JPH08126122A - Charging apparatus for electric automobile - Google Patents

Charging apparatus for electric automobile

Info

Publication number
JPH08126122A
JPH08126122A JP6262163A JP26216394A JPH08126122A JP H08126122 A JPH08126122 A JP H08126122A JP 6262163 A JP6262163 A JP 6262163A JP 26216394 A JP26216394 A JP 26216394A JP H08126122 A JPH08126122 A JP H08126122A
Authority
JP
Japan
Prior art keywords
inverter
motor
battery
rectifier
charger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6262163A
Other languages
Japanese (ja)
Other versions
JP3477850B2 (en
Inventor
Tadashi Ashikaga
正 足利
Tadao Kobayashi
忠夫 小林
Masato Mori
真人 森
Katsuyuki Watanabe
勝之 渡邊
Kazutoshi Nagayama
和俊 永山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP26216394A priority Critical patent/JP3477850B2/en
Publication of JPH08126122A publication Critical patent/JPH08126122A/en
Application granted granted Critical
Publication of JP3477850B2 publication Critical patent/JP3477850B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

PURPOSE: To provide an inexpensive, compact charging apparatus for an electric automobile by utilizing an existing inverter and the winding of a motor. CONSTITUTION: An inverter 2 for driving a motor 3 is utilized as a charging apparatus, and the AC input is applied from the output side to charge a battery 1. The inverter 2 and the primary winding of the motor 3 are utilized, and the energy is stored in the primary winding from a rectifier. The battery 1 is charged with this energy through the inverter 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、バッテリを搭載した電
気自動車にあって、既存の装置をできるだけ利用した充
電器を提供する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides a charger for an electric vehicle equipped with a battery and using existing devices as much as possible.

【0002】[0002]

【従来の技術】図10は、電気自動車のモータ駆動系と
バッテリの充電器を示している。すなわち、駆動系とし
ては、車載のバッテリ1とこのバッテリ1の直流電力を
交流に変換するインバータ2とこのインバータ2の交流
出力にて駆動される交流モータ3が備えられる。また、
バッテリ充電系としては、交流を直流に変換するチャー
ジャ4を介してバッテリ1に直流電力を充電する構成と
なっている。
2. Description of the Related Art FIG. 10 shows a motor drive system of an electric vehicle and a battery charger. That is, the drive system includes a vehicle-mounted battery 1, an inverter 2 that converts the DC power of the battery 1 into an AC, and an AC motor 3 that is driven by the AC output of the inverter 2. Also,
The battery charging system is configured to charge the battery 1 with DC power through a charger 4 that converts AC into DC.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述の
図10に示したチャージャ4を専用に用意することは、
コスト上高価となることにつながり、また寸法的に大き
くなってチャージャ4を車載とするにしてもまた地上に
設置するにしてもそれなりのスペースが必要である。
However, it is necessary to prepare the charger 4 shown in FIG. 10 for exclusive use as follows.
This leads to an increase in cost and requires a certain space whether the charger 4 is mounted on a vehicle or installed on the ground due to its large size.

【0004】本発明は、これまでのチャージャをなくし
て既存の装置をなるべく用いて安価かつ小形化を図った
電気自動車用充電器の提供を目的とする。
An object of the present invention is to provide a charger for an electric vehicle, which is inexpensive and miniaturized by using an existing device as much as possible without using a conventional charger.

【0005】[0005]

【課題を解決するための手段】上述の目的を達成する本
発明は、 (1)バッテリの直流電力をインバータを介して交流に
変換しモータを駆動するモータ駆動系において、上記イ
ンバータとモータとの間に交流電源ラインを分岐接続
し、このラインの分岐接続部分よりモータ側に切り離し
コネクタを備えたことを特徴とする。 (2)交流電源ラインには高周波電流除去フィルタを備
えたことを特徴とする。 (3)交流電源ラインにはトランスを備えたことを特徴
とする。 (4)バッテリの直流電力をインバータを介して交流に
変換しモータを駆動するモータ駆動系において、整流器
の+側を上記インバータと切り離し可能なモータの一相
巻線に接続し、整流器の−側を上記インバータの−側に
接続したことを特徴とする。 (5)バッテリの直流電力をインバータを介して交流に
変換しモータを駆動するモータ駆動系において、整流器
の+側をモータの一次巻線の中性点に接続し、整流器の
−側を上記インバータの−側に接続したことを特徴とす
る。 (6)バッテリの直流電力をインバータを介して交流に
変換しモータを駆動するモータ駆動系において、整流器
の+側を上記インバータの+側に、整流器の−側を上記
インバータの−側にそれぞれ接続し、上記インバータを
構成する+側のアーム間の一か所にスイッチを挿入した
ことを特徴とする。
Means for Solving the Problems The present invention that achieves the above-mentioned object is as follows. (1) In a motor drive system for converting a DC power of a battery into an AC through an inverter to drive a motor, the inverter and the motor are combined. It is characterized in that an AC power supply line is branched and connected between them, and a disconnection connector is provided on the motor side from the branch connection portion of this line. (2) The AC power supply line is provided with a high frequency current removal filter. (3) The AC power supply line is provided with a transformer. (4) In a motor drive system for converting a DC power of a battery into an AC through an inverter to drive a motor, a positive side of a rectifier is connected to a one-phase winding of a motor that can be separated from the inverter, and a negative side of the rectifier is connected. Is connected to the negative side of the inverter. (5) In a motor drive system for converting a DC power of a battery into an AC through an inverter to drive a motor, a + side of a rectifier is connected to a neutral point of a primary winding of the motor, and a − side of the rectifier is connected to the inverter. It is characterized in that it is connected to the negative side of. (6) In a motor drive system for converting DC power of a battery into AC through an inverter to drive a motor, the + side of the rectifier is connected to the + side of the inverter, and the − side of the rectifier is connected to the − side of the inverter. However, a switch is inserted in one place between the + side arms which constitute the above-mentioned inverter.

【0006】[0006]

【作用】モータを駆動するためのインバータを充電器の
一部として用いており、インバータ出力側より交流入力
を加えることによりバッテリ充電が可能となり、また、
インバータとモータの一次巻線とを利用して昇圧チョッ
パを形成することにより、バッテリを充電でき、また、
インバータとモータの一次巻線とを利用して昇降圧チョ
ッパを形成することにより、バッテリを充電できるよう
にしたものである。
[Operation] An inverter for driving a motor is used as a part of the charger, and the battery can be charged by adding an AC input from the output side of the inverter.
By forming a boost chopper using the inverter and the primary winding of the motor, the battery can be charged, and
By forming a step-up / down chopper using the inverter and the primary winding of the motor, the battery can be charged.

【0007】[0007]

【実施例】ここで、図1〜図9を参照して本発明の実施
例を説明する。なお、図1〜図9において、図10に示
すバッテリ1、インバータ2、モータ3については同符
号を付す。図1において、駆動系は、バッテリ1、イン
バータ2、モータ3からなる。他方、充電器について
は、交流電源に接続されたフィルタ5が上記インバータ
2とモータ3との間に分岐接続されていると共にモータ
3とインバータ2との間に切り離しコネクタ6が介在さ
れている。この場合、フィルタ5は、インダクタンスL
及びコンデンサCからなり、インバータ2の運転によっ
て発生する高周波成分を抑制するために設けられたもの
である。また、この高周波除去フィルタ5の容量は高周
波電力が充電容量の5〜8(%)程度であるため小容量
で済み、スペース及びコスト的にさ程問題とならない。
また、コネクタ6は、バッテリ1によるモータ3の運転
時には接続状態にあるが、充電時には切り離して使う。
バッテリ1の充電に当っては、交流入力をフィルタ5を
介してインバータ2に入力して交流直流変換モードにて
運転しバッテリ1の充電を行なうものである。すなわ
ち、駆動系にて用いられるインバータ2を充電系に兼用
することにより、交流から直流へのバッテリ1の充電が
行なわれる。
An embodiment of the present invention will now be described with reference to FIGS. 1 to 9, the same symbols are attached to the battery 1, the inverter 2, and the motor 3 shown in FIG. In FIG. 1, the drive system includes a battery 1, an inverter 2, and a motor 3. On the other hand, in the charger, the filter 5 connected to the AC power supply is branched and connected between the inverter 2 and the motor 3 and the disconnecting connector 6 is interposed between the motor 3 and the inverter 2. In this case, the filter 5 has an inductance L
And a capacitor C, and is provided to suppress high frequency components generated by the operation of the inverter 2. Further, the capacity of the high-frequency removing filter 5 is small because the high-frequency power is about 5 to 8 (%) of the charging capacity, so there is no problem in terms of space and cost.
Further, the connector 6 is in a connected state when the motor 3 is driven by the battery 1, but is disconnected and used during charging.
In charging the battery 1, an AC input is input to the inverter 2 via the filter 5 to operate in the AC / DC conversion mode to charge the battery 1. That is, the inverter 2 used in the drive system is also used as the charging system to charge the battery 1 from AC to DC.

【0008】図1に示す方式にあっては、直流電圧が交
流電圧ピーク値より高くなり、例えば交流電圧は100
〜200Vであるのに対しバッテリ電圧は300〜35
0Vとなるが、交流入力電圧と直流電圧とのマッチング
が必要な場合や安全面で絶縁が必要な場合には、図2に
示すように交流入力側にてトランス7を設置すればよ
い。
In the system shown in FIG. 1, the DC voltage becomes higher than the peak value of the AC voltage.
The battery voltage is 300-35, while the voltage is ~ 200V.
Although it is 0 V, if matching between the AC input voltage and the DC voltage is necessary or insulation is required for safety, the transformer 7 may be installed on the AC input side as shown in FIG.

【0009】なお、充電用交流入力は、図1,図2では
三相入力の場合を示しているが、単相入力による充電も
可能であり例えばインバータ2のUV相のみを用いるこ
とにより、一般家庭用の電源でも充電が可能となる。
Although the charging AC input is a three-phase input in FIGS. 1 and 2, charging by a single-phase input is also possible. For example, by using only the UV phase of the inverter 2, It can be charged with a household power supply.

【0010】図1,図2に示す充電器については、モー
タ切り離し用コネクタ6が必要になり、このコネクタ6
によるスペースを省くため図3,図4にて更に改良を加
えている。図3は、昇圧チョッパ回路の原理図であり、
整流器10、この整流器10に両端が接続されたトラン
ジスタ11、整流器10とトランジスタ11との間に介
在された直流リアクトル12、トランジスタ11のコレ
クタと直流リアクトル12との間に接続された順方向ダ
イオード13、及び充電され得るバッテリ1を有してい
る。この回路では、トランジスタ11のオンにより直流
リアクトル12を介して通電され、この直流リアクトル
12にエネルギが蓄積される。ついで、トランジスタ1
1をオフするとダイオード13を介して直流リアクトル
12に蓄積されたエネルギがバッテリ1に充電される。
こうして、充電電流を検出してトランジスタ11のオン
時間を制御することによりバッテリ1への充電電流の制
御ができる。
In the charger shown in FIGS. 1 and 2, the motor disconnecting connector 6 is required.
In order to save space due to the above, improvements are added in FIGS. 3 and 4. FIG. 3 is a principle diagram of the boost chopper circuit,
Rectifier 10, a transistor 11 whose both ends are connected to the rectifier 10, a DC reactor 12 interposed between the rectifier 10 and the transistor 11, and a forward diode 13 connected between the collector of the transistor 11 and the DC reactor 12. , And a battery 1 that can be charged. In this circuit, when the transistor 11 is turned on, electricity is supplied through the DC reactor 12 and energy is accumulated in the DC reactor 12. Then, transistor 1
When 1 is turned off, the energy stored in the DC reactor 12 is charged in the battery 1 via the diode 13.
In this way, the charging current to the battery 1 can be controlled by detecting the charging current and controlling the on-time of the transistor 11.

【0011】図4は、図3に示す昇圧チョッパ回路を応
用した充電器であり、バッテリ1、インバータ2、モー
タ3からなる駆動系は、図1と変りなく接続され得る。
インバータ2とモータ3との間の結線は、三線のうち一
線(ここでW相)が切り離しコネクタ6にてオン・オフ
可能に接続され、整流器10の+側をこのモータ3のW
相巻線に接続し、整流器10の−側をインバータ2の−
側に接続する。かかる回路にあって、インバータ2のト
ランジスタTu ,Tv ,Tw ,Tz はオフとしトランジ
スタTx ,Ty を同時にオンすると、整流器10の+側
からモータ3のW相巻線を介してU相巻線、V相巻線に
分流して閉回路が形成され、各相巻線(漏れリアクタン
ス)にエネルギが蓄積される。ついで、トランジスタT
x ,Ty をオフすることにより各巻線に蓄積されたエネ
ルギによりダイオードDu ,Dv を通して電流が流れバ
ッテリ1が充電される。充電電流の制御は、インバータ
2の制御用に設置された電流検出器及びコントローラを
用いてトランジスタTx ,Ty のオン・オフ時間を制御
することにより行なわれる。
FIG. 4 shows a charger to which the step-up chopper circuit shown in FIG. 3 is applied, and the drive system including the battery 1, the inverter 2 and the motor 3 can be connected without any change from FIG.
The connection between the inverter 2 and the motor 3 is such that one of the three wires (W phase here) is disconnected and connected by a connector 6 so that it can be turned on and off, and the + side of the rectifier 10 is connected to the W of this motor 3.
The negative side of the rectifier 10 is connected to the phase winding, and the negative side of the rectifier 10 is connected to the negative side of the inverter 2.
To the side. In such a circuit, when the transistors T u , T v , T w and T z of the inverter 2 are turned off and the transistors T x and T y are turned on at the same time, the + side of the rectifier 10 passes through the W-phase winding of the motor 3. To a U-phase winding and a V-phase winding to form a closed circuit, and energy is accumulated in each phase winding (leakage reactance). Then, the transistor T
By turning off x and T y , a current flows through the diodes D u and D v due to the energy accumulated in each winding, and the battery 1 is charged. The control of the charging current is performed by controlling the on / off time of the transistors T x and T y using a current detector and controller installed for controlling the inverter 2.

【0012】この図4に示す構成においては、二相分の
トランジスタに充電電流が分流するので、駆動電流に近
い電流にてバッテリ1を充電することができ、急速充電
にも対応することができる。また、図4に示す整流器1
0は、車載又は別置きいずれでもよいが、一般家庭にお
いて深夜電力を利用して充電する場合には充電時間が長
く電流が小さいので整流器10も小さくて済み車載であ
ってもスペース的には何ら問題とならないが、急速充電
の場合は整流器容量が大きくなるので別置きが良い。い
ずれにしても従来のチャージャの様に大きくかつ高価と
ならず、また、切り離しコネクタ6も図1に示す場合よ
りも小形で済む。また、一般家庭用の100〜200V
単相電源により容易に充電ができ、インバータ2相分の
アームで並列にチョッパ動作をするためモータ駆動時に
近い大電流で充電でき、急速充電が容易に実現できる。
In the configuration shown in FIG. 4, since the charging current is shunted to the transistors for two phases, the battery 1 can be charged with a current close to the drive current, and rapid charging can be supported. . In addition, the rectifier 1 shown in FIG.
Although 0 may be mounted on the vehicle or separately, the charging time is long and the current is small in the case of charging by using late-night power in a general household, so the rectifier 10 may be small and there is no space in the vehicle. This is not a problem, but in the case of quick charging, the rectifier capacity will be large, so it can be installed separately. In any case, it is not as large and expensive as the conventional charger, and the disconnecting connector 6 is smaller than that shown in FIG. In addition, 100-200V for general household
It can be easily charged by a single-phase power supply, and the chopper operation is performed in parallel with the arms for two phases of the inverter, so that it can be charged with a large current close to that at the time of driving the motor, and quick charging can be easily realized.

【0013】図5は、図4に示す充電器の変形例であ
り、モータ3の全ての三相巻線の漏れリアクタンスを利
用する方式である。したがって、図4に示す切離しコネ
クタ6は不要となり、整流器10の+側はモータ3の一
次巻線の中性点に接続される。図5において、インバー
タ2のトランジスタTu ,Tv ,Tw をオフしたまま
で、トランジスタTx ,Ty ,Tz を同時にオンする。
このとき、整流器10の+側から中性点を通ってU相,
V相,W相の各巻線を分流しトランジスタTx ,Ty
z にて閉回路が形成され、各相巻線にエネルギが蓄積
される。ついで、トランジスタTx ,Ty ,Tz をオフ
すると各巻線のエネルギによりダイオードDu ,Dv
w を介して電流が流れ、バッテリ1に充電される。こ
の場合も、電流の制御は、インバータ制御用に設置され
た電流検出器及びコントローラを用いてトランジスタT
x ,Ty ,Tz のオン・オフ時間を制御することにより
行なう。本例にあっても、3相分のトランジスタに分流
するため駆動電流に等しい電流でバッテリ1を充電でき
て急速充電にも対応可能である。また、整流器10は車
載又は別置きのいずれでも良いが、一般家庭において深
夜電力を利用して充電する場合は充電時間が長く電流が
小さいため整流器も小さくでき車載には特に問題となら
ない。
FIG. 5 shows a modified example of the charger shown in FIG. 4, which is a system in which the leakage reactances of all the three-phase windings of the motor 3 are utilized. Therefore, the disconnecting connector 6 shown in FIG. 4 is unnecessary, and the + side of the rectifier 10 is connected to the neutral point of the primary winding of the motor 3. In FIG. 5, the transistors T u , T v , and T w of the inverter 2 are turned off while the transistors T x , T y , and T z are turned on at the same time.
At this time, the U phase from the + side of the rectifier 10 through the neutral point,
The V-phase and W-phase windings are shunted to separate the transistors Tx , Ty ,
A closed circuit is formed at T z, and energy is stored in each phase winding. Then, when the transistors T x , T y , T z are turned off, the energy of each winding causes the diodes D u , D v ,
A current flows through D w and the battery 1 is charged. Also in this case, the current control is performed by using the current detector and controller installed for inverter control.
x, T y, carried out by controlling the on-off time of the T z. Even in this example, since the current is shunted to the transistors for three phases, the battery 1 can be charged with a current equal to the drive current, and rapid charging can be supported. Further, the rectifier 10 may be mounted on the vehicle or separately installed, but when charging by using midnight power in a general household, since the charging time is long and the current is small, the rectifier can be made small and there is no particular problem in the vehicle.

【0014】図6は、昇降圧チョッパを示す原理図であ
る。この図6の回路では、チョップ部Ch がオンするこ
とにより電源、チョップ部Ch 、リアクトルLからなる
閉回路によって電流ia が流れ、この直流リアクトルL
にエネルギが蓄えられる。ついで、チョップ部Ch がオ
フになると直流リアクトルLの蓄積エネルギにて電流i
b が流れ負荷にエネルギが放出される。このときの出力
電圧は電源電圧に対して反転する。また、出力電圧はチ
ョップ部Ch のオン・オフ時間制御により電源電圧より
大きくしたり小さくすることができる。かかる原理に基
づき本実施例では図7に示すように、バッテリ1、イン
バータ2、モータ3からなる駆動系に対してバッテリ
1、インバータ2それぞれの+側、−側と対応してこれ
らと並列に整流器10を接続する。そして、インバータ
2の+側のトランジスタTu とTv との間にはスイッチ
w が備えられている。この場合、スイッチSw は両方
向導通可能なリレーや半導体スイッチングデバイスなど
により構成される。かかる回路にあってバッテリ充電に
際しては、まず、スイッチSw をオフとし整流器10の
+側をスイッチSw よりモータ3側のインバータアーム
間(ここではトランジスタTv ,Tw )の+側に接続
し、整流器10の−側をインバータアームの−側に接続
する。ついで、インバータ2のトランジスタTv
w ,Tx をオンすると共に他のトランジスタはオフす
る。この時の等価回路は図8に示す構成となる。すなわ
ち、整流器+側より電流i1 がv相、w相巻線に分流
し、U相を通って整流器−側に流れ込む。この結果、モ
ータ3の各相巻線にはエネルギが蓄積されることにな
る。トランジスタTv ,Tw ,Tx をオフするとき、こ
の時の等価回路は図9のようになる。すなわち、整流器
10からの入力は開放されモータの巻線に蓄えられてい
たエネルギが電流i2 としてダイオードDu ,Dy ,D
z を通ってバッテリ1に流れ込み、バッテリ1を充電す
ることができる。このように、充電時にスイッチSw
オフとすることにより、既に車載されているインバータ
を用いて極性非反転の昇降圧チョッパを構成できる。従
ってバッテリ電圧に合わせて充電器の出力電圧及び電流
を、インバータ制御用の直流電圧検出器、交流電流検出
器及びコントローラを用いて、トランジスタTu
y ,Tw のオン・オフ時間を制御することにより調整
できる。ここでスイッチSw を、トランジスタTv ,T
w 間に接続しても上記と同様の回路を構成することがで
きる。このとき、オン・オフするトランジスタはTv
w ,Tx の代わりに、Tu ,Tv ,Tz となる。こう
して、本実施例では充電電源電圧に対して昇・降圧が可
能でありバッテリの電圧に合わせて充電可能となる。本
例にあっても一般家庭用の単相100V−200Vで容
易に充電できる。また本例では充電電源電圧に対し昇圧
又は降圧が可能であり、バッテリの電圧に合わせて充電
でき、このためバッテリの消耗度に応じて充電すること
により、大電流が流れ込む心配がなくなる。上述の図
4,図5,図7の整流器10は単相全波としているが、
多相又は半波整流器でもかまわない。
FIG. 6 is a principle view showing a buck-boost chopper. In the circuit of FIG. 6, when the chop section C h is turned on, a current i a flows through a closed circuit composed of the power source, the chop section C h , and the reactor L, and this DC reactor L
Energy is stored in. Then, when the chop portion C h is turned off, the current i is generated by the stored energy of the DC reactor L.
b flows and energy is released to the load. The output voltage at this time is inverted with respect to the power supply voltage. Further, the output voltage can be reduced or larger than the power supply voltage by the on-off-time control of the chopped section C h. Based on this principle, in the present embodiment, as shown in FIG. 7, the drive system including the battery 1, the inverter 2 and the motor 3 is connected in parallel to the positive side and the negative side of the battery 1 and the inverter 2, respectively. The rectifier 10 is connected. Then, the switch S w is provided between the transistor T u and T v of the inverter 2 + side. In this case, the switch Sw is composed of a relay capable of conducting in both directions, a semiconductor switching device, or the like. When charging the battery in such a circuit, first, the switch Sw is turned off and the + side of the rectifier 10 is connected to the + side of the inverter arm (here, the transistors T v and T w ) on the side of the motor 3 with respect to the switch Sw. Then, the-side of the rectifier 10 is connected to the-side of the inverter arm. Then, the transistor T v of the inverter 2
While turning on T w and T x , other transistors are turned off. The equivalent circuit at this time has the configuration shown in FIG. That is, the current i 1 is shunted from the + side of the rectifier into the v-phase and w-phase windings, and flows into the − side of the rectifier through the U-phase. As a result, energy is stored in each phase winding of the motor 3. When turning off the transistors T v , T w , and T x , the equivalent circuit at this time is as shown in FIG. That is, the input from the rectifier 10 is opened, and the energy stored in the winding of the motor is converted into the current i 2 by the diodes D u , D y and D.
It can flow into the battery 1 through z and charge the battery 1. Thus, by turning off the switch S w at the time of charging it can be configured to buck-polarity inverting already using an inverter that is onboard. Therefore, according to the battery voltage, the output voltage and the current of the charger are changed to the transistor T u , by using the DC voltage detector for controlling the inverter, the AC current detector and the controller.
It can be adjusted by controlling the on / off time of T y and T w . Here, the switch S w is set to the transistors T v and T
A circuit similar to the above can be constructed by connecting between w . At this time, the transistor that is turned on / off is T v ,
Instead of T w and T x , they are T u , T v and T z . In this way, in this embodiment, it is possible to raise / lower the charging power supply voltage and to charge the battery in accordance with the battery voltage. Even in this example, charging can be easily performed with single-phase 100V-200V for general household use. Further, in this example, the charging power supply voltage can be stepped up or down, and charging can be performed according to the voltage of the battery. Therefore, by charging according to the degree of consumption of the battery, there is no concern that a large current will flow. Although the rectifier 10 shown in FIGS. 4, 5 and 7 is a single-phase full wave,
A polyphase or half-wave rectifier may be used.

【0015】[0015]

【発明の効果】以上実施例にて説明したように本発明に
よれば、従来のようにチャージャを用いることなくイン
バータを充電器として兼用することができて安価となる
と共にスペースも少なくて済み、また、マッチングが必
要な時にはトランスを配置することもでき、更には切り
離しコンタクタを小型化又は不要とでき、2相又は3相
アームが並列してチョッパ動作を行なうことにより、大
電流による充電を行なうことができ、必要に応じて急速
充電も可能となる。
As described in the above embodiments, according to the present invention, the inverter can be used as a charger without using a charger as in the conventional case, which is inexpensive and requires a small space. Further, when matching is required, a transformer can be arranged, and a contactor for separation can be made smaller or unnecessary, and a two-phase or three-phase arm can perform chopper operation in parallel to perform charging with a large current. It is also possible to do quick charging if necessary.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の回路図。FIG. 1 is a circuit diagram of an embodiment of the present invention.

【図2】図1の変形例を示す回路図。FIG. 2 is a circuit diagram showing a modified example of FIG.

【図3】昇圧チョッパの原理図。FIG. 3 is a principle diagram of a boost chopper.

【図4】昇圧チョッパを利用した他の実施例の回路図。FIG. 4 is a circuit diagram of another embodiment using a boost chopper.

【図5】図4の変形例を示す回路図。FIG. 5 is a circuit diagram showing a modified example of FIG.

【図6】昇降圧チョッパの原理図。FIG. 6 is a principle diagram of a step-up / down chopper.

【図7】昇降圧チョッパを利用したその他の実施例の回
路図。
FIG. 7 is a circuit diagram of another embodiment using a buck-boost chopper.

【図8】図7のエネルギ蓄積時の等価回路図。FIG. 8 is an equivalent circuit diagram when energy is stored in FIG. 7.

【図9】図7の充電時の等価回路図。9 is an equivalent circuit diagram of FIG. 7 during charging.

【図10】従来例の回路図。FIG. 10 is a circuit diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1 バッテリ 2 インバータ 3 モータ 5 フィルタ 6 切り離しコネクタ 7 トランス 10 整流器 1 Battery 2 Inverter 3 Motor 5 Filter 6 Disconnection Connector 7 Transformer 10 Rectifier

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡邊 勝之 東京都品川区大崎二丁目1番17号 株式会 社明電舎内 (72)発明者 永山 和俊 東京都品川区大崎二丁目1番17号 株式会 社明電舎内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Katsuyuki Watanabe 2-1-1 Osaki, Shinagawa-ku, Tokyo Stock company Inside the company Meidensha (72) Inventor Kazutoshi Nagayama 2--17 Osaki, Shinagawa-ku, Tokyo Stock association Shameidensha

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 バッテリの直流電力をインバータを介し
て交流に変換しモータを駆動するモータ駆動系におい
て、 上記インバータとモータとの間に交流電源ラインを分岐
接続し、このラインの分岐接続部分よりモータ側に切り
離しコネクタを備えたことを特徴とする電気自動車用充
電器。
1. In a motor drive system for converting a DC power of a battery into an AC through an inverter to drive a motor, an AC power supply line is branched and connected between the inverter and the motor, and a branch connection portion of this line is connected. A charger for an electric vehicle, which is provided with a disconnecting connector on the motor side.
【請求項2】 交流電源ラインには高周波電流除去フィ
ルタを備えたことを特徴とする請求項1記載の電気自動
車用充電器。
2. The charger for an electric vehicle according to claim 1, wherein the AC power supply line is provided with a high frequency current removal filter.
【請求項3】 交流電源ラインにはトランスを備えたこ
とを特徴とする請求項1記載の電気自動車用充電器。
3. The battery charger for an electric vehicle according to claim 1, wherein the AC power supply line is provided with a transformer.
【請求項4】 バッテリの直流電力をインバータを介し
て交流に変換しモータを駆動するモータ駆動系におい
て、 整流器の+側を上記インバータと切り離し可能なモータ
の一相巻線に接続し、整流器の−側を上記インバータの
−側に接続したことを特徴とする電気自動車用充電器。
4. In a motor drive system for converting a DC power of a battery into an AC through an inverter to drive a motor, the + side of the rectifier is connected to a one-phase winding of the motor which can be separated from the inverter, A battery charger for an electric vehicle, the negative side of which is connected to the negative side of the inverter.
【請求項5】 バッテリの直流電力をインバータを介し
て交流に変換しモータを駆動するモータ駆動系におい
て、 整流器の+側をモータの一次巻線の中性点に接続し、整
流器の−側を上記インバータの−側に接続したことを特
徴とする電気自動車用充電器。
5. A motor drive system for converting a DC power of a battery into an AC through an inverter to drive a motor, wherein the + side of the rectifier is connected to a neutral point of the primary winding of the motor, and the − side of the rectifier is connected. A charger for an electric vehicle, which is connected to the negative side of the inverter.
【請求項6】 バッテリの直流電力をインバータを介し
て交流に変換しモータを駆動するモータ駆動系におい
て、 整流器の+側を上記インバータの+側に、整流器の−側
を上記インバータの−側にそれぞれ接続し、上記インバ
ータを構成する+側のアーム間の一か所にスイッチを挿
入したことを特徴とする電気自動車用充電器。
6. In a motor drive system for converting a DC power of a battery into an AC through an inverter to drive a motor, a + side of the rectifier is a + side of the inverter, and a − side of the rectifier is a − side of the inverter. A battery charger for an electric vehicle, characterized in that a switch is inserted in one place between the + side arms which are connected to each other and constitute the above-mentioned inverter.
JP26216394A 1994-10-26 1994-10-26 Electric vehicle charger Expired - Fee Related JP3477850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26216394A JP3477850B2 (en) 1994-10-26 1994-10-26 Electric vehicle charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26216394A JP3477850B2 (en) 1994-10-26 1994-10-26 Electric vehicle charger

Publications (2)

Publication Number Publication Date
JPH08126122A true JPH08126122A (en) 1996-05-17
JP3477850B2 JP3477850B2 (en) 2003-12-10

Family

ID=17371943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26216394A Expired - Fee Related JP3477850B2 (en) 1994-10-26 1994-10-26 Electric vehicle charger

Country Status (1)

Country Link
JP (1) JP3477850B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007306642A (en) * 2006-05-08 2007-11-22 Toshiba Corp Permanent magnet motor drive apparatus
JP2010045961A (en) * 2008-07-16 2010-02-25 Toyota Central R&D Labs Inc Power control apparatus
CN101867212A (en) * 2010-07-08 2010-10-20 福州欣联达电子科技有限公司 Charging circuit with three-phase multi-way switch and power factor compensation of electric automobile
EP2364872A2 (en) 2010-03-08 2011-09-14 Kabushiki Kaisha Toyota Jidoshokki Battery charging circuit and charging method
JP2011526775A (en) * 2009-03-11 2011-10-13 ルノー・エス・アー・エス Fast charger for electric vehicles
JP2011529328A (en) * 2008-07-28 2011-12-01 ルノー・エス・アー・エス Electric traction chain for automobile
JP2012200139A (en) * 2011-03-18 2012-10-18 Ls Industrial Systems Co Ltd Inverter/charger integrated device and method for controlling the same
US8441229B2 (en) 2010-08-31 2013-05-14 Hyundai Motor Company System for recharging plug-in hybrid vehicle and control method for the same
JP2013099145A (en) * 2011-11-01 2013-05-20 Toyota Central R&D Labs Inc Power supply system
JP2013172565A (en) * 2012-02-21 2013-09-02 Toyota Central R&D Labs Inc Power control system
JP2013243920A (en) * 2012-05-21 2013-12-05 Ls Industrial Systems Co Ltd Inverter-charger integration device for electric vehicle and control method
JP2015019581A (en) * 2008-11-18 2015-01-29 ヴァレオ システム ドゥ コントロール モトゥール Combined electric device for powering and charging
DE102014212936A1 (en) * 2014-07-03 2016-01-07 Siemens Aktiengesellschaft Device and method for providing a charging voltage
JP2016106511A (en) * 2009-08-31 2016-06-16 ゼネラル・エレクトリック・カンパニイ Electric vehicle
WO2016101380A1 (en) * 2014-12-25 2016-06-30 中山大洋电机股份有限公司 Semi-vehicle-mounted rapid charging method and charging device thereof for electric bus
US9620974B2 (en) 2008-10-22 2017-04-11 General Electric Company Apparatus for transferring energy using power electronics and machine inductance and method of manufacturing same
US9809121B2 (en) 2008-10-22 2017-11-07 General Electric Company Apparatus for energy transfer using converter and method of manufacturing same
CN107364350A (en) * 2016-04-25 2017-11-21 通用电气公司 Integration charger and its manufacture method for vehicle
JP2019071772A (en) * 2017-10-09 2019-05-09 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフトDr. Ing. h.c. F. Porsche Aktiengesellschaft Inverter for electric vehicle
US10454290B2 (en) 2010-11-05 2019-10-22 General Electric Company Apparatus for transferring energy using onboard power electronics with high-frequency transformer isolation and method of manufacturing same
KR102187788B1 (en) * 2019-07-02 2020-12-08 현대오트론 주식회사 Apparatus for integrating on board charging system with hybrid starter generator system
US11884168B2 (en) 2009-12-18 2024-01-30 General Electric Company Apparatus and method for rapid charging using shared power electronics

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5234050B2 (en) 2010-04-27 2013-07-10 株式会社デンソー Vehicle power supply
US8937400B2 (en) 2010-04-27 2015-01-20 Denso Corporation Power supply apparatus for vehicle
US9278625B2 (en) 2010-12-16 2016-03-08 Denso Corporation Power supply apparatus for vehicles that selects between conductive and non-conductive power transfer
KR102040632B1 (en) 2012-05-11 2019-11-05 후지 덴키 가부시키가이샤 Motor drive device
US10771001B2 (en) 2015-09-11 2020-09-08 Invertedpower Pty Ltd Controller for an inductive load having one or more inductive windings
US11479139B2 (en) 2015-09-11 2022-10-25 Invertedpower Pty Ltd Methods and systems for an integrated charging system for an electric vehicle

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4690937B2 (en) * 2006-05-08 2011-06-01 株式会社東芝 Permanent magnet motor drive device
JP2007306642A (en) * 2006-05-08 2007-11-22 Toshiba Corp Permanent magnet motor drive apparatus
JP2010045961A (en) * 2008-07-16 2010-02-25 Toyota Central R&D Labs Inc Power control apparatus
JP2011529328A (en) * 2008-07-28 2011-12-01 ルノー・エス・アー・エス Electric traction chain for automobile
US11167654B2 (en) 2008-10-22 2021-11-09 General Electric Company Apparatus for transferring energy using power electronics and machine inductance and method of manufacturing same
US10131234B2 (en) 2008-10-22 2018-11-20 General Electric Company Apparatus for energy transfer using converter and method of manufacturing same
US11752887B2 (en) 2008-10-22 2023-09-12 General Electric Company Apparatus for energy transfer using converter and method of manufacturing same
US9809121B2 (en) 2008-10-22 2017-11-07 General Electric Company Apparatus for energy transfer using converter and method of manufacturing same
US9620974B2 (en) 2008-10-22 2017-04-11 General Electric Company Apparatus for transferring energy using power electronics and machine inductance and method of manufacturing same
US10604023B2 (en) 2008-10-22 2020-03-31 General Electric Company Apparatus for energy transfer using converter and method of manufacturing same
US10994623B2 (en) 2008-10-22 2021-05-04 General Electric Company Apparatus for energy transfer using converter and method of manufacturing same
JP2015019581A (en) * 2008-11-18 2015-01-29 ヴァレオ システム ドゥ コントロール モトゥール Combined electric device for powering and charging
JP2011526775A (en) * 2009-03-11 2011-10-13 ルノー・エス・アー・エス Fast charger for electric vehicles
KR101302714B1 (en) * 2009-03-11 2013-08-30 르노 에스.아.에스. Fast charging device for an electric vehicle
JP2016106511A (en) * 2009-08-31 2016-06-16 ゼネラル・エレクトリック・カンパニイ Electric vehicle
US11884168B2 (en) 2009-12-18 2024-01-30 General Electric Company Apparatus and method for rapid charging using shared power electronics
US8421381B2 (en) 2010-03-08 2013-04-16 Kabushiki Kaisha Toyota Jidoshokki Battery charging circuit and charging method
EP2364872A2 (en) 2010-03-08 2011-09-14 Kabushiki Kaisha Toyota Jidoshokki Battery charging circuit and charging method
CN101867212A (en) * 2010-07-08 2010-10-20 福州欣联达电子科技有限公司 Charging circuit with three-phase multi-way switch and power factor compensation of electric automobile
US8441229B2 (en) 2010-08-31 2013-05-14 Hyundai Motor Company System for recharging plug-in hybrid vehicle and control method for the same
US10454290B2 (en) 2010-11-05 2019-10-22 General Electric Company Apparatus for transferring energy using onboard power electronics with high-frequency transformer isolation and method of manufacturing same
US8736203B2 (en) 2011-03-18 2014-05-27 Lsis Co., Ltd. Inverter/charger integrated device and method for controlling the same
JP2012200139A (en) * 2011-03-18 2012-10-18 Ls Industrial Systems Co Ltd Inverter/charger integrated device and method for controlling the same
JP2013099145A (en) * 2011-11-01 2013-05-20 Toyota Central R&D Labs Inc Power supply system
JP2013172565A (en) * 2012-02-21 2013-09-02 Toyota Central R&D Labs Inc Power control system
JP2013243920A (en) * 2012-05-21 2013-12-05 Ls Industrial Systems Co Ltd Inverter-charger integration device for electric vehicle and control method
US9496804B2 (en) 2012-05-21 2016-11-15 Lsis Co., Ltd. Inverter-charger combined device for electric vehicles and method thereof
DE102014212936A1 (en) * 2014-07-03 2016-01-07 Siemens Aktiengesellschaft Device and method for providing a charging voltage
WO2016101380A1 (en) * 2014-12-25 2016-06-30 中山大洋电机股份有限公司 Semi-vehicle-mounted rapid charging method and charging device thereof for electric bus
US10507716B2 (en) 2016-04-25 2019-12-17 General Electric Company Integrated charger for vehicles and method of making same
CN107364350A (en) * 2016-04-25 2017-11-21 通用电气公司 Integration charger and its manufacture method for vehicle
EP3238979B1 (en) * 2016-04-25 2023-12-06 General Electric Company Integrated charger for vehicles and method of making same
JP2019071772A (en) * 2017-10-09 2019-05-09 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフトDr. Ing. h.c. F. Porsche Aktiengesellschaft Inverter for electric vehicle
KR102187788B1 (en) * 2019-07-02 2020-12-08 현대오트론 주식회사 Apparatus for integrating on board charging system with hybrid starter generator system

Also Published As

Publication number Publication date
JP3477850B2 (en) 2003-12-10

Similar Documents

Publication Publication Date Title
JP3477850B2 (en) Electric vehicle charger
JP6637552B2 (en) Device for charging energy storage
JP3284571B2 (en) Electric car
US9321367B2 (en) Apparatus for energy transfer using converter and method of manufacturing same
US4920475A (en) Integrated traction inverter and battery charger apparatus
JPH0630505A (en) Electric system for electric automobile
CN111434514B (en) Energy conversion device, power system and vehicle
JP2010045961A (en) Power control apparatus
US10245961B2 (en) Inverter-charger combination
US11332028B2 (en) Alternating voltage charging device and method for the single- or multi-phase alternating current charging of a vehicle
JP3277825B2 (en) Charging device
EP3700072B1 (en) Ac-dc pfc converter for single-phase and three-phase operation
CN111602329A (en) Converter component and semiconductor module of such a converter component
JPH09298840A (en) Charger of electric vehicle
CN112224061B (en) Energy conversion device, power system and vehicle
CN112224053B (en) Energy conversion device, power system and vehicle
JPH06133564A (en) Battery charger
CN112224063B (en) Energy conversion device, power system and vehicle
JP2000152408A (en) Electric vehicle
KR20210084755A (en) Battery wired/wireless charging system using motor control system for vehicle and operation method thereof
JP2020058178A (en) Charging control method and charging control device
WO2022162964A1 (en) Power converter
CN210617830U (en) Integrated electric drive device and electric vehicle comprising same
US20230318468A1 (en) Dc/dc converter for battery chargers, and method of controlling such a dc/dc converter at very light load conditions
JP3203965B2 (en) Inverter shared charge device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101003

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101003

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees