JPH08124230A - Magnetooptical recording medium and information reproduction method employing it - Google Patents

Magnetooptical recording medium and information reproduction method employing it

Info

Publication number
JPH08124230A
JPH08124230A JP6258002A JP25800294A JPH08124230A JP H08124230 A JPH08124230 A JP H08124230A JP 6258002 A JP6258002 A JP 6258002A JP 25800294 A JP25800294 A JP 25800294A JP H08124230 A JPH08124230 A JP H08124230A
Authority
JP
Japan
Prior art keywords
layer
temperature
reproducing
memory layer
memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6258002A
Other languages
Japanese (ja)
Inventor
Naoki Nishimura
直樹 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP6258002A priority Critical patent/JPH08124230A/en
Priority to EP95303932A priority patent/EP0686970A3/en
Priority to CN95108599A priority patent/CN1066561C/en
Priority to AU21601/95A priority patent/AU680132B2/en
Priority to CA002151452A priority patent/CA2151452C/en
Priority to KR1019950015317A priority patent/KR100249444B1/en
Publication of JPH08124230A publication Critical patent/JPH08124230A/en
Priority to US08/982,454 priority patent/US6125083A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To enhance the line density of medium by magnetizing a reproduction layer in the direction for stabilizing the information stored in a memory layer when the temperature is lower than a compensation temperature but in one direction through magnetostatic coupling with the memory layer when the temperature is higher than the compensation temperature. CONSTITUTION: In the high temperature region 5 in a light spot 2, a reproduction layer 11 is constantly magnetized in the erasing direction and functions as a rear mask 5. Consequently, the spot 2 is restricted apparently to a region except the high temperature region 5, and other regions serve as an aperture region 3 and thereby a recording domain can be detected at a period shorter than the detection limit. Since a mask can be formed by varying the influence of effective field in the medium, principally the field Hst of magnetostatic coupling force from the memory layer 13, no external field is required. Since the field Hst is proportional to the saturation magnetization Ms2 of the memory layer 13, the saturation magnetization Ms2 is set high enough to sustain stability of recorded information but low enough to cause no reversal of erasure magnetization. This structure realizes high line density.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザー光により情報
の記録及び再生が行われる光磁気記録媒体に関し、特
に、高密度化を可能とする光磁気記録媒体及び該媒体の
光磁気再生方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical recording medium in which information is recorded and reproduced by a laser beam, and more particularly to a magneto-optical recording medium capable of high density and a magneto-optical reproducing method for the medium. It is a thing.

【0002】[0002]

【従来の技術】書き換え可能な高密度記録方式として、
半導体レーザーの熱エネルギーを用いて、磁性薄膜に磁
区を書き込んで情報を記録し、磁気光学効果を用いて、
この情報を読み出す光磁気記録媒体が注目されている。
2. Description of the Related Art As a rewritable high density recording system,
Using the thermal energy of a semiconductor laser to write magnetic domains in a magnetic thin film to record information, using the magneto-optical effect,
Attention has been paid to a magneto-optical recording medium for reading this information.

【0003】又、近年、この光磁気記録媒体の記録密度
を高めて更に大容量の記録媒体とする要求が高まってい
る。この光磁気記録媒体等の光ディスクの線記録密度
は、再生光学系のレーザー波長λ、対物レンズの開口数
NAに大きく依存する。すなわち、再生光波長と対物レ
ンズの開口数が決まるとビームウエストの径が決まるた
め、最短マーク長はλ/2NA程度が再生可能な限界と
なってしまう。一方トラック密度は、主として隣接トラ
ック間のクロストークによって制限され、最短マーク長
と同様に再生ビームのスポット径に依存している。
Further, in recent years, there is an increasing demand for increasing the recording density of this magneto-optical recording medium to obtain a recording medium having a larger capacity. The linear recording density of an optical disc such as a magneto-optical recording medium largely depends on the laser wavelength λ of the reproducing optical system and the numerical aperture NA of the objective lens. That is, since the diameter of the beam waist is determined when the wavelength of the reproduction light and the numerical aperture of the objective lens are determined, the minimum mark length of about λ / 2NA is the limit of reproduction. On the other hand, the track density is limited mainly by crosstalk between adjacent tracks and depends on the spot diameter of the reproducing beam as well as the shortest mark length.

【0004】従って、従来の光ディスクで高密度化を実
現するためには、再生光学系のレーザー波長を短くする
か、対物レンズの開口数NAを大きくする必要がある。
しかしながら、レーザーの波長を短くするのは素子の効
率、発熱などの問題で容易ではなく、又、対物レンズの
開口数を大きくするとレンズの加工が困難になるだけで
なく、レンズとディスクの距離が近づき過ぎてディスク
と衝突する等の機械的問題が発生する。このため、記録
媒体の構成や読み取り方法を工夫し、記録密度を改善す
る技術が開発されている。
Therefore, in order to realize high density in the conventional optical disk, it is necessary to shorten the laser wavelength of the reproducing optical system or increase the numerical aperture NA of the objective lens.
However, it is not easy to shorten the laser wavelength due to problems such as element efficiency and heat generation. Also, increasing the numerical aperture of the objective lens not only makes it difficult to process the lens, but also increases the distance between the lens and the disc. Mechanical problems such as collision with the disk due to being too close to each other occur. Therefore, a technique for improving the recording density by devising the configuration of the recording medium and the reading method has been developed.

【0005】例えば、特開平3−93056 号公報に
開示された光磁気再生方法では、図6に示すような媒体
構成が提案されている。図6(a)は、超解像技術の一
例である光ディスクの断面図を示している。基板20は
通常ガラスあるいはポリカーボネートの様な透明な材料
であり、基板20上に干渉層34、再生層31、中間層
32、メモリ層32、保護層35の順に積層する。干渉
層34はカー効果を高めるため、保護層35は磁性層の
保護のために用いられるものである。磁性層中の矢印
は、膜中の磁化もしくは原子磁気モーメントの向きを表
す。再生層、中間層、メモリ層の構成の媒体に光スポッ
トを照射し、その際に生じる媒体の温度分布のうち、高
温部分の再生層とメモリ層の磁気的結合をキュリー温度
の低い中間層により切断し、外部磁界により前記磁気的
結合が切断された部分の再生層の磁化を一方向にそろえ
て、光スポット内のメモリ層の磁区情報を一部マスクす
ることにより、光の回折限界以下の周期の信号を再生可
能とし、線記録密度の向上を試みている。
For example, in the magneto-optical reproducing method disclosed in Japanese Patent Laid-Open No. 3-93056, a medium structure as shown in FIG. 6 has been proposed. FIG. 6A shows a sectional view of an optical disc which is an example of the super-resolution technique. The substrate 20 is usually a transparent material such as glass or polycarbonate, and the interference layer 34, the reproducing layer 31, the intermediate layer 32, the memory layer 32, and the protective layer 35 are laminated on the substrate 20 in this order. The interference layer 34 enhances the Kerr effect, and the protective layer 35 is used to protect the magnetic layer. The arrow in the magnetic layer indicates the direction of magnetization or atomic magnetic moment in the film. When the medium composed of the reproducing layer, the intermediate layer, and the memory layer is irradiated with a light spot, the magnetic coupling between the reproducing layer and the memory layer in the high temperature portion of the temperature distribution of the medium generated at that time is controlled by the intermediate layer having a low Curie temperature. By cutting and aligning the magnetization of the reproducing layer in the portion where the magnetic coupling is broken by an external magnetic field in one direction, and partially masking the magnetic domain information of the memory layer in the light spot, We are trying to improve linear recording density by making it possible to reproduce periodic signals.

【0006】又、特開平3−93058号公報及び特開
平4−255946号公報に開示された超解像再生方法
では、図7に示すように再生層31、中間層32とメモ
リ層33からなる媒体を用いる。情報再生に先立って初
期化磁界21により再生層31の磁化の向きを一方向に
揃えてメモリ層33の磁区情報をマスクした後に光スポ
ット2を照射し、その際に生じる媒体の温度分布のう
ち、低温領域では再生層31に初期化状態を維持させ
(フロントマスク4を形成する)、中間層32のキュリ
ー温度Tc2以上の高温領域では再生層31を再生磁界
22の方向に強制的に配向させ(リアマスク5を形成す
る)、中温領域のみでメモリ層33の磁区情報が転写さ
れるようにして再生スポットの実効的な大きさを小さく
することにより、光の回折限界以下の記録マーク1を再
生可能とし、線密度の向上を図っている。
Further, in the super-resolution reproducing method disclosed in JP-A-3-93058 and JP-A-4-255946, a reproducing layer 31, an intermediate layer 32 and a memory layer 33 are formed as shown in FIG. Use medium. Prior to information reproduction, the initialization magnetic field 21 aligns the magnetization direction of the reproduction layer 31 in one direction to mask the magnetic domain information of the memory layer 33 and then irradiates the light spot 2 with the temperature distribution of the medium generated at that time. In the low temperature region, the reproduction layer 31 is maintained in the initialized state (the front mask 4 is formed), and in the high temperature region of the Curie temperature Tc2 or higher of the intermediate layer 32, the reproduction layer 31 is forcibly oriented in the direction of the reproduction magnetic field 22. (The rear mask 5 is formed.) The magnetic domain information of the memory layer 33 is transferred only in the medium temperature region to reduce the effective size of the reproduction spot, thereby reproducing the recording mark 1 below the light diffraction limit. It is possible and the linear density is improved.

【0007】これらの公知の超解像方式では、低温領域
でのフロントマスク4が隣接するトラックの方向にのび
ているために、線記録密度と同時にトラック密度の向上
をも試みている。
In these known super-resolution systems, since the front mask 4 extends in the direction of the adjacent track in the low temperature region, an attempt is made to improve not only the linear recording density but also the track density.

【0008】[0008]

【発明が解決しようとしている課題】しかしながら、特
開平3−93056号公報に開示された方法では信号品
質を落とさずに解像力を上げられる反面、再生磁界を印
加する必要があり、さらに特開平3−93058号公報
及び特開平4−255946号公報に開示された方法で
は情報再生に先立って再生層31の磁化を一方向に揃え
なければならず、そのための初期化磁石21を従来の装
置に追加することが必要となる。以上のように、従来の
超解像再生方法は、解像力が十分上げられなかったり、
光磁気記録再生装置が複雑化し、コストが高くなる、小
型化が難しい等の問題点を有している。
However, in the method disclosed in Japanese Unexamined Patent Publication No. 3-93056, although the resolution can be increased without degrading the signal quality, it is necessary to apply the reproducing magnetic field. According to the methods disclosed in Japanese Patent Laid-Open No. 93058 and Japanese Patent Laid-Open No. 4-255946, the magnetization of the reproducing layer 31 must be aligned in one direction prior to information reproduction, and the initialization magnet 21 for that purpose is added to the conventional device. Will be required. As described above, in the conventional super-resolution reproduction method, the resolution cannot be sufficiently increased,
There are problems that the magneto-optical recording / reproducing apparatus becomes complicated, the cost becomes high, and the miniaturization is difficult.

【0009】[0009]

【課題を解決するための手段および作用】本発明は、こ
のような問題点の解決を図るものとして、再生時に初期
化磁界及び再生磁界を必要としない簡易な構成で、光の
回折限界以下の記録マークを、高い信号品質で再生可能
な光磁気記録媒体及び該媒体を用いた光学的情報再生方
法の提供を目的とする。
In order to solve such problems, the present invention has a simple structure which does not require an initializing magnetic field and a reproducing magnetic field at the time of reproducing, and has a structure which is below the diffraction limit of light. An object of the present invention is to provide a magneto-optical recording medium capable of reproducing a recording mark with high signal quality and an optical information reproducing method using the medium.

【0010】そして、上記目的は、情報を蓄積するメモ
リ層と、前記メモリ層に対して高いキュリー温度と低い
保磁力と、室温とメモリ層のキュリー温度の間に補償温
度を有する再生層とを少なくとも備え、前記再生層の磁
化は、それの補償温度以下の温度領域においては前記メ
モリ層に蓄積された情報に対して安定な向きならわされ
る領域を含み、それの補償温度以上の温度領域において
は静磁結合により一方向に磁化される光磁気記録媒体に
よって達成される。
The object is to provide a memory layer for storing information, a high Curie temperature and a low coercive force with respect to the memory layer, and a reproducing layer having a compensation temperature between room temperature and the Curie temperature of the memory layer. At least, the magnetization of the reproducing layer includes a region that is stably oriented with respect to the information stored in the memory layer in a temperature region below the compensation temperature thereof, and a temperature region above the compensation temperature thereof. Is achieved by a magneto-optical recording medium magnetized in one direction by magnetostatic coupling.

【0011】又、情報を蓄積するメモリ層と、前記メモ
リ層に対して高いキュリー温度と低い保磁力と、室温と
メモリ層のキュリー温度の間に補償温度を有する再生層
とを少なくとも備え、前記再生層の磁化は、それの補償
温度以下の温度領域においては前記メモリ層に蓄積され
た情報に対して安定な向きならわされる領域を含み、そ
れの補償温度以上の温度領域においては静磁結合によっ
て一方向に磁化される光磁気記録媒体に再生層側から光
スポットを照射して、前記メモリ層に蓄積された情報を
前記再生層に転写して情報の再生を行う情報再生方法に
おいて、前記照射された光スポット内の高温部分におい
て前記再生層の補償温度を超える温度まで昇温せしめる
ことにより、前記高温部分における前記再生層の磁化を
一方向に磁化させ、前記光スポット内の他の領域におい
て、前記メモリ層に蓄積された情報を前記再生層に転写
し、前記光スポットの反射光の磁気光学効果を検出する
ことにより前記情報の再生を行うこと似よって達成され
る。
At least a memory layer for storing information, a high Curie temperature and a low coercive force with respect to the memory layer, and a reproducing layer having a compensation temperature between room temperature and the Curie temperature of the memory layer are provided. The magnetization of the reproducing layer includes a region which is oriented in a stable direction with respect to the information stored in the memory layer in a temperature region below its compensation temperature, and magnetostatic in a temperature region above its compensation temperature. In an information reproducing method of irradiating a magneto-optical recording medium magnetized in one direction by coupling with a light spot from the reproducing layer side, transferring the information accumulated in the memory layer to the reproducing layer to reproduce the information, The temperature of the reproducing layer in the irradiated light spot is raised to a temperature exceeding the compensation temperature of the reproducing layer, so that the magnetization of the reproducing layer in the high temperature portion is magnetized in one direction. In another area within the light spot, the information stored in the memory layer is transferred to the reproduction layer, and the information is reproduced by detecting the magneto-optical effect of the reflected light of the light spot. To be achieved.

【0012】[0012]

【作用】このような本発明の構成によれば、再生時の光
スポット内の高温領域に対応する再生層の部分が補償温
度を越える温度に達するため、高温領域における再生層
の正味の磁化の方向が反静磁結合状態となり、その結
果、再生層はメモリ層の静磁界の影響を受け、前記高温
領域内に位置する再生層の磁区は収縮し、即ち、再生層
の磁化は一方向に揃えられることとなりメモリ層の記録
情報がマスクされる。そして、光スポット内の高温領域
以外の領域ではメモリ層の磁化情報が静磁結合力或は交
換結合力により再生層に転写されているため、媒体から
の光スポットの反射光の極カー効果の変化は光スポット
内の高温領域以外の領域に対応する再生層の磁化の影響
を受けるので、光スポットの反射光の極カー効果の変化
を検出すれば、光の回折限界以下の周期で記録された情
報の再生が可能となり、媒体の線密度を向上させること
が実現できる。
According to such a constitution of the present invention, since the portion of the reproducing layer corresponding to the high temperature region in the light spot at the time of reproduction reaches the temperature exceeding the compensation temperature, the net magnetization of the reproducing layer in the high temperature region is The direction becomes an anti-static coupling state, and as a result, the reproducing layer is affected by the static magnetic field of the memory layer, and the magnetic domain of the reproducing layer located in the high temperature region contracts, that is, the magnetization of the reproducing layer is in one direction. Since they are aligned, the recorded information in the memory layer is masked. In the areas other than the high temperature area in the light spot, the magnetization information of the memory layer is transferred to the reproducing layer by the magnetostatic coupling force or the exchange coupling force, so that the Kerr effect of the reflected light of the light spot from the medium Since the change is affected by the magnetization of the reproducing layer corresponding to a region other than the high temperature region in the light spot, if a change in the polar Kerr effect of the reflected light of the light spot is detected, it is recorded at a period below the light diffraction limit. It is possible to reproduce the recorded information and improve the linear density of the medium.

【0013】[0013]

【実施例】以下、図面を用いて本発明の光磁気記録媒体
及び該媒体を用いた情報再生方法について詳しく説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The magneto-optical recording medium of the present invention and the information reproducing method using the medium will be described below in detail with reference to the drawings.

【0014】本発明の光磁気記録媒体は、透光性の基板
側上に、基板側から再生層と垂直磁化膜であるメモリ層
の2層の磁性層を少なくとも積層してなる(図1
(a))。
The magneto-optical recording medium of the present invention comprises at least two magnetic layers, a reproducing layer and a memory layer, which is a perpendicular magnetization film, laminated on the transparent substrate side from the substrate side (FIG. 1).
(A)).

【0015】再生層は、メモリ層に保持した磁化情報の
再生を担う層でメモリ層に比べて光の入射に近い側に位
置し、再生時にカー回転角が劣化しないようにキュリー
温度をメモリ層より高くする。また、再生層の保磁力は
メモリ層の保磁力よりも小さいことが必要である。ま
た、室温とメモリ層のキュリー温度との間に補償温度が
あることが必要である。これは、本媒体では、再生時に
光スポット内の高温領域を再生層の補償温度を越える温
度領域にして、リアマスクを形成して超解像再生を行う
ためである。よってメモリ層のキュリー温度が、再生層
の補償温度と同じか、もしくは、再生層の補償温度より
低い場合には、再生時にメモリ層の磁化情報が破壊され
てしまうので、本発明の効果は達成することができな
い。メモリ層のキュリー温度は、再生層の補償温度より
も望ましくは、10℃以上、より望ましくは20℃以上
高いのがよい。但しあまり高くすると、レーザー光によ
る記録が容易に行われなくなるため、望ましくは、28
0℃以下、より望ましくは、240℃以下がよい。言い
換えれば、再生層の補償温度は、望ましくは、270℃
以下、より望ましくは、230℃以下がよい。
The reproducing layer is a layer for reproducing the magnetization information held in the memory layer, and is located closer to the incidence of light than the memory layer. The Curie temperature is set so that the Kerr rotation angle does not deteriorate during reproduction. Make it higher. Further, the coercive force of the reproducing layer needs to be smaller than the coercive force of the memory layer. It is also necessary that there is a compensation temperature between room temperature and the Curie temperature of the memory layer. This is because in this medium, the super-resolution reproduction is performed by forming the rear mask by setting the high temperature region in the light spot to a temperature region exceeding the compensation temperature of the reproduction layer during reproduction. Therefore, when the Curie temperature of the memory layer is the same as the compensation temperature of the reproducing layer or lower than the compensation temperature of the reproducing layer, the magnetization information of the memory layer is destroyed during reproducing, and the effect of the present invention is achieved. Can not do it. The Curie temperature of the memory layer is preferably 10 ° C. or higher, more preferably 20 ° C. or higher than the compensation temperature of the reproducing layer. However, if it is set too high, recording with a laser beam will not be easily performed, so it is desirable that the value be 28
It is preferably 0 ° C or lower, more preferably 240 ° C or lower. In other words, the compensation temperature of the reproducing layer is preferably 270 ° C.
The temperature is more preferably 230 ° C. or lower.

【0016】又、この再生層の磁化形態は、室温及び室
温からキュリー温度の間において垂直磁化膜であるもの
か、もしくは、室温で面内磁化膜で、室温と補償温度と
の間で垂直磁化膜となるものかのいずれかである。具体
的な材料としては、例えば希土類−鉄族非晶質合金、例
えばGdFeCo,GdTbFeCo,GdDyFeC
o,NdGdFeCo などGdFeCoを主に含む材
料がキュリー温度が高く、保持力が低く、本媒体の主眼
である高温領域での記録磁区の収縮が容易に起きるので
望ましい。
Further, the reproducing layer has a magnetization form which is a perpendicular magnetization film at room temperature and between room temperature and Curie temperature, or an in-plane magnetization film at room temperature and perpendicular magnetization between room temperature and compensation temperature. It is either a film or a film. Specific materials include, for example, rare earth-iron group amorphous alloys such as GdFeCo, GdTbFeCo, and GdDyFeC.
A material mainly containing GdFeCo such as o and NdGdFeCo is desirable because it has a high Curie temperature and a low coercive force, and the recording magnetic domain easily contracts in the high temperature region which is the main point of the medium.

【0017】GdFeCoを再生層に用いた場合、補償
温度は特に希土類元素(Gd)の組成に強く依存するの
で、主にGdFeCoを含む磁性層を再生層に用いた場
合、好ましくは、Gd量を24〜35at%に設定する
のが望ましい。
When GdFeCo is used in the reproducing layer, the compensation temperature strongly depends on the composition of the rare earth element (Gd), so when the magnetic layer mainly containing GdFeCo is used in the reproducing layer, the amount of Gd is preferably set. It is desirable to set to 24 to 35 at%.

【0018】メモリ層は、記録情報を保存する層で、磁
区を安定に保持できることが必要である。記録の材料と
しては、垂直磁気異方性が大きく安定に磁化状態が保持
できるもの、例えばTbFeCo,DyFeCo,Tb
DyFeCoなどの希土類−鉄族非晶質合金、などがよ
い。
The memory layer is a layer for storing recorded information and is required to be able to stably hold magnetic domains. As a recording material, a material having a large perpendicular magnetic anisotropy and capable of stably holding a magnetized state, for example, TbFeCo, DyFeCo, Tb
A rare earth-iron group amorphous alloy such as DyFeCo is preferable.

【0019】また、メモリ層は、少なくとも再生層がメ
モリ層と静磁結合する温度以上には補償温度を有しない
ことが必要である。これは、本発明では、再生時に光ス
ポット内の高温領域を再生層の補償温度を越える温度領
域にして、再生層の正味の磁化をアパーチャー領域の再
生層とは逆向きに反転させ、再生層とメモリ層を反静磁
結合状態としてリアマスクを形成するため、メモリ層の
方は、転写領域とリアマスク領域で、同じ磁化状態を保
存することが必要なためである。
Further, it is necessary that the memory layer has no compensation temperature at least above the temperature at which the reproducing layer is magnetostatically coupled with the memory layer. In the present invention, this is because the high temperature region in the light spot during reproduction is set to a temperature region that exceeds the compensation temperature of the reproduction layer, and the net magnetization of the reproduction layer is reversed in the direction opposite to that of the reproduction layer in the aperture region. This is because the rear mask is formed with the memory layer in a demagnetization coupled state, and the memory layer needs to store the same magnetization state in the transfer region and the rear mask region.

【0020】例えば、再生層とメモリ層は、フェリ磁性
の希土類−鉄族元素非晶質合金薄膜を用いる場合、室温
で、再生層が希土類元素副格子磁化優勢で、メモリ層が
鉄族元素副格子磁化優勢である、若しくは再生層、メモ
リ層ともに希土類元素副格子磁化優勢とすればよい。フ
ェリ磁性の希土類−鉄族元素非晶質合金薄膜は、容易に
上記構成が実現するので、本発明の媒体の磁性層には好
適である。
For example, when the ferrimagnetic rare earth-iron group element amorphous alloy thin film is used for the reproducing layer and the memory layer, the reproducing layer has a rare earth element sublattice magnetization dominant and the memory layer has the iron group element sublayer at room temperature. The lattice magnetization is dominant, or the rare earth element sub-lattice magnetization is dominant in both the reproducing layer and the memory layer. The ferrimagnetic rare earth-iron group element amorphous alloy thin film is suitable for the magnetic layer of the medium of the present invention because it easily realizes the above structure.

【0021】上述の再生層とメモリ層は、少なくとも、
光スポット内の高温領域においては、交換結合力が遮断
され静磁結合力が働く必要がある。この場合、室温にお
いては再生層とメモリ層との間に交換結合力が働き、高
温領域においては交換結合力が遮断され静磁結合が働く
形態、室温から高温領域に至るまで交換結合力が遮断さ
れ静磁結合力が働く形態が考えられる。前者の形態を実
現するには、再生層とメモリ層との間に光スポットの高
温領域の温度範囲内にキュリー温度を有する垂直磁化膜
からなるフェリ磁性の希土類−鉄族元素非晶質合金の中
間層を設ければ良い。この構成の場合、室温においては
再生層とメモリ層間に中間層を介して交換結合力が働
き、高温領域においては中間層がキュリー温度に達し磁
化が消失するため再生層とメモリ層の交換結合力が遮断
され、静磁結合力のみが働くようになる。又、後者の形
態を実現するには、室温で、再生層が希土類元素副格子
磁化優勢で、メモリ層が鉄族元素副格子磁化優勢である
必要がある。又、再生層とメモリ層間に働く交換結合力
を室温から高温領域に至るまで遮断するためには、再生
層を成膜した後、メモリ層を成膜するまでの間に、プラ
ズマ処理によって、界面で交換結合力が働くのを防いだ
り、交換結合を遮断するための中間層を再生層とメモリ
層との間に設けることが有効である(図1(b))。中
間層の材料としては、誘電体等の非金属層、非磁性の金
属層もしくは面内磁化膜からなる磁性層などがよい。こ
のような中間層を設ければ、前述のプラズマ処理による
方法と比較して、より確実に交換力を遮断することがで
きる。
The above-mentioned reproducing layer and memory layer are at least
In the high temperature region within the light spot, the exchange coupling force must be blocked and the magnetostatic coupling force must work. In this case, the exchange coupling force acts between the reproducing layer and the memory layer at room temperature, and the exchange coupling force is interrupted in the high temperature region to cause magnetostatic coupling. The exchange coupling force is interrupted from the room temperature to the high temperature region. It is considered that the magnetostatic coupling force works. In order to realize the former form, a ferrimagnetic rare earth-iron group element amorphous alloy composed of a perpendicularly magnetized film having a Curie temperature in the temperature range of the high temperature region of the light spot between the reproducing layer and the memory layer is used. An intermediate layer may be provided. In this structure, the exchange coupling force acts between the reproducing layer and the memory layer via the intermediate layer at room temperature, and in the high temperature region, the intermediate layer reaches the Curie temperature and the magnetization disappears, so that the exchange coupling force between the reproducing layer and the memory layer. Is cut off and only the magnetostatic coupling force works. Further, in order to realize the latter mode, it is necessary that the reproducing layer has a rare earth element sublattice magnetization dominant and the memory layer has an iron group element sublattice magnetization dominant at room temperature. Further, in order to block the exchange coupling force acting between the reproducing layer and the memory layer from room temperature to a high temperature region, the interface between the reproducing layer and the memory layer is formed by plasma treatment after the reproducing layer is formed. It is effective to provide an intermediate layer between the reproducing layer and the memory layer in order to prevent the exchange coupling force from acting on or to block the exchange coupling (FIG. 1 (b)). The material of the intermediate layer is preferably a non-metal layer such as a dielectric, a non-magnetic metal layer, or a magnetic layer made of an in-plane magnetized film. By providing such an intermediate layer, the exchange force can be blocked more reliably as compared with the above-mentioned method by the plasma treatment.

【0022】又、再生層及びメモリ層には、Al,T
i,Pt,Nb,Crなどの耐食性改善のための元素添
加を行なっても良い。上記再生層とメモリ層に加えて、
干渉効果や保護性能を高めるために、SiNx,AlO
x,TaOx,SiOx 等の誘電体などを設けても良
い。また、熱伝導性改良のためAl,AlTa,AlT
i,AlCr,Cuなどの熱伝導性の良い層を設けても
良い。また、光変調オーバーライトを行なうために磁化
を一方向に揃えた初期化層、交換結合力または静磁結合
力を調節するための記録補助、再生補助のための補助層
を設けても良い。更に保護膜として前記誘電体層や高分
子樹脂からなる保護コートを付与しても良い。
The reproducing layer and the memory layer are made of Al, T
Elements such as i, Pt, Nb, and Cr may be added to improve the corrosion resistance. In addition to the above playback layer and memory layer,
SiNx, AlO to enhance the interference effect and protection performance
A dielectric such as x, TaOx, or SiOx may be provided. Also, to improve thermal conductivity, Al, AlTa, AlT
A layer having good thermal conductivity such as i, AlCr, or Cu may be provided. In addition, an initialization layer in which magnetization is aligned in one direction for performing light modulation overwrite, and an auxiliary layer for assisting recording and reproducing for adjusting exchange coupling force or magnetostatic coupling force may be provided. Further, a protective coat made of the dielectric layer or polymer resin may be provided as a protective film.

【0023】次に本発明の記録、再生プロセスを説明す
る。
Next, the recording / reproducing process of the present invention will be described.

【0024】先ず、本発明の光磁気記録媒体のメモリ層
にデータ信号に応じて記録磁区を形成する。記録方法と
しては、第1の記録方法として、一度消去した後に、記
録方向に磁界を印加しながらレーザーパワーを変調して
行う。第2の記録方法として、外部磁界を印加しながら
レーザーパワーを変調して旧データのうえに新データを
オーバーライト記録する。これらの光変調記録の場合、
光スポット内の所定領域のみがメモリ層のキュリー温度
近傍になる様に記録媒体の線速度を考慮してレーザー光
の強度を決定すれば、光スポットの径以下の記録磁区が
形成でき、その結果、光の回折限界以下の周期の信号を
記録できる。又は、第3の記録方法として、メモリ層が
キュリー温度以上になるようなパワーのレーザー光を照
射しながら外部磁界を変調してオーバーライト記録をす
る。この場合は変調速度を線速度に応じて高速にすれば
光スポットの径以下の記録磁区が形成でき、その結果、
光の回折限界以下の周期の信号を記録できる。
First, a recording magnetic domain is formed in the memory layer of the magneto-optical recording medium of the present invention according to a data signal. As the recording method, as the first recording method, after erasing once, the laser power is modulated while applying a magnetic field in the recording direction. As a second recording method, the laser power is modulated while applying an external magnetic field to overwrite the new data on the old data. For these optical modulation recordings,
If the intensity of the laser beam is determined in consideration of the linear velocity of the recording medium so that only the predetermined area in the light spot is near the Curie temperature of the memory layer, a recording magnetic domain smaller than the diameter of the light spot can be formed. , A signal with a period less than the diffraction limit of light can be recorded. Alternatively, as a third recording method, overwrite recording is performed by modulating an external magnetic field while irradiating a laser beam having a power such that the memory layer has a Curie temperature or higher. In this case, if the modulation speed is increased according to the linear velocity, a recording magnetic domain smaller than the diameter of the light spot can be formed.
It is possible to record a signal having a period less than the diffraction limit of light.

【0025】また、後述のメカニズムから明らかなよう
に、本発明の超解像が安定して機能するためには、記録
マークの周囲の磁化がマークと逆の方向を向いているこ
とが必要である。もっとも一般的な第1の記録方法で
は、まず一定の磁界を印加した状態でレーザパワーをハ
イパワーで一定とし、記録しようとするトラックの磁化
を初期化(消去動作)し、その後磁界の向きを反転した
状態でレーザパワーを強度変調して所望の記録マークを
形成する。その時、記録マークの周囲に磁化の向きがラ
ンダムな部分があると、再生の際ノイズの原因となるた
め、再生信号品質を上げるためには記録マークよりも広
い幅で消去しておくことが一般に行われている。したが
って、記録された磁区の周囲の磁化は必ず磁区と逆を向
いていることになるため、この記録方法においては、本
発明の超解像は安定に動作する。
Further, as is clear from the mechanism described later, in order for the super-resolution of the present invention to function stably, it is necessary that the magnetization around the recording mark is oriented in the opposite direction to the mark. is there. In the most general first recording method, first, the laser power is kept constant at a high power while a constant magnetic field is applied, the magnetization of the track to be recorded is initialized (erasing operation), and then the direction of the magnetic field is changed. In the inverted state, the laser power is intensity-modulated to form a desired recording mark. At that time, if there is a random magnetized portion around the recording mark, noise may occur during reproduction.In order to improve the quality of the reproduced signal, it is generally necessary to erase in a wider width than the recording mark. Has been done. Therefore, since the magnetization around the recorded magnetic domain always faces the opposite direction to the magnetic domain, the super-resolution of the present invention operates stably in this recording method.

【0026】また、第2の記録方法では、特開昭62−
175948に記載されているような構成の媒体(この
媒体は記録情報を保持するメモリ層の他に、記録に先立
って磁化が一方向に向けられている書き込み層を備えて
いる。)を用い、記録に先立つ消去動作を必要としない
が、この媒体に記録を行う場合には、書き込み層とは逆
向きの一定の磁界を印加しながら記録情報に応じてレー
ザ強度をPh,Pl(Ph>Pl)の間で変調する。媒
体がPhに相当する温度Thまで昇温すると、Thは書
き込み層のTcとほぼ等しく設定されているのでメモリ
層と書き込み層の磁化は外部磁界の方向を向いて磁区を
形成し、媒体がPl相当の温度Tlまでしか昇温しない
と磁化の向きは書き込み層と同じ向きとなる。このプロ
セスはあらかじめ記録されていた磁区とは無関係に起こ
る。ここで、媒体にPhのレーザを照射した時を考える
と、記録磁区を形成する部分はThに昇温しているが、
この時の温度分布は2次元的に広がった形となっている
ので、レーザをPhまで上げたとしても磁区の周囲には
必ずTlまでしか昇温しない部分が生じる。したがって
記録磁区の周囲には反対向きの磁化を持った部分が存在
することになる。すなわち、この記録方法においても本
発明の超解像は安定に動作する。
The second recording method is disclosed in Japanese Patent Laid-Open No. 62-
A medium having a structure as described in 175948 (this medium has a memory layer for holding recording information and a writing layer in which magnetization is oriented in one direction prior to recording), Although an erasing operation prior to recording is not required, when recording is performed on this medium, the laser intensities are Ph, Pl (Ph> Pl) depending on the recorded information while applying a constant magnetic field in the opposite direction to the writing layer. ) Between. When the medium is heated to a temperature Th corresponding to Ph, Th is set to be substantially equal to Tc of the writing layer, so that the magnetizations of the memory layer and the writing layer form magnetic domains in the direction of the external magnetic field, and the medium is Pl. If the temperature is raised up to a considerable temperature Tl, the direction of magnetization becomes the same as that of the writing layer. This process occurs independently of prerecorded magnetic domains. Here, considering the time when the medium is irradiated with the laser of Ph, the temperature of the portion forming the recording magnetic domain rises to Th,
Since the temperature distribution at this time has a two-dimensionally widened shape, even if the laser is raised to Ph, there is always a portion around the magnetic domain where the temperature rises only to Tl. Therefore, there is a portion having the opposite magnetization around the recording magnetic domain. That is, even with this recording method, the super-resolution of the present invention operates stably.

【0027】又、第3の記録方法では、レーザをハイパ
ワーでDC照射しながら情報に応じた変調磁界を媒体に
印加するものであるが、前に記録されていた磁区の履歴
を残さずに新たな情報を記録するためには、磁区を形成
する幅は常に一定にしなければならない。したがって、
この場合は何らかの処置を施さなければ記録磁区の周囲
に磁化の向きがランダムな領域が存在してしまい、本発
明の超解像は安定に動作しないことになる。したがっ
て、磁界変調記録を行う場合には、媒体の出荷時あるい
は一回目の記録に先立って、通常の記録パワーよりも大
きいパワーで初期化動作を行っておくか、ランド、グル
ーブの両方に対して予め全面的に磁化の初期化を行う必
要がある。
In the third recording method, a modulation magnetic field according to information is applied to the medium while irradiating the laser with high power DC, but the history of previously recorded magnetic domains is not left. In order to record new information, the width forming the magnetic domains must be constant. Therefore,
In this case, if no measures are taken, a region in which the magnetization direction is random exists around the recording magnetic domain, and the super-resolution of the present invention does not operate stably. Therefore, when performing magnetic field modulation recording, the initialization operation should be performed with a power higher than the normal recording power before shipping the medium or prior to the first recording, or for both the land and the groove. It is necessary to completely initialize the magnetization in advance.

【0028】次に、本発明の再生方法について述べる。Next, the reproducing method of the present invention will be described.

【0029】本発明では、外部磁界を印加することなく
光スポット内の一部の領域を見かけ上光学的にマスクす
ることで磁気超解像を実現する。図3(a)(b)
(c)は、メモリ層から転写された再生層の記録磁区
(以下、単に記録磁区と称する)が、光スポットが移動
する際に高温領域で収縮する過程を示した図である。簡
便のため図3では1つの記録磁区の収縮過程を図示して
いる。また図3では磁性材料に希土類鉄族フェリ磁性体
を想定しており、白抜き矢印30は全体の磁化を、黒矢
印31は鉄族副格子磁化を示し、再生層11はREリッ
チの磁性層、メモリ層13はTMリッチの磁性層を例と
して記載した。尚、図2には再生時の全体像を温度分布
を加えて記した。また、図2も白抜き矢印は全体の磁化
を、黒矢印は鉄族副格子磁化を示す。尚、ここでの説明
は、室温から光スポット内の高温領域に至るまで再生層
とメモリ層間の交換結合力が遮断され、静磁結合力が働
く形態の媒体を用いて行う。
In the present invention, magnetic super-resolution is realized by apparently optically masking a part of the area within the light spot without applying an external magnetic field. 3 (a) (b)
(C) is a diagram showing a process in which a recording magnetic domain (hereinafter, simply referred to as a recording magnetic domain) of the reproducing layer transferred from the memory layer contracts in a high temperature region when the light spot moves. For the sake of simplicity, FIG. 3 shows the contraction process of one recording magnetic domain. Further, in FIG. 3, it is assumed that the magnetic material is a rare earth iron group ferrimagnetic material, the white arrow 30 indicates the entire magnetization, the black arrow 31 indicates the iron group sublattice magnetization, and the reproducing layer 11 is the RE-rich magnetic layer. As the memory layer 13, the TM-rich magnetic layer is described as an example. It should be noted that FIG. 2 shows the entire image at the time of reproduction with the temperature distribution added. Also in FIG. 2, white arrows indicate the entire magnetization, and black arrows indicate the iron group sublattice magnetization. Note that the description here will be given using a medium in which the exchange coupling force between the reproducing layer and the memory layer is cut off from room temperature to the high temperature region in the light spot, and the magnetostatic coupling force acts.

【0030】媒体の温度分布は熱伝導度に限界があるた
め、光スポット中心から光スポットの移動と反対方向に
ずれる。図3(a)に示すように、光スポット2 が記
録磁区1に到達して間もないころには、記録磁区1は高
温領域5まで達していない。この記録磁区1には、メモ
リ層13からの静磁結合力による磁界Hst以外に、ブ
ロッホ磁壁エネルギーによる実効的磁界Hwb、再生層
の他の領域からの静磁界Hleakが印加されている。
Hstは再生層の記録磁区1を安定に保持するように働
くが、Hwbは記録磁区を収縮させる方向に力が働く。
よって再生層11が安定的にメモリ層13の磁化を転写
するためには、記録磁区1が高温領域5に達するまで
に、(数1)の条件が必要である。 (数1)|Hwb±Hleak|<Hc1+Hst(T
<Th−mask) Hwbは再生層11のブロッホ磁壁エネルギーをσw
b、再生層11の記録磁区1の半径をrとすると(数
2)で表され、記録磁区1を収縮させる方向に働く(図
4)。 (数2)Hwb=σwb/2Ms1r
Since the temperature distribution of the medium has a limited thermal conductivity, it shifts from the center of the light spot in the direction opposite to the movement of the light spot. As shown in FIG. 3A, the recording magnetic domain 1 does not reach the high temperature region 5 just before the light spot 2 reaches the recording magnetic domain 1. In addition to the magnetic field Hst due to the magnetostatic coupling force from the memory layer 13, the effective magnetic field Hwb due to the Bloch domain wall energy and the static magnetic field Hleak from other regions of the reproducing layer are applied to the recording magnetic domain 1.
Hst works so as to stably hold the recording magnetic domain 1 of the reproducing layer, while Hwb works in the direction of contracting the recording magnetic domain.
Therefore, in order for the reproducing layer 11 to stably transfer the magnetization of the memory layer 13, the condition of (Equation 1) is required before the recording magnetic domain 1 reaches the high temperature region 5. (Equation 1) | Hwb ± Hleak | <Hc1 + Hst (T
<Th-mask) Hwb represents the Bloch domain wall energy of the reproducing layer 11 by σw
b, the radius of the recording magnetic domain 1 of the reproducing layer 11 is represented by (Equation 2), and the recording magnetic domain 1 acts in a direction of contracting (FIG. 4). (Equation 2) Hwb = σwb / 2Ms1r

【0031】さて、光スポットがさらに移動して、記録
磁区1が、再生層の補償温度以上の温度に達している高
温領域に入ると、再生層の正味の磁化は逆向きとなる。
このため、記録磁区はメモリ層から反平行の静磁力を受
けるようになる。よってHstは、Hwbと同じように
記録磁区を反転させるように働くようになる。図4に収
縮する直前の磁区にかかる磁界の様子を示した。(実際
には、図4のように磁壁は、高温側から移動して磁区収
縮する。)したがって下記(数3)が成立し、記録磁区
1のブロッホ磁壁8は、磁区が収縮する方向に移動す
る。 (数3)Hwb+Hst±Hleak>Hc1(T>T
h−mask)
Now, when the light spot further moves and the recording magnetic domain 1 enters a high temperature region in which the temperature exceeds the compensation temperature of the reproducing layer, the net magnetization of the reproducing layer is reversed.
For this reason, the recording magnetic domain receives an antiparallel static magnetic force from the memory layer. Therefore, Hst works to invert the recording magnetic domain like Hwb. FIG. 4 shows the magnetic field applied to the magnetic domain immediately before contraction. (Actually, the domain wall moves from the high temperature side and contracts the magnetic domain as shown in FIG. 4.) Therefore, the following (Equation 3) is established, and the Bloch domain wall 8 of the recording magnetic domain 1 moves in the direction in which the magnetic domain contracts. To do. (Equation 3) Hwb + Hst ± Hleak> Hc1 (T> T
h-mask)

【0032】こうして、図3(b)に示すように記録磁
区1は高温領域5にはいると収縮して反転し、最終的に
図3(c)に示すように、磁化はすべて消去方向に配向
する。数2、数3及び図2で示したTh−maskは、
再生層の補償温度と同じ温度である。
Thus, as shown in FIG. 3B, the recording magnetic domain 1 contracts and inverts when it enters the high temperature region 5, and finally, as shown in FIG. 3C, all the magnetizations are in the erasing direction. Orient. The Th-mask shown in Equations 2 and 3 and FIG.
It is the same temperature as the compensation temperature of the reproducing layer.

【0033】また、上述のメモリ層13からの静磁界H
stは、消去方向の磁化にも働く。しかし消去方向の磁
化は、Hstによって反転した場合、高温領域5の広範
囲にわたって磁壁が形成されるため磁壁エネルギーが大
きく上昇する。したがって磁化反転せずに同じ消去方向
の磁化を保つ。このため高温領域5においては常に消去
方向に磁化配向した領域が生成し、ここがリアマスク5
となる。消去磁化が反転した場合のブロッホ磁壁エネル
ギーの実効的磁界Hwb’は、反転磁区半径をRとする
と(数7)で表される。 (数4)Hwb’=σwb/2Ms1R よって消去磁化がHstによって反転しない条件は(数
11)となる。 (数5)Hwb’>Hst
Further, the static magnetic field H from the above-mentioned memory layer 13
st also acts on the magnetization in the erasing direction. However, when the magnetization in the erasing direction is reversed by Hst, the domain wall is formed over a wide range of the high temperature region 5, so that the domain wall energy greatly increases. Therefore, the magnetization in the same erasing direction is maintained without reversing the magnetization. Therefore, in the high temperature region 5, a region in which the magnetization is oriented in the erasing direction is always generated, and this is the rear mask 5
Becomes The effective magnetic field Hwb ′ of the Bloch domain wall energy when the erase magnetization is reversed is represented by (Equation 7) where R is the reversal domain radius. (Equation 4) Hwb ′ = σwb / 2Ms1R Therefore, the condition that the erase magnetization is not inverted by Hst is (Equation 11). (Equation 5) Hwb '> Hst

【0034】即ち、図2に示すように、光スポット2内
の高温領域5においては、再生層11は常に消去方向に
配向した垂直磁化膜となるので、光学的なマスク(リア
マスク5)として機能する。よって図2に示したように
光スポット2は、見かけ上、高温領域5を除いた狭い領
域に絞られることとなり、それ以外の領域では、アパー
チャー領域3となり、検出限界以下の周期の記録磁区
(記録マーク)が検出可能となる。
That is, as shown in FIG. 2, in the high temperature region 5 in the light spot 2, since the reproducing layer 11 is always a perpendicular magnetization film oriented in the erasing direction, it functions as an optical mask (rear mask 5). To do. Therefore, as shown in FIG. 2, the light spot 2 is apparently narrowed down to a narrow region excluding the high temperature region 5, and in the other regions, it becomes the aperture region 3 and the recording magnetic domain of the period below the detection limit ( The recording mark) can be detected.

【0035】尚、従来の超解像方法は、特開平4−25
5947に記載されているように外部磁界Hrを用いて
(数6)の関係によってマスクを形成する。 (数6)Hr>Hc1+Hwi 本発明では外部磁界Hrの代わりに媒体内部の実効的磁
界、主にHstの影響を変えることによりマスクを形成
するため外部磁界が不要となる。
A conventional super-resolution method is disclosed in Japanese Patent Laid-Open No. 4-25 / 1992.
As described in 5947, a mask is formed by using the external magnetic field Hr according to the relationship of (Equation 6). (Equation 6) Hr> Hc1 + Hwi In the present invention, the external magnetic field is not necessary because the mask is formed by changing the effect of the effective magnetic field inside the medium, mainly Hst instead of the external magnetic field Hr.

【0036】また、Hstの値は、円筒形磁区を想定し
記録磁区1の半径、メモリ層13の磁区からの距離、メ
モリ層の磁化Ms2を用いて大まかに、計算することが
できる(名古屋大学博士論文,1985.3 月”希土
類−鉄族非晶質合金薄膜及びその複合膜の磁性と磁気光
学効果に関する研究”小林正のP40〜41参照)。H
stは、メモリ層の飽和磁化Ms2に比例する(数
7)。 (数7)Hst∽Ms2
The value of Hst can be roughly calculated by using the radius of the recording magnetic domain 1, the distance from the magnetic domain of the memory layer 13, and the magnetization Ms2 of the memory layer assuming a cylindrical magnetic domain (Nagoya University). Doctoral dissertation, March 1985, "Research on the magnetism and magneto-optical effect of rare earth-iron group amorphous alloy thin films and their composite films", Tadashi Kobayashi, p. H
st is proportional to the saturation magnetization Ms2 of the memory layer (Equation 7). (Equation 7) Hst∽Ms2

【0037】そのため、Ms2は記録情報の安定性が保
たれる程度に大きく、消去磁化が反転しない程度に小さ
くするのが望ましい。
Therefore, it is desirable that Ms2 be large enough to maintain the stability of the recorded information and small enough not to reverse the erase magnetization.

【0038】尚、上述では、高温領域以外の光スポット
領域が、すべてアパーチャー領域となる場合を示した
が、再生層に、上述の条件に加えて室温で面内磁化膜で
あって室温と補償温度との間で垂直磁化膜となるものを
用いれば、光スポット内の高温領域のみならず、低温領
域もマスクすることができる。
In the above description, the case where the light spot region other than the high temperature region is the aperture region is shown. However, in addition to the above conditions, the reproducing layer is an in-plane magnetized film at room temperature and is compensated for at room temperature. By using a film that forms a perpendicular magnetization film with respect to the temperature, not only the high temperature region in the light spot but also the low temperature region can be masked.

【0039】即ち、室温付近の低温領域においては、面
内磁化膜再生層によりメモリ層の磁化情報がマスクさ
れ、再生層が垂直磁化膜となる中温領域では、メモリ層
の磁化情報が静磁結合により再生層に転写されて再生で
き、さらに高温領域においては上述のメカニズムにより
メモリ層の磁化情報をマスクする。このようなダブルマ
スク型の超解像は、線密度のみならず、トラック密度を
も高密度化することができる。
That is, in the low temperature region near room temperature, the magnetization information of the memory layer is masked by the in-plane magnetized film reproducing layer, and the magnetization information of the memory layer is magnetostatically coupled in the medium temperature region where the reproducing layer is the perpendicular magnetized film. Then, the magnetization information of the memory layer is masked by the above-mentioned mechanism in the high temperature region. Such a double mask type super-resolution can increase not only the linear density but also the track density.

【0040】以下に実験例をもって本発明を更に詳細に
説明するが、本発明はその要旨を越えない限り以下の実
験例に限定されるものではない。
Hereinafter, the present invention will be described in more detail with reference to experimental examples, but the present invention is not limited to the following experimental examples as long as the gist thereof is not exceeded.

【0041】まず、再生層が室温及び室温からキュリー
温度間において垂直磁化膜である形態の光磁気記録媒体
を作成して評価し、以下の実験例1、2に示した。
First, a magneto-optical recording medium in which the reproducing layer was a perpendicularly magnetized film at room temperature and between the room temperature and the Curie temperature was prepared and evaluated, and shown in Experimental Examples 1 and 2 below.

【0042】(実験例1)直流マグネトロンスパッタリ
ング装置に、Si、Gd,Tb,Fe,Coの各ターゲ
ットを取り付け、直径130mmのガラス基板及びプリ
グルーブ付きのポリカーボネイト基板をターゲットから
の距離が150mmになる位置に設置された基板ホルダ
ーに固定した後、1×10−5Pa以下の高真空になる
までチャンバー内をクライオポンプで真空排気した。真
空排気をしながらArガスを0.4Paとなるまでチャ
ンバー内に導入した後、SiN干渉層を90nm、Gd
FeCo再生層を40nm、SiN中間層を10nm、
TbFeCoメモリ層を35nm、SiN保護層を70
nm、各々順々に成膜して図5の構成の本発明の光磁気
記録媒体を得た。各SiN誘電体層成膜時には、Arガ
スに加えてN2ガスを導入し、その混合比を調節しなが
ら屈折率が2.1となるように反応性スパッタにより成
膜した。
(Experimental Example 1) Each target of Si, Gd, Tb, Fe and Co was attached to a DC magnetron sputtering apparatus, and a glass substrate having a diameter of 130 mm and a polycarbonate substrate with a pre-groove were placed at a distance of 150 mm from the target. After fixing to the substrate holder installed at the position, the interior of the chamber was evacuated by a cryopump until a high vacuum of 1 × 10 −5 Pa or less was obtained. After evacuation, Ar gas was introduced into the chamber until the pressure reached 0.4 Pa, and then the SiN interference layer was set to 90 nm and Gd.
The FeCo reproducing layer is 40 nm, the SiN intermediate layer is 10 nm,
TbFeCo memory layer 35nm, SiN protective layer 70
In order to obtain a magneto-optical recording medium of the present invention having the structure shown in FIG. At the time of forming each SiN dielectric layer, N 2 gas was introduced in addition to Ar gas, and reactive sputtering was performed so that the refractive index was 2.1 while adjusting the mixing ratio.

【0043】GdFeCo再生層の組成は、Gd24(F
68Co3276として室温でREリッチでMsは120
emu/cc,補償温度は200℃、キュリー温度は3
00℃以上であった。この再生層は、室温で垂直磁化膜
であった。
The composition of the GdFeCo reproducing layer is Gd 24 (F
e 68 Co 32 ) 76 at room temperature with RE rich and Ms of 120
emu / cc, compensation temperature is 200 ° C, Curie temperature is 3
It was at least 00 ° C. This reproducing layer was a perpendicular magnetic film at room temperature.

【0044】TbFeCoメモリ層の組成は、Tb
20(Fe80Co2080として室温でTMリッチでMsは
−230emu/cc、キュリー温度は250℃であっ
た。この媒体を用いて次のように評価を行った。
The composition of the TbFeCo memory layer is Tb.
20 (Fe 80 Co 20 ) 80 was TM rich at room temperature, Ms was −230 emu / cc, and Curie temperature was 250 ° C. This medium was used for evaluation as follows.

【0045】まず、この光磁気記録媒体に0.78μm
のマーク長の磁区を記録した後、780nmの半導体レ
ーザーにより光照射しながら偏光顕微鏡で磁区観察を行
なった。レーザーパワーを上げると、あるレーザーパワ
ーにおいては光スポットの中心部(高温の領域)におい
て転写されていた記録磁区が収縮して消去方向に磁化が
配向することが確認された。次に、この光磁気記録媒体
を用いて、記録再生特性を測定した。測定は、対物レン
ズのN.A.は0.55、レーザー波長は780nmと
し、記録パワーは7〜13mW,再生パワーは3.0〜
4.0mWの範囲内で、C/N比が最も高くなるように
設定した。線速度は9m/sとした。初めに、媒体の全
面を消去した後に記録層に5.8,11.3,15MH
zのキャリア信号(それぞれマーク長0.78μm,
0.40μm,0.30μmに相当する)を記録して、
C/N比のマーク長依存性を調べた。
First, 0.78 μm was added to this magneto-optical recording medium.
After recording the magnetic domain with the mark length of, the magnetic domain was observed with a polarization microscope while irradiating light with a semiconductor laser of 780 nm. It was confirmed that when the laser power was increased, the recording magnetic domain transferred in the central portion (high temperature region) of the light spot contracted and the magnetization was oriented in the erasing direction at a certain laser power. Next, the recording / reproducing characteristics were measured using this magneto-optical recording medium. The measurement is based on the N.V. of the objective lens. A. Is 0.55, the laser wavelength is 780 nm, the recording power is 7 to 13 mW, and the reproducing power is 3.0 to
The C / N ratio was set to be the highest within the range of 4.0 mW. The linear velocity was 9 m / s. First, after erasing the entire surface of the medium, 5.8, 11.3, 15 MH was recorded on the recording layer.
z carrier signal (mark length 0.78 μm,
(Corresponding to 0.40 μm and 0.30 μm)
The dependence of the C / N ratio on the mark length was investigated.

【0046】次に、隣接トラックとのクロストーク(以
下、クロストークと称する)の測定を行なった。これ
は、ランド部に上述の方法でマーク長0.78μmの信
号を記録してキャリア信号(これをC1とする)を測定
した後、消去済の隣のグルーブ部にトラッキングを合わ
せて同様にキャリア信号(これをC2とする)を測定
し、それらの比(C2/C1)として表した。つまりラ
ンド、グルーブの両方にデータを記録することを想定し
て実験を行なっているので実効的なトラックピッチは
0.8μmである。C/N、クロストーク共に初期化磁
界、再生磁界を印加せずに測定した。
Next, crosstalk with adjacent tracks (hereinafter referred to as crosstalk) was measured. This is the same as recording a signal with a mark length of 0.78 μm on the land part and measuring a carrier signal (this is C1) by the above-mentioned method, and then tracking the adjacent groove part which has been erased. The signals (designated as C2) were measured and expressed as their ratio (C2 / C1). That is, since the experiment is performed assuming that the data is recorded on both the land and the groove, the effective track pitch is 0.8 μm. Both C / N and crosstalk were measured without applying an initializing magnetic field and a reproducing magnetic field.

【0047】結果を表1に示した。クロストークは、改
善されなかったものの、C/Nは短いマーク長におい
て、高い値が得られていることがわかる。
The results are shown in Table 1. It can be seen that although the crosstalk was not improved, a high C / N was obtained at a short mark length.

【0048】(実験例2)また、中間層を省いて、再生
層を成膜後に微量の酸素ガスを流しながら、基板をプラ
ズマ処理(基板を300WのRFで逆スパッタした)し
たのちに、メモリ層を成膜した以外は、実験例1と同様
の光磁気記録媒体を作成した。この媒体においても再生
層とメモリ層間の交換結合が遮断され、再生磁界を用い
ずに超解像効果を得ることができた。この光磁気記録媒
体に実験例1と同様の評価を行った。結果を表1に示し
た。クロストークは、改善されなかったものの、C/N
は短いマーク長において、高い値が得られていることが
わかる。
(Experimental Example 2) Also, after omitting the intermediate layer and flowing a small amount of oxygen gas after forming the reproducing layer, the substrate was plasma-treated (the substrate was reverse-sputtered with RF of 300 W), and then the memory was formed. A magneto-optical recording medium similar to that of Experimental Example 1 was prepared except that the layers were formed. Even in this medium, the exchange coupling between the reproducing layer and the memory layer was blocked, and the super-resolution effect could be obtained without using the reproducing magnetic field. The same evaluation as in Experimental Example 1 was performed on this magneto-optical recording medium. The results are shown in Table 1. Crosstalk was not improved, but C / N
It is understood that a high value is obtained at a short mark length.

【0049】(実験例3)実験例1と同様に基板上にS
iN干渉層を90nm、GdFeCo再生層を40n
m、SiN中間層を10nm、TbFeCoメモリ層を
35nm、SiN保護層を70nm、各々順々に成膜し
て図5の構成の本発明の光磁気記録媒体を得た。各Si
N誘電体層成膜時には、Arガスに加えてN2ガスを導
入し、その混合比を調節しながら屈折率が2.1となる
ように反応性スパッタにより成膜した。
(Experimental Example 3) As in Experimental Example 1, S was formed on the substrate.
90 nm iN interference layer and 40 n GdFeCo reproducing layer
m, the SiN intermediate layer was 10 nm, the TbFeCo memory layer was 35 nm, and the SiN protective layer was 70 nm in that order to obtain the magneto-optical recording medium of the present invention having the structure shown in FIG. Each Si
At the time of forming the N dielectric layer, N 2 gas was introduced in addition to Ar gas, and the film was formed by reactive sputtering so that the refractive index was 2.1 while adjusting the mixing ratio thereof.

【0050】GdFeCo再生層の組成は、Gd28(F
60Co4072として室温でREリッチでMsは220
emu/cc,補償温度は217℃、キュリー温度は3
00℃以上であった。この再生層は、室温において面内
磁化膜であり、約140℃で、垂直磁化膜となった。
The composition of the GdFeCo reproducing layer is Gd 28 (F
e 60 Co 40 ) 72 at room temperature with RE rich and Ms of 220
emu / cc, compensation temperature 217 ° C, Curie temperature 3
It was at least 00 ° C. This reproducing layer was an in-plane magnetized film at room temperature and became a perpendicular magnetized film at about 140 ° C.

【0051】TbFeCoメモリ層の組成は、Tb
20(Fe80Co2080として室温でTMリッチでMsは
−230emu/cc、キュリー温度は250℃であっ
た。
The composition of the TbFeCo memory layer is Tb.
20 (Fe 80 Co 20 ) 80 was TM rich at room temperature, Ms was −230 emu / cc, and Curie temperature was 250 ° C.

【0052】この光磁気記録媒体に実験例1と同様の評
価を行った。結果を表1に示した。この場合には、低温
領域が面内磁化膜でマスキングされているためにC/N
と同時にクロストークも改善されていることがわかる。
This magneto-optical recording medium was evaluated in the same manner as in Experimental Example 1. The results are shown in Table 1. In this case, since the low temperature region is masked by the in-plane magnetized film, C / N
At the same time, it can be seen that crosstalk has also been improved.

【0053】次に公知例の磁気超解像光磁気記録媒体を
作成して、以上の実施例と同じ装置で同様の評価測定を
行った。
Next, a magnetic super-resolution magneto-optical recording medium of a known example was prepared, and the same evaluation measurement was carried out with the same apparatus as the above-mentioned examples.

【0054】(比較実験例1)まず、特開平3−930
56号記載の媒体と同様の媒体を作成して評価した。ま
ず実験例1と同様の成膜機、成膜方法で、同様にガラス
基板上にSiN干渉層を90nm、GdFeCo再生層
を30nm、TbFeCoAl中間層を10nm、Tb
FeCoメモリ層を40nm、SiN保護層を70nm
を各々順々に成膜して比較実験例1の光磁気記録媒体を
得た。
(Comparative Experiment Example 1) First, Japanese Patent Laid-Open No. 3-930
A medium similar to the medium described in No. 56 was prepared and evaluated. First, using the same film forming apparatus and film forming method as in Experimental Example 1, a SiN interference layer of 90 nm, a GdFeCo reproducing layer of 30 nm, a TbFeCoAl intermediate layer of 10 nm, and Tb were similarly formed on a glass substrate.
FeCo memory layer 40nm, SiN protective layer 70nm
Were sequentially deposited to obtain a magneto-optical recording medium of Comparative Experimental Example 1.

【0055】GdFeCo再生層の組成は、室温でTM
リッチでMsは−180emu/cc、キュリー温度は
300℃以上となる様に設定した。
The composition of the GdFeCo reproducing layer is TM at room temperature.
The rich Ms was set to −180 emu / cc, and the Curie temperature was set to 300 ° C. or higher.

【0056】TbFeCoAl中間層の組成は、室温で
TMリッチでMsは−160emu/cc、キュリー温
度は140℃となる様に設定した。
The composition of the TbFeCoAl intermediate layer was set to be TM rich at room temperature, Ms of -160 emu / cc, and a Curie temperature of 140 ° C.

【0057】TbFeCoメモリ層の組成は、室温でT
MリッチでMsは−150emu/cc、キュリー温度
は250℃となる様に設定した。
The composition of the TbFeCo memory layer is T at room temperature.
It was set to be M rich, Ms of −150 emu / cc, and a Curie temperature of 250 ° C.

【0058】次に、この光磁気記録媒体を用いて、実施
例1と同様に記録再生特性を測定した。ただしこの場
合、再生中に媒体に垂直方向に再生磁界を0、200、
400Oeに変えて印加して測定した。結果を表1に示
した。
Next, using this magneto-optical recording medium, recording and reproducing characteristics were measured in the same manner as in Example 1. However, in this case, a reproducing magnetic field of 0, 200, or
The voltage was changed to 400 Oe and applied. The results are shown in Table 1.

【0059】(比較実験例2)次に、特開平3−255
946号記載の媒体と同様の媒体を作成して評価した。
実験例1と同様の成膜機、成膜方法で、同様にガラス基
板上にSiN干渉層を90nm、GdFeCo再生層を
30nm、TbFeCoAl中間層を10nm、GdF
eCo補助層を16nm、TbFeCoメモリ層を40
nm、SiN保護層を70nmを各々順々に成膜して比
較実験例の光磁気記録媒体を得た。
(Comparative Experimental Example 2) Next, JP-A-3-255
A medium similar to the medium described in No. 946 was prepared and evaluated.
Using the same film forming apparatus and film forming method as in Experimental Example 1, similarly, a SiN interference layer of 90 nm, a GdFeCo reproducing layer of 30 nm, a TbFeCoAl intermediate layer of 10 nm, and a GdF were formed on a glass substrate.
The eCo auxiliary layer is 16 nm and the TbFeCo memory layer is 40 nm.
nm and a SiN protective layer having a thickness of 70 nm were sequentially formed to obtain a magneto-optical recording medium of a comparative experimental example.

【0060】GdFeCo再生層の組成は、室温でTM
リッチでMsは−160emu/cc、キュリー温度は
300℃以上となる様に設定した。
The composition of the GdFeCo reproducing layer is TM at room temperature.
The rich Ms was set to -160 emu / cc, and the Curie temperature was set to 300 ° C or higher.

【0061】TbFeCoAl中間層の組成は、室温で
TMリッチでMsは−160emu/cc、キュリー温
度は140℃となる様に設定した。
The composition of the TbFeCoAl intermediate layer was set so that it was TM rich at room temperature, Ms was -160 emu / cc and Curie temperature was 140 ° C.

【0062】GdFeCo補助層の組成は、室温でTM
リッチでMsは−160emu/cc,キュリー温度は
280℃となる様に設定した。
The composition of the GdFeCo auxiliary layer is TM at room temperature.
The rich Ms was set to -160 emu / cc and the Curie temperature was set to 280 ° C.

【0063】TbFeCoメモリ層の組成は、室温でT
MリッチでMsは−150emu/cc、キュリー温度
は250℃となる様に設定した。
The composition of the TbFeCo memory layer is T at room temperature.
It was set to be M rich, Ms of −150 emu / cc, and a Curie temperature of 250 ° C.

【0064】次にこの光磁気記録媒体を用いて実施例1
と同様に記録再生特性を測定した。ただしこの場合、再
生前に媒体に垂直方向の初期化磁界を0、1000、2
000Oeに、また再生磁界を0、200、400Oe
に変えて印加して測定した。結果を表1に示した。
Next, using this magneto-optical recording medium, Example 1
The recording / reproducing characteristics were measured in the same manner as in. However, in this case, the initializing magnetic field in the direction perpendicular to the medium is 0, 1000, 2 before reproduction.
000 Oe and reproducing magnetic field of 0, 200, 400 Oe
The voltage was changed and applied. The results are shown in Table 1.

【0065】よって、本発明の光磁気記録媒体において
は、再生磁界もしくは初期化磁界及び再生磁界の両方を
印加することなしに、C/NもしくはC/Nとクロスト
ークの両方を改善することが可能となり、線記録密度も
しくは線記録密度およびトラック密度の両方を向上する
ことが可能となった。
Therefore, in the magneto-optical recording medium of the present invention, it is possible to improve C / N or both C / N and crosstalk without applying a reproducing magnetic field or both an initializing magnetic field and a reproducing magnetic field. It has become possible to improve the linear recording density or both the linear recording density and the track density.

【0066】[0066]

【表1】 [Table 1]

【0067】[0067]

【発明の効果】本発明の光磁気記録媒体及び再生方法を
用いれば、再生磁界もしくは初期化磁石もしくはその両
方が不要な簡素な装置(従来の装置)を用いて、ビーム
スポット系より小さい磁区の再生が可能で、記録密度を
大幅に向上して高密度記録の達成が可能となる。
According to the magneto-optical recording medium and the reproducing method of the present invention, by using a simple device (conventional device) which does not require a reproducing magnetic field and / or an initializing magnet, a magnetic domain smaller than the beam spot system can be obtained. Reproduction is possible, and the recording density is greatly improved and high density recording can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光磁気記録媒体の磁性層の基本層構成
を示す図。
FIG. 1 is a diagram showing a basic layer structure of a magnetic layer of a magneto-optical recording medium of the present invention.

【図2】本発明の光磁気記録媒体の1形態における情報
再生方法を示した図。(a)は媒体の上面の光スポット
内のマスク領域とアパーチャー領域を示す図。(b)は
各層の磁化方向状態を示す図。(c)はトラック方向の
温度分布を示す図。
FIG. 2 is a diagram showing an information reproducing method in one form of the magneto-optical recording medium of the present invention. FIG. 6A is a diagram showing a mask region and an aperture region in a light spot on the upper surface of the medium. FIG. 6B is a diagram showing the magnetization direction state of each layer. FIG. 6C is a diagram showing a temperature distribution in the track direction.

【図3】(a)(b)(c)は本発明の光磁気記録媒体
における光スポット内の高温領域がマスクされる原理を
説明する図。
3 (a), (b) and (c) are views for explaining the principle of masking a high temperature region in a light spot in the magneto-optical recording medium of the present invention.

【図4】再生層に転写された記録磁区にかかる静磁界H
leak,Hst及びブロッホ磁壁エネルギーによる実
効的磁界Hwbを示した図。
FIG. 4 is a static magnetic field H applied to a recording magnetic domain transferred to a reproducing layer.
The figure which showed the effective magnetic field Hwb by leak, Hst, and Bloch domain wall energy.

【図5】本発明の光磁気記録媒体の層構成の一例を示し
た図。
FIG. 5 is a diagram showing an example of a layer structure of a magneto-optical recording medium of the present invention.

【図6】公知例の超解像方法を示した図。FIG. 6 is a diagram showing a known super-resolution method.

【図7】公知例の超解像方法を示した図。FIG. 7 is a diagram showing a known super-resolution method.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 光磁気記録媒体において、 情報を蓄積するメモリ層と、前記メモリ層に対して高い
キュリー温度と低い保磁力と、室温とメモリ層のキュリ
ー温度の間に補償温度を有する再生層とを少なくとも備
え、前記再生層の磁化は、それの補償温度以下の温度領
域においては前記メモリ層に蓄積された情報に対して安
定な向きならわされる領域を含み、それの補償温度以上
の温度領域においては前記メモリ層の磁化に対して静磁
結合により一方向に磁化されることを特徴とする光磁気
記録媒体。
1. A magneto-optical recording medium, a memory layer for storing information, a reproducing layer having a high Curie temperature and a low coercive force with respect to the memory layer, and a compensation temperature between room temperature and the Curie temperature of the memory layer. At least, the magnetization of the reproduction layer includes a region that is stably oriented with respect to the information stored in the memory layer in a temperature region equal to or lower than the compensation temperature of the reproduction layer. A magneto-optical recording medium which is magnetized in one direction by magnetostatic coupling with respect to the magnetization of the memory layer in the temperature region.
【請求項2】 請求項1において、 前記再生層と前記メモリ層との間に交換結合を遮断する
ための、誘電体等の非金属層、非磁性の金属層もしくは
面内磁化膜からなる磁性層を設けている。
2. The magnetic material according to claim 1, comprising a non-metal layer such as a dielectric material, a non-magnetic metal layer, or an in-plane magnetized film for blocking exchange coupling between the reproduction layer and the memory layer. Layers are provided.
【請求項3】 請求項1において、 前記再生層及びメモリ層は、フェリ磁性の希土類−鉄族
元素非晶質合金薄膜であって、室温で、前記再生層が希
土類元素副格子磁化優勢で、メモリ層が鉄族元素副格子
磁化優勢である、若しくは再生層、メモリ層ともに希土
類元素副格子磁化優勢である。
3. The reproducing layer and the memory layer according to claim 1, wherein the reproducing layer and the memory layer are ferrimagnetic rare earth-iron group element amorphous alloy thin films, and the reproducing layer has a rare earth element sublattice magnetization predominant at room temperature. The memory layer has the iron group element sublattice magnetization predominant, or both the reproducing layer and the memory layer have the rare earth element sublattice magnetization predominant.
【請求項4】 請求項1において、 前記再生層が、GdFeCoを主成分とする磁性層から
なる。
4. The reproducing layer according to claim 1, comprising a magnetic layer containing GdFeCo as a main component.
【請求項5】 請求項1において、 前記メモリ層は、TbFe、TbFeCo、DyFe、
DyFeCoを主成分とする磁性層からなる。
5. The memory layer according to claim 1, wherein the memory layer is made of TbFe, TbFeCo, DyFe,
It is composed of a magnetic layer containing DyFeCo as a main component.
【請求項6】 請求項1において、 前記再生層は、前記メモリ層と静磁結合する温度以上に
は補償温度を有さない。
6. The reproducing layer according to claim 1, wherein the reproducing layer has no compensation temperature above a temperature at which the reproducing layer is magnetostatically coupled to the memory layer.
【請求項7】 情報を蓄積するメモリ層と、前記メモリ
層に対して高いキュリー温度と低い保磁力と、室温とメ
モリ層のキュリー温度の間に補償温度を有する再生層と
を少なくとも備え、前記再生層の磁化は、それの補償温
度以下の温度領域においては前記メモリ層に蓄積された
情報に対して安定な向きならわされる領域を含み、それ
の補償温度以上の温度領域においては静磁結合により一
方向に磁化される光磁気記録媒体に再生層側から光スポ
ットを照射して、前記メモリ層に蓄積された情報を前記
再生層に転写して情報の再生を行う情報再生方法におい
て、 前記照射された光スポット内の高温部分において前記再
生層の補償温度を超える温度まで昇温せしめることによ
り、前記高温部分における前記再生層の磁化を一方向に
磁化させ、前記光スポット内の他の領域において前記メ
モリ層に蓄積された情報を前記再生層に転写し、前記光
スポットの反射光の磁気光学効果を検出することにより
前記情報の再生を行うことを特徴とする情報再生方法。
7. At least a memory layer for storing information, a high Curie temperature and a low coercive force for the memory layer, and a reproducing layer having a compensation temperature between room temperature and the Curie temperature of the memory layer, The magnetization of the reproducing layer includes a region which is oriented in a stable direction with respect to the information stored in the memory layer in a temperature region below its compensation temperature, and magnetostatic in a temperature region above its compensation temperature. In an information reproducing method of irradiating a light spot from a reproducing layer side to a magneto-optical recording medium magnetized in one direction by coupling, transferring the information accumulated in the memory layer to the reproducing layer to reproduce the information, In the high temperature portion in the irradiated light spot, the temperature of the reproduction layer is raised to a temperature exceeding the compensation temperature of the reproduction layer, thereby magnetizing the reproduction layer in the high temperature portion in one direction. The information stored in the memory layer in another area in the light spot is transferred to the reproducing layer, and the information is reproduced by detecting the magneto-optical effect of the reflected light of the light spot. Information reproduction method.
JP6258002A 1992-09-30 1994-10-24 Magnetooptical recording medium and information reproduction method employing it Pending JPH08124230A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP6258002A JPH08124230A (en) 1994-10-24 1994-10-24 Magnetooptical recording medium and information reproduction method employing it
EP95303932A EP0686970A3 (en) 1994-06-10 1995-06-08 Magneto-optical recording medium and reproducing method using the medium
CN95108599A CN1066561C (en) 1994-06-10 1995-06-09 Magneto-optical recording medium for realizing super resolution and reproducing method using the medium
AU21601/95A AU680132B2 (en) 1992-09-30 1995-06-09 Magneto-optical recording medium for realizing super resolution and reproducing method using the medium
CA002151452A CA2151452C (en) 1994-06-10 1995-06-09 Magneto-optical recording medium for realizing super resolution and reproducing method using the medium
KR1019950015317A KR100249444B1 (en) 1994-06-10 1995-06-10 Magneto-optical recording medium and reproducing method using the medium
US08/982,454 US6125083A (en) 1994-06-10 1997-12-02 Magneto-optical recording method and medium comprising three layers, whose middle layer has a lower curie temperature than the other layers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6258002A JPH08124230A (en) 1994-10-24 1994-10-24 Magnetooptical recording medium and information reproduction method employing it

Publications (1)

Publication Number Publication Date
JPH08124230A true JPH08124230A (en) 1996-05-17

Family

ID=17314175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6258002A Pending JPH08124230A (en) 1992-09-30 1994-10-24 Magnetooptical recording medium and information reproduction method employing it

Country Status (1)

Country Link
JP (1) JPH08124230A (en)

Similar Documents

Publication Publication Date Title
JP3072812B2 (en) Magneto-optical recording medium and method of reproducing information from the medium
KR100249444B1 (en) Magneto-optical recording medium and reproducing method using the medium
US5862105A (en) Information recording method capable of verifying recorded information simultaneously with recording, and magneto-optical recording medium used in the method
US5790513A (en) Magneto-optical recording medium capable of super resolution reproduction and information reproduction method using the same
US5879822A (en) Magneto-optical recording medium using in-plane magnetization film and capable of reproducing at super-high resolution and method of reproducing for such medium
JP3078145B2 (en) Method for manufacturing magneto-optical recording medium
EP0706181A1 (en) Magneto-optic recording medium and information reproducing method using the medium
US5663935A (en) Magneto-optical recording medium having two magnetic layers of exchange-coupled at ferromagnetic phase
JP3164975B2 (en) Magneto-optical recording medium and information reproducing method using the medium
WO1997022969A1 (en) Magneto-optic recording medium and reproduction method thereof
JPH0935346A (en) Magneto-optical recording medium and information recording method thereof
JP3210178B2 (en) Magneto-optical recording medium and method of reproducing information from the medium
JPH08180482A (en) Magneto-optical recording medium and information reproducing method using the same
JP3501513B2 (en) Magneto-optical recording medium and information reproducing method using the medium
USRE38922E1 (en) Magneto-optical recording medium and method for reproducing information from a magneto-optical recording medium having three layers
JPH08124230A (en) Magnetooptical recording medium and information reproduction method employing it
JP3101462B2 (en) Magneto-optical recording medium and information reproducing method using the medium
JPH07334878A (en) Magneto-optical recording medium and reproducing methof for information using that medium
JP3666057B2 (en) Magneto-optical recording / reproducing method and magneto-optical recording medium used therefor
EP1426943A2 (en) Magnetic domain wall displacement type magneto-optical recording medium
JPH0935343A (en) Magneto-optical recording medium and method for reproducing information thereof
JPH0863809A (en) Magnetooptical recording medium and information reproducing method therefor
JP3505860B2 (en) Magneto-optical recording / reproducing method and magneto-optical recording medium used therein
JP3328989B2 (en) Magneto-optical recording medium
JP2006221703A (en) Magneto-optical recording medium

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040210