JPH0812476A - Method for sintering oxide magnetic material with high magnetic permeability - Google Patents

Method for sintering oxide magnetic material with high magnetic permeability

Info

Publication number
JPH0812476A
JPH0812476A JP6169957A JP16995794A JPH0812476A JP H0812476 A JPH0812476 A JP H0812476A JP 6169957 A JP6169957 A JP 6169957A JP 16995794 A JP16995794 A JP 16995794A JP H0812476 A JPH0812476 A JP H0812476A
Authority
JP
Japan
Prior art keywords
zno
layer
powder
tile
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6169957A
Other languages
Japanese (ja)
Inventor
Tatsufumi Goto
達文 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP6169957A priority Critical patent/JPH0812476A/en
Publication of JPH0812476A publication Critical patent/JPH0812476A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject material at a low cost by laying on a sintered tile powder composed of ZnO and at least one kind of oxide selected from Fe2O3, MnO, Al2O3 and ZrO2 and ZnO, putting a meshy tile thereon, and then putting thereon an oxide magnetic material molded product consisting mainly of Fe2O3, MnO and ZnO, followed by sintering. CONSTITUTION:This sintering method comprises reducing developing internal stress through canceling the composition difference between the surface layer and inner layer of a molded form by preventing the Zn evaporation from the surface layer through controlling the atmosphere during evaporating the Zn through a meshy tile from the ZnO powder in the 2nd layer in the sintering process. Besides, by this method, contact between the molded form and embedded powder etc., can be avoided, preventing its deformation and also preventing the powder from scorching onto the sintered compact. In the figure, the 1st layer represents an Al2O3 tile, 2nd layer the powder 2 composed of ZnO and ZrO2 laid uniformly on the 1st layer, 3rd layer the meshy tile 3, and the molded form 4 is put on the tile 3, followed by sintering at 1400 deg.C for 2h in an oxygen- contg. nitrogen atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、通信用の変成器磁心に
使用するに適した高透磁率酸化物磁性材料の製造方法に
関し、特にその焼結方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-permeability oxide magnetic material suitable for use in a transformer magnetic core for communication, and more particularly to a sintering method thereof.

【0002】[0002]

【従来の技術】Mn−Zn系フェライトは、各種通信用
の変成器の磁心として多用されている。近年、通信用の
変成器の小型化、高性能化が要求され、このため、初透
磁率の大きいMn−Zn系フェライトが必要となってき
ている。
2. Description of the Related Art Mn-Zn ferrites are often used as magnetic cores for transformers for various communications. In recent years, there has been a demand for downsizing and high performance of transformers for communication, and for this reason, Mn-Zn ferrites having a large initial permeability have been required.

【0003】従来から、初透磁率を大きくする方法とし
て粒成長を促進させる効果のある添加物の微量添加や高
温での焼結がある。
Conventionally, as a method for increasing the initial magnetic permeability, there is addition of a trace amount of an additive having an effect of promoting grain growth and sintering at a high temperature.

【0004】しかし、後者の高温焼結の場合、Mn−Z
n系フェライト表面層からZnが蒸発し、表面層と内部
層で組成差が生じ、これにより内部応力が発生し著しく
磁気特性が低下するという問題があった。このため、従
来から高透磁率(10kHzにおける初透磁率1000
0以上)Mn−Zn系フェライト成形体の焼結を行う場
合、Znの蒸発を防ぐため、焼結する成形体と同一組成
で、粒度を均一に調製した粉末に成形体を埋没して焼結
を行う方法がある。
However, in the case of the latter high temperature sintering, Mn-Z
There is a problem in that Zn evaporates from the n-type ferrite surface layer and a composition difference occurs between the surface layer and the inner layer, which causes internal stress and significantly deteriorates the magnetic characteristics. For this reason, conventionally, high magnetic permeability (initial magnetic permeability at 10 kHz is 1000
(0 or more) When sintering a Mn-Zn ferrite compact, in order to prevent evaporation of Zn, the compact is embedded in a powder having the same composition as the compact to be sintered and the particle size is adjusted to sinter. There is a way to do.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、この方
法では埋没用粉末の原料費、製造費の増加及び積載時の
作業増、焼結後の洗浄工程の発生、並びに焼結後の変形
による歩留りの低下等による製造費の増加の問題がある
ため、高透磁率Mn−Zn系フェライトは、他のMn−
Zn系フェライトよりもコストが高いという欠点があっ
た。
However, according to this method, the raw material cost of the burial powder, the manufacturing cost and the work load increase, the washing process after sintering occurs, and the yield due to deformation after sintering increases. Since there is a problem of an increase in manufacturing cost due to a decrease or the like, the high magnetic permeability Mn-Zn-based ferrite is different from other Mn-
There is a drawback that the cost is higher than that of Zn-based ferrite.

【0006】本発明は、上記の欠点を除去して、安価に
製造することが可能な、10kHzにおける初透磁率1
0000以上の高透磁率Mn−Zn系酸化物磁性材料の
焼結方法を提供するものである。
The present invention eliminates the above-mentioned drawbacks and can be manufactured at low cost, and has an initial magnetic permeability of 1 at 10 kHz.
The present invention provides a method for sintering a high magnetic permeability Mn-Zn-based oxide magnetic material having a magnetic permeability of 0000 or more.

【0007】[0007]

【課題を解決するための手段】本発明は、焼結タイル上
にFe23、MnO、Al23及びZrO2のうち少な
くても1種類以上の酸化物とZnOとからなる粉末を敷
き、該粉末上に網目状タイルを置き、更に該網目状タイ
ル上にFe23、MnO及びZnOを主成分とする酸化
物磁性材料の成形体を載せて焼結することを特徴とする
高透磁率酸化物磁性材料の焼結方法である。
The present invention provides a powder composed of ZnO and at least one oxide of Fe 2 O 3 , MnO, Al 2 O 3 and ZrO 2 on a sintered tile. It is characterized in that it is spread, a mesh tile is placed on the powder, and a molded body of an oxide magnetic material containing Fe 2 O 3 , MnO and ZnO as main components is placed on the mesh tile and sintered. This is a method of sintering a high-permeability oxide magnetic material.

【0008】[0008]

【作用】本発明は、焼結時に第2層のZnO含有粉末か
ら、網目状タイルを通して、Znが蒸発し雰囲気を制御
して成形体表面層からZnの蒸発を防ぐことにより、表
面層と内部層の組成差を無くし内部応力の発生を低減す
る。また、成形体と埋没粉末等との接触をなくすことに
より、変形を防止し、かつ焼結体への粉末の焼付きを防
止できる。
In the present invention, the ZnO-containing powder of the second layer during sintering passes through the mesh tile, Zn is evaporated, and the atmosphere is controlled to prevent the evaporation of Zn from the surface layer of the molded body. Eliminates the composition difference of layers and reduces the generation of internal stress. Further, by eliminating the contact between the compact and the buried powder, it is possible to prevent deformation and prevent seizure of the powder on the sintered body.

【0009】[0009]

【実施例】以下に本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.

【0010】(実施例1)まず、Fe23、MnO及び
ZnOを主成分とするMn−Zn系フェライトにおいて
組成比をFe2352.0モル%、MnO25.0モル
%、残部をZnOとする。
Example 1 First, in a Mn-Zn-based ferrite containing Fe 2 O 3 , MnO and ZnO as main components, the composition ratios were Fe 2 O 3 52.0 mol%, MnO 25.0 mol% and the balance. ZnO.

【0011】上記組成比の原料粉末をボールミルにより
混合、予備焼成、造粒した後、得られた造粒粉末を成形
した。成形体は、リング状で、寸法が外径30mm、内
径18mm、高さ5mmである。図1は本発明における
焼結方法を示す側面図である。図1のように、1層目に
Al23タイル1、2層目にZnOとZrO2からなる
粉末2を均一に敷き、更にその上の3層目に網目状のタ
イル3をセットし、その上に成形体4を設置し焼結し
た。このとき2層目に使用した粉末中のZnO含有量を
0〜60wt%の間で変化させた。焼結は、酸素0.5
%を含む窒素雰囲気中で、温度は1400℃で2時間保
持して行なった。なお、焼結温度は1350〜1400
℃、保持時間は2〜10時間、焼結時の雰囲気は、酸素
0.3%〜3.5%を含む窒素雰囲気であることが望まし
い。
The raw material powders having the above composition ratios were mixed by a ball mill, prefired and granulated, and then the obtained granulated powder was molded. The molded body is ring-shaped and has dimensions of an outer diameter of 30 mm, an inner diameter of 18 mm, and a height of 5 mm. FIG. 1 is a side view showing a sintering method according to the present invention. As shown in FIG. 1, Al 2 O 3 tiles second layers uniformly spread a powder 2 composed of ZnO and ZrO 2, the further set reticulated tiles 3 in the third layer thereon first layer Then, the molded body 4 was placed thereon and sintered. At this time, the ZnO content in the powder used for the second layer was changed between 0 and 60 wt%. Sintering is oxygen 0.5
% Nitrogen atmosphere and the temperature was maintained at 1400 ° C. for 2 hours. The sintering temperature is 1350 to 1400.
C., the holding time is preferably 2 to 10 hours, and the atmosphere during sintering is preferably a nitrogen atmosphere containing 0.3% to 3.5% oxygen.

【0012】図2は、2層目に使用した粉末中のZnO
含有量と上記により得られた焼結体の磁気特性との関係
を示す図である。磁気特性は、室温での周波数10kH
zにおける初透磁率μi、10kHzにおける相対損失
係数tanδ/μi及び10kHzにおける相対ヒステ
リシス損係数h10について測定した。
FIG. 2 shows ZnO in the powder used for the second layer.
It is a figure which shows the relationship between content and the magnetic characteristic of the sintered compact obtained by the above. The magnetic characteristics are that the frequency is 10 kHz at room temperature.
The initial magnetic permeability μi at z, the relative loss coefficient tan δ / μi at 10 kHz, and the relative hysteresis loss coefficient h 10 at 10 kHz were measured.

【0013】図2に示すように、ZrO2とZnOから
なる粉末中のZnO含有量が増加するに従い、磁気特性
は向上しているが、ZnO含有量40wt%をピークに
劣化していく傾向にある。これは、ZnO含有量50%
以上で焼結を行った場合、焼結体内部に比較し、表面の
ZnO量が多くなり、内部応力が発生したためと考えら
れる。また、ピークであるZnO含有量40wt%以下
では反対に表面でのZnO量が少なくなり、内部応力が
生じたため、特性が劣化していると考えられる。また、
本実施例から、ZnO含有量の最適範囲は30〜50w
t%であることがわかる。
As shown in FIG. 2, as the ZnO content in the powder composed of ZrO 2 and ZnO increased, the magnetic characteristics improved, but the ZnO content tended to deteriorate at a peak of 40 wt%. is there. This has a ZnO content of 50%
It is considered that when the sintering is performed as described above, the amount of ZnO on the surface is larger than that inside the sintered body and the internal stress is generated. On the other hand, when the peak ZnO content is 40 wt% or less, on the contrary, the ZnO content on the surface is reduced and internal stress is generated, which is considered to deteriorate the characteristics. Also,
From this example, the optimum range of ZnO content is 30-50w.
It can be seen that it is t%.

【0014】(実施例2)実施例1と同様な組成及び手
順でMn−Zn系フェライトの造粒粉末を得た。次に、
この得られた造粒粉末を成形し、図3に示すようなA、
B部寸法が30mmのE型の成形体を準備した。
(Example 2) A granulated powder of Mn-Zn ferrite was obtained by the same composition and procedure as in Example 1. next,
The obtained granulated powder was molded into A as shown in FIG.
An E-shaped molded body having a B portion size of 30 mm was prepared.

【0015】更に、図1に示すように、1層目にAl2
3タイル1、2層目に均一に敷いたZnOとZrO2
からなる粉末(ZnO含有量が40wt%)、3層目に
網目状のAl23タイル3をセットし、その上に上記の
E型の成形体を設置し、焼結した。焼結条件は、酸素
0.5%を含む窒素雰囲気中で、温度1400℃、保持
時間2時間とした。
Further, as shown in FIG. 1, Al 2 is formed in the first layer.
O 3 tiles 1 and 2 , a powder composed of ZnO and ZrO 2 uniformly laid on the second layer (ZnO content is 40 wt%), and a mesh-like Al 2 O 3 tile 3 is set on the third layer and placed on top of it. The above E-shaped compact was placed and sintered. The sintering conditions were a temperature of 1400 ° C. and a holding time of 2 hours in a nitrogen atmosphere containing 0.5% oxygen.

【0016】次に、得られたE型の焼結体について、図
3に示すようなA、B寸法を測定した。結果を表1に示
した。
Next, with respect to the obtained E-type sintered body, A and B dimensions as shown in FIG. 3 were measured. The results are shown in Table 1.

【0017】また、比較例として、焼結時の積載方法に
おいて、1層目にAl23タイル、2層目に均一に敷い
たZnOとZrO2とからなる粉末(ZnO含有量が4
0wt%)とし、その上にE型成形体を設置し、粉末と
成形体が直接、接触するようにして焼結した以外は、上
記の実施例と同様な手順にてE型焼結体を得て、寸法測
定を行った。結果を表1に示した。
[0017] As a comparative example, in the stacking process at the time of sintering, Al 2 O 3 tiles first layer, uniformly spread of ZnO in the second layer and the powder of ZrO 2 Metropolitan (ZnO content of 4
0 wt%), an E-shaped compact was placed thereon, and the powder and the compact were directly contacted with each other and sintered to obtain an E-type sintered body in the same procedure as in the above-mentioned example. After that, dimensions were measured. The results are shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】表1に示すように、網目状タイルを使用す
ることにより、混合粉末上で焼結したコアに比較して、
AB間の寸法差が小さくなり変形が改善されている。
As shown in Table 1, the use of reticulated tiles allows for
The dimensional difference between AB is reduced and the deformation is improved.

【0020】以上、本発明の実施例について説明した
が、本発明は上記の実施例に限定されるものではなく、
各種の変更が可能である。例えば、2層目で使用する粉
末において、本実施例ではZnOとZrO2とからなる
粉末を用いたが、ZnOとFe23とからなる粉末ある
いは、ZnOとFe23、ZrO2とからなる粉末等の
ように、ZnOとFe23、MnO、Al23、ZrO
2のうち少なくとも1種以上の酸化物とからなる粉末で
もよいことはもちろんであるが、これら以外にフェライ
トに影響を及ぼさない他の酸化物との組み合わせの粉末
でもかまわない。また、2層目の粉末は、原料粉末の混
合粉末、または予備焼成を施した粉末でも差し支えな
い。また、1層目のタイルはZrO2タイルでもよい。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments.
Various changes are possible. For example, the powder used in the second layer, in the present embodiment is used a powder composed of ZnO and ZrO 2 Prefecture, powder made of ZnO and Fe 2 O 3 Prefecture Alternatively, ZnO and Fe 2 O 3, ZrO 2 and ZnO and Fe 2 O 3 , MnO, Al 2 O 3 , ZrO, etc.
Needless to say, a powder composed of at least one or more oxides out of 2 may be used, but powders in combination with other oxides that do not affect ferrite other than these may also be used. Further, the powder of the second layer may be a mixed powder of raw material powders or a powder that has been pre-baked. The tile of the first layer may be a ZrO 2 tile.

【0021】[0021]

【発明の効果】以上の説明の通り、本発明によれば、安
価な初透磁率10000以上の高透磁率酸化物磁性材料
の焼結方法を得ることができた。
As described above, according to the present invention, it is possible to obtain an inexpensive method for sintering a high-permeability oxide magnetic material having an initial magnetic permeability of 10,000 or more.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における焼結方法を示す側面図。FIG. 1 is a side view showing a sintering method according to the present invention.

【図2】2層目に使用した粉末中のZnO量と焼結体の
磁気特性の関係を示す図。図2(a)はZnO含有量と
μiの関係を示す図。図2(b)はZnO含有量とta
nδ/μiの関係を示す図。図2(c)はZnO含有量
とh10の関係を示す図。
FIG. 2 is a diagram showing the relationship between the amount of ZnO in the powder used in the second layer and the magnetic properties of the sintered body. FIG. 2A is a diagram showing the relationship between ZnO content and μi. FIG. 2B shows ZnO content and ta.
The figure which shows the relationship of ndelta / micro | micron | mu. FIG. 2C is a diagram showing a relationship between ZnO content and h 10 .

【図3】実施例2で使用したE型コアの正面図。3 is a front view of an E-shaped core used in Example 2. FIG.

【符号の説明】[Explanation of symbols]

1 タイル 2 粉末 3 網目状タイル 4 成形体 A 上部寸法 B 下部寸法 1 tile 2 powder 3 mesh tile 4 molded body A upper dimension B lower dimension

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/34 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display H01F 1/34

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 焼結タイル上にFe23、MnO、Al
23及びZrO2のうち少なくても1種類以上の酸化物
とZnOとからなる粉末を敷き、該粉末上に網目状タイ
ルを置き、更に該網目状タイル上にFe23、MnO及
びZnOを主成分とする酸化物磁性材料の成形体を載せ
て焼結することを特徴とする高透磁率酸化物磁性材料の
焼結方法。
1. Fe 2 O 3 , MnO, Al on a sintered tile
A powder composed of ZnO and at least one oxide of at least one of 2 O 3 and ZrO 2 is spread, a mesh tile is placed on the powder, and Fe 2 O 3 , MnO, and A method for sintering a high-permeability oxide magnetic material, which comprises placing and sintering a compact of an oxide magnetic material containing ZnO as a main component.
JP6169957A 1994-06-28 1994-06-28 Method for sintering oxide magnetic material with high magnetic permeability Pending JPH0812476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6169957A JPH0812476A (en) 1994-06-28 1994-06-28 Method for sintering oxide magnetic material with high magnetic permeability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6169957A JPH0812476A (en) 1994-06-28 1994-06-28 Method for sintering oxide magnetic material with high magnetic permeability

Publications (1)

Publication Number Publication Date
JPH0812476A true JPH0812476A (en) 1996-01-16

Family

ID=15895980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6169957A Pending JPH0812476A (en) 1994-06-28 1994-06-28 Method for sintering oxide magnetic material with high magnetic permeability

Country Status (1)

Country Link
JP (1) JPH0812476A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011009644A (en) * 2009-06-29 2011-01-13 Tdk Corp Ferrite core and electronic component
CN109678481A (en) * 2019-02-15 2019-04-26 苏州世诺新材料科技有限公司 A kind of preparation method of complex ferrite piece

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011009644A (en) * 2009-06-29 2011-01-13 Tdk Corp Ferrite core and electronic component
CN109678481A (en) * 2019-02-15 2019-04-26 苏州世诺新材料科技有限公司 A kind of preparation method of complex ferrite piece

Similar Documents

Publication Publication Date Title
JP3488375B2 (en) Manganese-zinc ferrite
US6458286B1 (en) Manganese-zinc (Mn-Zn) based ferrite
KR20010050934A (en) NiMnZn BASED FERRITE
JP3454316B2 (en) Manganese zinc based ferrite core and method for producing the same
JP2006202796A (en) HIGH SATURATION MAGNETIC FLUX DENSITY Mn-Zn-Ni BASED FERRITE
JPH10163017A (en) High frequency soft-magnetic material for low temp. sintering and manufacture of inductor using the same
KR100389821B1 (en) MnZn ferrite production process, MnZn ferrite, and ferrite core for power supplies
KR100392505B1 (en) Manganese-Zinc Base Ferrite
JP2917706B2 (en) Oxide magnetic material
JP3588693B2 (en) Mn-Zn ferrite and method for producing the same
JP3635410B2 (en) Method for producing manganese-zinc based ferrite
JP3288113B2 (en) Mn-Zn ferrite magnetic material
JPH06310320A (en) Oxide magnetic substance material
JP2003068516A (en) Mn-Zn-Ni FERRITE AND ITS MANUFACTURING METHOD
JPH0812476A (en) Method for sintering oxide magnetic material with high magnetic permeability
JP2855990B2 (en) Oxide magnetic material
JPH07315919A (en) Production of high permeability oxide magnetic material
JP2802839B2 (en) Oxide soft magnetic material
JP2004262710A (en) Mn-Zn BASED FERRITE AND METHOD OF MANUFACTURING THE SAME
JPH10270229A (en) Mn-ni ferrite material
JP3617070B2 (en) Low loss ferrite manufacturing method
JP2627676B2 (en) Manufacturing method of oxide magnetic material
WO2023182133A1 (en) MnZn-BASED FERRITE
JP3424741B2 (en) Manufacturing method of oxide magnetic material
JP2939035B2 (en) Soft magnetic oxide substance