JP2003025113A - Coated cutting tool - Google Patents

Coated cutting tool

Info

Publication number
JP2003025113A
JP2003025113A JP2001214069A JP2001214069A JP2003025113A JP 2003025113 A JP2003025113 A JP 2003025113A JP 2001214069 A JP2001214069 A JP 2001214069A JP 2001214069 A JP2001214069 A JP 2001214069A JP 2003025113 A JP2003025113 A JP 2003025113A
Authority
JP
Japan
Prior art keywords
cutting tool
coated cutting
hard coating
tool according
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001214069A
Other languages
Japanese (ja)
Other versions
JP3766003B2 (en
Inventor
Takashi Ishikawa
剛史 石川
Nobuhiko Shima
順彦 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2001214069A priority Critical patent/JP3766003B2/en
Publication of JP2003025113A publication Critical patent/JP2003025113A/en
Application granted granted Critical
Publication of JP3766003B2 publication Critical patent/JP3766003B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a coated cutting tool, which is optimum for high speed cutting, by improving the abrasion resistance of a film including Si substantially and improving the adhesion of the Si inclusion film without sacrificing its high hardness and oxidation resistance. SOLUTION: In the coated cutting tool comprising an Si inclusion film including one kind or two or more kinds of elements selected from metal components of 4a, 5a and 6a groups and Al as a metal component and elements which include Si and are selected from one kind and two or more kinds of N, B, C and O as a non-metal component, and a hard film including one kind or two ore more kinds of elements selected from Ti, Al and Cr as a metal component and elements selected from one kind or two or more kinds of at least N, B, C and O as a non-metal component, coated in a state of at least two layers, the hard layer including Si comprises a composition segregation polycrystal material including crystal particles whose Si inclusion density is relatively high and low.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、金属材料等の切削
加工に使用される被覆切削工具に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coated cutting tool used for cutting metal materials and the like.

【0002】[0002]

【従来の技術】切削加工の高能率化の要求に伴い高速マ
シニングセンターが普及し切削加工は高速化傾向にあ
る。切削工具に被覆される皮膜もTiN、TiCNに変
わり、皮膜の耐酸化性を改善したTiAlN皮膜を被覆
した被覆切削工具が一般的である。しかしながら、更に
切削加工の高速化に対応すべくTiAlNにSiを添加
し皮膜の耐酸化性の改善を試みた特許2793773号
公報、TiにSiの添加を試みた特開平8−11810
6号公報、特開平9−11004号公報等に代表される
皮膜の改善が提案されている。
2. Description of the Related Art High-speed machining centers have come into widespread use along with the demand for high-efficiency cutting, and the cutting tends to be faster. The coating coated on the cutting tool is also changed to TiN or TiCN, and a coated cutting tool coated with a TiAlN coating having improved coating oxidation resistance is generally used. However, JP-A-2793773, in which Si is added to TiAlN to improve the oxidation resistance of the coating in order to further speed up the cutting process, and JP-A-8-11810, in which Si is added to Ti, is tried.
No. 6, Japanese Patent Application Laid-Open No. 9-11004, etc. have been proposed to improve the film.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来ま
でのTiAlN皮膜をベースにした単純なSi添加にお
いてはTiAlNの精々1.2倍未満の耐酸化性改善に
しか至らず汎用的な切削環境下においては多少効果が認
められるものの高速切削加工には十分対応できない。更
には、TiにSiを添加した硬質皮膜においては、Si
添加により皮膜そのものの耐酸化性は若干は改善される
ものの、皮膜の高硬度化による静的な耐摩耗性の改善は
十分ではなく、工具として十分な改善は認められていな
い。これは単純にSiを添加しただけではSi原子がT
i原子と置換した単純な固溶体硬質相を形成し、固溶強
化による改善しか認められない事に起因すると考える。
またSiの単純添加においては、皮膜が脆くなり、皮膜
内部に発生する圧縮応力も非Si含有皮膜と比べ著しく
高く、この過剰な圧縮応力により成膜直後に剥離が発生
し、切削工具に適用するには至っていない。これらの事
により、被切削物が高硬度若しくは切削環境が苛酷にな
るほど膜剥離や酸化進行に起因する異常摩耗および欠損
が生じてしまい実用化には至っていない。このように依
然として高速切削加工において十分な切削特性の改善は
得られてはいないのが現状である。
However, in the simple addition of Si based on the conventional TiAlN film, the oxidation resistance is improved by less than 1.2 times that of TiAlN, and the conventional cutting environment is not improved. Is somewhat effective, but is not sufficiently compatible with high-speed cutting. Furthermore, in a hard film in which Si is added to Ti, Si is
Although the oxidation resistance of the coating itself is slightly improved by the addition, the static abrasion resistance is not sufficiently improved by increasing the hardness of the coating, and sufficient improvement as a tool has not been recognized. This is because if Si is simply added, the Si atom becomes T
It is considered that this is due to the fact that a simple solid solution hard phase is formed by substituting the i atom, and only improvement by solid solution strengthening is observed.
In addition, when Si is simply added, the coating becomes brittle, and the compressive stress generated inside the coating is significantly higher than that of the non-Si-containing coating. Due to this excessive compressive stress, peeling occurs immediately after film formation, and it is applied to cutting tools. Has not reached. Due to these factors, abnormal wear and chipping due to film peeling and progress of oxidation occur as the hardness of the object to be cut becomes higher or the cutting environment becomes more severe, and it has not been put to practical use. As described above, at present, sufficient improvement in cutting characteristics has not been obtained in high-speed cutting.

【0004】本発明はこうした事情に鑑み、Si含有皮
膜の耐摩耗性、耐酸化性を大幅に改善し、密着性を犠牲
にすることなく、Si含有皮膜の特性を十分に工具特性
に反映させ、高速切削加工に最適である被覆切削工具を
提供することを課題とする。
In view of these circumstances, the present invention significantly improves the wear resistance and oxidation resistance of the Si-containing coating, and sufficiently reflects the characteristics of the Si-containing coating on the tool characteristics without sacrificing the adhesion. An object is to provide a coated cutting tool that is optimal for high-speed cutting.

【0005】[0005]

【課題を解決するための手段】Si含有皮膜においては
前述の如く、皮膜内部に発生する圧縮応力が非Si含有
皮膜と比べ著しく高くなり、この過剰な圧縮応力により
切削中に剥離が発生してしまう場合があり、切削工具に
適用するには至っていない。従って、基体との密着性に
優れる硬質皮膜との併用が望ましいと言えるが、さらに
Si含有皮膜そのものの組織、結晶形態を制御すること
により、Si含有皮膜の残留圧縮応力の低減し、より密
着性を改善するとともに、結晶形態制御により皮膜硬度
を格段に高め、耐摩耗性のさらなる改善が可能となっ
た。また耐酸化性の観点からも結晶形態制御により著し
く耐酸化性を向上できることを確認した。
As described above, in the Si-containing coating, the compressive stress generated inside the coating is significantly higher than that in the non-Si-containing coating, and the excessive compressive stress causes peeling during cutting. In some cases, it has not yet been applied to cutting tools. Therefore, it can be said that it is desirable to use it together with a hard coating that has excellent adhesion to the substrate. However, by controlling the structure and crystal morphology of the Si-containing coating itself, the residual compressive stress of the Si-containing coating is reduced and the adhesiveness is improved. In addition to improving the wear resistance, it has become possible to further improve the wear resistance by significantly increasing the film hardness by controlling the crystal morphology. Also, from the viewpoint of oxidation resistance, it was confirmed that the oxidation resistance can be significantly improved by controlling the crystal morphology.

【0006】Si含有皮膜がの残留圧縮応力が高くなる
要因の一つとして、現在一般的に使用されているTiA
lN等の多元系窒化物の多くは立方晶NaCl型の結晶
構造を有する窒化物を形成するが、このSiを添加した
場合、SiはTi原子と置換型し、原子半径の差から格
子歪が発生し、これが残留圧縮応力を増大する要因とな
る。Si添加量が多くなるに伴いこの圧縮応力は増大
し、過剰応力を誘発させ、結果Siの効果が十分に認め
うる程度の添加が不可能となる。
TiA, which is commonly used at present, is one of the factors that increase the residual compressive stress of Si-containing coatings.
Most of multi-component nitrides such as 1N form nitrides having a cubic NaCl-type crystal structure, but when Si is added, Si is replaced with Ti atoms, and the lattice strain is reduced due to the difference in atomic radius. Occurs, which becomes a factor of increasing the residual compressive stress. This compressive stress increases as the amount of Si added increases, and excessive stress is induced. As a result, it becomes impossible to add Si to such an extent that the effect of Si can be sufficiently recognized.

【0007】本発明者はこのSi含有皮膜の過剰応力を
抑制する手段および耐摩耗性の更なる改善として、4、
5、6族とAlの1種若しくは2種以上の金属とSiよ
り構成される硬質皮膜において、マトリックス内にSi
含有量に富む結晶を分散させ、この結晶の存在により十
分にSi添加効果を発揮させるとともに、マトリックス
そのものは比較的Si含有量の少ない低圧縮応力である
相から構成し、密着性の改善を同時に成しうることに成
功した。
The inventors of the present invention have proposed, as means for suppressing excessive stress of the Si-containing coating and further improvement of wear resistance, 4,
In a hard coating composed of Si of one or more metals of groups 5 and 6 and Al, and Si, Si in the matrix
Crystals rich in content are dispersed, and the presence of these crystals makes it possible to sufficiently exert the effect of adding Si. At the same time, the matrix itself is composed of a phase having a low Si content and low compressive stress to improve adhesion at the same time. I succeeded in what I could accomplish.

【0008】このようにSi含有量の異なる結晶構成を
成しうるためには通常の被覆方法では不可能であり、被
覆中にイオンエネルギーを逐次変化させることにより可
能である。例えば、被覆中に基体に付与するバイアス電
圧を逐次変化させる、また同じようにパルスバイアスを
用いる等の被覆方法である。このように、イオンエネル
ギーを逐次変化させることにより、イオンの基体表面で
の拡散距離が変化し、Siの濃度の不均一性が発生する
ことになる。また被覆温度もイオンの拡散距離を支配
し、結晶形態、特に結晶粒径を制御する重要な因子とな
る。
[0008] As described above, it is impossible to form a crystal structure having different Si contents by an ordinary coating method, and it is possible by sequentially changing the ion energy during coating. For example, there is a coating method in which the bias voltage applied to the substrate during coating is sequentially changed, and a pulse bias is similarly used. As described above, by sequentially changing the ion energy, the diffusion distance of the ions on the surface of the substrate changes, and the non-uniformity of the Si concentration occurs. The coating temperature also controls the diffusion distance of ions and is an important factor for controlling the crystal morphology, particularly the crystal grain size.

【0009】被覆温度は低いほど、結晶は微細化し、皮
膜硬度を上昇せしめるとともに、結晶粒界を緻密にし、
結晶粒界の酸素の拡散を介して進行する皮膜酸化を抑制
し、耐酸化性をさらに改善する傾向にある。好ましく
は、結晶粒径が50nm以下であるようなナノ結晶であ
る場合、特に優れた結果となった。更に、Siに富む結
晶は350℃〜400℃の被覆温度範囲ではアモルファ
ス相となり、この場合アモルファス結晶と結晶質相との
結晶粒界の整合化にされ格子欠陥が著しく減少し、酸素
の拡散は更に低減される。これらの改善により、Si含
有皮膜の耐酸化性を更に改善するとともに、微細化にと
もなう皮膜の高硬度化を可能にし、切削工具に対して十
分にその特性が発揮されうる皮膜を成膜することを可能
にした。Si含有量はマトリックス相は比較的少ないた
め、密着性の劣化は発生しなかった。
[0009] The lower the coating temperature, the finer the crystals, the higher the hardness of the film, the denser the grain boundaries,
There is a tendency to suppress the film oxidation that progresses through the diffusion of oxygen at the crystal grain boundaries and further improve the oxidation resistance. Particularly, excellent results are obtained when the nanocrystals have a crystal grain size of 50 nm or less. Furthermore, the Si-rich crystal becomes an amorphous phase in the coating temperature range of 350 ° C. to 400 ° C. In this case, the crystal grain boundaries of the amorphous crystal and the crystalline phase are matched to each other, the lattice defects are significantly reduced, and the diffusion of oxygen is prevented. It is further reduced. Due to these improvements, the oxidation resistance of the Si-containing coating is further improved, and the hardness of the coating can be increased with miniaturization, and a coating capable of exhibiting its characteristics sufficiently for cutting tools can be formed. Made possible. Since the Si content of the matrix phase was relatively small, the adhesiveness did not deteriorate.

【0010】300℃〜350℃の被覆温度範囲では、
皮膜中にSi3N4相やSi相が介在することが確認さ
れた。これらの相の存在はESCAによりそのバインデ
ィングエネルギーにピークが認められるか否かで確認さ
れる。皮膜中にSi3N4相やSi相が介在する場合は
皮膜はこれらの相が形成する格子歪により、さらに高硬
度化し、耐摩耗性は改善される傾向にあるが、おそら
く、その結晶粒界を介する酸素の拡散が助長され、耐酸
化性は若干劣化する傾向にあった。
In the coating temperature range of 300 ° C to 350 ° C,
It was confirmed that Si3N4 phase and Si phase were present in the film. The existence of these phases is confirmed by ESCA whether or not a peak is observed in the binding energy. When Si3N4 phase or Si phase intervenes in the film, the film tends to have higher hardness due to the lattice strain formed by these phases and the wear resistance tends to be improved, but probably through the crystal grain boundaries. Oxygen diffusion was promoted, and oxidation resistance tended to deteriorate slightly.

【00011】Siを含有する皮膜は組織、結晶形態制
御が重要であり、特にSi以外の成分は限定されるもの
ではない。本発明者らの研究ではその皮膜の金属成分が
TiとSiである場合に最も優れた切削における動的耐
酸化性を示した。この場合先に説明した結晶形態に加
え、切削中に皮膜表面にSi酸化物より生成自由エネル
ギーの低いTi酸化物を形成するために、Tiが皮膜内
で外向拡散し、表面に粉状のTiOを形成し、表面近傍
のSiは内向拡散し、TiO層直下には非常に緻密なS
i酸化物層が形成される。粉状のTiOは潤滑に寄与
し、緻密なSi酸化物は下地との密着性に優れるととも
に、酸素拡散のバリヤーとして機能し、結果最も優れた
動的耐酸化性を示したものと思われる。高硬度鋼の高速
切削では特に動的耐酸化性が重要となるため、この場合
が最も長寿命を達成した。
It is important to control the texture and crystal morphology of a film containing Si, and the components other than Si are not particularly limited. The inventors' studies have shown that the best dynamic oxidation resistance in cutting when the metal components of the coating are Ti and Si. In this case, in addition to the crystal morphology described above, in order to form Ti oxide having a lower free energy of formation than Si oxide on the surface of the film during cutting, Ti diffuses outward in the film, and powdery TiO 2 is formed on the surface. And Si in the vicinity of the surface diffuses inward, and a very dense S is formed just below the TiO layer.
An i-oxide layer is formed. It is considered that the powdery TiO contributes to lubrication, and the dense Si oxide has excellent adhesion to the base and also functions as a barrier for oxygen diffusion, resulting in the best dynamic oxidation resistance. In high-speed cutting of hardened steel, dynamic oxidation resistance is particularly important, and in this case, the longest life was achieved.

【0012】Siを含有する皮膜の金属成分がCrとS
iである場合、Crが有する自己潤滑性の効果が付与さ
れ、鋼切削時に、刃先に発生する溶着現象が著しく抑制
され、極めて優れた加工表面が得られることができる。
特に溶着し易い炭素鋼の切削の場合はこの皮膜が最も優
れた仕上げ面と長寿命を達成した。更に、(CrSi)
2N層はCrSiN層より炭素鋼に対し摩擦係数が低い
ことが確認され、(CrSi)2N層を採用することに
よりさらに溶着現象が抑制されより長寿命化が可能であ
った。
The metal components of the film containing Si are Cr and S.
In the case of i, the self-lubricating effect of Cr is imparted, the welding phenomenon that occurs at the cutting edge during steel cutting is significantly suppressed, and an extremely excellent machined surface can be obtained.
In the case of cutting carbon steel, which is particularly easy to weld, this coating achieved the best finished surface and long life. Furthermore, (CrSi)
It was confirmed that the 2N layer had a lower friction coefficient than that of the CrSiN layer with respect to carbon steel, and by adopting the (CrSi) 2N layer, the welding phenomenon was further suppressed and the life could be extended.

【0013】このような組織、結晶形態の制御によりS
i含有皮膜の低応力化は可能であるが、Siを含有する
皮膜の単層では、重切削の場合、剥離が発生することが
あり、基体表面には密着性に優れる皮膜を下地層として
用いる必要がある。この密着性付与層の組成は特に限定
されるものではないが、TiAl系の硬質皮膜、CrA
l系の硬質皮膜を採用するTi系皮膜の場合より、さら
に高硬度鋼の高速切削特性が改善される。Ti系皮膜の
場合は重切削で特に安定した切削が可能となる。
By controlling such a structure and crystal morphology, S
Although it is possible to reduce the stress of the i-containing film, a single layer of the film containing Si may cause peeling in the case of heavy cutting, and a film with excellent adhesion is used as the underlayer on the substrate surface. There is a need. The composition of this adhesion-imparting layer is not particularly limited, but a TiAl-based hard coating, CrA
The high-speed cutting property of high hardness steel is further improved as compared with the case of the Ti-based coating that employs the 1-based hard coating. In the case of a Ti-based coating, heavy cutting enables particularly stable cutting.

【0014】勿論、これら下地層において、一般的に良
く用いられるように、Tiの一部を周期律表の4a、5
a、6a族の成分で置換してやっても良いが、特にM
g、Ca、Sr、Li、K、Yで置換することにより、
さらに格段の長寿命化が可能であった。これは前述の現
象と同じく、これらの成分は切削中に皮膜表面に拡散
し、表面で酸化物を形成するわけであるが、これらの成
分の酸化物は特に融点が低く、切削中に液相となること
により、著しく切削抵抗や温度を低減し、結果潤滑効果
を発揮し長寿命を達成することとなる。Siへの置換は
皮膜の耐酸化性を付与し、高硬度材の高速切削でさらに
長寿命を達成する結果となる。また母材直上の金属成分
がTi、Al、Crの一種以上からなる硬質層にもSi
の添加は有効である。この場合Siの存在形態は特に限
定されるものではなく、固溶体として存在しても切削性
能の向上は可能である。
Of course, in these underlayers, a part of Ti is used as 4a and 5 in the periodic table, as is commonly used.
It may be substituted with a component of group a, 6a, but especially M
By substituting g, Ca, Sr, Li, K, Y,
Furthermore, it was possible to significantly extend the service life. This is similar to the phenomenon described above, these components diffuse to the surface of the coating during cutting and form oxides on the surface, but the oxides of these components have a particularly low melting point and the liquid phase during cutting. As a result, cutting resistance and temperature are significantly reduced, and as a result, a lubricating effect is exhibited and a long life is achieved. Substitution with Si imparts oxidation resistance to the coating and results in achieving a longer life in high-speed cutting of high hardness materials. In addition, Si is used for the hard layer whose metal component directly above the base material is one or more of Ti, Al and Cr.
Is effective. In this case, the existing form of Si is not particularly limited, and the cutting performance can be improved even if it exists as a solid solution.

【0015】更に、硼素の添加は切削性能の改善に効果
的である。特に、高イオンエネルギーとなる条件下で成
膜した場合、硼素はBN窒化物として皮膜内に介在し、
このBN相が皮膜の自己潤滑性をたかめる作用を発揮
し、切削抵抗は減少し、長寿命化が達成される結果とな
る。BN相の存在もESCAにより確認することが可能
である。
Further, the addition of boron is effective in improving cutting performance. In particular, when a film is formed under the condition of high ion energy, boron intervenes in the film as BN nitride,
This BN phase exerts an action of increasing the self-lubricating property of the coating, cutting resistance is reduced, and a long life is achieved. The presence of the BN phase can also be confirmed by ESCA.

【0016】このような構成を採用することで、高速切
削加工及び高硬度材切削加工などの過酷な切削環境下に
おいても、皮膜剥離を生ずることなく皮膜の耐酸化性及
び硬さを改善し、切削性能が極めて良好となり、従来技
術の課題を完全に解決するに至った。すなわち、切削工
具基体に周期律表の4a、5a、6a族の金属成分及び
Alのうち1種若しくは2種以上より選択された元素と
Si元素を含み、非金属成分として少なくともN、B、
C、Oのうち1種若しくは2種以上より選択された元素
を含むSi含有皮膜を被覆してなる被覆切削工具におい
て、該Si含有皮膜は高Si濃度相と低Si濃度相を有
するSi含有皮膜が極めて有効である結果であった。
By adopting such a constitution, even under a severe cutting environment such as high speed cutting and high hardness material cutting, the oxidation resistance and hardness of the film are improved without causing film peeling, The cutting performance has become extremely good, and the problems of the prior art have been completely solved. That is, the cutting tool substrate contains a Si element and an element selected from one or two or more kinds of metal components of groups 4a, 5a and 6a of the periodic table and Al, and at least N, B as non-metal components,
In a coated cutting tool obtained by coating a Si-containing coating containing an element selected from one or more of C and O, the Si-containing coating has a high Si-concentration phase and a low Si-concentration phase. Was a very effective result.

【0017】[0017]

【発明の実施の形態】本発明のその構成要件についてT
iSiN皮膜においてアモルファスナノ結晶が存在する
場合を一例として、詳しく述べる。図1にTiとSiよ
り構成されるSi含有皮膜を例にこの透過型電子顕微鏡
による格子像の観察結果を示す。図1の領域1及び領域
2に対応した極微電子線回折像撮影による結晶構造の解
析結果を図2、図3に示す。極微電子線回折像の撮影に
はカメラ長を50cm、ビーム径を2〜5nmにて分析
を行った。図1、図2、図3より本発明皮膜は、結晶質
からなる相とアモルファスからなる相を形成しているこ
とが明らかである。図4、図5に図1の領域1、領域2
に対応したエネルギー分散型分析による定量分析結果を
示す。各領域の定量分析は1nm角の領域を分析した。
図4、図5より結晶質からなる領域1のSi含有量は金
属成分成分のみの原子比率で8原子%であるのに対し、
領域2に示すアモルファス相のSi含有量は金属成分成
分のみの原子比率で26原子%であり、アモルファスか
らなる相はマトリックス結晶質相の3倍以上のSi含有
量を示し、アモルファス相にSiが濃化していることが
明確である。図6にTiとSiより構成されるSi含有
皮膜を例に、従来の成膜方法(マク゛ネトロンスハ゜ッタリンク゛によ
る。例えばSurface and Coating Technology 133-134(2
000)p307-313)によりSiを含有させた皮膜と本発明で
あるSi含有皮膜のX線回折パターンを示す。本発明皮
膜のX線回折パターンは従来の成膜方法でSiを含有さ
せた皮膜のそれに対して(200)面に最強ピーク強度
を示し、回折ピークの広がりが認められる。図1の領域
1に示す電子線回折像及び図6のX線回折結果から、結
晶質からなる領域1はfcc構造のNaCl型の結晶構
造を示し、皮膜内に発生した残留応力により(200)
面における回折ピークの広がりをもってはいるが、Si
添加による面間隔の大きな変化は認められない。これら
のことからも、結晶質からなる領域1は、少量のSiを
置換したTi(Si)Nであると推測される。本発明皮
膜は(200)面に最大のピーク強度を有する場合が好
ましい。これは(200)面に強く配向した場合が最も
皮膜内の格子欠陥が少なく、耐酸化性に優れる為であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Concerning the constituent features of the present invention T
The case where amorphous nanocrystals are present in the iSiN film will be described in detail as an example. FIG. 1 shows an observation result of a lattice image by this transmission electron microscope, taking a Si-containing film composed of Ti and Si as an example. 2 and 3 show the results of analysis of the crystal structure by microscopic electron diffraction image photography corresponding to the regions 1 and 2 in FIG. For capturing the electron microscopic electron diffraction image, analysis was performed with a camera length of 50 cm and a beam diameter of 2 to 5 nm. It is clear from FIGS. 1, 2 and 3 that the film of the present invention forms a crystalline phase and an amorphous phase. Regions 1 and 2 of FIG. 1 are shown in FIGS.
The quantitative analysis result by the energy dispersive analysis corresponding to is shown. Quantitative analysis of each region analyzed a 1 nm square region.
4 and 5, the Si content of the crystalline region 1 is 8 atomic% in terms of atomic ratio of only the metal component,
The Si content of the amorphous phase shown in the region 2 is 26 atomic% in terms of atomic ratio of only the metal component, and the amorphous phase has a Si content three times or more that of the matrix crystalline phase. It is clear that it is thickened. FIG. 6 shows an example of a conventional film forming method (using a magnetron sputtering method), for example, a Si-containing film composed of Ti and Si. For example, Surface and Coating Technology 133-134 (2
000) p307-313) shows the X-ray diffraction patterns of the film containing Si and the film containing Si of the present invention. The X-ray diffraction pattern of the film of the present invention shows the strongest peak intensity on the (200) plane as compared with that of the film containing Si by the conventional film forming method, and the broadening of the diffraction peak is recognized. From the electron beam diffraction image shown in the region 1 of FIG. 1 and the X-ray diffraction result of FIG. 6, the region 1 made of a crystalline material shows a NaCl type crystal structure of the fcc structure, and the residual stress generated in the film (200)
Although there is a spread of diffraction peaks on the plane, Si
No significant change in the interplanar spacing due to addition is observed. From these facts, it is assumed that the crystalline region 1 is Ti (Si) N in which a small amount of Si is substituted. The film of the present invention preferably has the maximum peak intensity on the (200) plane. This is because when it is strongly oriented to the (200) plane, the lattice defects in the film are the smallest and the oxidation resistance is excellent.

【0018】このアモルファスである高Si濃度領域相
と結晶質である低Si濃度領域相を有するSi含有皮膜
は、4a、5a、6a族の金属成分及びAlのうち1種若
しくは2種以上より選択された元素とSi元素、より好
ましくは金属成分としてTi、Al、Cr、のうち1種
若しくは2種以上より選択された元素とSi元素からな
り、更に非金属成分としてN、B、C、Oのうち1種若
しくは2種以上より選択される元素からなるSi含有皮
膜において形成させることが可能である。Si含有皮膜
中のSi添加量は極少量である場合においてもSiが濃
化したアモルファス相をSi含有皮膜内に分散して形成
させることが可能である。
The Si-containing film having the amorphous high Si concentration region phase and the crystalline low Si concentration region phase is selected from one or more of the 4a, 5a and 6a group metal components and Al. Element and Si element, more preferably an element selected from one or more of Ti, Al and Cr as a metal component and an Si element, and N, B, C and O as a non-metal component. It is possible to form in a Si-containing film made of an element selected from one or more of the above. Even when the amount of Si added to the Si-containing film is extremely small, it is possible to disperse and form an amorphous phase in which Si is concentrated in the Si-containing film.

【0019】このアモルファスである高Si濃度領域相
と結晶質である低Si濃度領域相を有するSi含有皮膜
とすることで切削工具として安定したSi含有皮膜を成
膜することが可能となる。静的な酸化機構に関しては、
アモルファスからなる高Si濃度領域相から優先的にS
iが濃化した極めて微細なSi酸化物を形成する。この
微細酸化物により酸素の内向拡散に対して拡散障壁とし
て作用し、その結果、大幅な耐酸化性の改善に寄与し
た。また、同一構成元素で高Si濃度を有するアモルフ
ァス相と低Si濃度からなる結晶質相とすることで、S
i窒化物等の独立相を形成する場合よりも、粒界に格子
欠陥が少なく酸素の内部拡散に対してもすぐれた特性を
示した。更に、動的な酸化、即ち切削過程におけるの酸
化挙動を解析した結果、切削途中の工具逃げ面における
皮膜摩耗部に凝着物であるFe付着層と摩耗した皮膜と
の間にSiが濃化した酸化膜を形成し、表面のSi酸化
物により酸化抑制効果と潤滑効果をも有しているものと
考えられ、これらの相乗効果により高速切削特性が大幅
に改善されたものと考える。
By using the Si-containing coating having the amorphous high Si-concentration region phase and the crystalline low Si-concentration region phase, it becomes possible to form a stable Si-containing coating as a cutting tool. Regarding the static oxidation mechanism,
Preferentially S from the high Si concentration region phase consisting of amorphous
It forms a very fine Si oxide in which i is concentrated. These fine oxides acted as a diffusion barrier against inward diffusion of oxygen, and as a result, contributed to a significant improvement in oxidation resistance. Further, by using an amorphous phase having a high Si concentration and a crystalline phase having a low Si concentration with the same constituent element, S
Compared with the case where an independent phase such as i-nitride is formed, the number of lattice defects at the grain boundaries is small, and excellent characteristics are exhibited against oxygen internal diffusion. Furthermore, as a result of analyzing the dynamic oxidation, that is, the oxidation behavior in the cutting process, Si was concentrated between the Fe adhesion layer as an adherent and the worn film in the film wear portion on the tool flank during cutting. It is considered that an oxide film is formed and the Si oxide on the surface also has an oxidation suppressing effect and a lubricating effect, and it is considered that the high speed cutting characteristics are significantly improved by the synergistic effect of these.

【0020】本発明の被覆切削工具は、その被覆方法に
ついては、特に限定されるものではないが、被覆母材へ
の熱影響、工具の疲労強度、皮膜の密着性等を考慮した
場合、比較的低温で被覆でき、被覆した皮膜に圧縮応力
が残留するアーク放電方式イオンプレーティング法であ
ることが望ましい。
The coating method of the coated cutting tool of the present invention is not particularly limited, but a comparison is made in consideration of the thermal effect on the coating base material, the fatigue strength of the tool, the adhesion of the coating, and the like. It is desirable to use an arc discharge type ion plating method that can be coated at a relatively low temperature, and compressive stress remains in the coated film.

【0021】本発明に係る上記、アモルファスである高
Si濃度領域相と結晶質である低Si濃度領域相を有す
るSi含有皮膜を基体表面に形成する方法としては、例
えばアークイオンプレーティング法による成膜において
は以下による方法を用いれば良い。まず炉内を3×10
−5Paまで真空排気を行うと同じにヒーターにより基
体の加熱を行う。その後Arイオンによる基体の清浄化
及び活性化を行った後、炉内に複数配置されたアーク放
電用蒸発源であるカソードに目的とした皮膜組成が得ら
れる各合金ターゲットを設置し、アーク放電によりイオ
ン化させた各種金属と窒素等の反応ガス雰囲気中でイオ
ンプレーティングすることによって得られる。この時、
基体に付与するバイアス電圧を定期的に変化させイオン
エネルギーの調整をすることが必要である。
As a method of forming the Si-containing coating having the amorphous high Si concentration region phase and the crystalline low Si concentration region phase on the surface of the substrate according to the present invention, for example, an arc ion plating method is used. For the film, the following method may be used. First, the inside of the furnace is 3 × 10
The substrate is heated by the heater in the same manner as the vacuum exhaust to -5 Pa. After cleaning and activating the substrate with Ar ions, each alloy target that provides the desired coating composition was placed on the cathode, which is the evaporation source for arc discharge, placed in the furnace. It can be obtained by ion plating in a reaction gas atmosphere of various ionized metals and nitrogen. This time,
It is necessary to periodically change the bias voltage applied to the substrate to adjust the ion energy.

【0022】更に詳しく説明すれば、被覆時におけるイ
オンエネルギーの大小は主に基体に印加するバイアス電
圧と反応ガスとの組み合わせによって決定する。ここ
で、基体に印加するバイアス電圧は異なる負バイアス電
圧を印荷するか負バイアス電圧と正バイアス電圧を周期
的に変化させながら成膜を行っても有効である。結果と
して、皮膜内にイオンエネルギーの周期的な変化を誘発
させ、Si濃度の異なる皮膜を同一層内に形成させるも
のである。この周期的なイオンエネルギーの変化が本発
明において重要である。イオンエネルギーを変化せしめ
すには、バイアス、反応圧、温度などに因子が複雑に寄
与するものと考えられる。
More specifically, the magnitude of the ion energy during coating is determined mainly by the combination of the bias voltage applied to the substrate and the reaction gas. Here, the bias voltage applied to the substrate is effective even if different negative bias voltages are applied or the negative bias voltage and the positive bias voltage are cyclically changed. As a result, a periodic change in ion energy is induced in the film, and films having different Si concentrations are formed in the same layer. This periodic change in ion energy is important in the present invention. In order to change the ion energy, it is considered that factors complicatedly contribute to the bias, reaction pressure, temperature and so on.

【0023】基体温度によっても皮膜中のSi濃度差が
変化する。具体的には、500℃以上では他のパラメー
ターを最適化してもアモルファスからなる高Si濃度領
域相が確認されない場合もあった。バイアス電圧を高く
すると基体温度も上昇する傾向があるため、基体材質の
要求から温度が制限される場合は基体の冷却手段が必要
となる場合がある。
The difference in Si concentration in the film also changes depending on the substrate temperature. Specifically, at 500 ° C. or higher, the amorphous high Si concentration region phase may not be confirmed even if other parameters are optimized. When the bias voltage is increased, the temperature of the substrate also tends to rise. Therefore, if the temperature is limited due to the requirement of the material of the substrate, a cooling means for the substrate may be required.

【0024】本発明被膜は基体がハイスからなる工具に
被覆しても有効であるが、より高速切削が可能である超
硬合金のエンドミルやインサートの場合に特に顕著な効
果を発揮する。以下、本発明を実施例に基づいて説明す
る。
The coating of the present invention is effective even when applied to a tool whose base is made of high-speed steel, but exhibits a particularly remarkable effect in the case of a cemented carbide end mill or insert capable of higher speed cutting. Hereinafter, the present invention will be described based on examples.

【0025】[0025]

【実施例】アークイオンプレーティング装置を用い、金
属成分の蒸発源である各種合金製ターゲット、ならびに
反応ガスであるN2ガスを用い、被覆基体温度350℃
〜540℃とし、反応ガス圧力を5Pa及び負バイアス
電圧を300V、正バイアス電圧を20Vとし、その振
幅は負を80%、正を20%に設定し、その周波数を1
5kHzとし、表1に示す本発明例の被覆を行った。
[Example] Using an arc ion plating apparatus, using various alloy targets which are evaporation sources of metal components and N2 gas which is a reaction gas, the coated substrate temperature is 350 ° C.
To 540 ° C., the reaction gas pressure is 5 Pa, the negative bias voltage is 300 V, the positive bias voltage is 20 V, the amplitude is set to 80% negative and 20% positive, and the frequency is set to 1
The frequency was set to 5 kHz, and the coating of the example of the present invention shown in Table 1 was performed.

【0026】[0026]

【表1】 [Table 1]

【0027】また、基体を5m−1で回転させながら複
数設置した各蒸発源の電流値の一方を30A、対向した
蒸発源を300Aの電流を夫々印加し成膜を行った。被
覆基体には外径8mmの超硬合金製6枚刃スケアエンド
ミル及び超硬合金製ミーリングインサートを用い、全皮
膜の厚みが4乃至6μmとなるように成膜した。また、
必要に応じてAlTiN系皮膜との多層膜とした。表1
に各試料のSi濃度偏析を有するSi含有皮膜をA層と
し、そのA層の組成及びA層の結晶粒径、結晶形態を併
記した。「a」、と記載した皮膜は350℃で被覆した
ものでSi含有量に富む結晶粒がアモルファスを呈する
ものである。更に、併用したAl、Ti、Cr系皮膜を
B層とした時のそのB層の組成を示す。尚、表1におい
て、組成の表示は金属成分、非金属成分を夫々あわせて
100となるよう、原子比で表記したが、これは金属成
分と比金属成分の原子比が1:1であることを意味する
ものではない。また、得られた被覆エンドミル及び被覆
ミーリングインサートを用い切削試験を行った結果につ
いても併記する。スケアエンドミルは切削長200m時
での逃げ面摩耗幅を測定した。インサートにおいては欠
損までの切削時間を示した。切削諸元を次に示す。
Further, while rotating the substrate at 5 m -1, a current of 30 A was applied to one of the evaporation sources, and a current of 300 A was applied to the opposing evaporation sources to form a film. For the coated substrate, a 6-blade cemented carbide scare end mill having an outer diameter of 8 mm and a cemented carbide milling insert were used to form a film having a total thickness of 4 to 6 μm. Also,
A multi-layered film with an AlTiN-based film was formed if necessary. Table 1
The Si-containing coating having the Si concentration segregation of each sample was defined as the A layer, and the composition of the A layer, the crystal grain size of the A layer, and the crystal morphology were also described. The film described as “a” is a film coated at 350 ° C., and the crystal grains rich in Si content are amorphous. Further, the composition of the B layer when the Al, Ti, Cr-based coating used together is formed into the B layer will be shown. In Table 1, the composition is expressed in atomic ratio so that the total of the metal component and the non-metal component is 100, but the atomic ratio of the metal component and the specific metal component is 1: 1. Does not mean. Moreover, the results of a cutting test using the obtained coated end mill and coated milling insert are also shown. The scare end mill measured the flank wear width at a cutting length of 200 m. In the insert, the cutting time to the defect is shown. The cutting specifications are shown below.

【0028】(超硬6枚刃スケアエンドミル切削条件) 工具:超硬6枚刃スケアエンドミル 切削方法:側面切削加工 被削材:SKD11(硬さHRC52)幅150mm×
長さ250mm 切り込み:軸方向8mm、径方向0.2mm 切削速度:500m/min 送り:0.07mm/刃 切削油:エアーブロー
(Carbide 6-Flute Scare End Mill Cutting Conditions) Tool: Carbide 6-Flute Scare End Mill Cutting Method: Side Cutting Work Material: SKD11 (Hardness HRC52) Width 150 mm x
Length 250mm Cutting: Axial direction 8mm, Radial direction 0.2mm Cutting speed: 500m / min Feed: 0.07mm / Blade cutting oil: Air blow

【0029】(超硬ミーリングインサート切削条件) 工具:EDEW15T4TN−15 カッター:φ63mm 切削方法:面取り加工 被削材:SKD61(硬さHRC43)、幅50mm×
長さ250mm 切り込み:2.0mm 切削速度:250m/min 送り:0.5mm/rev 切削油:エアーブロー
(Carbide Milling Insert Cutting Conditions) Tool: EDEW15T4TN-15 Cutter: φ63 mm Cutting Method: Chamfering Work Material: SKD61 (Hardness HRC43), Width 50 mm x
Length 250mm Cut: 2.0mm Cutting speed: 250m / min Feed: 0.5mm / rev Cutting oil: Air blow

【0030】表1より、本発明例は高速切削環境下にお
いても安定した切削が可能である。本発明例1〜3は、
CrにSiを含有させ、粒径を変化させた例であるが、
微細なほど耐摩耗性に優れる結果がえられた。本発明例
4〜8は、TiにSiを添加し、その量を変化させた例
で、いずれの切削工具においても切削特性に優れる。本
発明例9〜12は、AlにSiを添加した場合の例であ
るが、Tiに比して同程度の耐摩耗性を示す。本発明例
13〜18は、3種の金属成分系の例であるが、切削特
性に優れ、同程度の耐摩耗性を示した。本発明例19〜
22はSiを含み、更にNb、V、Zr、Moを用いた
場合の例であるが、いずれも切削性能に優れ、同程度の
耐摩耗性を示した。本発明例23、24はNに加えて、
O若しくはCを添加した場合の例であるが、同様な効果
が得られた。本発明例25は(CrSi)BNのfcc
構造と(CrSi)2BNのhcp構造の多層膜を併用
した場合の例であるが、同様に優れる結果となった。本
発明例26、27はCrSiN皮膜に硼素、酸素を添加
したものあるが、従来例よりも優れる結果となった。
尚、本発明例の試料番号1から26のすべての試料にお
いて、高Si濃度領域相と結晶質からなる低Si濃度領
域相を確認した。
From Table 1, the example of the present invention can perform stable cutting even in a high-speed cutting environment. The present invention examples 1 to 3 are
This is an example in which Si is contained in Cr and the particle size is changed.
The finer the results, the better the abrasion resistance. Inventive Examples 4 to 8 are examples in which Si is added to Ti and the amount thereof is changed, and any cutting tool has excellent cutting characteristics. Inventive Examples 9 to 12 are examples in which Si is added to Al, but show the same level of wear resistance as Ti. Inventive Examples 13 to 18 are examples of three kinds of metal component systems, but they were excellent in cutting characteristics and showed similar wear resistance. Invention Example 19 to
No. 22 is an example in which Si is contained and Nb, V, Zr, and Mo are further used, and all of them have excellent cutting performance and show the same wear resistance. Inventive examples 23 and 24 are, in addition to N,
This is an example in the case of adding O or C, but similar effects were obtained. Inventive Example 25 is fcc of (CrSi) BN
This is an example of the case where the multilayer structure and the multi-layered film of the hcp structure of (CrSi) 2BN are used in combination, and similarly excellent results were obtained. Inventive Examples 26 and 27 were obtained by adding boron and oxygen to the CrSiN film, but the results were superior to the conventional examples.
In addition, in all the samples of Sample Nos. 1 to 26 of the example of the present invention, a high Si concentration region phase and a low Si concentration region phase composed of crystalline material were confirmed.

【0031】次に、従来例として、被覆条件は同様にア
ークイオンプレーティング装置を用い、本発明例と同一
の成膜前処理を行った後、金属成分の蒸発源である各種
合金製ターゲット、ならびに反応ガスであるN2ガスを
用い、被覆基体温度400℃とし、反応ガス圧力を5P
a及び負バイアス電圧を70Vにし、従来までの成膜方
法を用い、表2に示す各組成の皮膜を成膜し、実施例1
と同じ切削諸元で切削評価を行った。その結果を表2に
示す。
Next, as a conventional example, the same coating pretreatment as in the example of the present invention was carried out using the same arc ion plating apparatus as the coating conditions, and then various alloy targets, which are evaporation sources of metal components, In addition, using N2 gas which is a reaction gas, the temperature of the coated substrate is set to 400 ° C, and the reaction gas pressure is set to
a was set to 70 V and a negative bias voltage, and a film having each composition shown in Table 2 was formed by using the conventional film forming method.
The cutting was evaluated with the same cutting specifications as above. The results are shown in Table 2.

【0032】[0032]

【表2】 [Table 2]

【0033】従来例においては、表2中に、特に明記し
ていないが、Siの含有量は15原子%とし、皮膜は単
純な固溶体層であり、Siの濃度偏析は存在しない。ま
たTiAl系皮膜におけるTi:Al比は1:1であ
る。
In the conventional example, although not particularly specified in Table 2, the Si content is 15 atomic%, the coating is a simple solid solution layer, and there is no concentration segregation of Si. The Ti: Al ratio in the TiAl-based coating is 1: 1.

【0034】従来例4はTiAlN皮膜へSi添加した
場合であるが、Si添加により耐酸化性及び皮膜硬さは
TiAlNよりも改善されるものの、圧縮応力が大きく
2μmの膜厚が限界であり、TiAlNの切削特性を大
幅するには至らなかった。従来例5、6は、従来の成膜
方法により成膜した為、皮膜内にSi量の偏析及びアモ
ルファス相が認められずSiの脆い特徴が顕著に表れ、
切削初期より皮膜剥離が発生した。従来例7は、Siを
含有しない多元系皮膜の例であるが、耐酸化性が極めて
悪く、高速切削等過酷な切削環境下においては十分な切
削特性は得られなかった。従来例8においても本発明例
に対し著しく劣る結果となった。従来例9、10はCr
Si系単純固溶体層であるが、本発明例に比較して低寿
命の結果となった。
Conventional Example 4 is the case where Si is added to the TiAlN film. Although the oxidation resistance and film hardness are improved by adding Si, the compressive stress is large and the film thickness of 2 μm is the limit. The cutting characteristics of TiAlN were not significantly increased. Since the conventional examples 5 and 6 were formed by the conventional film forming method, segregation of the amount of Si and the amorphous phase were not recognized in the film, and the brittle characteristic of Si was remarkably exhibited.
Film peeling occurred from the beginning of cutting. Conventional Example 7 is an example of a multi-component film containing no Si, but its oxidation resistance was extremely poor, and sufficient cutting characteristics could not be obtained under severe cutting environments such as high-speed cutting. Also in Conventional Example 8, the result was significantly inferior to that of the present invention. Conventional examples 9 and 10 are Cr
Although it was a Si-based simple solid solution layer, the life was shorter than that of the examples of the present invention.

【0035】[0035]

【発明の効果】本発明を適用することにより、TiAl
N皮膜をベースにした単純なSi添加に比較して、高速
切削加工にも十分な切削性能を示し、特に、耐酸化性、
皮膜の高硬度化により優れた耐摩耗性を示すことが分か
った。更に、より切削環境が苛酷になる高速化、ドライ
化等の諸元でも十分な切削工具とすることができた。
By applying the present invention, TiAl
Compared to simple Si addition based on N film, it shows sufficient cutting performance for high-speed cutting, especially oxidation resistance,
It was found that the higher hardness of the coating shows excellent wear resistance. Further, it was possible to obtain a sufficient cutting tool even with specifications such as high speed and dryness that make the cutting environment more severe.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明例のTiとSiより構成される
Si含有皮膜の透過型電子顕微鏡による格子像の観察結
果を示す。
FIG. 1 shows a result of observing a lattice image of a Si-containing film composed of Ti and Si of the present invention example by a transmission electron microscope.

【図2】図2は、図1の高Si濃度領域相の極微電子線
回折像撮影による結晶構造の解析結果を示す。
FIG. 2 shows an analysis result of a crystal structure of a high Si concentration region phase of FIG.

【図3】図3は、図1の低Si濃度領域相の極微電子線
回折像撮影による結晶構造の解析結果を示す。
FIG. 3 shows the analysis result of the crystal structure of the low Si concentration region phase of FIG.

【図4】図4は、アモルファス相のエネルギー分散型分
析による定量分析結果を示す。
FIG. 4 shows the results of quantitative analysis by energy dispersive analysis of an amorphous phase.

【図5】図5は、結晶質相のエネルギー分散型分析によ
る定量分析結果を示す。
FIG. 5 shows the quantitative analysis result of the crystalline phase by energy dispersive analysis.

【図6】図6は、従来の成膜方法によりSiを含有させ
た皮膜と本発明皮膜のX線回折パターンを示す。
FIG. 6 shows X-ray diffraction patterns of a film containing Si by a conventional film forming method and a film of the present invention.

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】切削工具基体に、金属成分として周期律表
の4a、5a、6a族の金属元素及びAlのうち1種若
しくは2種以上より選択された元素とSi元素とを含
み、非金属成分として、N、B、C、Oのうち1種若し
くは2種以上より選択された元素を含むSi含有硬質皮
膜と、金属成分としてTi、Al、Crのうち1種若し
くは2種以上より選択された元素と非金属成分として
N、B、C、Oのうち1種若しくは2種以上より選択さ
れた元素とを含む硬質皮膜とからなり、両者を2層以上
被覆してなり、且つ、該Si含有硬質皮膜がSiの含有
濃度が相対的に高い結晶粒と相対的に低い結晶粒とを含
有する組成偏析多結晶体で構成したことを特徴とする被
覆切削工具。
1. A cutting tool substrate containing a Si element and an element selected from the group consisting of metal elements of groups 4a, 5a and 6a of the periodic table and one or more of Al as a metal component, and a non-metal. As a component, a Si-containing hard coating containing an element selected from one or more selected from N, B, C and O, and as a metal component selected from one or more selected from Ti, Al and Cr. And a hard film containing, as a non-metal component, one or more elements selected from N, B, C and O as non-metallic components, both of which are coated in two or more layers, and the Si A coated cutting tool characterized in that the contained hard coating is composed of a composition-segregated polycrystal containing crystal grains having a relatively high Si content concentration and crystal grains having a relatively low Si content concentration.
【請求項2】請求項1記載の被覆切削工具において、該
硬質皮膜が該基体直上に設けたことを特徴とする被覆切
削工具。
2. The coated cutting tool according to claim 1, wherein the hard coating is provided directly on the substrate.
【請求項3】請求項1乃至2記載の被覆切削工具におい
て、該Si含有硬質皮膜の平均結晶粒径が50nm以下
であることを特徴とする被覆切削工具。
3. The coated cutting tool according to claim 1, wherein the Si-containing hard coating has an average crystal grain size of 50 nm or less.
【請求項4】請求項1乃至3記載の被覆切削工具におい
て、該Si含有硬質皮膜層の相対的にSiに富む結晶が
非結晶質相であることを特徴とする被覆切削工具。
4. The coated cutting tool according to any one of claims 1 to 3, wherein the relatively Si-rich crystals of the Si-containing hard coating layer are in an amorphous phase.
【請求項5】請求項1乃至4記載の被覆切削工具におい
て、該Si含有硬質皮膜の層内にSi3N4単独相及び
/又はSi単独相を介在させたことを特徴とする被覆切
削工具。
5. The coated cutting tool according to any one of claims 1 to 4, wherein a Si3N4 single phase and / or a Si single phase is interposed in the layer of the Si-containing hard coating.
【請求項6】請求項1乃至5記載の被覆切削工具におい
て、該Si含有硬質皮膜層の金属成分がCrとSiであ
ることを特徴とする被覆切削工具。
6. The coated cutting tool according to claim 1, wherein the metal components of the Si-containing hard coating layer are Cr and Si.
【請求項7】請求項1乃至6記載の被覆切削工具におい
て、該Si含有硬質皮膜層の金属成分がTiとSiであ
ることを特徴とする被覆切削工具。
7. The coated cutting tool according to any one of claims 1 to 6, wherein the metal components of the Si-containing hard coating layer are Ti and Si.
【請求項8】請求項1乃至7記載の被覆切削工具におい
て、該Si含有硬質皮膜層が硼素を含有し、硼素が窒化
物として皮膜内部に介在していることを特徴とする被覆
切削工具。
8. The coated cutting tool according to claim 1, wherein the Si-containing hard coating layer contains boron, and boron is present as a nitride in the coating.
【請求項9】請求項5乃至8記載の被覆切削工具におい
て、該Si含有硬質皮膜層が、CrSiN層と、(Cr
Si)2N層又はCrSiBN層と、(CrSi)2B
Nとの2層以上の多層で構成されたことを特徴とする被
覆切削工具。
9. The coated cutting tool according to claim 5, wherein the Si-containing hard coating layer comprises a CrSiN layer and a (Cr
Si) 2N layer or CrSiBN layer and (CrSi) 2B
A coated cutting tool, characterized in that it is composed of two or more layers with N.
【請求項10】請求項1乃至9記載の被覆切削工具にお
いて、該硬質皮膜の金属成分がTiとAlであることを
特徴とする被覆切削工具。
10. The coated cutting tool according to claim 1, wherein the hard coating has metal components of Ti and Al.
【請求項11】請求項1乃至10記載の被覆切削工具に
おいて、該硬質皮膜の金属成分がCrとAlであること
を特徴とする被覆切削工具。
11. The coated cutting tool according to claim 1, wherein the hard coating has metal components of Cr and Al.
【請求項12】請求項1乃至11項記載の被覆切削工具
において、該硬質皮膜のAlの一部を、0.5原子%以
上30原子%以下の範囲において、Si、Mg、Ca、
Sr、Li、K、Yのうち少なくとも1種以上で置き換
えたことを特徴とする被覆切削工具。
12. The coated cutting tool according to any one of claims 1 to 11, wherein a part of Al of the hard coating is contained in the range of 0.5 atomic% or more and 30 atomic% or less, Si, Mg, Ca,
A coated cutting tool, which is replaced with at least one of Sr, Li, K, and Y.
【請求項13】請求項1乃至12記載の被覆切削工具に
おいて、該硬質皮膜が複数のドロップレット粒子を含有
するアークイオンプレーティング法で被覆されたことを
特徴とする被覆切削工具。
13. The coated cutting tool according to any one of claims 1 to 12, wherein the hard coating is coated by an arc ion plating method containing a plurality of droplet particles.
【請求項14】請求項1乃至13記載の被覆切削工具に
おいて、該切削工具基体が超硬合金製エンドミルである
ことを特徴とする被覆切削工具。
14. The coated cutting tool according to claim 1, wherein the cutting tool substrate is a cemented carbide end mill.
【請求項15】請求項1乃至13記載の被覆切削工具に
おいて、該切削工具基体が超硬合金製インサートである
ことを特徴とする被覆切削工具。
15. The coated cutting tool according to claim 1, wherein the cutting tool substrate is a cemented carbide insert.
JP2001214069A 2001-07-13 2001-07-13 Coated cutting tool Expired - Fee Related JP3766003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001214069A JP3766003B2 (en) 2001-07-13 2001-07-13 Coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001214069A JP3766003B2 (en) 2001-07-13 2001-07-13 Coated cutting tool

Publications (2)

Publication Number Publication Date
JP2003025113A true JP2003025113A (en) 2003-01-29
JP3766003B2 JP3766003B2 (en) 2006-04-12

Family

ID=19048951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001214069A Expired - Fee Related JP3766003B2 (en) 2001-07-13 2001-07-13 Coated cutting tool

Country Status (1)

Country Link
JP (1) JP3766003B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005042146A (en) * 2003-07-25 2005-02-17 Mitsubishi Heavy Ind Ltd Coating with high abrasion resistance and high hardness
JP2005139515A (en) * 2003-11-07 2005-06-02 Mitsubishi Heavy Ind Ltd Wear resistant hard film
JP2006082207A (en) * 2004-09-17 2006-03-30 Sumitomo Electric Hardmetal Corp Surface coated cutting tool
EP1842610A1 (en) * 2004-12-28 2007-10-10 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and process for producing the same
WO2008041402A1 (en) * 2006-10-02 2008-04-10 Sumitomo Electric Industries, Ltd. Surface coating cutting tool
JP2008296337A (en) * 2007-05-31 2008-12-11 Union Tool Co Hard coating for cutting tool
US7618719B2 (en) * 2006-01-13 2009-11-17 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Hard coating for glass molding and glass molding die having the hard coating
JP2010201577A (en) * 2009-03-04 2010-09-16 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer exerting excellent chipping resistance and wear resistance
JP2010201576A (en) * 2009-03-04 2010-09-16 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer exerting excellent chipping resistance and wear resistance
JP2010201579A (en) * 2009-03-04 2010-09-16 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer exerting excellent chipping resistance and wear resistance
JP2010201578A (en) * 2009-03-04 2010-09-16 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer exerting excellent chipping resistance and wear resistance
WO2011058637A1 (en) * 2009-11-12 2011-05-19 オーエスジー株式会社 Tool coated with hard coating
WO2011058636A1 (en) * 2009-11-12 2011-05-19 オーエスジー株式会社 Tool coated with hard coating
JP2011224766A (en) * 2010-03-30 2011-11-10 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer showing excellent chipping resistance
US20120148866A1 (en) * 2010-12-13 2012-06-14 Hon Hai Precision Industry Co., Ltd. Coated article and method for making the same
US20120164459A1 (en) * 2010-12-23 2012-06-28 Hon Hai Precision Industry Co., Ltd. Coated article and method for making the same
US8440328B2 (en) * 2011-03-18 2013-05-14 Kennametal Inc. Coating for improved wear resistance
US8592032B2 (en) * 2010-12-23 2013-11-26 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Coated article and method for making the same
CN107740068A (en) * 2017-11-27 2018-02-27 浙江工业大学 A kind of new method in stainless steel surfaces depositing diamond film

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7449253B2 (en) 2003-07-25 2008-11-11 Mitsubishi Heavy Industries, Ltd. High wear resistant hard film
JP2005042146A (en) * 2003-07-25 2005-02-17 Mitsubishi Heavy Ind Ltd Coating with high abrasion resistance and high hardness
US7226659B2 (en) 2003-07-25 2007-06-05 Mitsubishi Heavy Industries, Ltd. High wear resistant hard film
KR100726915B1 (en) * 2003-07-25 2007-06-11 미츠비시 쥬고교 가부시키가이샤 High wear resistant hard film
KR100792958B1 (en) * 2003-07-25 2008-01-08 미츠비시 쥬고교 가부시키가이샤 High wear resistant hard film, tool and machining method using the same
JP2005139515A (en) * 2003-11-07 2005-06-02 Mitsubishi Heavy Ind Ltd Wear resistant hard film
JP2006082207A (en) * 2004-09-17 2006-03-30 Sumitomo Electric Hardmetal Corp Surface coated cutting tool
EP1842610A1 (en) * 2004-12-28 2007-10-10 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and process for producing the same
EP1842610A4 (en) * 2004-12-28 2011-06-08 Sumitomo Elec Hardmetal Corp Surface-coated cutting tool and process for producing the same
US7618719B2 (en) * 2006-01-13 2009-11-17 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Hard coating for glass molding and glass molding die having the hard coating
WO2008041402A1 (en) * 2006-10-02 2008-04-10 Sumitomo Electric Industries, Ltd. Surface coating cutting tool
US8071211B2 (en) 2006-10-02 2011-12-06 Sumitomo Electric Industries, Ltd. Surface-coated cutting tool
JP2008296337A (en) * 2007-05-31 2008-12-11 Union Tool Co Hard coating for cutting tool
JP4714186B2 (en) * 2007-05-31 2011-06-29 ユニオンツール株式会社 Coated cutting tool
JP2010201577A (en) * 2009-03-04 2010-09-16 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer exerting excellent chipping resistance and wear resistance
JP2010201576A (en) * 2009-03-04 2010-09-16 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer exerting excellent chipping resistance and wear resistance
JP2010201579A (en) * 2009-03-04 2010-09-16 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer exerting excellent chipping resistance and wear resistance
JP2010201578A (en) * 2009-03-04 2010-09-16 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer exerting excellent chipping resistance and wear resistance
WO2011058636A1 (en) * 2009-11-12 2011-05-19 オーエスジー株式会社 Tool coated with hard coating
US8932707B2 (en) 2009-11-12 2015-01-13 Osg Corporation Hard film and hard film coated tool
WO2011058637A1 (en) * 2009-11-12 2011-05-19 オーエスジー株式会社 Tool coated with hard coating
KR20120085311A (en) * 2009-11-12 2012-07-31 오에스지 가부시키가이샤 Tool coated with hard coating
KR101616600B1 (en) 2009-11-12 2016-04-28 오에스지 가부시키가이샤 Tool coated with hard coating
JP5331210B2 (en) * 2009-11-12 2013-10-30 オーエスジー株式会社 Hard coating and hard coating tool
JP2011224766A (en) * 2010-03-30 2011-11-10 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer showing excellent chipping resistance
US20120148866A1 (en) * 2010-12-13 2012-06-14 Hon Hai Precision Industry Co., Ltd. Coated article and method for making the same
US8592031B2 (en) * 2010-12-13 2013-11-26 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Coated article and method for making the same
US20120164459A1 (en) * 2010-12-23 2012-06-28 Hon Hai Precision Industry Co., Ltd. Coated article and method for making the same
US8709593B2 (en) * 2010-12-23 2014-04-29 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Coated article and method for making the same
US8592032B2 (en) * 2010-12-23 2013-11-26 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Coated article and method for making the same
US8859114B2 (en) 2011-03-18 2014-10-14 Kennametal Inc. Coating for improved wear resistance
US8440328B2 (en) * 2011-03-18 2013-05-14 Kennametal Inc. Coating for improved wear resistance
CN107740068A (en) * 2017-11-27 2018-02-27 浙江工业大学 A kind of new method in stainless steel surfaces depositing diamond film

Also Published As

Publication number Publication date
JP3766003B2 (en) 2006-04-12

Similar Documents

Publication Publication Date Title
JP3766003B2 (en) Coated cutting tool
US6586122B2 (en) Multilayer-coated cutting tool
WO2011122553A1 (en) Cutting tool
JP3248898B2 (en) Hard coating tool
JP2009203489A (en) Coating member
JP3963354B2 (en) Coated cutting tool
JP3392115B2 (en) Hard coating tool
CN110603342B (en) Metal cutting tool with multi-layer coating
JP2007084899A (en) Coating member, and method for coating coating member
JP3586218B2 (en) Coated cutting tool
JP2004042149A (en) Coated cutting tool
JP3454428B2 (en) Wear-resistant film-coated tools
JP2007291471A (en) Oxidation-resistant coating film, and member coated by the coating film
JP2007119810A (en) Coated member
JP2002337005A (en) Abrasive-resistant coating coated tool
JP2004136430A (en) Coated tool
JP2007002304A (en) Coated member, and method for coating member to be coated
JP2019118997A (en) Surface-coated cutting tool
JP3779948B2 (en) Hard coating tool
JP2019118995A (en) Surface-coated cutting tool
JP3679076B2 (en) Hard coating tool
JP3699004B2 (en) Wear-resistant coated tool
JP3679078B2 (en) Hard coating tool
JP3679077B2 (en) Hard coating tool
JP2007119809A (en) Coated member

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050713

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050916

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20051209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3766003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140203

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees