JPH08125207A - Solar cell and its manufacture - Google Patents

Solar cell and its manufacture

Info

Publication number
JPH08125207A
JPH08125207A JP6265082A JP26508294A JPH08125207A JP H08125207 A JPH08125207 A JP H08125207A JP 6265082 A JP6265082 A JP 6265082A JP 26508294 A JP26508294 A JP 26508294A JP H08125207 A JPH08125207 A JP H08125207A
Authority
JP
Japan
Prior art keywords
layer
type semiconductor
semiconductor
work function
electron affinity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6265082A
Other languages
Japanese (ja)
Other versions
JP2922796B2 (en
Inventor
Kosuke Ikeda
光佑 池田
Mikihiko Nishitani
幹彦 西谷
Takahiro Wada
隆博 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6265082A priority Critical patent/JP2922796B2/en
Publication of JPH08125207A publication Critical patent/JPH08125207A/en
Application granted granted Critical
Publication of JP2922796B2 publication Critical patent/JP2922796B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE: To provide a solar cell with improved conversion efficiency by forming a solar cell with at least three semiconductor layers of a light absorption layer, middle layer, and a window layer. CONSTITUTION: A light absorption layer 2, a middle layer 3, a window layer 4, and a transparent conductive layer 5 are laid out in order on a substrate with an electrode layer or a metal substrate 1 with an electrode property. P-type semiconductor light absorption layer with an electron affinity of χ1 , a work function of Φ1 , and a band gap energy of Eg1 , a semiconductor middle layer with an electron affinity of χ2 , a work function of Φ2 , and a band gap energy of Eg2 , n-type semiconductor window layer with an electron affinity of χ3 , a work function of Φ3 , and a band gap energy of Eg3 , and a transparent conductive layer are successively laminated with conditions of χ1 -χ2 -χ3 , Φ1 >Φ2 >Φ3 and Eg1 <Eg2 <Eg3 .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、化合物を用いた太陽電
池及びその製造方法に関する。さらに詳しくは、少なく
とも3種の半導体を積層した構成の太陽電池及びその製
造方法に関するものである。
TECHNICAL FIELD The present invention relates to a solar cell using a compound and a method for producing the same. More specifically, the present invention relates to a solar cell having a structure in which at least three types of semiconductors are stacked, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近い将来、エネルギー供給が次第に困難
になることが予想され、太陽電池の高効率化、低コスト
化が大きな課題になってきた。なかでも、大面積化が容
易な薄膜系太陽電池は大幅な低コスト化が可能なのでそ
のエネルギー変換効率の向上が強く望まれている。この
薄膜系太陽電池には化合物半導体(II-VI 族やI-III-VI
2 族)薄膜を用いたものが広く開発されつつある。化合
物半導体薄膜を用いた太陽電池の構成は、例えばバンド
ギャップが広くて光を透過する窓層としてのn型CdS
系半導体層とバンドギャップが狭くて光吸収層として機
能するCdTe系またはCuInSe2 系などのp型の
半導体層を積層したヘテロ接合が用いられる。もちろ
ん、窓層がp型半導体、光吸収層がn型半導体の組合せ
でも良い。構成としては、例えばITO(Indium
Tin Oxide)を設けたガラス基板上にn型C
dS層を形成し、次いでp型CdTe層を蒸着法で積層
形成し、最後に金属電極を設けて太陽電池とする。また
は、Mo薄層を設けたガラス基板上にp型CuInSe
2 層を蒸着法で形成し、次いで化学析出法によってn型
CdS層を、最後にZnOまたはZnO/ITO透明電
極層を設けて太陽電池とする。これらの太陽電池で15
%以上もの変換効率が得られるようになってきた。
2. Description of the Related Art Energy supply will become increasingly difficult in the near future
Expected to become, solar cell high efficiency, low cost
Has become a major issue. Above all, increasing the area
Easy-to-use thin-film solar cells can significantly reduce costs.
It is strongly desired to improve the energy conversion efficiency of this
Compound semiconductors (II-VI group and I-III-VI group) are used for thin-film solar cells.
2Those using thin films are being widely developed. Compound
The structure of a solar cell using a semiconductor thin film is, for example, a band
N-type CdS as a window layer having a wide gap and transmitting light
Since it has a narrow band gap with the system semiconductor layer, it functions as a light absorption layer.
CdTe system or CuInSe that works2P-type
A heterojunction in which semiconductor layers are stacked is used. Mochiro
, A combination of p-type semiconductor for window layer and n-type semiconductor for light absorption layer
But good. As a configuration, for example, ITO (Indium)
 N-type C on a glass substrate with Tin Oxide)
Form dS layer, then stack p-type CdTe layer by vapor deposition method
A solar cell is formed by finally forming a metal electrode. Also
Is p-type CuInSe on a glass substrate provided with a Mo thin layer.
2Layer is formed by vapor deposition and then n-type by chemical deposition
Finally, the CdS layer is added to the ZnO or ZnO / ITO transparent electrode.
A polar layer is provided to form a solar cell. 15 with these solar cells
It has become possible to obtain conversion efficiencies as high as 100% or more.

【0003】[0003]

【発明が解決しようとする課題】この様に変換効率が著
しく向上してきたのは半導体薄膜形成の技術面の進歩に
よるところが大きい。ところで太陽電池の変換効率η
は、η=Voc(開放電圧)×Jsc(閉路電流)×FF
(曲線因子)の関係で表される。この中でJscはほとん
ど理論的限界に近い値が得られるようになってきたが、
ocおよびそれを反映するFFは、予想される値よりず
っと小さい。このVocを大きくすることが変換効率向上
のための最大の鍵である。Vocが生じるのは、光発生し
たキャリアである電子と正孔がpn接合層の内部電界に
従って分離し外部電圧として発生するが、外部電圧が発
生するとこれが内部電界を打ち消しこれを小さくするの
で、光発生した電子と正孔が分離し難くなりお互いに再
結合して死んでしまい、Vocに寄与しなくなる。実際の
太陽電池でこのVocが大きくなり難いのは半導体の膜中
や特にpn接合界面に再結合を促進する再結合中心が多
数できてしまい、この再結合中心を減らすことが困難で
あることによる。結局これらの再結合中心があると光発
生した電子・正孔の再結合をうながし、それらの寿命を
短くし、その結果V oc、FFがいま一つ大きくならず変
換効率の向上を妨げている。
As described above, the conversion efficiency is remarkable.
What has improved dramatically is the technological progress of semiconductor thin film formation.
It depends greatly. By the way, the conversion efficiency of the solar cell η
Is η = Voc(Open voltage) x Jsc(Circuit current) x FF
It is expressed by the relationship of (curve factor). J in thisscHahonton
Although we are getting closer to the theoretical limit,
VocAnd the FF that reflects it is less than expected
It's small. This VocTo increase conversion efficiency
Is the biggest key for. VocLight is generated
Electrons and holes that are carriers are generated in the internal electric field of the pn junction layer.
Therefore, it is separated and generated as an external voltage, but the external voltage is generated.
When it occurs, it cancels the internal electric field and makes it smaller.
This makes it difficult for the photo-generated electrons and holes to separate, and
Combined and died, VocWill not contribute to. Actual
This V with solar cellsocIs difficult to grow in the semiconductor film
In particular, there are many recombination centers that promote recombination at the pn junction interface.
It is difficult to reduce the number of recombination centers
It depends. After all, if these recombination centers are present,
Promotes recombination of generated electrons and holes, and
Shorten, resulting in V oc, FF doesn't get bigger and changes
This hinders the improvement of conversion efficiency.

【0004】本発明は、前記従来の問題を解決するた
め、キャリアーの再結合の盛んな半導体接合部で一方の
キャリアーを極端に少なくすることにより、発生した電
子と正孔の再結合を大幅に抑制し開放電圧を増大させ変
換効率の高い太陽電池及びその製造方法を提供すること
を目的とする。
In order to solve the above conventional problems, the present invention drastically reduces the recombination of generated electrons and holes by extremely reducing one carrier at a semiconductor junction where carrier recombination is active. It is an object of the present invention to provide a solar cell that suppresses an increase in open circuit voltage and has high conversion efficiency, and a method for manufacturing the same.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するた
め、本発明の第1番目の太陽電池は、電極層を設けた基
板または電極性を備えた金属基板上に、p型の半導体1
の光吸収層と、半導体2の中間層と、n型の半導体3の
窓層と、透明導電層とを順次積層した太陽電池であっ
て、前記p型の半導体1の光吸収層の電子親和力を
χ1 、仕事関数をΦ1 、バンドギャップエネルギーをE
g1とし、前記半導体2の中間層の電子親和力をχ2 、仕
事関数をΦ2 、かつバンドギャップエネルギーをEg2
し、前記n型の半導体3の窓層の電子親和力をχ3 、仕
事関数をΦ3 、バンドギャップエネルギーをEg3とした
とき、χ1 とχ2 とχ3 とはほぼ等しく、Φ1 >Φ2
Φ3 かつEg1<Eg2<Eg3なる関係を満たすことを特徴
とする。
In order to achieve the above object, the first solar cell of the present invention comprises a p-type semiconductor 1 on a substrate provided with an electrode layer or a metal substrate having an electrode property.
Of the light absorption layer, the intermediate layer of the semiconductor 2, the window layer of the n-type semiconductor 3, and the transparent conductive layer are sequentially stacked, and the electron affinity of the light absorption layer of the p-type semiconductor 1 is Is χ 1 , the work function is Φ 1 , and the bandgap energy is E
g1 , the electron affinity of the intermediate layer of the semiconductor 2 is χ 2 , the work function is Φ 2 , and the bandgap energy is E g2, and the electron affinity of the window layer of the n-type semiconductor 3 is χ 3 and the work function is When Φ 3 and the bandgap energy are E g3 , χ 1 , χ 2 and χ 3 are almost equal, and Φ 1 > Φ 2 >
It is characterized by satisfying the relation of Φ 3 and E g1 <E g2 <E g3 .

【0006】次に本発明の第2番目の太陽電池は、透光
性基板上に、透明導電層と、n型の半導体3の窓層と、
半導体2の中間層と、p型の半導体1の光吸収層と、電
極層とを順次積層した太陽電池であって、前記n型の半
導体3の窓層の電子親和力をχ3 、仕事関数をΦ3 、バ
ンドギャップエネルギーをEg3とし、前記半導体2の中
間層の電子親和力をχ2 、仕事関数をΦ2 、バンドギャ
ップエネルギーをEg2とし、前記p型の半導体1の光吸
収層の電子親和力をχ1 、仕事関数をΦ1 、バンドギャ
ップエネルギーをEg1としたとき、χ1 とχ2 とχ3
はほぼ等しく、Φ1 >Φ2 >Φ3 かつEg1<Eg2<Eg3
なる関係を満たすことを特徴とする。
Next, the second solar cell of the present invention comprises a transparent conductive layer, a window layer of the n-type semiconductor 3, and a transparent conductive layer on a transparent substrate.
A solar cell in which an intermediate layer of a semiconductor 2, a light absorption layer of a p-type semiconductor 1, and an electrode layer are sequentially stacked, and the electron affinity of the window layer of the n-type semiconductor 3 is χ 3 , and the work function is Φ 3 , the bandgap energy is E g3 , the electron affinity of the intermediate layer of the semiconductor 2 is χ 2 , the work function is Φ 2 , the bandgap energy is E g2, and the electrons of the light absorption layer of the p-type semiconductor 1 are When the affinity is χ 1 , the work function is Φ 1 , and the bandgap energy is E g1 , χ 1 , χ 2 and χ 3 are almost equal, and Φ 1 > Φ 2 > Φ 3 and E g1 <E g2 <E g3
It is characterized by satisfying the following relationship.

【0007】前記第1〜2番目の太陽電池の構成におい
ては、p型の半導体1が、CuInSe2 、CuGaS
2 、CuInS2 及びCdTeから選ばれる少なくと
も一つの化合物であることが好ましい。
In the first to second solar cell structures, the p-type semiconductor 1 is made of CuInSe 2 , CuGaS.
It is preferably at least one compound selected from e 2 , CuInS 2 and CdTe.

【0008】また前記構成においては、p型の半導体1
が、固溶体のCuInSe2 −CuGaSe2 、CuI
nS2 −CuGaS2 、CuInSe2 −CuInS2
及びCuGaSe2 −CuGaS2 から選ばれる少なく
とも一つの化合物であることが好ましい。
In the above structure, the p-type semiconductor 1 is used.
Is a solid solution of CuInSe 2 —CuGaSe 2 , CuI
nS 2 -CuGaS 2, CuInSe 2 -CuInS 2
And at least one compound selected from CuGaSe 2 —CuGaS 2 is preferable.

【0009】また前記構成においては、半導体2が、C
dSe及び固溶体CdTe−MgTeから選ばれる少な
くとも一つの化合物であることが好ましい。また前記構
成においては、n型の半導体3が、CdS、ZnSeま
たはZnOから選ばれる少なくとも一つの化合物である
ことが好ましい。
In the above structure, the semiconductor 2 is C
It is preferably at least one compound selected from dSe and solid solution CdTe-MgTe. Further, in the above structure, the n-type semiconductor 3 is preferably at least one compound selected from CdS, ZnSe, and ZnO.

【0010】また前記構成においては、n型の半導体3
が、固溶体CdS−ZnS、CdS−MnS、CdSe
−MnSe、ZnSe−MnSe及びCdTe−MgT
eから選ばれる少なくとも一つの化合物であることが好
ましい。
In the above structure, the n-type semiconductor 3
Is a solid solution CdS-ZnS, CdS-MnS, CdSe
-MnSe, ZnSe-MnSe and CdTe-MgT
It is preferably at least one compound selected from e.

【0011】次に本発明の第1番目の製造方法は、電極
層を設けた基板または電極性を備えた金属基板上に、電
子親和力がχ1 で仕事関数がΦ1 でかつバンドギャップ
エネルギーがEg1であるp型の半導体1の光吸収層を形
成し、その上に電子親和力がχ2 で仕事関数がΦ2 でか
つバンドギャップエネルギーがEg2でありしかもχ2
χ1 、Φ2 <Φ1 でかつEg2>Eg1である半導体2の中
間層を形成し、その上に電子親和力がχ3 で仕事関数が
Φ3 でかつバンドギャップエネルギーがEg3であり、し
かもχ3 〜χ2 、Φ3 <Φ2 でかつEg3>Eg2であるn
型の半導体3の窓層を形成し、さらにその上に透明導電
層を形成することを特徴とする。
Next, in the first manufacturing method of the present invention, an electron affinity is χ 1 , a work function is Φ 1 , and a bandgap energy is on a substrate provided with an electrode layer or a metal substrate having an electrode property. A light-absorbing layer of p-type semiconductor 1 having E g1 is formed, on which electron affinity is χ 2 , work function is Φ 2 , bandgap energy is E g2 , and χ 2 ~
An intermediate layer of a semiconductor 2 having χ 1 , Φ 21 and E g2 > E g1 is formed, and an electron affinity χ 3 , a work function Φ 3 , and a bandgap energy E g3 are formed on the intermediate layer. , And χ 3 to χ 2 , Φ 32 and E g3 > E g2.
A window layer of the semiconductor 3 of the mold is formed, and a transparent conductive layer is further formed thereon.

【0012】次に本発明の第2番目の製造方法は、透明
導電層を設けた透光性基板上に、電子親和力がχ3 で仕
事関数がΦ3 でかつバンドギャップエネルギーがEg3
あるn型の半導体3の窓層を形成し、その上に電子親和
力がχ2 で仕事関数がΦ2 でかつバンドギャップエネル
ギーがEg2であり、しかもχ2 〜χ3 、Φ2 >Φ3 でか
つEg2<Eg3である半導体2の中間層を形成し、その上
に電子親和力がχ1 で仕事関数がΦ1 でかつバンドギャ
ップエネルギーがEg1であり、しかもχ1 〜χ 2 、Φ1
>Φ2 でかつEg1<Eg2であるp型の半導体1の光吸収
層を形成し、さらにその上に電極層を形成することを特
徴とする。
Next, the second manufacturing method of the present invention is transparent.
The electron affinity is χ on the transparent substrate with the conductive layer.3In
The function is Φ3And the band gap energy is Eg3so
A window layer of a certain n-type semiconductor 3 is formed, and an electron affinity is formed on the window layer.
Power is χ2And the work function is Φ2And bandgap energy
Gee is Eg2And χ2~ Χ3, Φ2> Φ3Big
One Eg2<Eg3Forming an intermediate layer of the semiconductor 2, which is
Has electron affinity χ1And the work function is Φ1And
Energy is Eg1And χ1~ Χ 2, Φ1
> Φ2And Eg1<Eg2Absorption of p-type semiconductor 1 which is
A layer is formed, and an electrode layer is further formed on the layer.
To collect.

【0013】本発明の太陽電池の構成は図1に示す様
に、電極層を設けた基板または電極性を備えた金属基板
上に、電子親和力がχ1 で仕事関数がΦ1 でかつバンド
ギャップエネルギーがEg1であるp型の半導体1の光吸
収層、電子親和力がχ2 で仕事関数がΦ2 でかつバンド
ギャップエネルギーがEg2である半導体2の中間層、そ
の上に電子親和力がχ3 で仕事関数がΦ3 でかつバンド
ギャップエネルギーがE g3であるn型の半導体3の窓
層、透明導電層を順次積層した構成で成り、しかもχ1
〜χ2 〜χ3 、Φ1 >Φ2 >Φ3 でかつEg1<Eg2<E
g3であるか、または図2に示す様に、透光性基板上に、
透明導電層、電子親和力がχ3 で仕事関数がΦ3 でかつ
バンドギャップエネルギーがEg3であるn型の半導体3
の窓層、電子親和力がχ2 で仕事関数がΦ2 でかつバン
ドギャップエネルギーがEg2である半導体2の中間層、
電子親和力がχ1 で仕事関数がΦ1 でかつバンドギャッ
プエネルギーがEg1であるp型の半導体1の光吸収層、
電極層を順次積層した構成で成り、しかもχ1 〜χ2
χ3 、Φ1 >Φ2 >Φ3 でかつEg1<Eg2<Eg3であ
る。
The structure of the solar cell of the present invention is as shown in FIG.
A substrate provided with an electrode layer or a metal substrate having an electrode property
Above, the electron affinity is χ1And the work function is Φ1Big and band
Gap energy is Eg1Of the p-type semiconductor 1 which is
Convergence, electron affinity is χ2And the work function is Φ2Big and band
Gap energy is Eg2Which is the intermediate layer of the semiconductor 2,
Has an electron affinity χ3And the work function is Φ3Big and band
Gap energy is E g3Window of n-type semiconductor 3 which is
Layer and transparent conductive layer are laminated in sequence, and χ1
~ Χ2~ Χ3, Φ1> Φ2> Φ3And Eg1<Eg2<E
g3Or on a translucent substrate, as shown in FIG.
Transparent conductive layer, electron affinity is χ3And the work function is Φ3And
Bandgap energy is Eg3N-type semiconductor 3
Window layer, electron affinity is χ2And the work function is Φ2Big and van
The gap energy is Eg2An intermediate layer of the semiconductor 2, which is
Electron affinity is χ1And the work function is Φ1Big and band
Energy is Eg1A p-type semiconductor 1 light absorbing layer,
It consists of a structure in which electrode layers are sequentially stacked, and1~ Χ2~
χ3, Φ1> Φ2> Φ3And Eg1<Eg2<Eg3And
You.

【0014】図3にこれら太陽電池のエネルギーバンド
構造を示す。図中χ1 、χ2 、χ3はそれぞれほぼ同じ
エネルギー値でありそれらの間の差異((χ3 −χ2
および(χ2 −χ1 )はそれぞれキャリアのもつ運動エ
ネルギーの値(約0.025eV)程度の方が好まし
い。(Φ3 −Φ1 )は拡散電位を与える。(Eg2
g1)は少なくともキャリアのもつ運動エネルギーの値
(前記)の2倍程度以上、できれば0.1eV以上あっ
た方が好ましい。
FIG. 3 shows the energy band structure of these solar cells. In the figure, χ 1 , χ 2 , and χ 3 have almost the same energy values, and the difference between them ((χ 3 −χ 2 )
It is preferable that (χ 2 −χ 1 ) be about the value of the kinetic energy of the carrier (about 0.025 eV). (Φ 3 −Φ 1 ) gives the diffusion potential. (E g2
It is preferable that E g1 ) be at least about twice the kinetic energy value of the carrier (described above), and preferably 0.1 eV or more.

【0015】これら太陽電池の製造方法としては、電極
層を設けた基板または電極性を備えた金属基板上に、電
子親和力がχ1 で仕事関数がΦ1 でかつバンドギャップ
エネルギーがEg1であるp型の半導体1の光吸収層を形
成し、その上に電子親和力がχ2 で仕事関数がΦ2 でか
つバンドギャップエネルギーがEg2でありしかもχ2
χ1 、Φ2 <Φ1 でかつEg2>Eg1である半導体2の中
間層を形成し、その上に電子親和力がχ3 で仕事関数が
Φ3 でかつバンドギャップエネルギーがEg3であり、し
かもχ3 〜χ2 、Φ3 <Φ2 でかつEg3>Eg2であるn
型の半導体3の窓層、さらにその上に透明導電層を形成
するか、または透明導電層を設けた透光性基板上に、電
子親和力がχ3 で仕事関数がΦ3 でかつバンドギャップ
エネルギーがEg3であるn型の半導体3の窓層を形成
し、その上に電子親和力がχ2 で仕事関数がΦ2 でかつ
バンドギャップエネルギーがEg2でありしかもχ2 〜χ
3 、Φ2 >Φ3 でかつEg2<Eg3である半導体2の中間
層、その上に電子親和力がχ 1 で仕事関数がΦ1 でかつ
バンドギャップエネルギーがEg1でありしかもχ1 〜χ
2 、Φ1 >Φ2 でかつEg1<Eg2であるp型の半導体1
の光吸収層を、さらにその上に電極層を形成する2種類
がある。
As a method of manufacturing these solar cells, electrodes are used.
On a layered substrate or a metal substrate with electrode properties,
Child affinity is χ1And the work function is Φ1And band gap
Energy is Eg1The light absorption layer of the p-type semiconductor 1 that is
Electron affinity is χ2And the work function is Φ2Big
The band gap energy is Eg2And χ2~
χ1, Φ21And Eg2> Eg1In semiconductor 2 which is
Interlayer is formed, and electron affinity is χ on it.3And the work function is
Φ3And the band gap energy is Eg3And then
Maybe χ3~ Χ2, Φ32And Eg3> Eg2Is n
-Type semiconductor 3 window layer, and further forming a transparent conductive layer thereon
Or on a transparent substrate with a transparent conductive layer,
Child affinity is χ3And the work function is Φ3And band gap
Energy is Eg3Forming a window layer of n-type semiconductor 3 which is
And the electron affinity is χ2And the work function is Φ2And
Bandgap energy is Eg2And χ2~ Χ
3, Φ2> Φ3And Eg2<Eg3The middle of semiconductor 2 which is
Layer, on top of which electron affinity is χ 1And the work function is Φ1And
Bandgap energy is Eg1And χ1~ Χ
2, Φ1> Φ2And Eg1<Eg2P-type semiconductor 1
Two types of light absorption layer and the electrode layer formed on it
There is.

【0016】p型の半導体1としては単体の化合物Cu
InSe2 、CuGaSe2 、CuInS2 またはCd
Teや固溶体CuInSe2 −CuGaSe2 、CuI
nS 2 −CuGaS2 、CuInSe2 −CuInS2
またはCuGaSe2 −CuGaS2 などが光吸収能の
点で好ましい。半導体2としては化合物CdSeまたは
固溶体CdTe−MgTeが好ましい。n型の半導体3
としては化合物CdS、ZnSeまたはZnOや固溶体
CdS−ZnS、CdS−MnS、CdSe−MnS
e、ZnSe−MnSeまたはCdTe−MgTeが光
透過性の点で好ましい。半導体1、2または3に関して
は電子親和力、仕事関数およびバンドギャップエネルギ
ーが必要な条件を満たせば上に述べた化合物に限る訳で
はない。
A single compound Cu is used as the p-type semiconductor 1.
InSe2, CuGaSe2, CuInS2Or Cd
Te and solid solution CuInSe2-CuGaSe2, CuI
nS 2-CuGaS2, CuInSe2-CuInS2
Or CuGaSe2-CuGaS2Of light absorption
It is preferable in terms. As the semiconductor 2, the compound CdSe or
The solid solution CdTe-MgTe is preferred. n-type semiconductor 3
As a compound CdS, ZnSe or ZnO or a solid solution
CdS-ZnS, CdS-MnS, CdSe-MnS
e, ZnSe-MnSe or CdTe-MgTe
It is preferable in terms of permeability. Regarding semiconductor 1, 2 or 3
Is electron affinity, work function and band gap energy
Is limited to the compounds described above as long as the necessary conditions are satisfied.
There is no.

【0017】[0017]

【作用】本発明の太陽電池の構成によれば図3に示すよ
うなエネルギーバンド構造の3層で成る半導体ヘテロ接
合が形成されている。これを図4に示すようなエネルギ
ーバンド構造の通常の2層で成る半導体ヘテロ接合の場
合とその機能を比較する。図4に示すように従来の2層
ヘテロ接合では(D)で示す二種の半導体を接合させ、
(E)のようなpn接合ができている。これに光を照射
すると光吸収層で発生した電子と正孔が内部電界に従っ
て分離し(F)で示すような光発生キャリアの分離を生
じる。ヘテロ界面には再結合中心Rが存在し、これを介
して電子と正孔が再結合し定常状態となる。この界面で
の再結合時、再結合の度合はこの部分での少ない方のキ
ャリアとその寿命τで決まる。通常の2層ヘテロ接合で
は電子と正孔の濃度nとpはほぼ同じとなるので電子の
方で考えると再結合の度合はn/τで表せる。
According to the structure of the solar cell of the present invention, a semiconductor heterojunction having three layers having an energy band structure as shown in FIG. 3 is formed. The function of this is compared with that of a normal semiconductor heterojunction composed of two layers having an energy band structure as shown in FIG. As shown in FIG. 4, in the conventional two-layer heterojunction, two kinds of semiconductors shown in (D) are joined,
A pn junction as shown in (E) is formed. When this is irradiated with light, electrons and holes generated in the light absorption layer are separated according to the internal electric field, resulting in separation of photogenerated carriers as shown in (F). There is a recombination center R at the hetero interface, through which electrons and holes are recombined to enter a steady state. At the time of recombination at this interface, the degree of recombination is determined by the smaller carrier and its lifetime τ in this part. In a normal two-layer heterojunction, the electron and hole concentrations n and p are almost the same, so the degree of recombination can be expressed by n / τ when considering the electrons.

【0018】一方、図3で示すように本発明の3層ヘテ
ロ接合では(A)で示す三種の半導体を接合させ、
(B)のような一種のpin接合ができている。これに
光を照射すると光吸収層で発生した電子と正孔が内部電
界に従って分離し(この場合は主として電子のみ移動)
(C)で示すような光発生キャリアの分離を生じる。こ
の場合、再結合の起こる界面は右方に移動しており、図
4の場合と違った再結合を示す。すなわち、光発生した
電子と正孔の分布が(C)の上方で示すように界面で正
孔の濃度は高いのに電子の濃度は図4の場合よりずっと
小さい。従って再結合の度合n/τは小さくなる。電子
の寿命τは正孔濃度pの影響を多少は受けるが反比例す
る程ではない。再結合が減るので光発生した電子と正孔
の分離がより有効に起こり開放電圧Vocの増大をもたら
す。その結果FFもまた増大し変換効率の大幅な向上が
可能となる。
On the other hand, as shown in FIG. 3, in the three-layer heterojunction of the present invention, three kinds of semiconductors shown in FIG.
A kind of pin junction as shown in (B) is formed. When this is irradiated with light, electrons and holes generated in the light absorption layer are separated according to the internal electric field (in this case, only the electrons mainly move).
The separation of photo-generated carriers as shown in (C) occurs. In this case, the interface where recombination occurs has moved to the right, indicating a recombination different from the case of FIG. That is, the distribution of photogenerated electrons and holes is high at the interface as shown in the upper part of (C), but the electron concentration is much smaller than in the case of FIG. Therefore, the degree of recombination n / τ becomes small. The electron lifetime τ is somewhat influenced by the hole concentration p, but is not inversely proportional. Since recombination is reduced, the photogenerated electrons and holes are more effectively separated from each other, resulting in an increase in open circuit voltage V oc . As a result, the FF is also increased and the conversion efficiency can be greatly improved.

【0019】中間層2の厚さは0.01〜1μm程度で
あることが好ましい。これはこの中間層が薄すぎると図
3で示した再結合中心Rのある界面での光発生キャリア
(この場合電子)濃度の減少が充分でなく、逆に厚すぎ
るとp型の半導体1の光吸収層の内部にできる電界のか
かる部分(図3のバンドの図中で価電子帯の上にーの記
号で示している)の厚さが減少してJscの減少を伴うよ
うになるからである。
The thickness of the intermediate layer 2 is preferably about 0.01 to 1 μm. This is because if the intermediate layer is too thin, the concentration of photogenerated carriers (electrons in this case) at the interface with the recombination center R shown in FIG. The thickness of the portion of the light absorption layer to which an electric field is applied (indicated by a symbol above the valence band in the band diagram of FIG. 3) decreases, and J sc decreases. Because.

【0020】[0020]

【実施例】以下、実施例により本発明をさらに具体的に
説明する。 (1)Pt電極層を設けたガラス基板上に、5μm厚の
CdTeを主体とするp型半導体の光吸収層を蒸着形成
し、その上にCdTeとMgの同時蒸着によりCdTe
とMgTeのモル比が8:2で、全体の厚さ0.5μm
のCdTe−MgTe固溶体膜Cd0.8Mg0.2Teを形
成した。さらにその上にCdSを主体とするn型半導体
の窓層を化学析出法により、厚さ0.05μmに形成
し、その上に透明電極層ZnO/ITOを形成した。比
較のため、中間のCd0.8Mg0.2Te層を設けないで、
他は上記と同様にした太陽電池の特性についても調べ
た。(2)透明導電層ITO/ZnOを設けたガラス基
板上に、CdSを主体とするn型半導体の窓層を、化学
析出法により厚さ0.1μmに形成し、この上に厚さ
0.5μmのCdSe膜を蒸着法で形成した。さらにそ
の上に5μm厚のCdTeを主体とするp型半導体の光
吸収層を蒸着形成し、その上にAu電極を形成した。比
較のため、中間のCdSe層を設けない他は上記と同様
にした太陽電池の特性についても調べた。これら太陽電
池のAM1(100 mW/cm2 )の照射光に対する
特性を、表1(上記(1)の太陽電池)および表2(上
記(2)の太陽電池)に示す。なおVOC(V)は開放電
圧、JSC(mA/cm2 )は閉路電流、η(%)は変換
効率、F.F.は曲線因子、Aはダイオード因子を表す。
EXAMPLES The present invention will be described in more detail below with reference to examples. (1) On a glass substrate provided with a Pt electrode layer, a 5 μm thick p-type semiconductor light-absorbing layer mainly composed of CdTe is formed by vapor deposition, and CdTe and Mg are simultaneously vapor-deposited on the glass substrate to form CdTe.
And MgTe molar ratio is 8: 2, total thickness 0.5 μm
CdTe-MgTe solid solution film Cd 0.8 Mg 0.2 Te of was formed. Further, an n-type semiconductor window layer mainly composed of CdS was formed thereon to a thickness of 0.05 μm by a chemical deposition method, and a transparent electrode layer ZnO / ITO was formed thereon. For comparison, without providing an intermediate Cd 0.8 Mg 0.2 Te layer,
The other characteristics of the solar cell which were the same as those described above were also examined. (2) On a glass substrate provided with a transparent conductive layer ITO / ZnO, an n-type semiconductor window layer mainly composed of CdS was formed to a thickness of 0.1 μm by a chemical deposition method, and a thickness of 0. A 5 μm CdSe film was formed by vapor deposition. Further, a 5 μm-thick p-type semiconductor light-absorbing layer mainly containing CdTe was vapor-deposited thereon, and an Au electrode was formed thereon. For comparison, the characteristics of a solar cell similar to the above except that no intermediate CdSe layer was provided were also examined. The characteristics of these solar cells with respect to irradiation light of AM1 (100 mW / cm 2 ) are shown in Table 1 (solar cell of (1) above) and Table 2 (solar cell of (2) above). V OC (V) is an open circuit voltage, J SC (mA / cm 2 ) is a closed circuit current, η (%) is a conversion efficiency, FF is a fill factor, and A is a diode factor.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】表1および表2に見られる様に本実施例の
太陽電池の特性は、従来の構成で得られた太陽電池の特
性よりはるかに優れている。本実施例の太陽電池におけ
る開放電圧(Voc)の著しい向上は、pn両層の間に中
間層が存在し光発生した電子と正孔の再結合を抑制する
ためである。Vocの増大は曲線因子FFも増大させ、変
換効率の大幅な向上をもたらす。ダイオード因子Aの減
少は接合部分(特に界面)での再結合が減少しているこ
とを示す。
As can be seen from Tables 1 and 2, the characteristics of the solar cell of this example are far superior to those of the solar cell obtained by the conventional constitution. The remarkable increase in the open circuit voltage (V oc ) in the solar cell of this example is because the intermediate layer is present between the pn layers to suppress recombination of photogenerated electrons and holes. Increasing V oc also increases fill factor FF, resulting in a significant improvement in conversion efficiency. A decrease in the diode factor A indicates a decrease in recombination at the junction (especially at the interface).

【0024】[0024]

【発明の効果】以上説明した通り本発明によれば、半導
体1の光吸収層/半導体2の中間層/半導体3の窓層の少
なくとも三層構成とすることにより、キャリアーの再結
合の盛んな半導体接合部で一方のキャリアーを極端に少
なくし、発生した電子と正孔の再結合を大幅に抑制し開
放電圧を増大させ太陽電池の変換効率の向上をはかる。
As described above, according to the present invention, at least three layers, that is, the light absorption layer of the semiconductor 1, the intermediate layer of the semiconductor 2, and the window layer of the semiconductor 3 are formed, so that the recombination of carriers is active. One carrier is extremely reduced in the semiconductor junction, recombination of generated electrons and holes is significantly suppressed, the open circuit voltage is increased, and the conversion efficiency of the solar cell is improved.

【0025】また本発明の製造方法によれば、変換効率
の高い優れた太陽電池を効率よく合理的に製造すること
が可能となる。さらにこの太陽電池は薄膜形成であるか
ら大幅なコストダウンもはかれる。
Further, according to the manufacturing method of the present invention, it becomes possible to efficiently and rationally manufacture an excellent solar cell having a high conversion efficiency. Further, since this solar cell is formed of a thin film, the cost can be significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の太陽電池の構成断面図FIG. 1 is a sectional view showing the configuration of a solar cell according to an embodiment of the present invention.

【図2】本発明の一実施例の太陽電池の構成断面図FIG. 2 is a sectional view showing the structure of a solar cell according to an embodiment of the present invention.

【図3】本発明の一実施例の太陽電池のエネルギーバン
ド構成図
FIG. 3 is an energy band configuration diagram of a solar cell according to an embodiment of the present invention.

【図4】従来の太陽電池のエネルギーバンド構成図FIG. 4 is an energy band configuration diagram of a conventional solar cell.

【符号の説明】[Explanation of symbols]

1 電極層を設けた基板または電極性を備えた金属基板 2 半導体1の光吸収層 3 半導体2の中間層 4 半導体3の窓層 5 透明導電層 6 透光性基板 7 透明導電層 8 半導体3の窓層 9 半導体2の中間層 10 半導体1の光吸収層 11 電極層 DESCRIPTION OF SYMBOLS 1 Substrate provided with an electrode layer or a metal substrate having an electrode property 2 Light absorption layer of semiconductor 1 3 Intermediate layer of semiconductor 2 4 Window layer of semiconductor 3 5 Transparent conductive layer 6 Transparent substrate 7 Transparent conductive layer 8 Semiconductor 3 Window layer 9 Intermediate layer 10 of semiconductor 2 Light absorbing layer 11 of semiconductor 1 Electrode layer

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 電極層を設けた基板または電極性を備え
た金属基板上に、p型の半導体1の光吸収層と、半導体
2の中間層と、n型の半導体3の窓層と、透明導電層と
を順次積層した太陽電池であって、 前記p型の半導体1の光吸収層の電子親和力をχ1 、仕
事関数をΦ1 、バンドギャップエネルギーをEg1とし、
前記半導体2の中間層の電子親和力をχ2 、仕事関数を
Φ2 、かつバンドギャップエネルギーをEg2とし、前記
n型の半導体3の窓層の電子親和力をχ3 、仕事関数を
Φ3 、バンドギャップエネルギーをEg3としたとき、 χ1 とχ2 とχ3 とはほぼ等しく、Φ1 >Φ2 >Φ3
つEg1<Eg2<Eg3なる関係を満たすことを特徴とする
太陽電池。
1. A light absorption layer of a p-type semiconductor 1, an intermediate layer of a semiconductor 2, and a window layer of an n-type semiconductor 3 on a substrate provided with an electrode layer or a metal substrate having an electrode property. A solar cell in which a transparent conductive layer is sequentially laminated, wherein the electron affinity of the light absorption layer of the p-type semiconductor 1 is χ 1 , the work function is Φ 1 , and the bandgap energy is E g1 .
The electron affinity of the intermediate layer of the semiconductor 2 is χ 2 , the work function is Φ 2 , and the bandgap energy is E g2. The electron affinity of the window layer of the n-type semiconductor 3 is χ 3 , the work function is Φ 3 , When the bandgap energy is Eg 3 , χ 1 and χ 2 and χ 3 are almost equal, and the relationship is Φ 1 > Φ 2 > Φ 3 and E g1 <E g2 <E g3. battery.
【請求項2】 透光性基板上に、透明導電層と、n型の
半導体3の窓層と、半導体2の中間層と、p型の半導体
1の光吸収層と、電極層とを順次積層した太陽電池であ
って、 前記n型の半導体3の窓層の電子親和力をχ3 、仕事関
数をΦ3 、バンドギャップエネルギーをEg3とし、前記
半導体2の中間層の電子親和力をχ2 、仕事関数を
Φ2 、バンドギャップエネルギーをEg2とし、前記p型
の半導体1の光吸収層の電子親和力をχ1 、仕事関数を
Φ1 、バンドギャップエネルギーをEg1としたとき、 χ1 とχ2 とχ3 とはほぼ等しく、Φ1 >Φ2 >Φ3
つEg1<Eg2<Eg3なる関係を満たすことを特徴とする
太陽電池。
2. A transparent conductive layer, a window layer of an n-type semiconductor 3, an intermediate layer of a semiconductor 2, a light absorption layer of a p-type semiconductor 1, and an electrode layer are sequentially formed on a transparent substrate. In the laminated solar cell, the electron affinity of the window layer of the n-type semiconductor 3 is χ 3 , the work function is Φ 3 , the band gap energy is E g3, and the electron affinity of the intermediate layer of the semiconductor 2 is χ 2. , Work function is Φ 2 , bandgap energy is E g2 , electron affinity of the light absorption layer of the p-type semiconductor 1 is χ 1 , work function is Φ 1 , and bandgap energy is E g1 , χ 1 And χ 2 and χ 3 are substantially equal to each other, and satisfy the relations of Φ 1 > Φ 2 > Φ 3 and E g1 <E g2 <E g3 .
【請求項3】 p型の半導体1が、CuInSe2 、C
uGaSe2 、CuInS2 及びCdTeから選ばれる
少なくとも一つの化合物である請求項1または2に記載
の太陽電池。
3. The p-type semiconductor 1 is CuInSe 2 , C
The solar cell according to claim 1, which is at least one compound selected from uGaSe 2 , CuInS 2, and CdTe.
【請求項4】 p型の半導体1が、固溶体のCuInS
2 −CuGaSe2、CuInS2 −CuGaS2
CuInSe2 −CuInS2 及びCuGaSe2 −C
uGaS2 から選ばれる少なくとも一つの化合物である
請求項1または2に記載の太陽電池。
4. The p-type semiconductor 1 is CuInS in a solid solution.
e 2 -CuGaSe 2, CuInS 2 -CuGaS 2,
CuInSe 2 —CuInS 2 and CuGaSe 2 —C
The solar cell according to claim 1 or 2, which is at least one compound selected from uGaS 2 .
【請求項5】 半導体2が、CdSe及び固溶体CdT
e−MgTeから選ばれる少なくとも一つの化合物であ
る請求項1〜4のいずれかに記載の太陽電池。
5. The semiconductor 2 comprises CdSe and solid solution CdT.
The solar cell according to claim 1, which is at least one compound selected from e-MgTe.
【請求項6】 n型の半導体3が、CdS、ZnSeま
たはZnOから選ばれる少なくとも一つの化合物である
請求項1〜5のいずれかに記載の太陽電池。
6. The solar cell according to claim 1, wherein the n-type semiconductor 3 is at least one compound selected from CdS, ZnSe and ZnO.
【請求項7】 n型の半導体3が、固溶体CdS−Zn
S、CdS−MnS、CdSe−MnSe、ZnSe−
MnSe及びCdTe−MgTeから選ばれる少なくと
も一つの化合物である請求項1〜5のいずれかに記載の
太陽電池。
7. The n-type semiconductor 3 is a solid solution CdS-Zn.
S, CdS-MnS, CdSe-MnSe, ZnSe-
The solar cell according to claim 1, which is at least one compound selected from MnSe and CdTe-MgTe.
【請求項8】 電極層を設けた基板または電極性を備え
た金属基板上に、電子親和力がχ1 で仕事関数がΦ1
かつバンドギャップエネルギーがEg1であるp型の半導
体1の光吸収層を形成し、その上に電子親和力がχ2
仕事関数がΦ2でかつバンドギャップエネルギーがEg2
でありしかもχ2 〜χ1 、Φ2 <Φ1 でかつEg2>Eg1
である半導体2の中間層を形成し、その上に電子親和力
がχ3 で仕事関数がΦ3 でかつバンドギャップエネルギ
ーがEg3であり、しかもχ3 〜χ 2 、Φ3 <Φ2 でかつ
g3>Eg2であるn型の半導体3の窓層を形成し、さら
にその上に透明導電層を形成することを特徴とする太陽
電池の製造方法。
8. A substrate provided with an electrode layer or having an electrode property
On a metal substrate with an electron affinity of χ1And the work function is Φ1so
And the band gap energy is Eg1Is a p-type semiconductor
The light absorption layer of body 1 is formed, and the electron affinity is χ on it.2so
Work function is Φ2And the band gap energy is Eg2
And χ2~ Χ1, Φ21And Eg2> Eg1
The intermediate layer of the semiconductor 2 is formed, and the electron affinity is formed on the intermediate layer.
Is χ3And the work function is Φ3And bandgap energy
Is Eg3And χ3~ Χ 2, Φ32And
Eg3> Eg2Forming a window layer of the n-type semiconductor 3 which is
The sun is characterized in that a transparent conductive layer is formed on it.
Battery manufacturing method.
【請求項9】 透明導電層を設けた透光性基板上に、電
子親和力がχ3 で仕事関数がΦ3 でかつバンドギャップ
エネルギーがEg3であるn型の半導体3の窓層を形成
し、その上に電子親和力がχ2 で仕事関数がΦ2 でかつ
バンドギャップエネルギーがEg2であり、しかもχ2
χ3 、Φ2 >Φ3 でかつEg2<Eg3である半導体2の中
間層を形成し、その上に電子親和力がχ1 で仕事関数が
Φ1 でかつバンドギャップエネルギーがEg1であり、し
かもχ1 〜χ2 、Φ1 >Φ2 でかつEg1<Eg2であるp
型の半導体1の光吸収層を形成し、さらにその上に電極
層を形成することを特徴とする太陽電池の製造方法。
9. A window layer of an n-type semiconductor 3 having an electron affinity of χ 3 , a work function of Φ 3 and a bandgap energy of E g3 is formed on a transparent substrate provided with a transparent conductive layer. , The electron affinity is χ 2 , the work function is Φ 2 , the bandgap energy is E g2 , and χ 2 ~
forming an intermediate layer of the semiconductor 2 in which χ 3 , Φ 2 > Φ 3 and E g2 <E g3 , on which electron affinity is χ 1 , work function is Φ 1 , and bandgap energy is E g1 , And χ 1 to χ 2 , Φ 1 > Φ 2 and E g1 <E g2 p
Forming a light absorption layer of the semiconductor 1 of the mold, and further forming an electrode layer thereon.
JP6265082A 1994-10-28 1994-10-28 Solar cell and method of manufacturing the same Expired - Fee Related JP2922796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6265082A JP2922796B2 (en) 1994-10-28 1994-10-28 Solar cell and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6265082A JP2922796B2 (en) 1994-10-28 1994-10-28 Solar cell and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH08125207A true JPH08125207A (en) 1996-05-17
JP2922796B2 JP2922796B2 (en) 1999-07-26

Family

ID=17412353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6265082A Expired - Fee Related JP2922796B2 (en) 1994-10-28 1994-10-28 Solar cell and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2922796B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003515934A (en) * 1999-11-25 2003-05-07 シーメンス ソーラー ゲゼルシャフト ミット ベシュレンクテル ハフツング Diode structures, especially for thin-film solar cells
US8581092B2 (en) 2009-07-10 2013-11-12 Samsung Sdi Co., Ltd. Tandem solar cell and method of manufacturing same
CN107819058A (en) * 2017-11-28 2018-03-20 厦门三安光电有限公司 Light emitting diode

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003515934A (en) * 1999-11-25 2003-05-07 シーメンス ソーラー ゲゼルシャフト ミット ベシュレンクテル ハフツング Diode structures, especially for thin-film solar cells
US8581092B2 (en) 2009-07-10 2013-11-12 Samsung Sdi Co., Ltd. Tandem solar cell and method of manufacturing same
CN107819058A (en) * 2017-11-28 2018-03-20 厦门三安光电有限公司 Light emitting diode
WO2019105176A1 (en) * 2017-11-28 2019-06-06 厦门三安光电有限公司 Light-emitting diode
US11296256B2 (en) 2017-11-28 2022-04-05 Xiamen San'an Optoelectronics Co., Ltd. Light-emitting diode
US11870010B2 (en) 2017-11-28 2024-01-09 Xiamen San'an Optoelectronics Co., Ltd. Light-emitting diode

Also Published As

Publication number Publication date
JP2922796B2 (en) 1999-07-26

Similar Documents

Publication Publication Date Title
JPS6359269B2 (en)
JP6366914B2 (en) Multi-junction solar cell
CN111430384A (en) Solar cell module, laminated solar cell and manufacturing method thereof
WO2020127030A1 (en) Three terminal tandem solar generation unit
JP4975528B2 (en) Integrated solar cell
JPH07122762A (en) Thin film photovoltaic device
JPH09172193A (en) Thin film solar battery
WO2024011808A1 (en) Back junction solar cell and preparation method therefor
JP3724272B2 (en) Solar cell
JPH08125207A (en) Solar cell and its manufacture
CN113571594B (en) Copper indium gallium selenium battery and manufacturing method thereof
CN115332379A (en) Multi-junction solar cell with multi-quantum well structure
CN211828772U (en) Laminated solar cell
US9947824B1 (en) Solar cell employing nanocrystalline superlattice material and amorphous structure and method of constructing the same
KR101412150B1 (en) Tandem structure cigs solar cell and method for manufacturing the same
JPH09199741A (en) Thin film solar cell
JP2922825B2 (en) Solar cell and method of manufacturing the same
JPH11274532A (en) Solar cell
JPH03263880A (en) Solar cell and manufacture thereof
CN116600580B (en) Solar cell, preparation method thereof and solar cell module
CN114744063B (en) Solar cell, production method and photovoltaic module
JP2005317563A (en) Sollar battery
JPH07211927A (en) Solar battery and its manufacture
JP3397213B2 (en) Solar cell
JP3061338B2 (en) Solar cell and method of manufacturing the same

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees