JPH0812346B2 - Method for aligning ferroelectric liquid crystal - Google Patents

Method for aligning ferroelectric liquid crystal

Info

Publication number
JPH0812346B2
JPH0812346B2 JP61299279A JP29927986A JPH0812346B2 JP H0812346 B2 JPH0812346 B2 JP H0812346B2 JP 61299279 A JP61299279 A JP 61299279A JP 29927986 A JP29927986 A JP 29927986A JP H0812346 B2 JPH0812346 B2 JP H0812346B2
Authority
JP
Japan
Prior art keywords
liquid crystal
ferroelectric liquid
voltage
electrodes
aligning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61299279A
Other languages
Japanese (ja)
Other versions
JPS63151927A (en
Inventor
利光 小沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP61299279A priority Critical patent/JPH0812346B2/en
Publication of JPS63151927A publication Critical patent/JPS63151927A/en
Priority to US07/866,310 priority patent/US5164852A/en
Publication of JPH0812346B2 publication Critical patent/JPH0812346B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、強誘電性液晶の配向方法に関するものであ
る。
The present invention relates to a method for aligning a ferroelectric liquid crystal.

本発明は配向方法が難解な強誘電性液晶装置に電圧を
加えることによって、欠陥のない良好な液晶配向を得る
ものである。
The present invention is to obtain good liquid crystal alignment free from defects by applying a voltage to a ferroelectric liquid crystal device whose alignment method is difficult.

〔従来の技術〕[Conventional technology]

強誘電性液晶は高速応答性、メモリ性など優れた特性
を有する為、表示素子やメモリなどへの応用が広く期待
されている。しかし強誘電性を示すスメクチックC,H
相などの秩序性はネマチック液晶のそれに比べて高い
為、従来より行われてきた単なる水平配向処理だけでは
液晶中に欠陥が生じやすく、不安定なドメインの発生や
コントラストの低下を招く。従って強誘電性液晶を信頼
性の高い表示素子やメモリ装置として用いるには、安定
したモノドメインを作製する必要がある。
Ferroelectric liquid crystals have excellent characteristics such as high-speed response and memory properties, and are therefore widely expected to be applied to display devices and memories. However, smectic C * , H showing ferroelectricity
* Since the order of phases and the like is higher than that of nematic liquid crystal, defects are likely to occur in the liquid crystal only by the conventional horizontal alignment treatment, which causes unstable domains and lowers contrast. Therefore, in order to use the ferroelectric liquid crystal as a highly reliable display element or memory device, it is necessary to produce a stable monodomain.

強誘電性液晶を配向させるには、スペーサーエッジを
用いた温度勾配法、磁場配向法、Shearing法、斜方蒸着
法、ラビング法など種々の方法が提案されている。それ
ぞれの方法にメリット、デメリットはあるが、量産性を
考慮するとラビング法が有利である。このラビング法と
はTN型、液晶において幅広く用いられているものであ
り、基板上に無機又は有機の配向膜を均一に薄く形成
し、この後この配向膜上を布等で−軸方向にこすり、そ
の方向に液晶分子の分子長軸を揃えるというものであっ
た。
Various methods such as a temperature gradient method using a spacer edge, a magnetic field orientation method, a shearing method, an oblique vapor deposition method, and a rubbing method have been proposed for orienting a ferroelectric liquid crystal. Although each method has advantages and disadvantages, the rubbing method is advantageous in consideration of mass productivity. This rubbing method is widely used in TN type and liquid crystal, in which an inorganic or organic alignment film is uniformly thinly formed on a substrate, and then the alignment film is rubbed with a cloth or the like in the negative axial direction. , Was to align the long axes of the liquid crystal molecules in that direction.

〔本発明が解決しようとしている問題点〕[Problems to be Solved by the Present Invention]

ところが、ラビング法では液晶中に欠陥(Zig Zag転
位)が生じやすく、その周辺部分の液晶は非常に不安定
な状態にある。この結果液晶の応答性の電圧に対するし
きい値を不明確にし、液晶装置のコントラストの低下を
招く原因となっていた。
However, in the rubbing method, defects (Zig Zag dislocation) are likely to occur in the liquid crystal, and the liquid crystal in the peripheral portion is in an extremely unstable state. As a result, the threshold voltage of the responsiveness of the liquid crystal is unclear, which causes a reduction in the contrast of the liquid crystal device.

〔発明が解決する為の手段〕[Means for Solving the Invention]

〔第1の発明〕 本発明の第1は、第1、第2の基板の内側に電極を有
する一対のセルと、そこに封入された強誘電性液晶とか
らなる装置において、第1及び第2の基板上の電極間に
電界方向を交互に換える電圧を印加することにより、前
記強誘電性液晶の液晶分子を−軸方向に配向させる配向
方法であって、 前記強誘電性液晶は、負の誘電異方性を有しているこ
とを特徴とする強誘電性液晶の配向方法、 を要旨とするものである。
[First Invention] A first invention of the present invention relates to a device comprising a pair of cells having electrodes inside the first and second substrates and a ferroelectric liquid crystal enclosed therein. A method for orienting liquid crystal molecules of the ferroelectric liquid crystal in a negative (-) axis direction by applying a voltage that alternately changes the electric field direction between the electrodes on the second substrate, wherein the ferroelectric liquid crystal has a negative polarity. And a method of aligning a ferroelectric liquid crystal, which has the dielectric anisotropy of.

そして、上記第1の発明において、第1及び第2の基
板上の電極間に3〜30KHzで10〜80Vの高周波電圧を印加
することにより、液晶分子を配向させる、ということを
さらなる特徴とするものである。
Further, in the above-mentioned first invention, it is further characterized in that liquid crystal molecules are aligned by applying a high frequency voltage of 10 to 80 V at 3 to 30 KHz between the electrodes on the first and second substrates. It is a thing.

また上記第1の発明において、第1、第2の基板が液
晶に隣接する面の少なくとも一方には水平配向処理され
た層、または傾斜配向処理された層が設けられているこ
とを、さらなる特徴とするものである。
Further, in the above-mentioned first invention, the first and second substrates are provided with a layer subjected to a horizontal alignment treatment or a layer subjected to a tilt alignment treatment on at least one of the surfaces adjacent to the liquid crystal. It is what

〔第2の発明〕 第2の発明は、第1、第2の基板の内側に電極を有す
る一対のセルと、そこに封入された強誘電性液晶とから
なる装置において、第1及び第2の基板上の電極間に電
界方向を交互に換える電圧を印加しながら前記装置を強
誘電性を示す温度範囲より高い温度より除冷することに
より、液晶分子を−軸方向に配向させることを特徴とす
る強誘電性液晶の配向方法、を要旨とするものである。
[Second Invention] A second invention is a device comprising a pair of cells having electrodes inside the first and second substrates and a ferroelectric liquid crystal enclosed therein, and the first and second inventions are provided. The liquid crystal molecules are aligned in the − axis direction by cooling the device from a temperature higher than the temperature range showing ferroelectricity while applying a voltage that alternately changes the electric field direction between the electrodes on the substrate. And a method for aligning a ferroelectric liquid crystal.

また上記第2の発明において、第1及び第2の基板上
の電極間に3〜30KHzで10〜80Vの高周波電圧を印加する
ことにより、液晶分子を配向させること、をさらなる特
徴とするものである。
Further, in the above second invention, the liquid crystal molecules are further aligned by applying a high frequency voltage of 10 to 80 V at 3 to 30 KHz between the electrodes on the first and second substrates. is there.

また、上記第2の発明において、強誘電性液晶は負の
誘電異方性を有し、第1、第2の基板が液晶に隣接する
面の少なくとも一方には水平配向処理された層、または
傾斜配向処理された層が設けられていること、をさらな
る特徴とするものである。
In the second aspect of the invention, the ferroelectric liquid crystal has a negative dielectric anisotropy, and at least one of the surfaces of the first and second substrates adjacent to the liquid crystal is subjected to a horizontal alignment treatment, or It is a further feature that the layer provided with the gradient orientation treatment is provided.

本発明の構成を採用することにより、ラビング等の公
知の手法では容易に配向しない装置において、本発明に
より欠陥のないモノドメインを作製することができる。
By adopting the configuration of the present invention, a defect-free monodomain can be produced by the present invention in an apparatus that is not easily oriented by a known method such as rubbing.

本発明は公知の手法により作製された装置に電界を印
加し、欠陥を消滅させるものである。
The present invention applies an electric field to a device manufactured by a known method to eliminate defects.

以下に本発明の原理を説明する。 The principle of the present invention will be described below.

強誘電性液晶の誘電異方性が負の場合、一般に液晶に
電界Eを印加すると、液晶の誘電異方性Δεに基づき液
晶の分子長軸を示すダイレクターnに依存するエネルギ
密度は(1)式で表される。
When the dielectric anisotropy of the ferroelectric liquid crystal is negative, generally, when an electric field E is applied to the liquid crystal, the energy density depending on the director n indicating the molecular long axis of the liquid crystal based on the dielectric anisotropy Δε of the liquid crystal is (1 ) Is represented by the formula.

W=−1/2Δε(n・E) ……(1) Δε<0の場合、n E即ち液晶分子が分子長軸と基
板面が平行になる時にWは最小となることを本発明は利
用する。さらに強誘電性液晶は自発分極を有するので、
液晶分子が追従できないほど高い周波数のAC電圧を印加
すれば自発分極により発生するトルクは相殺され、Δε
に基づく誘電トルクのみが液晶に対して有効に働き、基
板上の電極間に発生する電界方向に対し分子長軸を垂直
に配向させることができる。
W = −1 / 2Δε (n · E) 2 (1) In the case of Δε <0, according to the present invention, W is the minimum when n E, that is, when the liquid crystal molecules are parallel to the molecular long axis and the substrate surface. To use. Furthermore, since the ferroelectric liquid crystal has spontaneous polarization,
If an AC voltage with a frequency that is too high for the liquid crystal molecules to follow is applied, the torque generated by spontaneous polarization is canceled out, and Δε
Only the dielectric torque based on is effective for the liquid crystal, and the molecular long axis can be oriented perpendicular to the direction of the electric field generated between the electrodes on the substrate.

この場合、用いる液晶材料の持つ性質等により液晶分
子の自発分極が追従できない周波数は、可変であるが通
常は3KHZ以上の周波数の信号を加えると追従できなくな
る。
In this case, the frequency of the spontaneous polarization can not follow the liquid crystal molecules by the nature or the like having a liquid crystal material used, a variable is usually not follow the addition of signals of frequencies above 3KH Z.

さらに周波数を高めてゆくと今度はΔεに基づく誘電
トルク分が追従できなくなり、これも液晶材料により可
変するが50KHZ以下の周波数を用いた場合が好ましかっ
た。
When the frequency is further increased, the dielectric torque component based on Δε can no longer follow. This also varies depending on the liquid crystal material, but it was preferable to use a frequency of 50 KH Z or less.

また加える電圧も液晶材料の種類によりかわるが10V
未満では本発明により期待する効果が得られず80V以上
では液晶の層構造がこわされるということが発生する。
The applied voltage also varies depending on the type of liquid crystal material, but it is 10V
If it is less than 80 V, the effect expected by the present invention cannot be obtained, and if it is 80 V or more, the layer structure of the liquid crystal is broken.

無電界時には、第2図に示すように基板面に対しスメ
クチック相がとる層構造が歪んでいるのに対し、高周波
印加時には第1図に示すように層構造が垂直になる。従
って再び無電界状態にすると、層構造がもとの歪んだ状
態に戻るが印加前に比べると配向の欠陥部分が減ってい
る。さらに液晶がIsotropic状態から装置に高周波を印
加し、層構造が基板面に垂直になった状態のまま、例え
ばスメクチックC層の温度まで除冷した場合、高周波
印加を止めても、層構造は基板面に垂直になったままで
歪む(bend)ことはない。
When no electric field is applied, the layer structure of the smectic phase is distorted with respect to the substrate surface as shown in FIG. 2, whereas when a high frequency is applied, the layer structure becomes vertical as shown in FIG. Therefore, when the electric field is removed again, the layer structure returns to the original distorted state, but the defective portion of the orientation is reduced as compared with that before the application. Further, when the liquid crystal is applied with a high frequency from the Isotropic state and is cooled to the temperature of the smectic C * layer while the layer structure is perpendicular to the substrate surface, even if the high frequency application is stopped, the layer structure is It does not bend as it remains perpendicular to the substrate surface.

つまり欠陥のないモノドメインを作製することができ
る。
That is, a defect-free monodomain can be manufactured.

〔実施例〕〔Example〕

ITO層の透明導電膜をパターニングした基板上に6−N
ylon等の有機絶縁膜をスピンコート、焼成によって形成
し、綿布でラビング後、一対のセルを作製する。セル厚
は2μmである。これに強誘電性液晶(チッソ製CS−10
11)をIsotropic相の状態(91℃以上)で注入し除冷し
た。この状態では液晶はZig Zag欠陥を多数有し、電圧
印加時に不安定なドメインが多数発生する。
6-N on the substrate with patterned transparent conductive film of ITO layer
An organic insulating film such as ylon is formed by spin coating and baking, and rubbed with a cotton cloth to prepare a pair of cells. The cell thickness is 2 μm. Ferroelectric liquid crystal (CS-10 manufactured by Chisso)
11) was injected in the state of Isotropic phase (91 ℃ or more) and cooled. In this state, the liquid crystal has many Zig Zag defects, and many unstable domains are generated when a voltage is applied.

この後、120℃の液晶がIsotropic状態で10KHz±20Vの
高周波電力を装置電極間に印加した状態で装置を室温に
除冷する。この時高周波電圧印加を終了した後でも、Zi
g Zag欠陥は生じず、不安定なドメインの発生・消滅は
起こらない。
Then, the liquid crystal at 120 ° C. is in the isotropic state, and a high frequency power of 10 KHz ± 20 V is applied between the device electrodes, and the device is cooled to room temperature. At this time, the Zi
g Zag defects do not occur and unstable domains do not occur or disappear.

〔効果〕〔effect〕

本発明はラビング処理等により作製した液晶装置に電
界方向を交互に換える電圧を印加する。液晶が強誘電性
を示す温度範囲より高い温度状態から電圧を印加した状
態で装置を除冷し、モノドメインを作製することを特徴
とする。この良好な配向の装置は不安定なドメインを発
生することなく、パルス電圧に対し液晶応答のしきい値
が明確であり、信頼性の高い表示装置やメモリとして本
装置を作製することができる。
In the present invention, a voltage that alternately changes the electric field directions is applied to a liquid crystal device manufactured by rubbing treatment or the like. The liquid crystal display device is characterized in that the device is cooled in a state in which a voltage is applied from a temperature state higher than the temperature range in which liquid crystal exhibits ferroelectricity to produce a monodomain. This device with good orientation does not generate an unstable domain, has a clear threshold value of liquid crystal response to a pulse voltage, and can be manufactured as a highly reliable display device or memory.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明により処理を行った後の層の様子を示
す。 第2図は本発明による処理を行わない層の様子を示す。
FIG. 1 shows the appearance of the layer after it has been treated according to the invention. FIG. 2 shows the appearance of the layer without the treatment according to the invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】第1、第2の基板の内側に電極を有する一
対のセルと、そこに封入された強誘電性液晶とからなる
装置において、第1及び第2の基板上の電極間に3〜30
KHzで10〜80Vの高周波電圧を印加することにより、前記
強誘電性液晶の液晶分子を−軸方向に配向させる配向方
法であって、 前記強誘電性液晶は、負の誘電異方性を有していること
を特徴とする強誘電性液晶の配向方法。
1. A device comprising a pair of cells having electrodes inside a first and a second substrate and a ferroelectric liquid crystal enclosed therein, and between the electrodes on the first and second substrates. 3 to 30
A method of orienting liquid crystal molecules of the ferroelectric liquid crystal in a negative axial direction by applying a high frequency voltage of 10 to 80 V at KHz, wherein the ferroelectric liquid crystal has a negative dielectric anisotropy. A method for aligning a ferroelectric liquid crystal, which is characterized in that
JP61299279A 1986-12-16 1986-12-16 Method for aligning ferroelectric liquid crystal Expired - Lifetime JPH0812346B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61299279A JPH0812346B2 (en) 1986-12-16 1986-12-16 Method for aligning ferroelectric liquid crystal
US07/866,310 US5164852A (en) 1986-12-16 1992-04-13 Method of orientating a ferroelectric liquid crystal layer by AC electric field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61299279A JPH0812346B2 (en) 1986-12-16 1986-12-16 Method for aligning ferroelectric liquid crystal

Publications (2)

Publication Number Publication Date
JPS63151927A JPS63151927A (en) 1988-06-24
JPH0812346B2 true JPH0812346B2 (en) 1996-02-07

Family

ID=17870485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61299279A Expired - Lifetime JPH0812346B2 (en) 1986-12-16 1986-12-16 Method for aligning ferroelectric liquid crystal

Country Status (1)

Country Link
JP (1) JPH0812346B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2556587B2 (en) * 1989-05-11 1996-11-20 キヤノン株式会社 Liquid crystal element
JP2556589B2 (en) * 1989-06-02 1996-11-20 キヤノン株式会社 Liquid crystal element
JP2556590B2 (en) * 1989-06-02 1996-11-20 キヤノン株式会社 Liquid crystal element
JP2556586B2 (en) * 1989-05-11 1996-11-20 キヤノン株式会社 Liquid crystal element
JP2556585B2 (en) * 1989-05-11 1996-11-20 キヤノン株式会社 Liquid crystal element
JP2556582B2 (en) * 1989-05-11 1996-11-20 キヤノン株式会社 Liquid crystal element
JP2556581B2 (en) * 1989-05-11 1996-11-20 キヤノン株式会社 Liquid crystal element
JP2567128B2 (en) * 1990-04-17 1996-12-25 キヤノン株式会社 Liquid crystal element
JP2567092B2 (en) * 1989-05-11 1996-12-25 キヤノン株式会社 Liquid crystal element
JP2556583B2 (en) * 1989-05-11 1996-11-20 キヤノン株式会社 Liquid crystal element
JP2556584B2 (en) * 1989-05-11 1996-11-20 キヤノン株式会社 Liquid crystal element
JP2574473B2 (en) * 1989-08-09 1997-01-22 富士通株式会社 Manufacturing method of ferroelectric liquid crystal display element
KR100527084B1 (en) * 2000-12-05 2005-11-09 비오이 하이디스 테크놀로지 주식회사 Ffs liquid crystal display device
JP2004021098A (en) * 2002-06-19 2004-01-22 Ricoh Co Ltd Optical path deflection device and picture display device
JP7106410B2 (en) * 2018-09-24 2022-07-26 シチズンファインデバイス株式会社 Manufacturing method of ferroelectric liquid crystal cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256932A (en) * 1985-09-05 1987-03-12 Canon Inc Liquid crystal element
JPS62161123A (en) * 1985-09-04 1987-07-17 Canon Inc Ferroelectric liquid crystal element

Also Published As

Publication number Publication date
JPS63151927A (en) 1988-06-24

Similar Documents

Publication Publication Date Title
JPH0812346B2 (en) Method for aligning ferroelectric liquid crystal
EP0168242B1 (en) Ferro-electric liquid crystal electro-optical device
EP0368305B1 (en) Ferroelectric liquid crystal cell
US5124827A (en) Ferroelectric liquid crystal cells
JP2530432B2 (en) Liquid crystal element
JPS59214824A (en) Liquid-crystal electrooptic device
JPH0750272B2 (en) Method for manufacturing ferroelectric smectic liquid crystal electro-optical device
US5164852A (en) Method of orientating a ferroelectric liquid crystal layer by AC electric field
JPH09146126A (en) Liquid crystal display and information transmission device
Dierking et al. On in-plane smectic layer reorientation in ferroelectric liquid crystal cells
JPS59131911A (en) Liquid crystal electrooptic device
JPS62161123A (en) Ferroelectric liquid crystal element
US5781266A (en) Ferroelectric liquid crystal display device and method for producing the same
JPS62299815A (en) Production of ferroelectric liquid crystal display element
JPS6194029A (en) Smectic liquid crystal display panel and its manufacture
JPS6240428A (en) Manufacture of liquid crystal element
JPH0473847B2 (en)
Hikmet In situ observation of smectic layer reorientation during the switching of a ferroelectric liquid crystal
JPS59131913A (en) Liquid crystal electrooptic device
JP3083016B2 (en) Liquid crystal alignment treatment method and liquid crystal element manufacturing method
JP2743511B2 (en) Manufacturing method of ferroelectric liquid crystal display
JP2819814B2 (en) Ferroelectric liquid crystal panel
Dierking Domain growth in a ferroelectric liquid crystal with horizontal chevron layer geometry
JPS6173925A (en) Liquid crystal display device
Van Haaren Electrohydrodynamic instabilities in chiral smectic C cells

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term