JPH08128977A - Method for measuring thermal expansion coefficient - Google Patents

Method for measuring thermal expansion coefficient

Info

Publication number
JPH08128977A
JPH08128977A JP28880194A JP28880194A JPH08128977A JP H08128977 A JPH08128977 A JP H08128977A JP 28880194 A JP28880194 A JP 28880194A JP 28880194 A JP28880194 A JP 28880194A JP H08128977 A JPH08128977 A JP H08128977A
Authority
JP
Japan
Prior art keywords
sample
thermal expansion
coefficient
expansion coefficient
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28880194A
Other languages
Japanese (ja)
Other versions
JP2674684B2 (en
Inventor
Takeshi Matsumoto
毅 松本
Akira Ono
晃 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP6288801A priority Critical patent/JP2674684B2/en
Publication of JPH08128977A publication Critical patent/JPH08128977A/en
Application granted granted Critical
Publication of JP2674684B2 publication Critical patent/JP2674684B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE: To measure the thermal expansion coefficient of a conductive material within a wide temperature range extending from room temperature to an ultrahigh temperature within a short time. CONSTITUTION: A pulse current is carried in the longitudinal direction of a conductive sample 1 having a fixed cross section to electrically heat the sample 1 within a short time. During this heating, the thermal expansion coefficient of the sample 1 is determined from the potential difference between a pair of movable voltage probes 3 fixed on the sample 1 side surfaces with a space and moved together with the sample 1 and a pair of fixed voltage probes 4 held with a fixed space and slid on the sample side surfaces.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属、黒鉛材料などの
導電性材料の高温での熱膨張率測定方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the coefficient of thermal expansion of a conductive material such as metal or graphite material at high temperature.

【0002】[0002]

【従来の技術】これまで、固体の熱膨張率測定は、以下
のもので代表される方法によって行われてきた。その方
法の一つは光干渉法で、この光干渉法では、温度一定の
高温炉の中に試料を置き、この試料の両端面に入射させ
たレーザー光を干渉計に導き、この両端面での反射光の
位相差の変化と光の波長から、熱膨張による試料の寸法
の変化を測定して熱膨張率を求めている。この方法は、
光干渉を用いるため非常に高い精度で熱膨張率を求める
ことができるが、試料表面が鏡面であるか、若しくは表
面に反射鏡を取り付ける必要がある。また、精密な光学
系を必要とするため高温での測定には適していない。
2. Description of the Related Art Up to now, the coefficient of thermal expansion of a solid has been measured by a method represented by the following. One of the methods is optical interferometry.In this optical interferometry, a sample is placed in a high-temperature furnace with a constant temperature, the laser light incident on both end faces of this sample is guided to an interferometer, and both end faces are The coefficient of thermal expansion is determined by measuring the change in the dimension of the sample due to thermal expansion from the change in the phase difference of the reflected light and the wavelength of the light. This method
Since optical interference is used, the coefficient of thermal expansion can be obtained with extremely high accuracy, but the sample surface is a mirror surface, or it is necessary to attach a reflecting mirror to the surface. Further, it requires a precise optical system and is not suitable for measurement at high temperature.

【0003】押棒式熱膨張率測定方法では、温度一定の
高温炉の中に置かれた試料に石英などで作られた押棒を
接触させ、その押棒と、それと材質が同じで試料近傍に
置かれた参照棒の伸びの差を測定して、熱膨張率を求め
ている。この方法は、測定のための装置の構造が簡単な
ため、標準的な熱膨張率測定方法となっているが、測定
精度は余り高くはない。また、高温では試料温度の不均
一に起因した測定誤差が生じ易い。これらの他にも、測
微顕微鏡法、X線回折法、静電容量法、光/機械てこ式
などの数多くの測定方法が存在するが、いずれも高温炉
を用いて試料を加熱し、一定温度に保っているために、
高温では試料温度の不均一による測定誤差が大きくなり
易く、また測定温度を変化させていくつかの測定を行う
には長い時間を要する。
In the push rod type thermal expansion coefficient measuring method, a push rod made of quartz or the like is brought into contact with a sample placed in a high-temperature furnace having a constant temperature, and the push rod and the same material as that are placed near the sample. The coefficient of thermal expansion is determined by measuring the difference in elongation between the reference rods. This method is a standard thermal expansion coefficient measurement method because the structure of the device for measurement is simple, but the measurement accuracy is not very high. Further, at high temperatures, measurement errors due to nonuniform sample temperature are likely to occur. In addition to these, there are many measuring methods such as a microscopic microscope method, an X-ray diffraction method, an electrostatic capacitance method, and an optical / mechanical lever method. To keep the temperature
At high temperatures, measurement errors tend to increase due to nonuniform sample temperature, and it takes a long time to change the measurement temperature and perform some measurements.

【0004】[0004]

【発明が解決しようとする課題】本発明の技術的課題
は、導電性材料の熱膨張率を、室温から超高温に至る広
い温度範囲で短時間に精度良く測定可能にする方法を提
供することにある。
SUMMARY OF THE INVENTION The technical problem of the present invention is to provide a method capable of accurately measuring the coefficient of thermal expansion of a conductive material in a wide temperature range from room temperature to ultrahigh temperature in a short time. It is in.

【0005】[0005]

【課題を解決するための手段・作用】上記課題を解決す
るための本発明の熱膨張率測定方法は、基本的には、断
面積一定の導電性ある試料の長さ方法にパルス的な電流
を流して試料を短時間のうちに通電加熱することを特徴
とし、試料の熱膨張率は、この加熱の間に、試料側面に
間隔を置いて固定されて試料と共に移動する一対の可動
電圧プローブ、及び一定の間隔に保たれて試料側面を摺
動する一対の固定電圧プローブに生じる電位差の違いか
ら、あるいは、試料側面に間隔を置いて固定されて試料
と共に移動する一対のプローブの移動量を測定すること
によって求め、さらには、上記加熱を行うに際して少な
くとも試料の一端を可動電極で保持させ、その加熱の間
の可動電極の移動量を測定して熱膨張率を求めるもので
ある。
The method for measuring the coefficient of thermal expansion of the present invention for solving the above-mentioned problems is basically a method for measuring the length of a conductive sample having a constant cross-sectional area and using a pulsed current. The sample is characterized in that the sample is electrically heated in a short time, and the coefficient of thermal expansion of the sample is fixed by a pair of movable voltage probes which are fixed at a side surface of the sample and are moved together with the sample during this heating. , And due to the difference in potential difference between a pair of fixed voltage probes that slide on the side of the sample while being kept at a constant interval, or the amount of movement of a pair of probes that are fixed and spaced along the side of the sample and move with the sample. The coefficient of thermal expansion is determined by measurement, and further, at the time of performing the heating, at least one end of the sample is held by the movable electrode, and the moving amount of the movable electrode during the heating is measured to determine the coefficient of thermal expansion.

【0006】更に具体的に説明すると、本発明による試
料の熱膨張率測定に際しては、図1に示すように、真空
又は不活性ガスで満たされた試料容器5の内部で、平板
状または円柱状の断面積一定の試料1の両端を一対の電
極2a,2bによって保持させる。一方の電極2aは固
定的に設けられた固定電極であるが、他方の電極2bは
熱膨張を逃がすために水平方向に可動な構造とした可動
電極であり、ばねによって常に弱い一定の張力を試料1
に与えるようにしている。
More specifically, when measuring the coefficient of thermal expansion of a sample according to the present invention, as shown in FIG. 1, inside the sample container 5 filled with a vacuum or an inert gas, a flat plate shape or a cylindrical shape is used. Both ends of the sample 1 having a constant cross-sectional area are held by a pair of electrodes 2a and 2b. One electrode 2a is a fixed electrode that is fixedly provided, while the other electrode 2b is a movable electrode that has a structure that is movable in the horizontal direction in order to escape thermal expansion. 1
I am trying to give it to.

【0007】試料1は、上記電極2a,2bを介してコ
ンデンサーバンク8と電流スイッチ9に接続され、それ
らを用いて試料1にパルス的な大電流を短い時間だけ供
給することにより、短時間のうちに室温から極めて高い
温度にまで加熱される。加熱中の試料1の温度は、放射
温度計7により試料容器5の外部から光学窓6を通して
測定、記録される。また、通電回路に直列に挿入した標
準抵抗10に生じる電位差から通電電流も同時に測定、
記録される。
The sample 1 is connected to the capacitor bank 8 and the current switch 9 via the electrodes 2a and 2b, and by using them to supply a large pulsed current to the sample 1 for a short period of time, It is heated from room temperature to extremely high temperature. The temperature of the sample 1 during heating is measured and recorded from outside the sample container 5 by the radiation thermometer 7 through the optical window 6. Also, the energizing current is simultaneously measured from the potential difference generated in the standard resistor 10 inserted in series in the energizing circuit,
Will be recorded.

【0008】試料1の側面には、加熱中の試料の長さ方
向の電位差を測定するため、一対の電圧プローブ3を接
触させている。電圧プローブ3の試料への接触方法には
二通り存在し、一つは可動電圧プローブと呼ばれるもの
で、可動な電圧プローブの先端を試料1の長さ方向に隔
てられた二点で試料表面に固定するものである。この場
合、電圧プローブ3の間隔は試料の熱膨張に伴って変化
する。
A pair of voltage probes 3 are brought into contact with the side surface of the sample 1 in order to measure the potential difference in the lengthwise direction of the sample during heating. There are two methods of contacting the sample with the voltage probe 3, one is called a movable voltage probe, and the tip of the movable voltage probe is located on the sample surface at two points separated in the length direction of the sample 1. It is something that is fixed. In this case, the distance between the voltage probes 3 changes with the thermal expansion of the sample.

【0009】もう一つの方法は固定電圧プローブと呼ば
れるもので、試料1上に接触している電圧プローブ3の
間隔は常に一定に保たれる。この場合、電圧プローブの
先端は試料1の熱膨張に伴って試料上を摺動する。ま
た、これらの可動電圧プローブと固定電圧プローブの両
者を併用する場合には、上記電圧プローブ3を可動電圧
プローブとし、同時に固定電圧プローブ4を試料の他の
側面に接触させることもできるが、一対の電圧プローブ
3の試料への接触方法を可動と固定の両方式に変えて、
二回試料を加熱することによって二種類の電位差を測定
することもできる。
Another method is called a fixed voltage probe, and the interval between the voltage probes 3 in contact with the sample 1 is always kept constant. In this case, the tip of the voltage probe slides on the sample due to the thermal expansion of the sample 1. When both the movable voltage probe and the fixed voltage probe are used in combination, the voltage probe 3 can be used as the movable voltage probe and the fixed voltage probe 4 can be brought into contact with the other side surface of the sample at the same time. By changing the method of contacting the voltage probe 3 of the sample with the sample to both movable and fixed types,
It is also possible to measure two types of potential difference by heating the sample twice.

【0010】熱膨張率の測定に際しては、上記試料1に
対してその両端の電極2a,2bを通して試料の長さ方
法にパルス的な電流を流し、試料を短時間(例えば、1
秒以内)のうちに通電加熱するが、その際の可動電圧プ
ローブの温度Tでの間隔及び室温での間隔を、それぞれ
m(T) ,Lm0とし、熱膨張による可動電圧プローブの
間隔の変化を△Lと置くと、無次元化された試料の熱膨
張は(1)式で表される。 △L(T)/Lm0=Lm(T) /Lm0−1 (1) 試料の断面積が長さ方向に一定かつ試料の電気抵抗率の
分布が一様であると仮定した場合、固定及び可動電圧プ
ローブ間の試料の電気抵抗を、それぞれRf ,Rm 、固
定電圧プローブの間隔をLf と置くと、上記Lm
(2)式のように書くことができる。 Lm(T) =Lfm(T) /Rf(T) (2)
When the coefficient of thermal expansion is measured, a pulse-like current is applied to the sample 1 through the electrodes 2a and 2b at both ends of the sample 1 according to the length of the sample, and the sample is left for a short time (for example, 1).
Within a few seconds), the heating is conducted by heating, and the interval at the temperature T of the movable voltage probe and the interval at room temperature at that time are L m (T) and L m0 , respectively. When the change is set to ΔL, the thermal expansion of the dimensionless sample is expressed by the equation (1). ΔL (T) / L m0 = L m (T) / L m0 −1 (1) If it is assumed that the cross-sectional area of the sample is constant in the length direction and the distribution of the electrical resistivity of the sample is uniform, If the electric resistances of the sample between the fixed and movable voltage probes are R f and R m , respectively, and the distance between the fixed voltage probes is L f , then L m can be written as in equation (2). L m (T) = L f R m (T) / R f (T) (2)

【0011】そして、(1)式と(2)式より、From equations (1) and (2),

【数1】 を得る。[Equation 1] Get.

【0012】また、試料断面積をA、電極間距離をL、
電極間の試料の電気抵抗をRとおくと、試料の電気抵抗
率は(RA/L)で表されるので、Rm とRf 、及び室
温での試料の寸法から計算された見かけの試料の電気抵
抗率をそれぞれρm 及びρfと置くと、上記(3)式を
次の(4)式で書き表すこともできる。 △L(T)/Lm0=ρm(T) /ρf(T) −1 (4)
A cross section of the sample is A, a distance between electrodes is L,
When the electrical resistance of the sample between the electrodes is R, the electrical resistivity of the sample is expressed by (RA / L). Therefore, the apparent sample calculated from R m and R f and the size of the sample at room temperature. If the electric resistivity of is set as ρ m and ρ f , respectively, the above equation (3) can be expressed by the following equation (4). ΔL (T) / L m0 = ρ m (T) / ρ f (T) −1 (4)

【0013】さらに、固定及び可動電圧プローブによっ
て測定される電位差をそれぞれVf,Vm 、これらの電
位差を測定した際の通電電流をそれぞれIf ,Im (可
動及び固定電圧プローブを同時に用いる場合にはIf
m )と置くと、(3)式はまた(5)式のように書き
表せる。
Further, the potential differences measured by the fixed and movable voltage probes are V f and V m , respectively, and the energizing currents when the potential differences are measured are I f and I m (when the movable and fixed voltage probes are used simultaneously). Has I f =
I m ), the equation (3) can be rewritten as the equation (5).

【数2】 [Equation 2]

【0014】熱膨張率αは、このようにして求められた
熱膨張を温度で微分することによって、(6)式で与え
られる。
The coefficient of thermal expansion α is given by the equation (6) by differentiating the thermal expansion thus obtained with the temperature.

【数3】 (Equation 3)

【0015】一方、図2に示すように、可動プローブ3
の移動量を直接測定して熱膨張を求めることも可能であ
る。この場合、プローブ間の電位差を測定する必要はな
く、非導電性のプローブであっても構わない。そして、
室温状態を零とした一対のプローブ3の試料長さ方向へ
の移動量を、それぞれ△L1 ,△L2 と置くと、試料の
熱膨張は(7)式で表される。 △L(T)/Lm0=(△L1(T) −△L2(T) )/Lm0 (7) プローブの移動量は、プローブ自身、またはそれを支え
る支柱に取り付けられたひずみゲージや変位センサ、あ
るいは光干渉計により測定すればよい。
On the other hand, as shown in FIG.
It is also possible to determine the thermal expansion by directly measuring the amount of movement of In this case, it is not necessary to measure the potential difference between the probes, and a non-conductive probe may be used. And
If the moving amounts of the pair of probes 3 in the sample length direction when the room temperature is zero are ΔL 1 and ΔL 2 , respectively, the thermal expansion of the sample is expressed by the equation (7). ΔL (T) / L m0 = ( ΔL 1 (T) −ΔL 2 (T)) / L m0 (7) The amount of movement of the probe is determined by the strain gauge attached to the probe itself or the column supporting it. It may be measured with a displacement sensor or an optical interferometer.

【0016】また、試料への通電に用いられる一対の電
極のうち一方の可動電極2bの移動量△Le を前述のプ
ローブと同様の方法で測定して、(8)式により熱膨張
を求めることも可能である。 △L(T)/Lmo=△Le(T) /Le0−1 (8) ここで、Le0は室温での電極の間隔である。この場合、
試料1の電極に近い部分では、温度の低い電極への熱伝
導により試料に著しい温度の不均一が生じる。しかし、
極めて短い時間に急速に試料1を通電加熱するため、温
度が不均一な領域は試料全体に比べて十分小さく、熱膨
張測定に及ぼす影響は小さいと考えられる。
Further, the moving amount ΔL e of one movable electrode 2b of the pair of electrodes used for energizing the sample is measured by the same method as the above-mentioned probe, and the thermal expansion is obtained by the equation (8). It is also possible. ΔL (T) / L mo = ΔL e (T) / L e0 −1 (8) Here, L e0 is the distance between the electrodes at room temperature. in this case,
In a portion of the sample 1 near the electrode, heat conduction to the electrode having a low temperature causes remarkable nonuniformity of the temperature of the sample. But,
Since the sample 1 is rapidly heated by energization in an extremely short time, the region where the temperature is not uniform is sufficiently smaller than the entire sample, and it is considered that the influence on the thermal expansion measurement is small.

【0017】[0017]

【実施例】図3に、本発明に基づいて熱膨張率測定を行
った装置における試料周辺の見取り図を示す。試料1
は、厚さ0.1〜1mm、幅10mm、長さ50mm程
度の大きさの平板状で、試料容器内部でその両端を電極
2a,2bにより水平に保持した。これらの電極のう
ち、一方の電極2aは固定電極、他方の電極2bは試料
の熱膨張を逃がすための可動電極であり、ばね2cによ
って試料1に一定の弱い張力を与えている。
EXAMPLE FIG. 3 shows a sketch of the periphery of a sample in an apparatus in which the coefficient of thermal expansion was measured according to the present invention. Sample 1
Was a flat plate having a thickness of 0.1 to 1 mm, a width of 10 mm, and a length of about 50 mm, and both ends thereof were held horizontally by electrodes 2a and 2b inside the sample container. Among these electrodes, one electrode 2a is a fixed electrode and the other electrode 2b is a movable electrode for releasing thermal expansion of the sample, and a constant weak tension is applied to the sample 1 by the spring 2c.

【0018】試料1の表面には、先の尖った一対の電圧
プローブ3を、ばねを用いて一定の力で接触させた。こ
の電圧プローブを可動電圧プローブとして用いる場合に
は、試料表面に加工した深さ0.3mm程度のくぼみに
電圧プローブの先端を入れ、電圧プローブ3を固定して
いるねじを緩めて、電圧プローブが試料1の熱膨張に伴
って移動できるように設定した。一方、電圧プローブ3
を固定電圧プローブとして用いる場合には、電圧プロー
ブ3の固定ねじを固く締めて、試料表面のくぼみがない
部分に電圧プローブ3の先を一定間隔で接触させた。
A pair of pointed voltage probes 3 were brought into contact with the surface of the sample 1 with a constant force using a spring. When this voltage probe is used as a movable voltage probe, the tip of the voltage probe is put into a recess having a depth of about 0.3 mm machined on the sample surface, and the screw fixing the voltage probe 3 is loosened to It was set so that it could move with the thermal expansion of the sample 1. On the other hand, the voltage probe 3
In the case of using as a fixed voltage probe, the fixing screw of the voltage probe 3 was tightly tightened, and the tip of the voltage probe 3 was brought into contact with the portion of the sample surface where there was no dent at regular intervals.

【0019】試料1は、コンデンサーバンクとFETを
用いた半導体スイッチにより、1秒以内の短い時間だけ
パルス的な大電流を流すことにより、室温から2800
℃に至る温度まで通電加熱した。通電加熱状態における
通電電流、電圧プローブ間の電位差、及び光学窓6を通
して放射温度計7によって測定された試料表面中央の温
度は、一時的にトランジェントメモリに記録された後、
パーソナルコンピュータに転送され、これらのデータか
ら試料1の熱膨張率を計算した。
The sample 1 is a semiconductor switch using a capacitor bank and a FET, and a large pulse-like current is passed for a short time within 1 second, so that the temperature from room temperature to 2800.
It was electrically heated to a temperature up to ° C. The energization current in the energization heating state, the potential difference between the voltage probes, and the temperature of the sample surface center measured by the radiation thermometer 7 through the optical window 6 are temporarily recorded in the transient memory.
Transferred to a personal computer, the coefficient of thermal expansion of Sample 1 was calculated from these data.

【0020】図4に、移動及び固定電圧プローブを用い
て測定された黒鉛材料(POCOAXM−5Q1グラフ
ァイト)の見かけの電気抵抗率を示す。この二つの電気
抵抗率の違いが試料の熱膨張による長さの変化を示して
いる。図5には、これらのデータから(4)式と(6)
式を用いて計算された試料の熱膨張、及び熱膨張率を示
す。この測定で、800℃から2800℃の温度範囲で
試料の熱膨張を比較的小さなばらつきで測定できること
が明らかにされた。このデータから計算された試料の熱
膨張率は、ばらつきはやや大きいが、平均して約9×1
-6-1であった。
FIG. 4 shows the apparent electrical resistivity of the graphite material (POCOAXM-5Q1 graphite) measured using a moving and fixed voltage probe. The difference between these two electrical resistivities indicates the change in length due to the thermal expansion of the sample. FIG. 5 shows the equations (4) and (6) from these data.
The thermal expansion of a sample calculated using a formula and a thermal expansion coefficient are shown. This measurement revealed that the thermal expansion of the sample can be measured with a relatively small variation in the temperature range of 800 ° C to 2800 ° C. The coefficient of thermal expansion of the sample calculated from this data varies a little, but averages about 9 × 1
It was 0 -6 K -1 .

【0021】[0021]

【発明の効果】以上に詳述した本発明の熱膨張率測定方
法によれば、室温から超高温に至る広い温度範囲での導
電性材料の熱膨張率を、従来の方法よりもはるかに短い
時間(1分以下)で測定することができる。また、試料
のみを短時間に均一に通電加熱するので、大がかりな高
温炉等を必要とせず、試料の温度の不均一に起因する測
定誤差を最小限に抑えることができる。さらに、試料の
電気抵抗率を用いて熱膨張率を測定する方法では、熱膨
張による試料の寸法変化を測定する必要がないので、測
定装置の構造が簡単になるという利点を有している。
According to the thermal expansion coefficient measuring method of the present invention described in detail above, the thermal expansion coefficient of the conductive material in a wide temperature range from room temperature to ultrahigh temperature is much shorter than that of the conventional method. It can be measured in time (1 minute or less). Further, since only the sample is uniformly energized and heated in a short time, a large-scale high-temperature furnace or the like is not required, and the measurement error due to the nonuniform temperature of the sample can be minimized. Furthermore, the method of measuring the coefficient of thermal expansion using the electrical resistivity of the sample has the advantage of simplifying the structure of the measuring device because it is not necessary to measure the dimensional change of the sample due to thermal expansion.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る熱膨張率測定方法の原理を説明す
るための説明図である。
FIG. 1 is an explanatory diagram for explaining the principle of a thermal expansion coefficient measuring method according to the present invention.

【図2】本発明における電圧プローブ、可動電極の移動
量についての説明図である。
FIG. 2 is an explanatory diagram of a moving amount of a voltage probe and a movable electrode according to the present invention.

【図3】本発明の実施例における試料周辺の見取り図で
ある。
FIG. 3 is a sketch drawing around a sample in an example of the present invention.

【図4】本発明に基づいて測定された黒鉛試料の見かけ
の電気抵抗率を示すグラフである。
FIG. 4 is a graph showing the apparent electrical resistivity of a graphite sample measured according to the present invention.

【図5】本発明に基づいて測定された黒鉛材料の熱膨張
及び熱膨張率を示すグラフである。
FIG. 5 is a graph showing the thermal expansion and the coefficient of thermal expansion of the graphite material measured according to the present invention.

【符号の説明】[Explanation of symbols]

1 試料 2a 固定電極 2b 可動電極 3 電圧プローブ 4 固定電圧プローブ 5 試料容器 6 光学窓 7 放射温度計 1 sample 2a fixed electrode 2b movable electrode 3 voltage probe 4 fixed voltage probe 5 sample container 6 optical window 7 radiation thermometer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】断面積一定の導電性ある試料の長さ方法に
パルス的な電流を流して試料を短時間のうちに通電加熱
し、この加熱の間に、試料側面に間隔を置いて固定され
て試料と共に移動する一対の可動電圧プローブ、及び一
定の間隔に保たれて試料側面を摺動する一対の固定電圧
プローブに生じる電位差の違いから、試料の熱膨張率を
求めることを特徴とする熱膨張率測定方法。
1. A method of lengthening a conductive sample having a constant cross-sectional area, in which a pulsed electric current is applied to electrically heat the sample in a short time, and during heating, the sample is fixed at an interval on the side surface of the sample. It is characterized in that the coefficient of thermal expansion of the sample is obtained from the difference in the potential difference generated between the pair of movable voltage probes that are moved together with the sample and the pair of fixed voltage probes that are held at a constant interval and slide on the side surface of the sample. Method of measuring coefficient of thermal expansion.
【請求項2】断面積一定の導電性ある試料の長さ方法に
パルス的な電流を流して試料を短時間のうちに通電加熱
し、この加熱の間に、試料側面に間隔を置いて固定され
て試料と共に移動する一対のプローブの移動量を測定し
て試料の熱膨張率を求めることを特徴とする熱膨張率測
定方法。
2. A method of lengthening a conductive sample having a constant cross-sectional area by applying a pulsed electric current to heat the sample in a short time and fixing it at a side surface of the sample with a space during heating. A thermal expansion coefficient measuring method, characterized in that the thermal expansion coefficient of a sample is obtained by measuring the amount of movement of a pair of probes that move together with the sample.
【請求項3】断面積一定の導電性ある試料の長さ方法に
パルス的な電流を流して試料を短時間のうちに通電加熱
し、この加熱を行うに際して少なくとも試料の一端を可
動電極で保持させ、この加熱の間の可動電極の移動量を
測定して熱膨張率を求めることを特徴とする熱膨張率測
定方法。
3. A method of lengthening a conductive sample having a constant cross-sectional area, in which a pulsed current is passed to electrically heat the sample in a short time, and at least one end of the sample is held by a movable electrode when this heating is performed. Then, the thermal expansion coefficient measuring method is characterized in that the thermal expansion coefficient is obtained by measuring the moving amount of the movable electrode during the heating.
JP6288801A 1994-10-28 1994-10-28 Thermal expansion coefficient measurement method Expired - Lifetime JP2674684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6288801A JP2674684B2 (en) 1994-10-28 1994-10-28 Thermal expansion coefficient measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6288801A JP2674684B2 (en) 1994-10-28 1994-10-28 Thermal expansion coefficient measurement method

Publications (2)

Publication Number Publication Date
JPH08128977A true JPH08128977A (en) 1996-05-21
JP2674684B2 JP2674684B2 (en) 1997-11-12

Family

ID=17734913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6288801A Expired - Lifetime JP2674684B2 (en) 1994-10-28 1994-10-28 Thermal expansion coefficient measurement method

Country Status (1)

Country Link
JP (1) JP2674684B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2757948A1 (en) * 1996-12-30 1998-07-03 Commissariat Energie Atomique MICROSYSTEMS FOR BIOLOGICAL ANALYZES, THEIR USE FOR THE DETECTION OF ANALYTES AND THEIR METHOD OF MAKING
JP2009128066A (en) * 2007-11-20 2009-06-11 Toyo Tanso Kk Thermal expansion coefficient measuring method and measuring device
JP2012068093A (en) * 2010-09-22 2012-04-05 Toyo Tanso Kk Hot displacement measuring apparatus and hot displacement measuring method
CN106442896A (en) * 2016-11-25 2017-02-22 江苏洛尧智慧通信科技有限公司 Joint mixture expansion rate checking device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0371049A (en) * 1989-08-10 1991-03-26 Rikagaku Kenkyusho Interferometer for optical thermal displacement detection

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0371049A (en) * 1989-08-10 1991-03-26 Rikagaku Kenkyusho Interferometer for optical thermal displacement detection

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2757948A1 (en) * 1996-12-30 1998-07-03 Commissariat Energie Atomique MICROSYSTEMS FOR BIOLOGICAL ANALYZES, THEIR USE FOR THE DETECTION OF ANALYTES AND THEIR METHOD OF MAKING
WO1998029739A1 (en) * 1996-12-30 1998-07-09 Commissariat A L'energie Atomique Micro systems for biological analyses, their use for detecting analytes and method for producing them
JP2009128066A (en) * 2007-11-20 2009-06-11 Toyo Tanso Kk Thermal expansion coefficient measuring method and measuring device
JP2012068093A (en) * 2010-09-22 2012-04-05 Toyo Tanso Kk Hot displacement measuring apparatus and hot displacement measuring method
CN106442896A (en) * 2016-11-25 2017-02-22 江苏洛尧智慧通信科技有限公司 Joint mixture expansion rate checking device
CN106442896B (en) * 2016-11-25 2019-01-29 广州振中建设有限公司 A kind of gap filler expansion rate verifying attachment

Also Published As

Publication number Publication date
JP2674684B2 (en) 1997-11-12

Similar Documents

Publication Publication Date Title
JP4195935B2 (en) Thermophysical property measuring method and apparatus
KR0145027B1 (en) Measuring thermal conductivity and apparatus therefor
JPH02287246A (en) Instrument and method for measuring absorption
Roberts et al. Absolute scale of thermoelectricity III
JP2674684B2 (en) Thermal expansion coefficient measurement method
JPH0479573B2 (en)
CN105699619A (en) Metal thermal electromotive force measuring instrument
JP3687030B2 (en) Micro surface temperature distribution measurement method and apparatus therefor
Okaji et al. A high-temperature dilatometer using optical heterodyne interferometry
Cutler et al. Heat‐Wave Methods for the Measurement of Thermal Diffusivity
JPH03269352A (en) Method and instrument for measuring thermal expansion coefficient of long sized sample
JP2008224496A (en) Thermophysical property measuring device, and thermophysical property measuring method
EP0449221B1 (en) Scanning probe microscope
Schmon et al. Thermophysical properties of Manganin (Cu86Mn12Ni2) in the solid and liquid state
Yamaguchi et al. Interferometric method of measuring complex piezoelectric constants of crystals in a frequency range up to about 50 kHz
US4133722A (en) Process for determining properties of materials
Omini et al. Dilatometric determination of thermal diffusivity in low conducting materials
JPH0372944B2 (en)
JP7323108B2 (en) Thermoelectric property evaluation unit, thermoelectric property evaluation device, and thermoelectric property evaluation method
US3433051A (en) Apparatus for determining mechanical and thermal properties of metals
SU894510A1 (en) Differential dilatometer
Lanyi et al. Apparatus for measuring potential distribution
EP3637073B1 (en) Process for the temperature measurement for a high temperature micro-deformation device
Revaz et al. A device for measurements of the temperature response to single discharges with high local resolution and fast response time
Girt et al. Apparatus for thermal dilatation measurements of amorphous samples

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term