JPH0479573B2 - - Google Patents

Info

Publication number
JPH0479573B2
JPH0479573B2 JP60189674A JP18967485A JPH0479573B2 JP H0479573 B2 JPH0479573 B2 JP H0479573B2 JP 60189674 A JP60189674 A JP 60189674A JP 18967485 A JP18967485 A JP 18967485A JP H0479573 B2 JPH0479573 B2 JP H0479573B2
Authority
JP
Japan
Prior art keywords
sample
temperature
film
thermal diffusivity
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60189674A
Other languages
Japanese (ja)
Other versions
JPS6250652A (en
Inventor
Hiroyuki Yasujima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP60189674A priority Critical patent/JPS6250652A/en
Publication of JPS6250652A publication Critical patent/JPS6250652A/en
Publication of JPH0479573B2 publication Critical patent/JPH0479573B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はフイルム状試料の熱拡散率測定方
法、特にそのフイルム面方向の熱拡散率の測定方
法及びそのための装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for measuring thermal diffusivity of a film-like sample, and particularly to a method for measuring thermal diffusivity in the film surface direction and an apparatus therefor.

(従来技術) 現在、産業用資材として広く使用されている金
属やプラスチツク等の素材の熱伝導特性は、加工
時や使用時に必要な重要な特性の一つである。熱
伝導度の測定において、試料に一様な熱移動状態
を設定すること、試料と測定装置との間の熱抵抗
の影響や熱電対等の温度測定子による系の温度分
布への影響をくすことが重要である。従つて、測
定試料によつてその形状と大きさに敵した測定方
法を選定する必要があり、各種の熱伝導測定装置
が提案されている。
(Prior Art) Thermal conductivity properties of materials such as metals and plastics, which are currently widely used as industrial materials, are one of the important properties required during processing and use. When measuring thermal conductivity, it is necessary to set a uniform state of heat transfer in the sample, and to eliminate the influence of thermal resistance between the sample and the measuring device and the influence of temperature measurement probes such as thermocouples on the temperature distribution of the system. is important. Therefore, it is necessary to select a measuring method that is suitable for the shape and size of the sample to be measured, and various thermal conductivity measuring devices have been proposed.

薄いフイルム状に加工されて使用される素材も
多く、しかも薄くフイルム加工することにより、
特性の異方性など特性変化が現われることも少な
くなく、重要な評価項目であるが、現在、このよ
うなフイルム状試料の面方向の特性について充分
に満足で出来測定方法はまだ知られていない。
Many materials are processed into thin films, and by processing them into thin films,
Changes in properties such as anisotropy of properties often appear and are important evaluation items, but currently there is no known method for measuring the properties of film-like samples in the plane direction with full satisfaction. .

すなわち、薄いフイルム状試料の熱伝導度の測
定法には、一定温度差を有する加熱板・冷却板で
サンドイツチした状態での熱流量を測定する定常
方法や、レーザーフラツシユ法と呼ばれる非定常
方法がある。しかし、これらの方法は試料の膜厚
方向の測定には良いが、膜面方向の測定には不適
当である。後者の方法は、板状試料の厚さ方向の
熱伝導度測定用に開発された方法であり、膜面方
向の測定には利用することが出来ない。前者は必
ずしも膜面方向の測定に応用出来ないわけではな
いが、サンドイツチ構造の試料設定が出来ないた
めに、試料の固定方法に工夫が必要であり、熱損
失の無い測定系の設定をしなければならない。さ
らに、熱伝導度の異なる2種以上の成分を含む試
料はこの定常法では成分を分離して測定出来ない
という欠点がある。
In other words, there are two ways to measure the thermal conductivity of a thin film sample: a steady method that measures the heat flow in a sandwiched state between a heating plate and a cooling plate with a constant temperature difference, and an unsteady method called the laser flash method. There is. However, although these methods are good for measuring the film thickness direction of a sample, they are unsuitable for measuring the film surface direction. The latter method is a method developed for measuring the thermal conductivity in the thickness direction of a plate-shaped sample, and cannot be used for measurement in the film surface direction. The former method cannot necessarily be applied to measurements in the direction of the film surface, but since it is not possible to set up the sample in a sandwich structure, it is necessary to devise a method for fixing the sample, and to set up a measurement system without heat loss. Must be. Furthermore, in the case of a sample containing two or more components having different thermal conductivities, this steady-state method has the disadvantage that the components cannot be measured separately.

(この発明が解決しようとする問題点) この発明は、試料の加熱方法と温度測定方法を
採用し、電子計算機による解析手法により、フイ
ルム状試料の膜面方向の熱拡散率の高精度の測定
を可能とし、さらに、2種以上の熱伝導度の異な
る成分を含む試料の解析をも行いうる熱拡散率の
測定方法及びそのための装置を得ようとするもの
である。
(Problems to be solved by this invention) This invention employs a sample heating method and a temperature measurement method, and uses an analysis method using an electronic computer to measure the thermal diffusivity of a film sample in the film surface direction with high precision. The present invention aims to provide a method for measuring thermal diffusivity and an apparatus therefor, which enables the analysis of samples containing two or more types of components having different thermal conductivities.

発明の構成 (問題点を解決するための手段) 第1図はこの発明の熱拡散率の測定方法を示す
概念図である。フイルム状の試料1は固定治具1
2により設置される。このフイルムの中央部分を
瞬間的に加熱するが、加熱部分2はフイルムの長
さ方向に直角な細い線状部分であるが、その幅は
試料1の厚さに対し充分な大きさを持つように選
ばれる。加熱方法は、電気抵抗ヒーターを電流パ
ルスによつて加熱してもよいが、加熱位置と加熱
部分の面形状を精度よく決定出来、ヒーター自身
による熱損失がなく、一様な瞬間加熱が出来る点
でパルスレーザーの利用が適している。
Structure of the Invention (Means for Solving Problems) FIG. 1 is a conceptual diagram showing a method for measuring thermal diffusivity according to the present invention. Film sample 1 is fixed in fixture 1
Installed by 2. The central part of this film is heated instantaneously.The heating part 2 is a thin linear part perpendicular to the length direction of the film, and its width is set to be large enough for the thickness of sample 1. selected. As for the heating method, electric resistance heaters may be heated by current pulses, but the heating position and surface shape of the heated part can be determined with high accuracy, there is no heat loss due to the heater itself, and uniform instantaneous heating can be achieved. Therefore, the use of pulsed laser is suitable.

パルスレーザ3からのパルス発振された加熱ビ
ーム4により、照射域を決める遮光板6に設けた
スリツト窓5を通して加熱部分2を照射、加熱す
る。
A heating beam 4 pulsed from a pulsed laser 3 irradiates and heats the heating portion 2 through a slit window 5 provided in a light shielding plate 6 that determines an irradiation area.

試料に照射された熱量は、温度勾配と熱拡散率
に比例した速度で治具12の方へ移動して行く
が、この移動状況を加熱部分2から一定距離に設
定した測定点7の温度変化として計測する。
The amount of heat irradiated to the sample moves toward the jig 12 at a speed proportional to the temperature gradient and thermal diffusivity. It is measured as .

温度測定子としては、熱電対などの接触測定を
行うものにあつては、測定子自身による熱流の乱
れが発生し易く、検出応答性も劣り、さらには、
試料の長さ方向に2種以上の熱伝導率の異なる部
分を含む試料では、それらを分離検出する能力が
劣るという問題があるので、光電温度計を用いた
非接触型のものが望ましい。具体的には、InSb、
GaAsPなどの赤外線センサーを用いることが出
来、フイルム温度に比例した電気信号を時間応答
性よく計測することが出来る。
Temperature probes that perform contact measurements, such as thermocouples, tend to cause disturbances in heat flow due to the probe itself, have poor detection response, and, furthermore,
A non-contact type thermometer using a photoelectric thermometer is preferable since there is a problem in that the ability to separate and detect a sample containing two or more types of different thermal conductivities in the longitudinal direction of the sample is poor. Specifically, InSb,
Infrared sensors such as GaAsP can be used to measure electrical signals proportional to film temperature with good time response.

光電温度計11は遮光板8の窓9を通じて測定
点7の試料面温度を計測し、温度に比例した電気
信号をオシロスコープ、トランジエントメモリー
に表示し、デジタル値として記録することが出来
る。なお、光透過性の良い試料の場合には、遮光
板10を追加設定するのが試料中を拡散する熱以
外から放出される熱ノイズの影響を除くのに有効
である。
The photoelectric thermometer 11 measures the sample surface temperature at the measurement point 7 through the window 9 of the light-shielding plate 8, displays an electric signal proportional to the temperature on an oscilloscope and a transient memory, and can record it as a digital value. In addition, in the case of a sample with good light transmittance, it is effective to additionally set the light shielding plate 10 in order to eliminate the influence of thermal noise emitted from sources other than the heat diffused in the sample.

(作用) 上記の構成を有する測定装置によつて測定され
るフイルム状試料の温度の時間変化曲線の1例を
第2図に示す。縦軸は温度、横軸は時間である。
熱拡散率が大きく、測定点の位置が加熱部分に近
い場合程よりもの曲線の様な特性を示し、ピ
ークは速い時間に現われる。
(Function) FIG. 2 shows an example of a time change curve of the temperature of a film sample measured by the measuring device having the above configuration. The vertical axis is temperature and the horizontal axis is time.
When the thermal diffusivity is large and the position of the measuring point is close to the heated part, the curve-like characteristics are more pronounced, and the peak appears at a faster time.

このような温度の時間変化曲線の特性が、測定
点の位置や加熱幅等の測定条件と、試料の熱拡散
率との関係式として求めることが出来れば、温度
の時間変化曲線を解析することにより、試料の熱
拡散率を求めることが出来る。此の関係式は、有
限要素法により理論計算することが出来る。有限
要素法は従来から利用されているシユミレーシヨ
ン方法の一つであり、これを用いて熱伝導特性を
求めることが出来る。
If the characteristics of such a temperature change curve over time can be determined as a relational expression between measurement conditions such as the position of the measurement point and heating width, and the thermal diffusivity of the sample, it is possible to analyze the temperature change curve over time. The thermal diffusivity of the sample can be determined by: This relational expression can be theoretically calculated using the finite element method. The finite element method is one of the conventionally used simulation methods, and can be used to determine heat conduction characteristics.

この発明の場合、試料は薄いフイルムの細長片
であり、加熱部分はこの細長片に直角な細い帯状
部分であるので、熱拡散については第3図に示す
ような試料の長さ方向に微小単位長さを持つ有限
個数nの微小要素からなる一次元の構造体として
考えることができる。要素iにおける微小時間で
の温度変化量が、隣接の(i−1)、(i+1)要
素との温度差及び熱拡散率に比例した熱量の拡散
に因るものとし、初期条件として加熱部分に含ま
れる要素が一様に高温に加熱された場合につい
て、各要素の各微小時間ごとの温度を計算する。
このとき、実行誤差範囲内におさまる様に微小時
間と要素の微小単位長を充分小さくする必要があ
り、計算は通常電子計算機によつて行われる。第
4図はこのようにして求められた加熱部分近傍の
温度分布曲線の時間変化を示す。横軸は試料の長
さ方向の位置を、縦軸は温度を示す。初期状態
から時間とともに、、と温度分布は拡がつ
て行く。試料を固定する端部における熱放散があ
る場合でも、試料が充分に長い場合や短時間の温
度測定の場合には、この結果は微小誤差範囲で同
一と見てよく、試料の両端を固定し、中央部を加
熱する方法は、試料中の熱拡散を一様にし計測精
度を上げるために有効である。
In the case of this invention, the sample is a thin strip of film, and the heated part is a thin strip perpendicular to the strip, so thermal diffusion is carried out in minute units in the length direction of the sample as shown in Figure 3. It can be considered as a one-dimensional structure consisting of a finite number n of minute elements each having a length. Assume that the amount of temperature change in element i in minute time is due to the temperature difference between adjacent elements (i-1) and (i+1) and the diffusion of heat proportional to the thermal diffusivity, and as an initial condition, When the included elements are uniformly heated to a high temperature, the temperature of each element at each minute time is calculated.
At this time, it is necessary to make the minute time and the minute unit length of the element sufficiently small so as to fall within the execution error range, and the calculation is usually performed by an electronic computer. FIG. 4 shows the temporal change of the temperature distribution curve near the heated portion determined in this manner. The horizontal axis shows the position in the length direction of the sample, and the vertical axis shows the temperature. As time passes from the initial state, the temperature distribution expands. Even if there is heat dissipation at the ends where the sample is fixed, if the sample is long enough or the temperature is measured for a short time, the results can be considered to be the same within a small error range; The method of heating the central part is effective for uniforming thermal diffusion in the sample and improving measurement accuracy.

さらに、測定点の位置を変えた測定結果は、第
5図に示す温度時間変化曲線で近似的に表すこと
が出来る。即ち、縦軸に示す温度のピーク値は加
熱部と温度測定点との距離に反比例して変化する
が、その相対値の変化は横軸の時間に換えて
[(熱拡散率×時間)/(測定距離の2乗)]なる
無次元の量を取り、縦軸、横軸にそれぞれ適当な
比例定数を与えることによつて第2図に示した実
際の温度時間変化曲線との良い一致を得ることが
出来る。従つて、所定の測定距離における温度時
間変化曲線を測定することにより、横軸の比例定
数としての熱拡散率が計算出来る。
Furthermore, the measurement results obtained by changing the position of the measurement point can be approximately represented by the temperature time change curve shown in FIG. In other words, the peak temperature value shown on the vertical axis changes in inverse proportion to the distance between the heating part and the temperature measurement point, but the change in relative value can be expressed as [(thermal diffusivity x time)/ (square of the measured distance)] and give appropriate proportionality constants to the vertical and horizontal axes to obtain a good agreement with the actual temperature time change curve shown in Figure 2. You can get it. Therefore, by measuring the temperature time change curve at a predetermined measurement distance, the thermal diffusivity as a proportionality constant on the horizontal axis can be calculated.

(実施例) 以下この発明の実施例を示す。(Example) Examples of this invention will be shown below.

実施例 1 第6図はその基本構成を第1図に示した測定装
置の概念図であり、加熱部はルビーレーザー13
とその発振電源14からなり、出力10J/cm2のパ
ルス光が得られる。試料固定部は厚さ1mmのベー
クライト板の中央に窓を設けた試料固定治具15
であり、これに幅6mm、長さ10mm、厚さ0.03mmの
ポリ・P−フエニレン−1,3,4−オキサジア
ゾール(以下単にポリ・オキサジアゾールと記
す)のフイルムをアルゴン中1000℃で1時間高熱
処理し、試料16として固定した。この試料固定
治具15をはさんで厚さ0.1mmのステンレス薄板
で作製された2枚のスリツト板17、19を設け
た。第1スリツト板17は7mm×0.3mmのレーザ
ー照射窓18がレーザー光軸中心にくるように配
設される。第2スリツト板19は5mm×0.25mmの
程度測定窓20を測定点がレーザー光軸中心から
2.75mm離れた位置にくるように配設される。この
スリツトは図示のようにL字形板を組み合わせて
形成すればスリツト幅の調製に便利である。温度
測定部はGeレンズで温度測定点に焦点を合せた
InSbセンサー21と増幅器22からなり、出力
信号の最高値として約1Vの信号を得た。データ
記録部にはデジタル・ストレージ・オシロスコー
プ23を用い、信号波形の表示と同時に1msec/
4000ワードから1sec/4000ワードの記録密度で信
号を記録し、第7図に示す温度の時間変化曲線を
得た。
Example 1 FIG. 6 is a conceptual diagram of the measuring device whose basic configuration is shown in FIG.
and its oscillation power source 14, and a pulsed light with an output of 10 J/cm 2 can be obtained. The sample fixing part is a sample fixing jig 15 with a window in the center of a Bakelite plate with a thickness of 1 mm.
A film of poly-P-phenylene-1,3,4-oxadiazole (hereinafter simply referred to as poly-oxadiazole) with a width of 6 mm, a length of 10 mm, and a thickness of 0.03 mm was added to this at 1000°C in argon. The sample was subjected to high heat treatment for 1 hour and fixed as sample 16. Two slit plates 17 and 19 made of thin stainless steel plates with a thickness of 0.1 mm were provided sandwiching the sample fixing jig 15 therebetween. The first slit plate 17 is arranged so that the laser irradiation window 18 of 7 mm x 0.3 mm is centered on the laser optical axis. The second slit plate 19 has a measuring window 20 of 5 mm x 0.25 mm with the measurement point being from the center of the laser optical axis.
They are placed 2.75mm apart. If this slit is formed by combining L-shaped plates as shown in the figure, it will be convenient to adjust the slit width. The temperature measurement part focused on the temperature measurement point using a Ge lens.
It consisted of an InSb sensor 21 and an amplifier 22, and a signal of approximately 1V was obtained as the maximum output signal. A digital storage oscilloscope 23 is used for the data recording section, and the signal waveform is displayed simultaneously at 1 msec/
Signals were recorded at a recording density of 1 sec/4000 words from 4000 words, and a temperature time change curve shown in FIG. 7 was obtained.

得られたデジタル信号データは電子計算機24
によつて処理される。第7図の温度時間変化曲線
をそれぞれ大きさの異なる2つの第5図示の理論
曲線の和としたときに一致するような特性定数値
を最小2乗法により計算すると、それぞれ8.4と
0.21cm2/secの熱拡散率を得、さらにそれぞれの
ピーク値の比として7/3が得られた。この測定結
果により、加熱処理によりグラフアイト状構造が
成長するというポリ・オキサジアゾールの構造変
化を、熱伝導特性からも始めて明らかにすること
が出来た。
The obtained digital signal data is sent to the electronic computer 24.
Processed by. When the temperature time change curve in Figure 7 is the sum of the two theoretical curves shown in Figure 5, each having a different size, the characteristic constant values that match are calculated by the least squares method to be 8.4.
A thermal diffusivity of 0.21 cm 2 /sec was obtained, and a ratio of 7/3 between the respective peak values was obtained. These measurement results made it possible to clarify, for the first time, the structural change of polyoxadiazole in which a graphite-like structure grows due to heat treatment, starting from the thermal conductivity properties.

実施例 2 実施例1と同様のポリ・オキサジアゾールフイ
ルムの熱処理温度が2000℃および2500℃の試料に
ついて同様な測定を行つた。得られた温度時間変
化曲線は、どちらも見掛け上一つのピーク値を持
つていた。しかし、演算処理の結果、熱処理温度
2000℃の試料は実施例1と同様、2つの理論曲線
の和であることが解析され、熱拡散率はそれぞれ
8.6と3.4cm2/secの値を得ることが出来た。一方、
熱処理温度が2500℃の試料については、明確な分
離解析が不可能であり、熱拡散率9.5cm2/secの一
成分の値が得られた。この測定結果から、ポリ・
オキサジアゾールが2000℃以上の加熱処理により
グラフアイト状構造に変化するという知見を得る
ことが出来た。
Example 2 Similar measurements were carried out on samples of the same poly-oxadiazole films as in Example 1, which were heat-treated at temperatures of 2000°C and 2500°C. Both of the obtained temperature-time change curves had an apparent single peak value. However, as a result of calculation processing, the heat treatment temperature
As in Example 1, the sample at 2000℃ was analyzed to be the sum of two theoretical curves, and the thermal diffusivity was
We were able to obtain values of 8.6 and 3.4cm 2 /sec. on the other hand,
Regarding the sample heat-treated at 2500°C, clear separation analysis was not possible, and a thermal diffusivity of 9.5 cm 2 /sec was obtained for one component. From this measurement result, poly
We were able to obtain the knowledge that oxadiazole changes into a graphite-like structure when heated at 2000℃ or higher.

実施例 3 0.05mm厚さのステンレス鋼(比重8.2g/cm3
比熱0.29j/gk)について実施例1と同様な測定
を行つた結果、温度の時間変化曲線は一つのピー
クを示し熱拡散率0.053cm2/secの値を計測するこ
とが出来た。熱伝導度は文献値として0.15〜
0.5j/cm sec kの値が知られているが、[熱伝
導度=熱拡散率×比重×比熱]の関係式からこの
試料の熱伝導度を求めると0.21j/cm sec kと
なり、文献値によく一致した結果が得られた。
Example 3 0.05 mm thick stainless steel (specific gravity 8.2 g/cm 3 ,
As a result of carrying out the same measurements as in Example 1 regarding the specific heat (0.29 J/gk), the time change curve of temperature showed one peak, and it was possible to measure a value of thermal diffusivity of 0.053 cm 2 /sec. Thermal conductivity is 0.15~ as a literature value
The value of 0.5j/cm sec k is known, but when the thermal conductivity of this sample is calculated from the relational expression [thermal conductivity = thermal diffusivity x specific gravity x specific heat], it is 0.21j/cm sec k, and it is found in the literature. The results were in good agreement with the values.

発明の効果 この発明、上記のように極めて簡単な構成によ
つてフイルム状試料の膜面方向の熱拡散率の測定
が可能となり、産業用資材として広く使用されて
いる金属やプラスチツクなどの素材の加工時や使
用時において重要な熱伝導特性を評価することが
出来る。
Effects of the Invention This invention enables the measurement of the thermal diffusivity in the film surface direction of a film-like sample with the extremely simple configuration described above, and enables measurement of the thermal diffusivity of a film-like sample in the film surface direction. It is possible to evaluate important thermal conductivity properties during processing and use.

また、実施例において示したように、温度ピー
クを2つ持ち、2成分の熱伝導特性を有する試料
もそれぞれの特性値を分離して得ることが出来た
ように、多種成分の分離とそれぞれの成分の特性
値を計算で求めることが出来る。
In addition, as shown in the example, a sample with two temperature peaks and two-component thermal conductivity properties was also able to be obtained by separating the characteristic values of each component. The characteristic values of the components can be calculated.

さらに、温度時間変化曲線の特徴点である温度
上昇開始点、最高温度点、最高半値指示点などの
時間を直接計測値としないので、これらを計測す
るときに生じる誤差を少なくすることが出来る。
Furthermore, since the times at the characteristic points of the temperature-time change curve, such as the temperature rise start point, maximum temperature point, and maximum half-value indication point, are not directly measured, errors that occur when measuring these points can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の熱拡散率の測定方法の説明
図、第2図は温度の時間による変化曲線図、第3
図は有限要素法の説明図、第4図は有限要素法で
求めた温度分布曲線の時間変化図、第5図は有限
要素法で求めた温度の時間変化曲線図、第6図は
この発明の測定装置の1実施例の概念図、第7図
は第6図の装置で得られた温度時間変化曲線図で
ある。 図中の符号は、1、16はフイルム状試料、2
は加熱部分、3、13はパルスレーザー、5、1
8はレーザー照射窓、9、20は測定窓、11、
21は光電温度計、12、15は試料固定治具、
14は発振電源、22は増幅器、23はオシロス
コープ、24は電子計算機。
Figure 1 is an explanatory diagram of the method of measuring thermal diffusivity of the present invention, Figure 2 is a diagram of a temperature change curve over time, and Figure 3 is a diagram of a temperature change curve over time.
The figure is an explanatory diagram of the finite element method. Figure 4 is a time change diagram of the temperature distribution curve determined by the finite element method. Figure 5 is a time change diagram of the temperature distribution curve determined by the finite element method. Figure 6 is the invention. FIG. 7 is a conceptual diagram of one embodiment of the measuring device shown in FIG. The symbols in the figure are 1, 16, film sample, 2
is the heating part, 3, 13 is the pulse laser, 5, 1
8 is a laser irradiation window, 9 and 20 are measurement windows, 11,
21 is a photoelectric thermometer, 12 and 15 are sample fixing jigs,
14 is an oscillation power supply, 22 is an amplifier, 23 is an oscilloscope, and 24 is an electronic computer.

Claims (1)

【特許請求の範囲】 1 フイルム状試料の細長片の中央付近におい
て、ほぼその試料片の幅にわたる微小部分をパル
ス熱源により加熱し、この加熱点から離れた微小
部分の温度の時間変化を測定し、該測定点におけ
る温度の時間変化と理論計算から求めた温度の時
間変化とを比較することにより、熱パルスの移動
速度を決定することを特徴とするフイルム状試料
の熱拡散率測定方法 2 フイルム状試料の細長片の両端を固定する試
料固定装置、該フイルムの中央付近の微小部分を
瞬間的に加熱する加熱装置、上記加熱部から離れ
た点の温度を連続的に測定する温度測定装置から
なることを特徴とするフイルム状試料の熱拡散測
定装置 3 上記加熱装置は、スリツト及び該スリツトを
通して上記フイルムを照射するレーザー装置から
なることを特徴とする特許請求の範囲第2項のフ
イルム状試料の熱拡散率測定装置 4 上記温度測定装置は、光電温度計を用いた非
接触型のものであることを特徴とする特許請求の
範囲第2項のフイルム状試料の熱拡散率測定装置 5 上記光電温度計と試料との間に遮光板を配設
したことを特徴とする特許請求の範囲第4項のフ
イルム状試料の熱拡散率測定装置
[Claims] 1. Near the center of a strip of a film-like sample, a minute portion spanning almost the width of the sample piece is heated by a pulse heat source, and the temperature change over time of the minute portion away from this heating point is measured. A method for measuring thermal diffusivity of a film-like sample 2, characterized in that the moving speed of a heat pulse is determined by comparing the temporal change in temperature at the measurement point with the temporal change in temperature obtained from theoretical calculation. A sample fixing device that fixes both ends of a strip of a sample, a heating device that instantaneously heats a minute portion near the center of the film, and a temperature measuring device that continuously measures the temperature at a point away from the heating section. Thermal diffusion measuring device 3 for a film-like sample, characterized in that the heating device comprises a slit and a laser device that irradiates the film through the slit. Thermal diffusivity measuring device 4 for a film-like sample according to claim 2, wherein the temperature measuring device is a non-contact type using a photoelectric thermometer. The thermal diffusivity measuring device for a film-like sample according to claim 4, characterized in that a light-shielding plate is disposed between the photoelectric thermometer and the sample.
JP60189674A 1985-08-30 1985-08-30 Method and instrument for measuring thermal diffusivity Granted JPS6250652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60189674A JPS6250652A (en) 1985-08-30 1985-08-30 Method and instrument for measuring thermal diffusivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60189674A JPS6250652A (en) 1985-08-30 1985-08-30 Method and instrument for measuring thermal diffusivity

Publications (2)

Publication Number Publication Date
JPS6250652A JPS6250652A (en) 1987-03-05
JPH0479573B2 true JPH0479573B2 (en) 1992-12-16

Family

ID=16245279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60189674A Granted JPS6250652A (en) 1985-08-30 1985-08-30 Method and instrument for measuring thermal diffusivity

Country Status (1)

Country Link
JP (1) JPS6250652A (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765976B2 (en) * 1986-12-01 1995-07-19 真空理工株式会社 Method and apparatus for measuring thermal diffusivity by AC calorimetry
JPS63206645A (en) * 1987-02-24 1988-08-25 Fuji Electric Co Ltd Evaluation of composite film
JPS63241457A (en) * 1987-03-30 1988-10-06 Kawasaki Steel Corp Instrument for measuring thermal property of thin film-like material
JP2529851B2 (en) * 1987-05-27 1996-09-04 東芝セラミックス株式会社 Method and apparatus for measuring thermal diffusivity of high thermal conductive thin plate
JP2599282B2 (en) * 1988-03-25 1997-04-09 科学技術庁無機材質研究所長 Thermal constant measurement method
JP2688012B2 (en) * 1995-05-12 1997-12-08 工業技術院長 Thermal diffusivity measurement method
EP1422518A1 (en) 2002-11-20 2004-05-26 Communaute Europeenne Method and system for measuring the thermal diffusivity
JP5414058B2 (en) * 2010-03-10 2014-02-12 独立行政法人産業技術総合研究所 Thermal diffusivity measuring device
CN105445312B (en) * 2015-01-04 2019-08-16 宁波英飞迈材料科技有限公司 Microcell heating device
US9939396B2 (en) * 2015-01-30 2018-04-10 Netzsch-Gerätebau GmbH 3D diffusivity
US11867567B2 (en) 2019-06-20 2024-01-09 Netzsch Japan K.K. Thermo-physical property measurement instrument and thermo-physical property measurement method
EP4155720A1 (en) * 2021-09-28 2023-03-29 Netzsch-Gerätebau GmbH Device for determining temperature parameters with adjustable sample holder
EP4343293A1 (en) * 2022-09-26 2024-03-27 Netzsch-Gerätebau GmbH Sample holder for holding a plate-shaped sample in a laser/light flash analysis

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59210352A (en) * 1983-05-16 1984-11-29 Nippon Telegr & Teleph Corp <Ntt> Method and device for measuring thermal conductivity
JPS60155950A (en) * 1984-01-19 1985-08-16 Ichiro Hatta Method and apparatus for measuring heat diffusion by intermittent heating

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59210352A (en) * 1983-05-16 1984-11-29 Nippon Telegr & Teleph Corp <Ntt> Method and device for measuring thermal conductivity
JPS60155950A (en) * 1984-01-19 1985-08-16 Ichiro Hatta Method and apparatus for measuring heat diffusion by intermittent heating

Also Published As

Publication number Publication date
JPS6250652A (en) 1987-03-05

Similar Documents

Publication Publication Date Title
Zhao et al. Measurement techniques for thermal conductivity and interfacial thermal conductance of bulk and thin film materials
JPH0479573B2 (en)
US3045473A (en) Apparatus for measuring thermal conductivity
HU186066B (en) Method and apparatus for measuring coefficient of heat transfer
JP6263600B2 (en) Method and apparatus for thermal analysis of samples and / or calibration of temperature measuring instruments
US3527081A (en) Differential scanning calorimeter
Kolouch et al. Thermal Conductivities of Polyethylene and Nylon from 1.2 to 20 K
Kettler et al. Differential ac method of thermopower measurement
Kogure et al. Low-temperature thermal diffusivity measurement by laser-flash method
SU1395939A1 (en) Method of checking thickness of sheet material
JPH11326251A (en) Apparatus and method for measuring thermal diffusion coefficient
HU189716B (en) Method and appaeatus for non-destructive testing the heat physical characteristics of materials
JPH0763717A (en) Method and apparatus for measuring thermal physical value of solid and sample holding frame used for measurement
JPS62148845A (en) Device for simultaneously measuring thermal and temperature conductivity of flat deformable material
SU934336A1 (en) Device for measuring thermoelectromotive force of metals and alloys
RU2011979C1 (en) Method of determination of heat-transfer coefficient of thermocouple sensor
Sparavigna et al. High-sensitivity capacitance method for measuring thermal diffusivity and thermal expansion: results on aluminum and copper
Hayashi et al. “New Development of an Apparatus for Thermal Conductivity Measurement of Refractory Bricks by Hot Wire Method”
Ryan et al. Calorimeter for simultaneous measurements of stored energy and resistance
SU1573403A1 (en) Method of measuring thermal diffusivity
SU1711052A1 (en) Method of testing heat-insulating material thermophysical characteristics
SU1057830A1 (en) Method and device for determination of material heat
SU1659815A1 (en) Method of determining thermal conductivity of a material
JPH0749999B2 (en) Infrared radiation temperature measuring method, spatial sensitivity distribution measuring method therefor, measuring device and thermal diffusivity measuring method
JPH0136115Y2 (en)