JPH08126491A - アドレナリン受容体遺伝子 - Google Patents

アドレナリン受容体遺伝子

Info

Publication number
JPH08126491A
JPH08126491A JP6269275A JP26927594A JPH08126491A JP H08126491 A JPH08126491 A JP H08126491A JP 6269275 A JP6269275 A JP 6269275A JP 26927594 A JP26927594 A JP 26927594A JP H08126491 A JPH08126491 A JP H08126491A
Authority
JP
Japan
Prior art keywords
leu
ser
val
ile
human
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6269275A
Other languages
English (en)
Inventor
Junichi Yano
純一 矢野
Teruo Tanaka
輝夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shinyaku Co Ltd
Original Assignee
Nippon Shinyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shinyaku Co Ltd filed Critical Nippon Shinyaku Co Ltd
Priority to JP6269275A priority Critical patent/JPH08126491A/ja
Publication of JPH08126491A publication Critical patent/JPH08126491A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

(57)【要約】 【構成】 ヒトα1C2アドレナリン受容体をコードする
DNA及びヒトα1C3アドレナリン受容体をコードする
DNA並びに該DNAによりそれぞれコードされるポリ
ペプチドである。 【効果】 組換えDNA技術により十分な量の精製され
たヒトα1C2アドレナリン受容体又はヒトα1C3アドレナ
リン受容体を得る事ができ、ヒトα1アドレナリン受容
体サブファミリーの機能解明に向けての研究が容易にな
る。また本受容体に選択的なアゴニスト、アンタゴニス
トの検索を行うときに用いることができる。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、ヒトα1C2アドレナリ
ン受容体又はヒトα1C3アドレナリン受容体をコードす
るDNA及びそのDNAにコードされている受容体に関
する。
【0002】
【従来の技術】アドレナリン受容体は神経系をはじめ、
循環器、内分泌系において、重要な役割を果たしている
ことが知られている。この受容体は機能の違いや薬剤に
対する感受性の相違及び組織内分布の違い等によりサブ
クラス α1、α2、β1、β2及びβ3に分類されている
(Bylund,D.B.ら、FASEB J. 6, pp832-839 (1992))。
これらのうち、α1アドレナリン受容体は、カテコール
アミンと結合することによって、フォスファチジルイノ
シトール代謝亢進、細胞内Ca2+の上昇を誘導し、その
結果身体各部位の平滑筋の収縮を引き起こすことが知ら
れている(Puceat,M.ら、TIPS 13, pp263-265 (199
2))。つまり、血管平滑筋に存在するα1アドレナリン
受容体は、血圧の調節や鼻腔充血に関与し、また、前立
腺や尿道の平滑筋にあるα1受容体は、排尿調節を司る
など、様々の生理機能が知られている。その他、肝臓の
α1受容体は糖代謝に(Tujimoto,G.ら、Mol.Phramacol.
36, pp166-176(1989))、心臓のα1受容体は心筋細胞
の増殖に(Terzic,A.ら、Pharmacol. Rev. 45, pp147-1
75 (1993))それぞれ関与し、脳の中枢神経系に存在す
るα1受容体は、睡眠を調節する等の作用があることが
報告されている(Mignot,E.ら、Brain Research 490, p
p186-191 (1989))。
【0003】このα1受容体は、まずα1受容体のアンタ
ゴニストであるCEC(Chloroethylclonidine)、WB
−4101及び5−メチルウラピジルの各薬剤に対する
感受性の違いによりα1A、α1Bのサブクラスに分類され
た(Battaglia,G.ら、J.Neurochem. 41, pp538-544 (19
83)、Johnson,R.D.ら、Mol.Pharmacol. 31, pp239-246
(1987))。これらの受容体遺伝子の遺伝子レベルでの解
析が進み、まずハムスターの輸精管の細胞からα1受容
体ファミリーの遺伝子がクローニングされ(Cottecchi
a,S、Proc.Natl.Acad.Sci.USA 85, pp7159-7163 (198
8))、この遺伝子を発現した細胞のCEC、WB−41
01及び5−メチルウラピジルに対する感受性の違いに
よりα1B受容体と同定された。次いでヒトのα1B受容体
遺伝子もクローニングされた(Ramarao,C.S.ら、J.Bio
l.Chem. 267, pp21936-21945 (1992))。
【0004】α1Aの遺伝子については Lomasney らによ
り、ラット脳からクローニングした(Lomasney,J.W.
ら、J.Biol.Chem. 265, pp8183-8189 (1991))と報告さ
れているが、発現産物の薬剤に対する感受性は組織に存
在するα1A受容体と同じ性質を示してはおらず、他のサ
ブファミリーの遺伝子である可能性は否定できない。更
に、同じラット脳からこのα1A受容体と非常に似かよっ
た遺伝子がクローニングされたが、やはり各種薬剤に対
する感受性は組織に存在するα1A受容体とは異なってい
たため、α1D遺伝子と名付けられた(Perez,D.M. らMo
l.Pharmacol.40,876-883(1991))。その後、この遺伝子
は、先のα1Aの遺伝子と同等の物であると認識され、α
1A/Dと呼ばれるようになった。このα1A/D遺伝子はヒト
からも単離された(Forray,C.ら、Mol.Pharmacol. 45,
pp703-708 (1994))。
【0005】これらの受容体に加え、ウシ脳からクロー
ニングされたα1受容体のファミリーの遺伝子は、α1A
やα1B受容体とは類似点は多いものの異なる配列を示
し、更にその発現産物の薬剤に対する感受性が、α1A
容体又はα1B受容体とは異なることから、α1C と名付
けられた(Schwinn,D.A.、J.Biol.Chem. 265, pp8183-8
189 (1990))。ヒトのα1C受容体遺伝子も確認されてい
る(平沢ら、Biochem.Biophys.Res.Commun. 195, pp902
-909 (1993))。
【0006】以上、これまでに複数のα1受容体ファミ
リーの遺伝子がクローニングされているが、組織に存在
するα1A受容体と同一の薬剤感受性を示す受容体をコー
ドしている遺伝子は単離されておらず、また、これらの
既知遺伝子だけではα1受容体ファミリーの多様な生理
作用や組織特異性を説明することはできないため、α1
受容体ファミリーの遺伝子はまだ他にもあると考えられ
ている。これらα1受容体ファミリーの未だ知られてい
ない遺伝子を同定できれば、その受容体の構造を決定
し、生体内分布を調べることにより、受容体の機能を解
明するうえでの情報を得ることができる。更に、これら
の受容体を発現する形質転換細胞を作り、有用なアンタ
ゴニスト又はアゴニストの開発を行うためのアッセイ系
を確立することができる。
【0007】
【発明が解決しようとする課題】本発明の目的は、新規
なヒトα1アドレナリン受容体遺伝子の提供にある。
【0008】
【課題を解決するための手段】本発明者らは、鋭意研究
を重ねた結果、2種の新たなヒトα1アドレナリン受容
体ファミリーのアミノ酸配列を初めて決定し、これをコ
ードする遺伝子を調製することができた。一つ目の本発
明の遺伝子P2C6(cDNA)は、ヒトα1Cアドレナ
リン受容体サブファミリーの遺伝子を含むものであり、
全長2306bpのDNAよりなっている。その配列は配
列番号2に示されている。この塩基配列はヒトα1Cアド
レナリン受容体(Hirasawa,A. Biochem.Biophys.Res.Co
mmun.195,902-909(1993))と1705番目まで同一であ
り、それ以降相同性が認められない。この相同性が認め
られない部分のはAlu配列を持っている。全体の塩基
配列のヒトα1Cアドレナリン受容体遺伝子との相同性は
82%である。この塩基配列より導かれるアミノ酸配列
を配列番号1に示している。そのアミノ酸配列は以下の
特徴を有する。 1)アミノ酸残基数は499である。最も相同性の高い
ヒトα1Cアドレナリンのアミノ酸残基が466個である
のに対して33アミノ酸残基が多い。このP2C6はヒ
トα1Cアドレナリン受容体とアミノ酸配列を比較する
と、423番目までは同一であるが、それ以降残り76
個のアミノ酸には相同性は認められない。全体の相同性
は87%である。 3)その膜貫通領域のヒトα1Cアドレナリン受容体とア
ミノ酸配列は同一で、7回膜貫通領域以降のテールの部
分の相同性は62%である。 4)ヒトα1A/Dとの相同性は40%、ヒトα1Bとは4
3%である。 以上により本発明の遺伝子はα1Cアドレナリン受容体の
サブファミリーであるということができ、α1C2アドレ
ナリン受容体遺伝子と命名した。
【0009】もう一つの本発明の遺伝子P2C1A(c
DNA)は、ヒトα1Cアドレナリン受容体サブファミリ
ーの遺伝子を含むものであり、全長2089bp のDN
Aよりなっている。その塩基配列は配列番号4に示され
ている。この塩基配列はヒトα1Cアドレナリン受容体と
1706番目まで塩基が同一であり、それ以降は相同性
が認められない。全体の塩基配列の相同性は83%であ
る。
【0010】この塩基配列より導かれるアミノ酸配列は
配列番号3に示されている。そのアミノ酸配列は以下の
特徴を有する。 1)アミノ酸残基数は429である。最も相同性の高い
ヒトα1Cアドレナリン受容体のアミノ酸残基数が466
個であるのに対して37個少ない。このP2C1Aはヒ
トα1Cアドレナリン受容体とアミノ酸配列を比較すると
ん末端から423番目までは同一であるが、それ以降、
残り6個の配列は全く異なっている。全体の相同性は9
1%である。 3)その膜貫通領域はヒトα1Cアドレナリン受容体とア
ミノ酸配列は同一で、7回膜貫通領域以降のテールの部
分の相同性は70%である。 4)ヒトα1A/Dとの相同性は41%、ヒトα1Bとは4
6%である。 以上により本発明の遺伝子はα1Cアドレナリン受容体の
サブファミリーであるということができ、α1C2アドレ
ナリン受容体遺伝子と異なることから、α1C3アドレナ
リン受容体遺伝子と命名した。
【0011】本発明のcDNAはヒト前立腺のcDNA
ライブラリーから、たとえばプラークハイブリダイゼー
ション法を利用して得ることができる。この方法によれ
ば、既に塩基配列がわかっている、ヒトα1A、α1B又は
α1Cアドレナリン受容体のα1アドレナリン受容体ファ
ミリーに共通する相同性の高い配列のプローブを用い、
cDNAライブラリーからプローブと相補的な塩基配列
を持つDNAを得ることができる。常法に従い塩基配列
を解読し、α1受容体ファミリーに共通な7回膜貫通領
域構造を有し、かつ既知のα1A/D、α1B又はα1Cアドレ
ナリン受容体とは異なるが特にα1Cアドレナリン受容体
に相同性の高いものを選び出せばよい。一度に全長が得
られなくても、たとえばN末端寄りの部分、C末端寄り
の部分を得て、それらが塩基配列の相同性により同一の
mRNA由来のものと確認できれば、適当な制限酵素切
断部位でつなぎ換えて、全長を得てもよい。このように
して新規なヒトα1アドレナリン受容体を形成するため
に必要な、全ての遺伝情報を有する、本発明のcDNA
が得られる。
【0012】こうして得られたcDNAは、適当なベク
ター、例えばプラスミド又はファージに挿入し、これを
宿主となるバクテリア中で大量に生産させることができ
る。宿主は酵母を用いることもできる。また、こうして
得られたcDNAは、適当なベクター、例えばプラスミ
ドまたはウィルスに挿入し、これを宿主となる動物細胞
で大量に発現させることができる。宿主は酵母を用いる
こともできる。このようにして得たヒトα1アドレナリ
ン受容体ファミリーを発現させた細胞は、例えば本受容
体のアゴニスト又はアンタゴニストのスクリーニングの
研究用試薬として用いることができる。
【0013】
【実施例】以下に実施例を挙げ、本発明を更に詳しく説
明するが、これらの実施例は本発明を制限するものでは
ない。なお、下記実施例において、各操作は特に明示が
ない限り、サムブルック等のマニュアル(Sambrook,J.
ら、Molecular Cloning: A Laboratory Manual, 2nd E
d.,Vol.1-3, Cold Spring Harbor Laboratory, Cold Sp
ring Harbor,NY (1989))に記載されている方法により
行った。また、制限酵素は市販のものを用い、その具体
的使用方法は市販品のプロトコールに従った。
【0014】(A)ヒトα1cアドレナリン受容体サブフ
ァミリーの遺伝子のcDNAライブラリーからのスクリ
ーニング ヒト前立腺のcDNAライブラリー(λgt11、1×106 p
fu クローンテック社)からまずヒト脳α1Aアドレナリ
ン受容体の遺伝子中のヒトα1アドレナリン受容体ファ
ミリーに相同性の高い部分である PstI-XhoI 断片(480
bp)(Bruno,J.F ら Biochem.Biophys.Res.Commun. 17
9, 1485-1490 (1991))及びヒトα1Cの SmaI断片(1233
-1704番目:471bp)(平沢ら、Biochem.Biophys.Res.Com
mun. 195, pp902-909 (1993))をプローブにしてスク
リーニングした。プローブの標識はジゴキシゲニンDN
A−ラベリングキット(ベーリンガーマンハイム社)を
用いて行なった。
【0015】ヒト前立腺cDNAライブラリー 4×105
pfu を大腸菌 Y1090 株に吸収させて寒天プレート上に
まき、37℃で9時間培養した。その寒天上にナイロン
フィルター(Schleicher & Schuell 社)を置き1−2
分間放置してファージをフィルターに吸着させた後、ア
ルカリ液(0.5N NaOH, 1.5M NaCl)に5分間浸し、変性
処理を行った。中和液(0.5M Tris-HCl pH7.5, 1.5M Na
Cl)で5分間中和した後、さらに 2 × SSC で5分間洗
浄した。その後、80℃で2時間のベーキング又はUV
ストラタリンカー2400(Stratagene 社)で処理
し、DNAをフィルターに固定した。ハイブリダイズお
よび発色の条件はDNAラベリングキット(ベーリンガ
ーマンハイム社)のマニュアルに従った。ポジティブプ
ラークをパスツールピペットの頭部を使用して掻き取
り、1 mlのSMバッファー(50mM Tris-HCl pH7.5, 0.1
M NaCl, 8mM MgSO4, 0.01%(W/V)ゼラチン)中で37℃
で1時間放置し、クロロホルムを1滴加え、ファージ液
とした。このファージ液を、大腸菌 Y1090株を宿主とし
て培養し、培養上清からQIAGENLAMBDA KIT(QIAGEN社)
を使用してラムダファージDNAを精製した。このDN
Aの一部を制限酵素 EcoRI で切断した後、1%低温溶
解性アガロースゲルを用いた電気泳動により EcoRI 断
片を分離した。ゲルから回収したDNA断片はELUTIP-d
(Schleicher & Schuell 社)で精製した。
【0016】(B)ヒトα1cアドレナリン受容体サブフ
ァミリーの遺伝子のプラスミドベクターへのサブクロー
ニング プラスミドベクター(pUC18及び119)を EcoRI
で切断後、大腸菌のアルカリフォスファターゼで処理
し、5’末端を脱リン酸化した。このベクター0.1μg
とファージDNA断片とをライゲーションした後、大腸
菌TB1を形質転換し、アンピシリンおよびX−Gal
を含むLBプレート(40 g/ml の X-gal 及び 100ng/ml
の アンヒ゜シリン を含む)上で選択を行なった。37℃で1
6時間培養後、白いコロニーのみ数個選び、 1.5 ml の
LB培地で培養後、常法に従いアルカリ抽出法でプラス
ミドDNAを抽出した。得られたプラスミドDNAを E
coRI で切断した後、1%アガロースゲルで電気泳動を
行った。このゲルをアルカリ液(0.5N NaOH、0.5M NaC
l)で0.5−1時間処理し、バキュジーン 2016(LK
B社)を使って、ナイロンフィルター(Schleicher & S
chuell社)にアルカリ条件下で30分 −1時間かけ、
DNAをトランスファーした。このフィルターを 2 x S
SC で洗浄後、UVストラタリンカー 2400を使って紫外
線照射による固定を行い、ハイブリダイゼーションを行
なった。ヒト脳α1Aアドレナリン受容体の PstI-XhoI
断片(480bp)及びウシα1Cアドレナリン受容体のPC
R産物(715bp)をプローブにして検出した。ハイブリ
ダイズおよび発色の条件はDNAラベリングキット(ベ
ーリンガーマンハイム社)のマニュアルに従った。プロ
ーブで発色し検出したDNAの位置が、ファージより切
り出されたcDNAと同じものであることが確認された
プラスミドを持つ大腸菌を選び出し、サブクローニング
されたインサートの塩基配列の決定を行った。
【0017】(C)cDNAインサートの全塩基配列の
決定 上記の方法で、pUC18又はpUC119に組み込ま
れたDNAが、ファージより切り出したcDNAと同じ
ものであることが確認された大腸菌を、LB培地で一晩
培養し、DNAの調製に用いた。培養液は、常法に従
い、アルカリ抽出法でDNAを抽出後、塩化セシウム密
度勾配超遠心分離を2回行いDNAを精製した。超遠心
機としてベックマン L8-70 を用いて、68,000 rpm で1
6時間、更にベックマン TL-100 を用いて 100,000 rpm
で5時間遠心を行なった。精製したDNAの濃度は 26
0nm の吸光度より算定した。
【0018】DNAの塩基配列の決定はABI 373
A DNAシーケンサー(アプライドバイオシステム
社)を用いて行った。1-2μg のプラスミドDNAを塩
基配列の決定に用いた。プライマーは New England Bio
Labs 社の M13/pUC シーケンシングプライマー #122
4、M13/pUC シーケンシングプライマー #1211、M13/pUC
リバースシーケンシングプライマー #1233、M13/pUC
リバースシーケンシングプライマー #1201を用いた。塩
基配列のデータ解析には GeneWorks(Intelligenetic
社)を、ホモロジー検索プログラムはピアソンの fast
A (Pearson,W.R.ら Proc.Natl.Acad.Sci.USA 85, 2444
-2448(1988))を用いた。
【0019】以上のようにして塩基配列を決定し、ウシ
又はヒトα1Cアドレナリン受容体の遺伝子とホモロジー
検索をした結果、非常に相同性の高いクローンP2(1
687bp)、クローンC1A(889bp)及びクローン
C6(1492bp)の3種のクローンが得られた。クロ
ーンP2は翻訳可能領域1251bpを含んでおり、開始
コドンより436bp上流から7回目の膜貫通領域までを
含んでいたが、C末端の部分は欠けていた。クローンC
1Aは配列番号3に示した1200から1706まで、
クローンC6は配列番号4に示した814から1705
番目まではヒトα1Cアドレナリン受容体と同一の配列を
示したが、それ以降は異なるものであった。P2とC1
A又はP2とC6は同一の塩基配列の部分がそれぞれ4
87bp、873bpあった。
【0020】P2とC6、P2とC1Aのそれぞれのク
ローンの配列の重なり合う部分の塩基配列は一致したこ
とから、それぞれのクローンの組み合わせは同じmRN
A由来のものであることが判明した。つまりP2遺伝子
にコードされるN末端よりのアミノ酸配列が共通し、C
末端側のアミノ酸配列が異なる、2種類のmRNAが存
在することが示された。P2C6とP2C1Aの違いは
遺伝子多型によるものか又はオルタネーティブスプライ
シングによると考えられる。P2とC6、P2とC1A
のそれぞれ共通する領域に存在する PvuII の制限酵素
サイト(1393番目)で、常法に従いそれぞれのクロ
ーンを組換えることにより、全長を含むヒトα1アドレ
ナリン受容体ファミリーの遺伝子、P2C6及びP2C
1Aを作製した。
【0021】(D)ヒトα1C2アドレナリン受容体遺伝
子の塩基配列とアミノ酸配列の解析 P2C6の全長は2306bpで(配列番号2)、翻訳領
域は1497bp、5'ー非翻訳領域は436bp、3'ー 非
翻訳領域は373bpであった。この塩基配列より予想さ
れるアミノ酸残基数は499で、ヒトα1Cアドレナリン
受容体のアミノ酸残基数(466残基)より33アミノ
酸長かった。P2C6にコードされている遺伝子は、下
記に示すようにα1Cアドレナリン受容体遺伝子と非常に
相同性が高いことから、このサブファミリーであること
が判明した。よって本発明の受容体をα1C2アドレナリ
ン受容体と命名した。このα1C2アドレナリン受容体と
ヒトα1Cアドレナリン受容体とのアミノ酸配列の相同性
は、全体で87%であった。さらに、膜貫通領域では1
00%、7回膜貫通領域以降のテールの部分では62%
であった。その他、ヒトα1A/Dとは40%、ヒトα1B
は43%であった。また、1706−2006番目の領
域はAlu配列を示していた。
【0022】(E)ヒトα1C3アドレナリン受容体遺伝
子の塩基配列とアミノ酸配列の解析 P2C1Aの全長は2089bp で(配列番号4)、翻
訳可能領域は 1287bp、5'- 非翻訳領域は436b
p、3'- 非翻訳領域は 366bp であった。ポリAテー
ルは認められなかった。この塩基配列より予想されるア
ミノ酸残基数は429で、ヒトα1Cアドレナリン受容体
の予想されるアミノ酸残基数(466残基)より37残
基少なかった。P2C1Aにコードされている遺伝子
は、下記に示すようにα1Cアドレナリン受容体遺伝子と
非常に相同性が高く、やはりこのサブファミリーである
ことが判明した。さらに先のα1C2アドレナリン受容体
とは異なることから、本発明の受容体をα1C3アドレナ
リン受容体と命名した。このα1C3アドレナリン受容体
とヒトα1Cアドレナリン受容体とのアミノ酸配列の相同
性は、全体で91%であった。さらに、膜貫通領域では
100%、7回膜貫通領域のテールの部分では70%で
あった。その他、ヒトα1A/Dとは41%、ヒトα1Bとは
46%であった。
【0023】(F)P2C6及びP2CA1遺伝子のP
CR法による確認 P2C6及びP2CA1遺伝子は、両遺伝子とも一度に
全長をクローニングしたのではなく、N末端側、C末端
側の遺伝子のそれぞれの塩基配列の重なり合う部分でつ
なぎ換えているため、人為的に創作した遺伝子であり実
際には存在しないという懸念がある。そこで、PCR法
によって、これらの遺伝子のmRNAとしての存在を確
認した。
【0024】P2C6及びP2CA1遺伝子のN末端の
プライマーとして、お互いに配列が共通する部分で、そ
れぞれをつなぎ換えた位置より上流の部分から、配列番
号4の566−588番目の配列を選び、プライマー1
とした。つなぎ換えた位置より下流の部分から、P2C
1A遺伝子では配列番号4の1874−1893番目の
配列を選びプライマー2とし、P2C6遺伝子では配列
番号2の1777−1799番目の配列を選びプライマ
ー3とした。それぞれのプライマーをDNA合成機(ア
プライドバイトシステム社製モデル380B)を用いて
合成した。
【0025】ヒト前立腺のcDNAライブラリー(クロ
ンテック社)を鋳型にして、タックポリメラーゼPCR
キット(宝酒造)を用いて反応を行った。反応液はキッ
ト付属のプロトコールに従って調製した。PCR反応は
以下の条件で行った。まず94℃で5分間処理した後、
94℃で1分間、55℃で1分間次いで72℃で2分間
の反応を35サイクル行った。反応産物をアガロースゲ
ル電気泳動で分析した結果を図1に示す。P2C1A遺
伝子又は前立腺のcDNAを鋳型として用い、プライマ
ー1及び2を用いた反応では、両者とも1.3kbp の長
さの顕著なバンドが現れ、P2C6遺伝子又は前立腺の
cDNAを鋳型として用い、プライマー1及び3を用い
た反応では、両者とも1.2kbp のバンドが確認され
た。このバンドはヒトα1C遺伝子をプローブに用いたサ
ザンハイブリダイゼーションにより検出されることも確
認された。これらのことは、P2C6及びP2CA1遺
伝子は、mRNAの情報として生体内に存在している事
を示している。
【0026】(G)ヒト組織における組織分布 α1C、α1C2及びα1C3の各アドレナリン受容体の組織分
布を調べるため、心臓、脳、肝臓、脾臓のcDNA(ク
ロンテック社)を鋳型にし、PCR法により各mRNA
の検出を行った。プライマーとして、N末端側は、ヒト
α1C遺伝子、P2C1A及びP2C6遺伝子の配列が共
通する部分、即ち配列番号4の1417−1436番目
の配列(プライマー4)をDNA合成機(アプライドバ
イトシステム社製モデル380B)を用いて合成した。
C末端側のプライマーは、α1C2受容体mRNA検出用
には配列番号4に示した1905−1924の配列(プ
ライマー5)を、α1C3受容体mRNA検出用には配列
番号4の1874−1893番目の配列(プライマー
2)を、そしてα1C受容体mRNA検出用には190
8−1917番目(プライマー6:平沢ら、Biochem.Bi
ophys.Res.Commun. 195, pp902-909 (1993))の配列を
選び、それぞれのDNAをDNA合成機(アプライドバ
イトシステム社製モデル380B)を用いて合成した。
タックポリメラーゼPCRキット(宝酒造)を用いてP
CR反応を行った。反応液はキット付属のプロトコール
に従って調製した。PCR反応は以下の条件で行った。
まず94℃で5分間処理した後、94℃で1分間、55
℃で1分間次いで72℃で2分間の反応を35サイクル
行った。その結果を表1に示す。
【0027】
【表1】 心臓、脳には3種の受容体のmRNAがすべて認められ
たが、肝臓にはα1C2受容体mRNAは認められなかっ
た。また、脾臓ではα1C2及びα1C受容体mRNAが認
められたがα1C3のものは認められなかった。以上によ
り、α1C2、α1C3及びα1Cはそれぞれ異なる受容体とし
て、ヒト組織で発現していることが明らかとなった。
【0028】
【配列表】
配列番号:1 配列の長さ:499 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 起源 生物名:ヒト 組織の種類:前立腺 直接の起源 ライブラリー名:ヒト前立腺cDNAライブラリー 配列 Met Val Phe Leu Ser Gly Asn Ala Ser Asp Ser Ser Asn Cys Thr Gln 1 5 10 15 Pro Pro Ala Pro Val Asn Ile Ser Lys Ala Ile Leu Leu Gly Val Ile 20 25 30 Leu Gly Gly Leu Ile Leu Phe Gly Val Leu Gly Asn Ile Leu Val Ile 35 40 45 Leu Ser Val Ala Cys His Arg His Leu His Ser Val Thr His Tyr Tyr 50 55 60 Ile Val Asn Leu Ala Val Ala Asp Leu Leu Leu Thr Ser Thr Val Leu 65 70 75 80 Pro Phe Ser Ala Ile Phe Glu Val Leu Gly Tyr Trp Ala Phe Gly Arg 85 90 95 Val Phe Cys Asn Ile Trp Ala Ala Val Asp Val Leu Cys Cys Thr Ala 100 105 110 Ser Ile Met Gly Leu Cys Ile Ile Ser Ile Asp Arg Tyr Ile Gly Val 115 120 125 Ser Tyr Pro Leu Arg Tyr Pro Thr Ile Val Thr Gln Arg Arg Gly Leu 130 135 140 Met Ala Leu Leu Cys Val Trp Ala Leu Ser Leu Val Ile Ser Ile Gly 145 150 155 160 Pro Leu Phe Gly Trp Arg Gln Pro Ala Pro Glu Asp Glu Thr Ile Cys 165 170 175 Gln Ile Asn Glu Glu Pro Gly Tyr Val Leu Phe Ser Ala Leu Gly Ser 180 185 190 Phe Tyr Leu Pro Leu Ala Ile Ile Leu Val Met Tyr Cys Arg Val Tyr 195 200 205 Val Val Ala Lys Arg Glu Ser Arg Gly Leu Lys Ser Gly Leu Lys Thr 210 215 220 Asp Lys Ser Asp Ser Glu Gln Val Thr Leu Arg Ile His Arg Lys Asn 225 230 235 240 Ala Pro Ala Gly Gly Ser Gly Met Ala Ser Ala Lys Thr Lys Thr His 245 250 255 Phe Ser Val Arg Leu Leu Lys Phe Ser Arg Glu Lys Lys Ala Ala Lys 260 265 270 Thr Leu Gly Ile Val Val Gly Cys Phe Val Leu Cys Trp Leu Pro Phe 275 280 285 Phe Leu Val Met Pro Ile Gly Ser Phe Phe Pro Asp Phe Lys Pro Ser 290 295 300 Glu Thr Val Phe Lys Ile Val Phe Trp Leu Gly Tyr Leu Asn Ser Cys 305 310 315 320 Ile Asn Pro Ile Ile Tyr Pro Cys Ser Ser Gln Glu Phe Lys Lys Ala 325 330 335 Phe Gln Asn Val Leu Arg Ile Gln Cys Leu Arg Arg Lys Gln Ser Ser 340 345 350 Lys His Ala Leu Gly Tyr Thr Leu His Pro Pro Ser Gln Ala Val Glu 355 360 365 Gly Gln His Lys Asp Met Val Arg Ile Pro Val Gly Ser Arg Glu Thr 370 375 380 Phe Tyr Arg Ile Ser Lys Thr Asp Gly Val Cys Glu Trp Lys Phe Phe 385 390 395 400 Ser Ser Met Pro Arg Gly Ser Ala Arg Ile Thr Val Ser Lys Asp Gln 405 410 415 Ser Ser Cys Thr Thr Ala Arg Thr Lys Ser Arg Ser Val Thr Arg Leu 420 425 430 Glu Cys Ser Gly Met Ile Leu Ala His Cys Asn Leu Arg Leu Pro Gly 435 440 445 Ser Arg Asp Ser Pro Ala Ser Ala Ser Gln Ala Ala Gly Thr Thr Gly 450 455 460 Asp Val Pro Pro Gly Arg Arg His Gln Ala Gln Leu Ile Phe Val Phe 465 470 475 480 Leu Val Glu Thr Gly Phe His His Val Gly Gln Asp Asp Leu Asp Leu 485 490 495 Leu Thr Ser
【0029】配列番号:2 配列の長さ:2306 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:cDNA to mRNA 起源 生物名:ヒト 組織の種類:前立腺 直接の起源 ライブラリー名:ヒト前立腺cDNAライブラリー 配列の特徴 特徴を表す記号:CDS 存在位置:437..1933 特徴を決定した方法:P 配列 GAATTCCGAA TCATGTGCAG AATGCTGAAT CTTCCCCCAG CCAGGACGAA TAAGACAGCG 60 CGGAAAAGCA GATTCTCGTA ATTCTGGAAT TGCATGTTGC AAGGAGTCTC CTGGATCTTC 120 GCACCCAGCT TCGGGTAGGG AGGGAGTCCG GGTCCCGGGC TAGGCCAGCC CGGCAGGTGG 180 AGAGGGTCCC CGGCAGCCCC GCGCGCCCCT GGCCATGTCT TTAATGCCCT GCCCCTTCAT 240 GTGGCCTTCT GAGGGTTCCC AGGGCTGGCC AGGGTTGTTT CCCACCCGCG CGCGCGCTCT 300 CACCCCCAGC CAAACCCACC TGGCAGGGCT CCCTCCAGCC GAGACCTTTT GATTCCCGGC 360 TCCCGCGCTC CCGCCTCCGC GCCAGCCCGG GAGGTGGCCC TGGACAGCCG GACCTCGCCC 420 GGCCCCGGCT GGGACC ATG GTG TTT CTC TCG GGA AAT GCT TCC GAC AGC TCC 472 Met Val Phe Leu Ser Gly Asn Ala Ser Asp Ser Ser 1 5 10 AAC TGC ACC CAA CCG CCG GCA CCG GTG AAC ATT TCC AAG GCC ATT CTG 520 Asn Cys Thr Gln Pro Pro Ala Pro Val Asn Ile Ser Lys Ala Ile Leu 15 20 25 CTC GGG GTG ATC TTG GGG GGC CTC ATT CTT TTC GGG GTG CTG GGT AAC 568 Leu Gly Val Ile Leu Gly Gly Leu Ile Leu Phe Gly Val Leu Gly Asn 30 35 40 ATC CTA GTG ATC CTC TCC GTA GCC TGT CAC CGA CAC CTG CAC TCA GTC 616 Ile Leu Val Ile Leu Ser Val Ala Cys His Arg His Leu His Ser Val 45 50 55 60 ACG CAC TAC TAC ATC GTC AAC CTG GCG GTG GCC GAC CTC CTG CTC ACC 664 Thr His Tyr Tyr Ile Val Asn Leu Ala Val Ala Asp Leu Leu Leu Thr 65 70 75 TCC ACG GTG CTG CCC TTC TCC GCC ATC TTC GAG GTC CTA GGC TAC TGG 712 Ser Thr Val Leu Pro Phe Ser Ala Ile Phe Glu Val Leu Gly Tyr Trp 80 85 90 GCC TTC GGC AGG GTC TTC TGC AAC ATC TGG GCG GCA GTG GAT GTG CTG 760 Ala Phe Gly Arg Val Phe Cys Asn Ile Trp Ala Ala Val Asp Val Leu 95 100 105 TGC TGC ACC GCG TCC ATC ATG GGC CTC TGC ATC ATC TCC ATC GAC CGC 808 Cys Cys Thr Ala Ser Ile Met Gly Leu Cys Ile Ile Ser Ile Asp Arg 110 115 120 TAC ATC GGC GTG AGC TAC CCG CTG CGC TAC CCA ACC ATC GTC ACC CAG 856 Tyr Ile Gly Val Ser Tyr Pro Leu Arg Tyr Pro Thr Ile Val Thr Gln 125 130 135 140 AGG AGG GGT CTC ATG GCT CTG CTC TGC GTC TGG GCA CTC TCC CTG GTC 904 Arg Arg Gly Leu Met Ala Leu Leu Cys Val Trp Ala Leu Ser Leu Val 145 150 155 ATA TCC ATT GGA CCC CTG TTC GGC TGG AGG CAG CCG GCC CCC GAG GAC 952 Ile Ser Ile Gly Pro Leu Phe Gly Trp Arg Gln Pro Ala Pro Glu Asp 160 165 170 GAG ACC ATC TGC CAG ATC AAC GAG GAG CCG GGC TAC GTG CTC TTC TCA 1000 Glu Thr Ile Cys Gln Ile Asn Glu Glu Pro Gly Tyr Val Leu Phe Ser 175 180 185 GCG CTG GGC TCC TTC TAC CTG CCT CTG GCC ATC ATC CTG GTC ATG TAC 1048 Ala Leu Gly Ser Phe Tyr Leu Pro Leu Ala Ile Ile Leu Val Met Tyr 190 195 200 TGC CGC GTC TAC GTG GTG GCC AAG AGG GAG AGC CGG GGC CTC AAG TCT 1096 Cys Arg Val Tyr Val Val Ala Lys Arg Glu Ser Arg Gly Leu Lys Ser 205 210 215 220 GGC CTC AAG ACC GAC AAG TCG GAC TCG GAG CAA GTG ACG CTC CGC ATC 1144 Gly Leu Lys Thr Asp Lys Ser Asp Ser Glu Gln Val Thr Leu Arg Ile 225 230 235 CAT CGG AAA AAC GCC CCG GCA GGA GGC AGC GGG ATG GCC AGC GCC AAG 1192 His Arg Lys Asn Ala Pro Ala Gly Gly Ser Gly Met Ala Ser Ala Lys 240 245 250 ACC AAG AGC CAC TTC TCA GTG AGG CTC CTC AAG TTC TCC CGG GAG AAG 1240 Thr Lys Thr His Phe Ser Val Arg Leu Leu Lys Phe Ser Arg Glu Lys 255 260 265 AAA GCG GCC AAA ACG CTG GGC ATC GTG GTC GGC TGC TTC GTC CTC TGC 1288 Lys Ala Ala Lys Thr Leu Gly Ile Val Val Gly Cys Phe Val Leu Cys 270 275 280 TGG CTG CCT TTT TTC TTA GTC ATG CCC ATT GGG TCT TTC TTC CCT GAT 1336 Trp Leu Pro Phe Phe Leu Val Met Pro Ile Gly Ser Phe Phe Pro Asp 285 290 295 300 TTC AAG CCC TCT GAA ACA GTT TTT AAA ATA GTA TTT TGG CTC GGA TAT 1384 Phe Lys Pro Ser Glu Thr Val Phe Lys Ile Val Phe Trp Leu Gly Tyr 305 310 315 CTA AAC AGC TGC ATC AAC CCC ATC ATA TAC CCA TGC TCC AGC CAA GAG 1432 Leu Asn Ser Cys Ile Asn Pro Ile Ile Tyr Pro Cys Ser Ser Gln Glu 320 325 330 TTC AAA AAG GCC TTT CAG AAT GTC TTG AGA ATC CAG TGT CTC CGC AGA 1480 Phe Lys Lys Ala Phe Gln Asn Val Leu Arg Ile Gln Cys Leu Arg Arg 335 340 345 AAG CAG TCT TCC AAA CAT GCC CTG GGC TAC ACC CTG CAC CCG CCC AGC 1528 Lys Gln Ser Ser Lys His Ala Leu Gly Tyr Thr Leu His Pro Pro Ser 350 355 360 CAG GCC GTG GAA GGG CAA CAC AAG GAC ATG GTG CGC ATC CCC GTG GGA 1576 Gln Ala Val Glu Gly Gln His Lys Asp Met Val Arg Ile Pro Val Gly 365 370 375 380 TCA AGA GAG ACC TTC TAC AGG ATC TCC AAG ACG GAT GGC GTT TGT GAA 1624 Ser Arg Glu Thr Phe Tyr Arg Ile Ser Lys Thr Asp Gly Val Cys Glu 385 390 395 TGG AAA TTT TTC TCT TCC ATG CCC CGT GGA TCT GCC AGG ATT ACA GTG 1672 Trp Lys Phe Phe Ser Ser Met Pro Arg Gly Ser Ala Arg Ile Thr Val 400 405 410 TCC AAA GAC CAA TCC TCC TGT ACC ACA GCC CGG ACG AAG TCT CGC TCT 1720 Ser Lys Asp Gln Ser Ser Cys Thr Thr Ala Arg Thr Lys Ser Arg Ser 415 420 425 GTC ACC AGG CTG GAG TGC AGT GGC ATG ATC TTG GCT CAC TGC AAC CTC 1768 Val Thr Arg Leu Glu Cys Ser Gly Met Ile Leu Ala His Cys Asn Leu 430 435 440 CGC CTC CCG GGT TCA AGA GAT TCT CCT GCC TCA GCC TCC CAA GCA GCT 1816 Arg Leu Pro Gly Ser Arg Asp Ser Pro Ala Ser Ala Ser Gln Ala Ala 445 450 455 460 GGG ACT ACA GGG GAT GTG CCA CCA GGC CGA CGC CAC CAG GCC CAG CTA 1864 Gly Thr Thr Gly Asp Val Pro Pro Gly Arg Arg His Gln Ala Gln Leu 465 470 475 ATT TTT GTA TTT TTA GTA GAG ACG GGG TTT CAC CAT GTT GGC CAG GAT 1912 Ile Phe Val Phe Leu Val Glu Thr Gly Phe His His Val Gly Gln Asp 480 485 490 GAT CTC GAT CTC TTG ACC TCA TGATCTGCCT GCCTCAGCCT CCCAAAGTGC 1963 Asp Leu Asp Leu Leu Thr Ser 495 499 TGGGATTACA GGCGTGAGCC ACCGTGCCCG GCCCAACTAT TTTTTTTTTT TATCTTTTTT 2023 AACAGTGCAA TCCTTTCTGT GGATGAAATC TTGCTCAGAA GCTCAATATG CAAAAGAAAG 2083 AAAAACAGCA GGGCTGGACG GATGTTGGGA GTGGGGTAAG ACCCCAACCA CTCAGAGCCC 2143 ACCCCCCCAA CACACACACA CATTCTCTCC ATGGTGACTG GTGAGGGGCC TCTAGAGGGT 2203 ACATAGTACA CCATGGAGCA CGGTTTAAGC ACCACTGGAC TACACATTCT TCTGTGGCAG 2263 TTATCTTACC TTCCCATAGA CACCCAGCCC ATAGCCATTG GTT 2306
【0030】配列番号:3 配列の長さ:429 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 起源 生物名:ヒト 組織の種類:前立腺 直接の起源 ライブラリー名:ヒト前立腺cDNAライブラリー 配列 Met Val Phe Leu Ser Gly Asn Ala Ser Asp Ser Ser Asn Cys Thr Gln 1 5 10 15 Pro Pro Ala Pro Val Asn Ile Ser Lys Ala Ile Leu Leu Gly Val Ile 20 25 30 Leu Gly Gly Leu Ile Leu Phe Gly Val Leu Gly Asn Ile Leu Val Ile 35 40 45 Leu Ser Val Ala Cys His Arg His Leu His Ser Val Thr His Tyr Tyr 50 55 60 Ile Val Asn Leu Ala Val Ala Asp Leu Leu Leu Thr Ser Thr Val Leu 65 70 75 80 Pro Phe Ser Ala Ile Phe Glu Val Leu Gly Tyr Trp Ala Phe Gly Arg 85 90 95 Val Phe Cys Asn Ile Trp Ala Ala Val Asp Val Leu Cys Cys Thr Ala 100 105 110 Ser Ile Met Gly Leu Cys Ile Ile Ser Ile Asp Arg Tyr Ile Gly Val 115 120 125 Ser Tyr Pro Leu Arg Tyr Pro Thr Ile Val Thr Gln Arg Arg Gly Leu 130 135 140 Met Ala Leu Leu Cys Val Trp Ala Leu Ser Leu Val Ile Ser Ile Gly 145 150 155 160 Pro Leu Phe Gly Trp Arg Gln Pro Ala Pro Glu Asp Glu Thr Ile Cys 165 170 175 Gln Ile Asn Glu Glu Pro Gly Tyr Val Leu Phe Ser Ala Leu Gly Ser 180 185 190 Phe Tyr Leu Pro Leu Ala Ile Ile Leu Val Met Tyr Cys Arg Val Tyr 195 200 205 Val Val Ala Lys Arg Glu Ser Arg Gly Leu Lys Ser Gly Leu Lys Thr 210 215 220 Asp Lys Ser Asp Ser Glu Gln Val Thr Leu Arg Ile His Arg Lys Asn 225 230 235 240 Ala Pro Ala Gly Gly Ser Gly Met Ala Ser Ala Lys Thr Lys Thr His 245 250 255 Phe Ser Val Arg Leu Leu Lys Phe Ser Arg Glu Lys Lys Ala Ala Lys 260 265 270 Thr Leu Gly Ile Val Val Gly Cys Phe Val Leu Cys Trp Leu Pro Phe 275 280 285 Phe Leu Val Met Pro Ile Gly Ser Phe Phe Pro Asp Phe Lys Pro Ser 290 295 300 Glu Thr Val Phe Lys Ile Val Phe Trp Leu Gly Tyr Leu Asn Ser Cys 305 310 315 320 Ile Asn Pro Ile Ile Tyr Pro Cys Ser Ser Gln Glu Phe Lys Lys Ala 325 330 335 Phe Gln Asn Val Leu Arg Ile Gln Cys Leu Arg Arg Lys Gln Ser Ser 340 345 350 Lys His Ala Leu Gly Tyr Thr Leu His Pro Pro Ser Gln Ala Val Glu 355 360 365 Gly Gln His Lys Asp Met Val Arg Ile Pro Val Gly Ser Arg Glu Thr 370 375 380 Phe Tyr Arg Ile Ser Lys Thr Asp Gly Val Cys Glu Trp Lys Phe Phe 385 390 395 400 Ser Ser Met Pro Arg Gly Ser Ala Arg Ile Thr Val Ser Lys Asp Gln 405 410 415 Ser Ser Cys Thr Thr Ala Arg Gly His Thr Pro Met Thr 420 425
【0031】配列番号:4 配列の長さ:2089 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:cDNA to mRNA 起源 生物名:ヒト 組織の種類:前立腺 直接の起源 ライブラリー名:ヒト前立腺cDNAライブラリー 配列の特徴 特徴を表す記号:CDS 存在位置:437..1723 特徴を決定した方法:P 配列 GAATTCCGAA TCATGTGCAG AATGCTGAAT CTTCCCCCAG CCAGGACGAA TAAGACAGCG 60 CGGAAAAGCA GATTCTCGTA ATTCTGGAAT TGCATGTTGC AAGGAGTCTC CTGGATCTTC 120 GCACCCAGCT TCGGGTAGGG AGGGAGTCCG GGTCCCGGGC TAGGCCAGCC CGGCAGGTGG 180 AGAGGGTCCC CGGCAGCCCC GCGCGCCCCT GGCCATGTCT TTAATGCCCT GCCCCTTCAT 240 GTGGCCTTCT GAGGGTTCCC AGGGCTGGCC AGGGTTGTTT CCCACCCGCG CGCGCGCTCT 300 CACCCCCAGC CAAACCCACC TGGCAGGGCT CCCTCCAGCC GAGACCTTTT GATTCCCGGC 360 TCCCGCGCTC CCGCCTCCGC GCCAGCCCGG GAGGTGGCCC TGGACAGCCG GACCTCGCCC 420 GGCCCCGGCT GGGACC ATG GTG TTT CTC TCG GGA AAT GCT TCC GAC AGC TCC 472 Met Val Phe Leu Ser Gly Asn Ala Ser Asp Ser Ser 1 5 10 AAC TGC ACC CAA CCG CCG GCA CCG GTG AAC ATT TCC AAG GCC ATT CTG 520 Asn Cys Thr Gln Pro Pro Ala Pro Val Asn Ile Ser Lys Ala Ile Leu 15 20 25 CTC GGG GTG ATC TTG GGG GGC CTC ATT CTT TTC GGG GTG CTG GGT AAC 568 Leu Gly Val Ile Leu Gly Gly Leu Ile Leu Phe Gly Val Leu Gly Asn 30 35 40 ATC CTA GTG ATC CTC TCC GTA GCC TGT CAC CGA CAC CTG CAC TCA GTC 616 Ile Leu Val Ile Leu Ser Val Ala Cys His Arg His Leu His Ser Val 45 50 55 60 ACG CAC TAC TAC ATC GTC AAC CTG GCG GTG GCC GAC CTC CTG CTC ACC 664 Thr His Tyr Tyr Ile Val Asn Leu Ala Val Ala Asp Leu Leu Leu Thr 65 70 75 TCC ACG GTG CTG CCC TTC TCC GCC ATC TTC GAG GTC CTA GGC TAC TGG 712 Ser Thr Val Leu Pro Phe Ser Ala Ile Phe Glu Val Leu Gly Tyr Trp 80 85 90 GCC TTC GGC AGG GTC TTC TGC AAC ATC TGG GCG GCA GTG GAT GTG CTG 760 Ala Phe Gly Arg Val Phe Cys Asn Ile Trp Ala Ala Val Asp Val Leu 95 100 105 TGC TGC ACC GCG TCC ATC ATG GGC CTC TGC ATC ATC TCC ATC GAC CGC 808 Cys Cys Thr Ala Ser Ile Met Gly Leu Cys Ile Ile Ser Ile Asp Arg 110 115 120 TAC ATC GGC GTG AGC TAC CCG CTG CGC TAC CCA ACC ATC GTC ACC CAG 856 Tyr Ile Gly Val Ser Tyr Pro Leu Arg Tyr Pro Thr Ile Val Thr Gln 125 130 135 140 AGG AGG GGT CTC ATG GCT CTG CTC TGC GTC TGG GCA CTC TCC CTG GTC 904 Arg Arg Gly Leu Met Ala Leu Leu Cys Val Trp Ala Leu Ser Leu Val 145 150 155 ATA TCC ATT GGA CCC CTG TTC GGC TGG AGG CAG CCG GCC CCC GAG GAC 952 Ile Ser Ile Gly Pro Leu Phe Gly Trp Arg Gln Pro Ala Pro Glu Asp 160 165 170 GAG ACC ATC TGC CAG ATC AAC GAG GAG CCG GGC TAC GTG CTC TTC TCA 1000 Glu Thr Ile Cys Gln Ile Asn Glu Glu Pro Gly Tyr Val Leu Phe Ser 175 180 185 GCG CTG GGC TCC TTC TAC CTG CCT CTG GCC ATC ATC CTG GTC ATG TAC 1048 Ala Leu Gly Ser Phe Tyr Leu Pro Leu Ala Ile Ile Leu Val Met Tyr 190 195 200 TGC CGC GTC TAC GTG GTG GCC AAG AGG GAG AGC CGG GGC CTC AAG TCT 1096 Cys Arg Val Tyr Val Val Ala Lys Arg Glu Ser Arg Gly Leu Lys Ser 205 210 215 220 GGC CTC AAG ACC GAC AAG TCG GAC TCG GAG CAA GTG ACG CTC CGC ATC 1144 Gly Leu Lys Thr Asp Lys Ser Asp Ser Glu Gln Val Thr Leu Arg Ile 225 230 235 CAT CGG AAA AAC GCC CCG GCA GGA GGC AGC GGG ATG GCC AGC GCC AAG 1192 His Arg Lys Asn Ala Pro Ala Gly Gly Ser Gly Met Ala Ser Ala Lys 240 245 250 ACC AAG AGC CAC TTC TCA GTG AGG CTC CTC AAG TTC TCC CGG GAG AAG 1240 Thr Lys Thr His Phe Ser Val Arg Leu Leu Lys Phe Ser Arg Glu Lys 255 260 265 AAA GCG GCC AAA ACG CTG GGC ATC GTG GTC GGC TGC TTC GTC CTC TGC 1288 Lys Ala Ala Lys Thr Leu Gly Ile Val Val Gly Cys Phe Val Leu Cys 270 275 280 TGG CTG CCT TTT TTC TTA GTC ATG CCC ATT GGG TCT TTC TTC CCT GAT 1336 Trp Leu Pro Phe Phe Leu Val Met Pro Ile Gly Ser Phe Phe Pro Asp 285 290 295 300 TTC AAG CCC TCT GAA ACA GTT TTT AAA ATA GTA TTT TGG CTC GGA TAT 1384 Phe Lys Pro Ser Glu Thr Val Phe Lys Ile Val Phe Trp Leu Gly Tyr 305 310 315 CTA AAC AGC TGC ATC AAC CCC ATC ATA TAC CCA TGC TCC AGC CAA GAG 1432 Leu Asn Ser Cys Ile Asn Pro Ile Ile Tyr Pro Cys Ser Ser Gln Glu 320 325 330 TTC AAA AAG GCC TTT CAG AAT GTC TTG AGA ATC CAG TGT CTC CGC AGA 1480 Phe Lys Lys Ala Phe Gln Asn Val Leu Arg Ile Gln Cys Leu Arg Arg 335 340 345 AAG CAG TCT TCC AAA CAT GCC CTG GGC TAC ACC CTG CAC CCG CCC AGC 1528 Lys Gln Ser Ser Lys His Ala Leu Gly Tyr Thr Leu His Pro Pro Ser 350 355 360 CAG GCC GTG GAA GGG CAA CAC AAG GAC ATG GTG CGC ATC CCC GTG GGA 1576 Gln Ala Val Glu Gly Gln His Lys Asp Met Val Arg Ile Pro Val Gly 365 370 375 380 TCA AGA GAG ACC TTC TAC AGG ATC TCC AAG ACG GAT GGC GTT TGT GAA 1624 Ser Arg Glu Thr Phe Tyr Arg Ile Ser Lys Thr Asp Gly Val Cys Glu 385 390 395 TGG AAA TTT TTC TCT TCC ATG CCC CGT GGA TCT GCC AGG ATT ACA GTG 1672 Trp Lys Phe Phe Ser Ser Met Pro Arg Gly Ser Ala Arg Ile Thr Val 400 405 410 TCC AAA GAC CAA TCC TCC TGT ACC ACA GCC CGG GGA CAC ACA CCC ATG 1720 Ser Lys Asp Gln Ser Ser Cys Thr Thr Ala Arg Gly His Thr Pro Met 415 420 425 ACA TGAAGCCAGC TTCCCGTCCA CGACTGTTGT CCTTACTGCC CAAGGAAGGG 1773 Thr 429 GAGCATGAAA CCCACCACTG GTCCTGCGAC CCACTGTCTT TGGAATCCAC CCCAGGAGCC 1833 CAGGAGCCTT GCCTGACACT TGGATTTACT TCTTTATCAA GCATCCATCT GACTAAGGCA 1893 CAAATCCAAC ATGTTACTGT TACTGATACA GGAAAAACAG TAACTTAAGG AATGATCATG 1953 AATGCAAAGG GAAAGAGGAA AAGAGCCTTC AGGGACAAAT AGCTCGATTT TTTGTAAATC 2013 AGTTTCATAC AACCTCCCTC CCCCATTTCA TTCTTAAAAG TTAATTGAGA ATCATCAGCC 2073 ACGTGTAGGG TGTGAG 2089
【発明の効果】組換えDNA技術により十分な量の精製
されたヒトα1C2アドレナリン受容体又はヒトα1C3アド
レナリン受容体を得る事ができ、ヒトα1アドレナリン
受容体サブファミリーの機能解明に向けての研究が容易
になる。また本受容体に選択的なアゴニスト、アンタゴ
ニストの検索を行うときに用いることができる。
【図面の簡単な説明】
【図1】前立腺cDNAを鋳型に用いたPCR反応産物
の1%アガロースゲル電気泳動を表す。 レーン1:P2C1A遺伝子を鋳型に、プライマー1及
び2を用いた場合 レーン2:前立腺cDNAを鋳型に、プライマー1及び
2を用いた場合 レーン3:P2C6遺伝子を鋳型に、プライマー1及び
3を用いた場合 レーン4:前立腺cDNAを鋳型に、プライマー1及び
3を用いた場合 M:分子量マーカー をそれぞれ表す。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C12N 5/10 C12P 21/02 C 9282−4B

Claims (10)

    【特許請求の範囲】
  1. 【請求項1】 配列番号1のアミノ酸配列によって示さ
    れるヒトα1c2アドレナリン受容体をコードするDN
    A。
  2. 【請求項2】 配列番号2の塩基配列によって示される
    ヒトα1c2アドレナリン受容体をコードするDNA。
  3. 【請求項3】 配列番号1のアミノ酸配列によって示さ
    れるヒトα1c2アドレナリン受容体。
  4. 【請求項4】 配列番号3のアミノ酸配列によって示さ
    れるヒトα1c3アドレナリン受容体をコードするDN
    A。
  5. 【請求項5】 配列番号4の塩基配列によって示される
    ヒトα1c3アドレナリン受容体をコードするDNA。
  6. 【請求項6】 配列番号3のアミノ酸配列によって示さ
    れるヒトα1c3アドレナリン受容体。
  7. 【請求項7】 請求項1記載のヒトα1c2アドレナリン
    受容体をコードする遺伝子を含むDNAで形質転換した
    微生物。
  8. 【請求項8】 請求項4記載のヒトα1c3アドレナリン
    受容体をコードする遺伝子を含むDNAで形質転換した
    微生物。
  9. 【請求項9】 請求項1記載のヒトα1c2アドレナリン
    受容体をコードする遺伝子を含むDNAで形質転換した
    動物細胞。
  10. 【請求項10】 請求項4記載のヒトα1c3アドレナリ
    ン受容体をコードする遺伝子を含むDNAで形質転換し
    た動物細胞。
JP6269275A 1994-11-02 1994-11-02 アドレナリン受容体遺伝子 Pending JPH08126491A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6269275A JPH08126491A (ja) 1994-11-02 1994-11-02 アドレナリン受容体遺伝子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6269275A JPH08126491A (ja) 1994-11-02 1994-11-02 アドレナリン受容体遺伝子

Publications (1)

Publication Number Publication Date
JPH08126491A true JPH08126491A (ja) 1996-05-21

Family

ID=17470092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6269275A Pending JPH08126491A (ja) 1994-11-02 1994-11-02 アドレナリン受容体遺伝子

Country Status (1)

Country Link
JP (1) JPH08126491A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7829545B2 (en) 1998-05-06 2010-11-09 Duke University Method of treating bladder and lower urinary tract syndromes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7829545B2 (en) 1998-05-06 2010-11-09 Duke University Method of treating bladder and lower urinary tract syndromes
US7858312B2 (en) 1998-05-06 2010-12-28 Duke University Method of treating bladder and lower urinary tract syndromes

Similar Documents

Publication Publication Date Title
Rao et al. Pseudoautosomal deletions encompassing a novel homeobox gene cause growth failure in idiopathic short stature and Turner syndrome
Bione et al. Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy
US6329516B1 (en) Lepidopteran GABA-gated chloride channels
Katoh et al. Identification and characterization of human FOXN5 and rat Foxn5 genes in silico
US20020106655A1 (en) Human GPCR proteins
JP2001500366A (ja) Cadasilに関与する遺伝子、診断方法および治療への適用
WO1997026335A9 (en) Db, the receptor for leptin, nucleic acids encoding the receptor, and uses thereof
US20020061520A1 (en) Polycystic kidney disease PKD2 gene and uses thereof
WO1997026335A1 (en) Db, the receptor for leptin, nucleic acids encoding the receptor, and uses thereof
JP2010047588A (ja) 新規膜貫通蛋白質をコードする遺伝子
Assaf et al. Cloning of cDNA encoding the nuclear form of chicken sterol response element binding protein-2 (SREBP-2), chromosomal localization, and tissue expression of chicken SREBP-1 and-2 genes
Tu et al. Structural organization and mutational analysis of the human uncoupling protein-2 (hUCP2) gene
CA2482907A1 (en) Tissue specific genes and gene clusters
US20040018188A9 (en) Sparc-related proteins
Heiss et al. Transcription mapping in a 700-kb region around the DXS52 locus in Xq28: isolation of six novel transcripts and a novel ATPase isoform (hPMCA5).
US6555670B1 (en) Testis-specific gene
JP3517988B2 (ja) ヒトマッカード−ジョセフ病関連蛋白質、その蛋白質をコードするcDNAおよび遺伝子、そのDNAまたは遺伝子を含むベクター、その発現ベクターで形質転換された宿主細胞、マッカード−ジョセフ病の診断方法および治療剤
Hewitt et al. Isolation and characterization of a cDNA encoding porcine gastric haptocorrin
JPH08126491A (ja) アドレナリン受容体遺伝子
CA2413670C (en) Human brain and testis-specific immunoglobulin superfamily (bt-igsf) cdna for diagnosis of aplasia of corpus callosum and aspermatogenesis
JPH07289265A (ja) アドレナリン受容体遺伝子
AU2476301A (en) DB the receptor for leptin nucleic acids encoding the receptor, and uses thereof
US20030104418A1 (en) Diagnostic markers for breast cancer
US20030152963A1 (en) Human chromosome 15 and 16 bardet-biedl syndrome polynucleotides and polypeptides and methods of use
US6258944B1 (en) OB receptor isoforms and nucleic acids encoding them