JPH08132310A - Lubricating head film-coated drill - Google Patents

Lubricating head film-coated drill

Info

Publication number
JPH08132310A
JPH08132310A JP6291989A JP29198994A JPH08132310A JP H08132310 A JPH08132310 A JP H08132310A JP 6291989 A JP6291989 A JP 6291989A JP 29198994 A JP29198994 A JP 29198994A JP H08132310 A JPH08132310 A JP H08132310A
Authority
JP
Japan
Prior art keywords
drill
hard
film
coated
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6291989A
Other languages
Japanese (ja)
Other versions
JP3645295B2 (en
Inventor
Norihiro Katou
範博 加藤
Yuji Yamaguchi
祐二 山口
Manabu Yasuoka
学 安岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Original Assignee
Nachi Fujikoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp filed Critical Nachi Fujikoshi Corp
Priority to JP29198994A priority Critical patent/JP3645295B2/en
Publication of JPH08132310A publication Critical patent/JPH08132310A/en
Application granted granted Critical
Publication of JP3645295B2 publication Critical patent/JP3645295B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Drilling Tools (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE: To improve adhesion resistance or fusion resistance of a drill comprising base material of tool steel, high speed steel, hard metal, or hard alloy including cermet. CONSTITUTION: A drill has a land width/groove width ratio within a range of 1.2-2.0, and a part or the whole of an effective length of the drill including a cutting blade part of the drill is coated with a hard coating comprising CrNx (satisfying an atomic ratio of 0.3<=x<=1.0) of 0.05μm-5.0μm. The outermost layer of the hard coating is coated with a hard surface coating composed of CrOy (satisfying an atomic ratio of 3<=y<=1.5) in a film thickness of 0.01μm-2.0μm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は工具鋼、高速度鋼、又は
超硬合金又はサ−メットを含む硬質合金を母材としてな
るドリルの耐凝着性又は耐溶着性を向上させた潤滑性硬
質膜被覆ドリルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drill having a base material of a tool steel, a high speed steel, or a cemented carbide or a hard alloy including cermet, which has improved lubricity and adhesion resistance or welding resistance. A hard film coated drill.

【0002】[0002]

【従来の技術】硬質被覆膜を有するドリルについては近
年PVDが一般化したのを契機として急速に技術の発展
があり、現在金色を呈するTiNコ−ティングが施され
た高速度ドリルを初めとしてTiCN等のコ−ティング
が施された高速度鋼製又は超硬合金製のドリルに適用さ
れている。これらは主として耐摩耗性や切削における耐
熱性が重視されて開発が進められているが特殊用途の切
削工具では全く効果のない範疇の被削材も存在してい
る。これらの中にはアルミや銅といった軟質材料があ
り、これらに対しては従来より主として超硬合金などが
使用されてきている。CrNについては切削工具では使
用されないが各種部品や金型に使用され、また、耐食性
が高いといわれている。金属プレス工業出版会が199
3年6月1日発行した雑誌『金属プレス』1993年6
月号33頁〜38頁、あるいは同『金属プレス』199
4年6月号11頁〜15頁には、CrNコ−ティングの
各種応用が記載されているが、その特性等の記載は少な
い。切削工具への応用例がないことは『金属プレス』1
994年6月号12頁の表−1に示すように摩擦係数が
大きいことが主たる要因と考えられている。これら従来
技術は主に膜の硬度や膨張係数に着目したCrNコ−テ
ィングの各種応用を示すもので、本発明品とは本質的に
異なる。
2. Description of the Related Art With respect to a drill having a hard coating film, the technology has been rapidly developed due to the generalization of PVD in recent years. At present, a high-speed drill having a TiN coating showing a golden color is started. It is applied to a drill made of high speed steel or cemented carbide coated with TiCN or the like. These are mainly developed with emphasis on wear resistance and heat resistance in cutting, but there are also work materials in a category that are completely ineffective with cutting tools for special purposes. Among these, there are soft materials such as aluminum and copper, and for these, cemented carbide and the like have been mainly used conventionally. CrN is not used in cutting tools, but is used in various parts and dies, and is said to have high corrosion resistance. Metal Press Industry Press 199
Magazine "Metal Press," published June 1, 1993, June 1993
Monthly issue, pages 33-38, or "Metal Press," 199
The various applications of CrN coating are described on pages 11 to 15 of the June 1992 issue, but there is little description of their characteristics and the like. "Metal press" that there is no application to cutting tools 1
As shown in Table 1 on page 12 of the June 994 issue, a large friction coefficient is considered to be the main factor. These conventional techniques mainly show various applications of CrN coating focusing on the hardness and expansion coefficient of the film and are essentially different from the products of the present invention.

【0003】[0003]

【発明が解決しようとする課題】切削現象には工具材料
の耐摩耗性や耐熱性といった摩耗や熱に関する基本的な
ものの他に凝着や溶着という特異な現象を伴うのが一般
的である。切削現象は工具刃先の受ける力が摩擦を伴
い、被削材の分断あるいは切粉の生成過程でこの摩擦現
象が重要な役割を演じることになる。純銅とアルミニウ
ム等ではその挙動においても要求される切削工具の機能
は異なるものであるがいずれも摩擦現象において同様な
理由により工具の性能が著しく制限されている。アルミ
ニウムの場合は比較的凝着又は溶着し易くまた、凝着物
又は溶着物が成長し易い。一方、純銅では全体的な凝着
又は溶着は余りみられないが刃先先端では凝着物又は溶
着物の成長があり、凝着又は溶着した塑性流動状態の被
削材料が硬度上昇を引き起こすといった問題があった。
このような現象は切削現象では溶着摩耗又は凝着摩耗の
発生として比較的低速側の切削条件で生じるが、ドリル
のように切れ刃部の切削速度が0から始まるような工具
においては形状的な問題もあるが工具をより高性能に引
き上げるためには従来の工具材料又は表面材種では避け
得ない問題であった。本発明の課題は、工具鋼、高速度
鋼及び超硬合金又はサ−メットを含む硬質合金を母材と
してなるドリルの耐凝着性又は耐溶着性を向上させた潤
滑性硬質膜被覆ドリルを提供することにある。
Generally, the cutting phenomenon is accompanied by a peculiar phenomenon such as adhesion or welding in addition to the basic ones related to wear and heat such as wear resistance and heat resistance of the tool material. As for the cutting phenomenon, the force received by the tool edge is accompanied by friction, and this friction phenomenon plays an important role in the process of cutting the work material or forming chips. Although the required functions of the cutting tool are different between pure copper and aluminum in the behavior thereof, the performance of the tool is significantly limited in the friction phenomenon for the same reason. In the case of aluminum, it is relatively easy to adhere or weld, and the adherent or weld is likely to grow. On the other hand, pure copper does not show much adhesion or welding overall, but there is a problem that there is growth of adhesion or welding at the tip of the cutting edge, causing hardness increase in the work material in the plastic flow state that has adhered or welded. there were.
In the cutting phenomenon, such a phenomenon occurs under relatively low cutting conditions as welding wear or adhesive wear occurs, but in a tool such as a drill in which the cutting speed of the cutting edge portion starts from 0 Although there is a problem, it has been an unavoidable problem with conventional tool materials or surface material types in order to raise the tool to higher performance. An object of the present invention is to provide a lubricating hard film-coated drill with improved adhesion resistance or welding resistance of a drill having a tool steel, a high speed steel and a hard alloy containing cemented carbide or cermet as a base material. To provide.

【0004】[0004]

【課題を解決するための手段】このため本発明は、工具
鋼、高速度鋼、又は超硬合金又はサ−メットを含む硬質
合金を母材としてなるドリルにおいて、ドリルのランド
幅/溝幅の比が1.2〜2.0の範囲にあり、ドリルの
切れ刃部を含むドリル有効長の一部ないし全部の範囲に
0.05μm〜5.0μmのCrNx(原子比で0.3
≦x≦1.0、 0.3≦y≦1.5を満足する)より
なる硬質被覆がなされており、前記硬質被覆の最表層に
CrOy(原子比で0.3≦y≦1.5を満足する)で
構成されその膜厚が0.01μm〜2.0μmの硬質表
層被覆がなされており、前記母材は硬さが50gのマイ
クロヴィカ−ス硬度計で1300HV〜2200HVで
あり、そして前記硬質表層被覆膜にAスケ−ルロックウ
エル硬度計を用いて押圧した場合に生ずる圧痕を100
倍の倍率で観察した結果が、前記圧痕の外周1mm以上
の範囲で膜とドリル母材との間で剥離が認められない、
ことを特徴とする潤滑硬質膜被覆ドリルを提供すること
によって上述した従来技術の課題を解決した。
Therefore, the present invention is directed to a drill made of tool steel, high speed steel, or hard alloy containing cemented carbide or cermet as a base material. The ratio is in the range of 1.2 to 2.0, and the CrNx of 0.05 μm to 5.0 μm (atomic ratio of 0.3 in the entire range of the effective drill length including the cutting edge portion of the drill).
≦ x ≦ 1.0, 0.3 ≦ y ≦ 1.5), and CrOy (atomic ratio 0.3 ≦ y ≦ 1.5 in the outermost layer of the hard coating). And a hard surface coating having a film thickness of 0.01 μm to 2.0 μm is formed, and the base material has a hardness of 1300 HV to 2200 HV on a Micro Vickers hardness meter of 50 g, and When the hard surface coating film is pressed with an A-scale Rockwell hardness tester, 100 indentations are produced.
As a result of observing at a magnification of 2 times, peeling is not recognized between the film and the drill base metal within the range of 1 mm or more of the outer circumference of the indentation,
The problems of the prior art described above have been solved by providing a lubricating hard film coated drill characterized by the above.

【0005】CrNxの上にCrOyを成膜する方法と
してPVDの方法ではイオンプレ−ティングやスパッタ
イオンプレ−ティングさらには真空蒸着が用いられてい
る。CrOyはCrNxのイオンプレ−ティングやスパ
ッタイオンプレ−ティング中にNを止め連続あるいは断
続的に酸素を導入することにより得られる。この方法の
他、イオンプレ−ティングあるいはPVDのその他の方
法で行いCrNx、(原子比で0.3≦x≦1.0、を
満足する)を形成するか、形成後にCrの蒸着を行い酸
化雰囲気中で加熱反応させる方法、あるいは陽極酸化を
用いてCrOy、(原子比で0.3≦x≦1.5、を満
足する)を成膜することも可能である。このような硬質
被膜は密着性が必要となるため、下層としてCrNxを
配置した。下層となるCrNxはイオンプレ−ティング
によるTiNと比較すると脆く、実際鋼の切削では一般
的にTiN被覆に比べ性能が低い。CrNx硬質被覆は
膜厚が0.05μm〜5.0μmのと限定されているの
は、5.0μmをこえる膜厚は切刃のシャープさがなく
なり面粗さに影響するおそれがあり、0.05μm未満
では効果が望めないからである。原子比で0.3≦x≦
1.0、を満足すると限定されているのは硬質被覆の硬
さを1400HV以上にするためである。
As a method for depositing CrOy on CrNx, the PVD method uses ion plating, sputter ion plating, and vacuum deposition. CrOy can be obtained by stopping N during ion plating or sputter ion plating of CrNx and introducing oxygen continuously or intermittently. In addition to this method, ion plating or other method such as PVD is used to form CrNx (satisfying 0.3 ≦ x ≦ 1.0 in atomic ratio), or Cr is vapor-deposited after formation to form an oxidizing atmosphere. It is also possible to form CrOy (having an atomic ratio of 0.3 ≦ x ≦ 1.5) by a method of heating reaction in the inside or by using anodization. Since such a hard coating needs adhesion, CrNx is arranged as the lower layer. CrNx, which is the lower layer, is more brittle than ion-plated TiN, and in actual fact, in cutting steel, its performance is generally lower than that of TiN coating. The film thickness of the CrNx hard coating is limited to 0.05 μm to 5.0 μm. The film thickness exceeding 5.0 μm may cause the sharpness of the cutting edge to be lost and affect the surface roughness. This is because the effect cannot be expected if the thickness is less than 05 μm. Atomic ratio 0.3 ≦ x ≦
The reason why 1.0 is satisfied is that the hardness of the hard coating is set to 1400 HV or more.

【0006】前記CrNx硬質被覆の最表層のクロム酸
化物CrOyの被覆については粉体の潤滑性については
知られているが被膜についてこれまで例がなく、その特
性は非常に脆い性質のものである。被膜とは異なる粉体
ではラップ粉として使用されることが多い。粉体の場合
の塗布では粒子はすぐ脱落するため、性能の向上は望め
ない。一方、銅やアルミニウムのドリル切削では切削抵
抗の上昇は主に切粉の排出条件が重要なものであるの
で、ランド幅/溝幅の比率を1.2〜2.0の範囲に限
定した。この比率が、1.2未満であると切粉詰まりを
生じ易く、2.0を越えると軟質材においては抵抗が大
きくなりドリル本体の剛性が不足し加工精度に影響する
場合があるからである。又、CrOy(原子比で0.3
≦x≦1.5、を満足する)の膜厚については0.01
μm〜2.0μmの範囲に限定したのは、2.0μmを
こえる膜厚は切削抵抗の急激な上昇を引き起こし、被膜
の剥離を引き起こし、0.05μm未満では効果が望め
ないからである。又CrOyで原子比で0.3≦x≦
1.5、と限定したのはこの範囲が母材と被削材との凝
着又は溶着を防止するに適度な範囲で0.3より少ない
と効果がなく、又1.5を越えて大きくできないからで
ある。
Regarding the coating of chromium oxide CrOy, which is the outermost layer of the CrNx hard coating, the lubricity of the powder is known, but there has been no example of the coating so far, and the characteristics are extremely brittle. . A powder different from the coating is often used as a wrap powder. In the case of coating with powder, the particles fall off immediately, so improvement in performance cannot be expected. On the other hand, in the drill cutting of copper or aluminum, the cutting resistance rise is mainly due to the condition of chip discharge, so the ratio of land width / groove width was limited to the range of 1.2 to 2.0. If this ratio is less than 1.2, chip clogging is likely to occur, and if it exceeds 2.0, the resistance of the soft material increases and the rigidity of the drill body becomes insufficient, which may affect the machining accuracy. . In addition, CrOy (atomic ratio 0.3
Satisfying ≦ x ≦ 1.5) is 0.01
The reason why the thickness is limited to the range of μm to 2.0 μm is that a film thickness exceeding 2.0 μm causes a sharp increase in cutting resistance and peeling of the coating film, and if the thickness is less than 0.05 μm, the effect cannot be expected. With CrOy, the atomic ratio is 0.3 ≦ x ≦
The reason for limiting to 1.5 is that this range is a proper range for preventing the adhesion or welding of the base material and the work material, and if less than 0.3, there is no effect, and if it exceeds 1.5, it becomes large. Because you can't.

【0007】[0007]

【発明の効果】銅やアルミニウムのドリル切削で上述し
たような凝着又は溶着といった現象により工具性能に制
限が加えられるような場合、凝着又は溶着しにくい材料
を工具表面に被覆することが重要となる。そこで出願人
は各種材料について調査研究を行い最上層にCrの酸化
物を形成したので摩擦係数が低減された。この現象は単
に摩擦係数を下げる作用として凝着物や溶着物が成長を
起こす以前に滑り除去される効果によるものである。こ
のような作用を生み出すためには比較的付着力の強いC
rの酸化物を形成する必要があり、ある程度の密着性を
得るためにはPVDの場合CrNxを形成するのが良
い。このCrNxの上にCrOyを成膜した被膜を合わ
せ持つドリルの作用は極めて仕上げ面粗さを向上させる
ことであり、その主な作用は自己潤滑による凝着又は溶
着の防止がその大きな作用となり、切削性能を飛躍的に
増大するものとなった。図1に本発明品と、それより付
着力の弱いCrNxの上にCrOyを成膜した試作品の
場合の、それぞれのロックウエル圧痕の状態(×100
倍)を示す。選択的に、前記母材にTiN、TiC又は
TiCNを含むコ−ティングがすでに施され、それらの
最上層に前記硬質被覆膜が施されてた請求項1記載の潤
滑硬質膜被覆ドリルも同様の効果を挙げることができ
る。
When copper or aluminum drill cutting limits the tool performance due to the phenomenon of adhesion or welding as described above, it is important to coat the tool surface with a material that is difficult to adhere or weld. Becomes Therefore, the applicant conducted a research study on various materials and formed an oxide of Cr in the uppermost layer, so that the friction coefficient was reduced. This phenomenon is simply due to the effect of slipping and removing the adhered material and the welded material before the growth of the adhered material and the welded material as an action of lowering the friction coefficient. In order to produce such an action, C, which has a relatively strong adhesive force,
It is necessary to form an oxide of r, and CrNx is preferably formed in the case of PVD in order to obtain a certain degree of adhesion. The action of the drill having a coating film formed by depositing CrOy on CrNx is to extremely improve the finished surface roughness, and the main action is to prevent adhesion or welding due to self-lubrication. Cutting performance has been dramatically increased. FIG. 1 shows the state of each Rockwell indentation (× 100) of the product of the present invention and the prototype in which CrOy is formed on CrNx, which has a weaker adhesive force.
Times). 2. The lubricating hard film coated drill according to claim 1, wherein the base material is optionally coated with TiN, TiC or TiCN, and the hard coating film is provided on the uppermost layer thereof. The effect of can be raised.

【0008】[0008]

【実施例】【Example】

〔実施例1〕ドリルのランド幅/溝幅の比率が1.3
で、母材が硬さ50gのマイクロヴィカ−ス硬度計で1
400HVである高速度鋼製φ6ドリルに、イオンプレ
−ティングによりCrNxの上にCrOyを各々2.3
μm及び0.3μm成膜し、エマルジョンを使用して純
銅の切削を行った。成膜した被膜の成分はCrNxがx
=0.7、CrOyがy=1.2の平均組成であった。
切削条件は、切削速度:50m/min 、送り速度:0.25mm/
r、被削材:純銅 厚み 25m、Through切削とした。切削
による面粗さがRmax=5μmの加工数は、同様の切
削条件で、無処理ドリルの2.5倍以上の性能が得ら
れ、CrNxがx=0.7、膜厚2.3μmのCrN被
覆と比べても1.5倍以上の性能が得られた。図2にそ
の結果を示す。
[Example 1] The land width / groove width ratio of the drill was 1.3.
Then, with a micro Vickers hardness tester whose base material has a hardness of 50 g, 1
A high-speed steel φ6 drill with 400 HV, and CrOy on CrNx by ion plating for 2.3 each.
Films of μm and 0.3 μm were formed, and pure copper was cut using an emulsion. CrNx is x in the composition of the formed film.
= 0.7, CrOy had an average composition of y = 1.2.
Cutting conditions are: cutting speed: 50m / min, feed rate: 0.25mm /
r, Work material: Pure copper thickness 25m, Through cutting. The number of processing with surface roughness Rmax = 5 μm obtained by cutting is 2.5 times or more that of a non-processed drill under the same cutting conditions, CrNx is x = 0.7, and the thickness of CrN is 2.3 μm. Even when compared with the coating, a performance of 1.5 times or more was obtained. The results are shown in FIG.

【0009】〔実施例2〕ドリルのランド幅/溝幅の比
率が1.8で、母材が硬さ50gのマイクロヴィカ−ス
硬度計で1400HVである高速度鋼製φ6ドリルにイ
オンプレ−ティングによりCrNxの上にCrOyを各
々1.5μm及び0.5μm成膜し、エマルジョンを使
用してアルミ 6063 の切削を行った。被膜の成分はCr
Nxがx=0.65、CrOyがy=1.0の平均組成
であった。切削条件は、切削速度:150m/min、送り速
度:0.15mm/rev、被削材:アルミ 6063 厚み 15mm 、
Through 切削とした。切削による面粗さがRmax=1
0μmの加工数は、同様の切削条件で、無処理ドリルの
3.5倍以上の性能が得られ、CrNxがx=0.6
5、膜厚1.5μmのCrN被覆と比べても1.4倍以
上の性能が得られた。図3にその結果を示す。
[Embodiment 2] A high speed steel φ6 drill having a ratio of land width / groove width of 1.8 and a base material of 1400 HV in a micro Vickers hardness tester having a hardness of 50 g is ion plated. CrOy was deposited on CrNx by 1.5 μm and 0.5 μm, respectively, and aluminum 6063 was cut using an emulsion. The coating component is Cr
The average composition was such that Nx was x = 0.65 and CrOy was y = 1.0. Cutting conditions are: cutting speed: 150m / min, feed rate: 0.15mm / rev, work material: aluminum 6063, thickness 15mm,
Through cutting Surface roughness due to cutting is Rmax = 1
Under the same cutting conditions, the number of machining of 0 μm is 3.5 times or more that of the untreated drill, and CrNx is x = 0.6.
5. Even when compared with the CrN coating having the film thickness of 1.5 μm, the performance of 1.4 times or more was obtained. The results are shown in FIG.

【0010】〔実施例3〕ドリルのランド幅/溝幅の比
率が1.6で、母材が硬さ50gのマイクロヴィカ−ス
硬度計で2000HVである超硬合金製φ4.3ドリル
にイオンプレ−ティングによりCrNxの上にCrOy
を各々3.5μm及び0.3μm成膜し、油ミスト潤滑
を使用してアルミ 5052 の切削を行った。被膜の成分は
CrNxがx=0.8、CrOyがy=1.4の平均組
成であった。切削条件は、切削速度:150m/min、送り速
度:0.15mm/rev、被削材:アルミ 5052 厚み 10mm 、
Through 切削とした。切削による面粗さがRmax=3
μmの加工数は、同様の切削条件で、無処理ドリルの
2.0倍以上の性能が得られ、膜厚3.5μmのTiN
被覆ドリルと比べても2.9倍以上の性能が得られた。
図4にその結果を示す。
[Embodiment 3] A φ4.3 drill made of cemented carbide having a land width / groove width ratio of 1.6 and a base metal having a hardness of 50 g and a micro Vickers hardness meter of 2000 HV was ion-precoated. -CrOy on CrNx by tinging
Was formed into a film having a thickness of 3.5 μm and a film having a thickness of 0.3 μm, and aluminum 5052 was cut using oil mist lubrication. The components of the coating had an average composition of x = 0.8 for CrNx and y = 1.4 for CrOy. Cutting conditions are: cutting speed: 150m / min, feed rate: 0.15mm / rev, work material: aluminum 5052, thickness 10mm,
Through cutting Surface roughness due to cutting is Rmax = 3
Under the same cutting conditions, the number of processing of μm is 2.0 times or more that of unprocessed drill, and the thickness of TiN is 3.5 μm.
The performance was 2.9 times higher than that of the coated drill.
The results are shown in FIG.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明品と、それより付着力の弱いCrNxの
上にCrOyを成膜した試作品の場合の、それぞれのロ
ックウエル圧痕の状態(×100倍)を示す説明図。
FIG. 1 is an explanatory diagram showing respective Rockwell indentations (× 100 times) in the case of a product of the present invention and a prototype in which CrOy is deposited on CrNx having a weaker adhesive force.

【図2】ドリルのランド幅/溝幅の比率が1.3で、母
材が硬さ50gのマイクロヴィカ−ス硬度計で1400
HVである高速度鋼製φ6ドリルに、イオンプレ−ティ
ングによりCrNxの上にCrOyを各々2.3μm及
び0.3μm成膜し、エマルジョンを使用して純銅の切
削を行い、これと同様に、膜厚3.5μmのTiN被覆
ドリル及び無処理ドリル無処理ドリルを使用してアルミ
5052の切削を行った、それぞれの穴明け個数を示すグラ
フ。
[Fig. 2] The ratio of land width / groove width of the drill is 1.3, and the base material is 1400 using a Micro Vickers hardness tester with a hardness of 50 g.
In a HV high-speed steel φ6 drill, CrOy films of 2.3 μm and 0.3 μm were formed on CrNx by ion plating, respectively, and pure copper was cut using an emulsion. 3.5 μm thick TiN coated drill and untreated drill Aluminum using untreated drill
A graph showing the number of holes drilled for each of the 5052 cuts.

【図3】ドリルのランド幅/溝幅の比率が1.8で、母
材が硬さ50gのマイクロヴィカ−ス硬度計で1400
HVである高速度鋼製φ6ドリルに、イオンプレ−ティ
ングによりCrNxの上にCrOyを各々1.5μm及
び0.5μm成膜し、エマルジョンを使用してアルミ 6
063 の切削を行い、これと同様に、無処理ドリル及び膜
厚1.5μmのCrN被覆ドリルを使用してアルミの切
削を行った、それぞれの穴明け個数を示すグラフ。
[Fig. 3] A land width / groove width ratio of the drill is 1.8, and the base material is 1400 using a Micro Vickers hardness tester with a hardness of 50 g.
On a HV high-speed steel φ6 drill, deposit CrOy on CrNx by 1.5 μm and 0.5 μm, respectively, by ion plating, and use an emulsion to produce aluminum.
The graph showing the number of holes drilled in each of which the cutting of 063 was performed, and similarly, the unprocessed drill and the CrN-coated drill having a film thickness of 1.5 μm were used to cut aluminum.

【図4】ドリルのランド幅/溝幅の比率が1.8で、母
材が硬さ50gのマイクロヴィカ−ス硬度計で1400
HVである高速度鋼製φ6ドリルに、イオンプレ−ティ
ングによりCrNxの上にCrOyを各々3.5μm及
び0.3μm成膜し、エマルジョンを使用してアルミ 5
052 の切削を行い、これと同様に、膜厚3.5μmのT
iN被覆ドリル及び無処理ドリルを使用してアルミ5052
の切削を行った、それぞれの穴明け個数を示すグラフ。
[Fig. 4] A land width / groove width ratio of the drill is 1.8, and the base material is 1400 using a Micro Vickers hardness tester with a hardness of 50 g.
Using a high speed steel φ6 drill, which is an HV, deposit CrOy on CrNx by 3.5 μm and 0.3 μm respectively by ion plating, and use an emulsion to make aluminum.
052 was cut, and in the same way as this, a T film with a film thickness of 3.5 μm
Aluminum 5052 using iN coated drill and untreated drill
A graph showing the number of holes drilled for each.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 工具鋼、高速度鋼、又は超硬合金又はサ
−メットを含む硬質合金を母材としてなるドリルにおい
て、 ドリルのランド幅/溝幅の比が1.2〜2.0の範囲に
あり、 ドリルの切れ刃部を含むドリル有効長の一部ないし全部
の範囲に0.05μm〜5.0μmのCrNx(原子比
で0.3≦x≦1.0、を満足する)よりなる硬質被覆
がなされており、 前記硬質被覆の最表層にCrOy(原子比で0.3≦y
≦1.5を満足する)で構成されその膜厚が0.01μ
m〜2.0μmの硬質表層被覆がなされており、 前記母材は硬さが50gのマイクロヴィカ−ス硬度計で
1300HV〜2200HVであり、そして前記硬質表
層被覆膜にAスケ−ルロックウエル硬度計を用いて押圧
した場合に生ずる圧痕を100倍の倍率で観察した結果
が、前記圧痕の外周1mm以上の範囲で膜とドリル母材
との間で剥離が認められない、ことを特徴とする潤滑硬
質膜被覆ドリル。
1. A drill comprising a tool steel, a high speed steel, or a cemented carbide or a hard alloy including cermet as a base material, wherein a land width / groove width ratio of the drill is 1.2 to 2.0. Within a range of 0.05 to 5.0 μm of CrNx (satisfying 0.3 ≦ x ≦ 1.0 in atomic ratio) within a part or the entire effective drill length including the cutting edge of the drill. The hard coating is made of CrOy (atomic ratio 0.3 ≦ y
≦ 1.5) and its film thickness is 0.01μ
m-2.0 μm hard surface coating, the base material has a hardness of 1300 HV to 2200 HV with a micro Vickers hardness meter of 50 g, and the hard surface coating film has A-scale Rockwell hardness. The result of observing the indentation generated when pressing with a meter at a magnification of 100 times is that no peeling is observed between the film and the drill base material in the range of 1 mm or more of the outer circumference of the indentation. Lubrication hard film coated drill.
【請求項2】 前記母材にTiN、TiC又はTiCN
を含むコ−ティングがすでに施され、それらの最上層に
前記硬質被覆膜が施されていることを特徴とする請求項
1記載の潤滑硬質膜被覆ドリル。
2. The base material is TiN, TiC or TiCN.
2. The lubricated hard film coated drill according to claim 1, wherein said hard coated film is applied to the uppermost layer of said coated film including said hard coated film.
JP29198994A 1994-11-02 1994-11-02 Lubricating hard film coated drill Expired - Lifetime JP3645295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29198994A JP3645295B2 (en) 1994-11-02 1994-11-02 Lubricating hard film coated drill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29198994A JP3645295B2 (en) 1994-11-02 1994-11-02 Lubricating hard film coated drill

Publications (2)

Publication Number Publication Date
JPH08132310A true JPH08132310A (en) 1996-05-28
JP3645295B2 JP3645295B2 (en) 2005-05-11

Family

ID=17776082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29198994A Expired - Lifetime JP3645295B2 (en) 1994-11-02 1994-11-02 Lubricating hard film coated drill

Country Status (1)

Country Link
JP (1) JP3645295B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007015060A (en) * 2005-07-08 2007-01-25 Mitsubishi Materials Kobe Tools Corp Surface coated cemented carbide cutting tool with hard coating layer displaying excellent chipping resistance in cutting of material difficult to be cut
WO2009131159A1 (en) * 2008-04-25 2009-10-29 兼房株式会社 Wood cutting tool
JP5748152B2 (en) * 2010-08-03 2015-07-15 ユケン工業株式会社 Cr-based coated article
JP2016524042A (en) * 2013-05-28 2016-08-12 シェフラー テクノロジーズ アー・ゲー ウント コー. カー・ゲーSchaeffler Technologies AG & Co. KG Coated components

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007015060A (en) * 2005-07-08 2007-01-25 Mitsubishi Materials Kobe Tools Corp Surface coated cemented carbide cutting tool with hard coating layer displaying excellent chipping resistance in cutting of material difficult to be cut
WO2009131159A1 (en) * 2008-04-25 2009-10-29 兼房株式会社 Wood cutting tool
CN102015229A (en) * 2008-04-25 2011-04-13 兼房株式会社 Wood cutting tool
US8435651B2 (en) 2008-04-25 2013-05-07 Kanefusa Kabushiki Kaisha Wood cutting tool
JP5576788B2 (en) * 2008-04-25 2014-08-20 兼房株式会社 Wood knife
JP5748152B2 (en) * 2010-08-03 2015-07-15 ユケン工業株式会社 Cr-based coated article
JP2016524042A (en) * 2013-05-28 2016-08-12 シェフラー テクノロジーズ アー・ゲー ウント コー. カー・ゲーSchaeffler Technologies AG & Co. KG Coated components

Also Published As

Publication number Publication date
JP3645295B2 (en) 2005-05-11

Similar Documents

Publication Publication Date Title
EP1306150B1 (en) Coated cutting tool
US5830531A (en) Coated tool with increased service life
US5882778A (en) Hard coating of excellent wear resistance and hard coating coated member thereof
US8309234B2 (en) Multilayer film-coated member and method for producing it
JP2003025113A (en) Coated cutting tool
JP2004345078A (en) Pvd-coated cutting tool
JP2002146515A (en) Hard film superior in slidableness and its coating tool
JP2000001768A (en) Composite wear resistant hard coating film having solid lubricity and article with coating film
RU2096518C1 (en) Layered composite coating on cutting and stamping tools
JP3645295B2 (en) Lubricating hard film coated drill
JP2004042149A (en) Coated cutting tool
JP3891520B2 (en) Composite wear-resistant hard coating having solid lubricity and non-affinity, and coated article
JP2016211052A (en) Hard film and hard film coated member
JP2008229781A (en) Hard film and tool coated with hard film
JP4094746B2 (en) Coated hard tool
JPS62174380A (en) Surface coated sintered hard alloy member for cutting tool
JP2961106B2 (en) Gear shaper processing method and gear shaper
JP2000107905A (en) Coated hard tool
JPH0215324B2 (en)
Wada et al. Tool wear of aluminum/chromium/tungsten-based-coated cemented carbide in cutting hardened sintered steel
JP2008229780A (en) Hard film and tool coated with hard film
JP2008255448A (en) Hard coating film and tool coated with the hard coating film
DK1627094T3 (en) TOPIC WITH AL / CR-CONTAINED HARD MATERIAL LAYER
JP2005081511A (en) Coated cutting tool
JPS61288914A (en) Surface coated end mill

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 9

EXPY Cancellation because of completion of term