thin film manufacturing method, electronic component manufacturing method
JPS6359971B2 (en)
JP5212416B2 (en) Amorphous carbon coated member
KR100947331B1 (en) Thin film layer structure having reinforcing layer for lens mold core and method of forming the same
US20040211221A1 (en) Mold for press-molding glass optical articles and method for making the mold
JP4822833B2 (en) Optical glass element mold
KR100702963B1 (en) Die for press forming of glass and method of manufacturing the same
JP3841186B2 (en) Mold for optical element molding
JP2002348655A (en) Member with scaling prevention film, and manufacturing method therefor
JPH0524865A (en) Mold for forming optical glass element
JPH08217470A (en) Mold for forming optical element
TWI814429B (en) wafer support
JP2012136775A (en) Coated mold excellent in adhesion resistance and method for manufacturing the same
JPH05235149A (en) Adhesion-preventive plate and inner jig
US20040206118A1 (en) Mold for press-molding glass optical articles and method for making the mold
JPH08157224A (en) Optical element forming die and its production
JP4347594B2 (en) Optical element molding method
TW202346241A (en) Wafer support
JP3049132B2 (en) Manufacturing method of optical element molding die and optical element molding die

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020115