JPH08122626A - Focus detector - Google Patents

Focus detector

Info

Publication number
JPH08122626A
JPH08122626A JP6265618A JP26561894A JPH08122626A JP H08122626 A JPH08122626 A JP H08122626A JP 6265618 A JP6265618 A JP 6265618A JP 26561894 A JP26561894 A JP 26561894A JP H08122626 A JPH08122626 A JP H08122626A
Authority
JP
Japan
Prior art keywords
focus
focus detection
photoelectric conversion
conversion element
element array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6265618A
Other languages
Japanese (ja)
Other versions
JP3550601B2 (en
Inventor
Masamitsu Ozawa
正光 小澤
Seiichi Yasukawa
誠一 安川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP26561894A priority Critical patent/JP3550601B2/en
Publication of JPH08122626A publication Critical patent/JPH08122626A/en
Application granted granted Critical
Publication of JP3550601B2 publication Critical patent/JP3550601B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To eliminate influence by a noise component and to accurately detect focus by comparing a focusing state being focus detection arithmetic result with a focusing allowable range after change and deciding the focusing/out of focusing of a photographing lens. CONSTITUTION: The storage-control of an image sensor 9 is performed according to storage time set in a storage control circuit 12, and a subject image signal is amplified by a signal amplifier circuit 10 at amplification factor set in the control circuit 12. Then, the focusing allowable range is set in accordance with the amplification factor of the subject image signal by a focus detection arithmetic circuit 11, and the subject image signal is read from the amplifier circuit 10 so as to calculate the defocusing amount of the photographing lens 1. When the calculated defocusing amount is out of the set focusing allowable range, a motor 14 is driven and controlled by a motor driving control circuit 13 in accordance with the defocusing amount calculated by the arithmetic circuit 11 so as to drive the photographing lens 1 to a focusing position. Meanwhile, when it is within the focusing allowable range, shutter release is permitted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は撮影レンズの焦点調節状
態を検出する焦点検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a focus detection device for detecting the focus adjustment state of a taking lens.

【0002】[0002]

【従来の技術】被写体の視差を有する一対の像を1対の
イメージセンサー上に導き、これらのイメージセンサー
の画像出力に基づいて一対の像の相対的なずれ量を算出
し、撮影レンズの焦点調節状態を検出する位相差検出方
式の焦点検出装置が知られている。図4により、この種
の焦点検出装置の概要を説明する。撮影レンズ1の領域
21を介して入射した被写体からの光束は、フィルム等
価面6上で焦点を結んだ後、バンドパスフィルター7、
視野マスク2、フィールドレンズ3、絞り開口部41お
よび再結像レンズ51から構成される焦点検出光学系8
を通り、イメージセンサー9のセンサー列9A上に結像
する。同様に、撮影レンズ1の領域31を介して入射し
た被写体からの光束は、フィルム等価面6上で焦点を結
んだ後、バンドパスフィルター7、視野マスク2、フィ
ールドレンズ3、絞り開口部42および再結像レンズ5
2から構成される焦点検出光学系8を通り、イメージセ
ンサー9のセンサー列9B上に結像する。ここで、撮影
レンズ1の領域21の大きさは絞り開口部41のフィー
ルドレンズ3による逆投影像に等しく、同様に、領域3
1の大きさは絞り開口部42のフィールドレンズ3によ
る逆投影像に等しい。
2. Description of the Related Art A pair of images having a parallax of a subject is guided onto a pair of image sensors, and a relative shift amount between the pair of images is calculated based on the image output of these image sensors, and a focus of a photographing lens is calculated. A phase difference detection type focus detection device that detects an adjustment state is known. An outline of this type of focus detection device will be described with reference to FIG. The light flux from the subject that has entered through the area 21 of the taking lens 1 is focused on the film equivalent surface 6, and then the bandpass filter 7,
Focus detection optical system 8 including a field mask 2, a field lens 3, a diaphragm opening 41, and a re-imaging lens 51.
An image is formed on the sensor array 9A of the image sensor 9 through the. Similarly, the light flux from the subject that has entered through the area 31 of the photographing lens 1 is focused on the film equivalent surface 6, and then the bandpass filter 7, the field mask 2, the field lens 3, the aperture opening 42, and Re-imaging lens 5
An image is formed on the sensor array 9B of the image sensor 9 through the focus detection optical system 8 composed of two. Here, the size of the area 21 of the photographing lens 1 is equal to the back projection image of the field opening 3 of the aperture opening 41, and similarly, the area 3
The size of 1 is equal to the back projection image of the field lens 3 of the diaphragm opening 42.

【0003】焦点検出光学系8によりイメージセンサー
9のセンサー列9A、9B上に結像した一対の被写体像
の2次像は、撮影レンズ1により結像される被写体の鮮
鋭像が予定焦点面よりも前に像を結ぶいわゆる前ピン状
態では互いに近づき、逆に予定焦点面よりも後に像を結
ぶいわゆる後ピン状態では互いに遠ざかる。また、撮影
レンズ1により結像される被写体の鮮鋭像が予定焦点面
に像を結ぶいわゆる合焦時には、イメージセンサー9の
センサー列9A、9B上の被写体像は相対的に一致す
る。したがって、焦点検出光学系8により結像される一
対の被写体像の2次像をイメージセンサー9のセンサー
列9A、9Bで光電変換して電気信号に換え、これらの
一対の被写体像信号を相関演算処理して一対の被写体像
の2次像の相対位置を求めることにより、撮影レンズ1
の焦点調節状態、ここでは合焦状態から離れている量と
その方向(以下、デフォーカス量と呼ぶ)を検出する。
なお、焦点検出領域は、イメージセンサー9のセンサー
列9A,9Bが焦点検出光学系8により逆投影されて予
定焦点面近傍で重なった部分となる。
The secondary image of the pair of subject images formed on the sensor rows 9A and 9B of the image sensor 9 by the focus detection optical system 8 is a sharp image of the subject formed by the taking lens 1 from the planned focal plane. Also approach each other in the so-called front focus state in which the images are formed in front, and conversely move away from each other in the so-called rear focus state in which the images are formed after the planned focal plane. Further, at the time of so-called focusing in which a sharp image of the subject formed by the photographing lens 1 forms an image on the planned focal plane, the subject images on the sensor rows 9A and 9B of the image sensor 9 are relatively matched. Therefore, the secondary images of the pair of subject images formed by the focus detection optical system 8 are photoelectrically converted by the sensor arrays 9A and 9B of the image sensor 9 into electric signals, and the pair of subject image signals are subjected to correlation calculation. By performing the processing to obtain the relative position of the secondary images of the pair of subject images, the photographing lens 1
The focus adjustment state, that is, the amount away from the in-focus state and the direction thereof (hereinafter referred to as the defocus amount) are detected.
The focus detection area is a portion where the sensor arrays 9A and 9B of the image sensor 9 are back-projected by the focus detection optical system 8 and overlap in the vicinity of the planned focal plane.

【0004】次に、デフォーカス量を求める演算処理方
法について述べる。イメージセンサー9のセンサー列9
A、9Bはそれぞれ複数の光電変換素子から成り、図5
(a)、(b)に示すように複数の光電変換出力a
1...an、b1...bnを出力する。そして、そ
れぞれのデータ列を相対的に所定のデータ分Lずつシフ
トしながら相関演算を行う。具体的には相関量C(L)
を次式により算出する。
Next, a calculation processing method for obtaining the defocus amount will be described. Image sensor 9 sensor row 9
Each of A and 9B is composed of a plurality of photoelectric conversion elements, and
As shown in (a) and (b), a plurality of photoelectric conversion outputs a
1. . . an, b1. . . bn is output. Then, the correlation calculation is performed while relatively shifting each data string by a predetermined amount L of data. Specifically, the correlation amount C (L)
Is calculated by the following formula.

【数1】C(L)=Σ|ai−bj| ここで、Σはi=k〜rの総和演算を表わす。また、L
はデータ列のシフト量に当たる整数であり、j−i=
L、L=-lmax,...,-2,-1,0,1,2,...,lmax。なお、数式
1において、初項kと最終項rはシフト量Lに依存して
変化させてもよい。
## EQU1 ## C (L) = Σ | ai-bj | where Σ represents the summation operation of i = k to r. Also, L
Is an integer corresponding to the shift amount of the data string, and j−i =
L, L = -lmax, ...,-2, -1,0,1,2, ..., lmax. In Expression 1, the first term k and the last term r may be changed depending on the shift amount L.

【0005】こうして得られた相関量C(L)の中で、
極小値となる相関量を与えるシフト量に図4に示す光学
系およびイメージセンサーの光電変換素子のピッチ幅に
よって定まる定数を掛けたものがデフォーカス量とな
る。しかしながら、相関量C(L)は図5(c)に示す
ように離散的な値であり、検出可能なデフォーカス量の
最小単位はイメージセンサー9のセンサー列9A、9B
の光電変換素子のピッチ幅によって制限されてしまう。
そこで、離散的な相関量C(L)に基づいて補間演算を
行うことにより新たに極小値Cexを算出し、正確な焦
点検出を行う方法が特開昭60−37513号公報に提
案されている。これは、図6に示すように、極小値であ
る相関量C(0)とその両側のシフト量での相関量C
(1)、C(−1)によって算出する方法で、極小値C
exを与えるシフト量Fmとデフォーカス量DFは次式
により求まる。
In the correlation amount C (L) thus obtained,
The defocus amount is obtained by multiplying the shift amount giving the minimum correlation amount by a constant determined by the pitch width of the photoelectric conversion element of the optical system and the image sensor shown in FIG. However, the correlation amount C (L) is a discrete value as shown in FIG. 5C, and the minimum unit of the defocus amount that can be detected is the sensor rows 9A and 9B of the image sensor 9.
It is limited by the pitch width of the photoelectric conversion element.
Therefore, Japanese Patent Laid-Open No. 60-37513 proposes a method of calculating a new minimum value Cex by performing an interpolation calculation based on the discrete correlation amount C (L) and performing accurate focus detection. . As shown in FIG. 6, this is the correlation amount C (0) which is the minimum value and the correlation amount C between the shift amounts on both sides thereof.
(1), C (-1) is used to calculate the minimum value C
The shift amount Fm and the defocus amount DF that give ex are obtained by the following equations.

【数2】DF=Kf*Fm, Fm=L+DL/E, DL={C(−1)−C(1)}/2, Cex=C(0)−|DL|, E=MAX[{C(1)−C(0)},{C(−1)−
C(0)}] ここで、MAX{Ca,Cb}はCaとCbの内の大き
い方を選択することを意味し、Kfは図6に示す光学系
およびイメージセンサー9の光電変換素子のピッチ幅に
よって定まる定数である。
DF = Kf * Fm, Fm = L + DL / E, DL = {C (-1) -C (1)} / 2, Cex = C (0)-| DL |, E = MAX [{C (1) -C (0)}, {C (-1)-
C (0)}] where MAX {Ca, Cb} means to select the larger of Ca and Cb, and Kf is the pitch of the photoelectric conversion elements of the optical system and the image sensor 9 shown in FIG. It is a constant determined by the width.

【0006】こうして得られたデフォーカス量が真にデ
フォーカス量を示しているのか、それともノイズなどに
よる相関量の揺らぎによるものなのかを判定する必要が
あり、次の条件を満たした時にデフォーカス量は信頼あ
りとする。
It is necessary to determine whether the defocus amount thus obtained truly indicates the defocus amount or whether it is due to fluctuations in the correlation amount due to noise or the like. When the following conditions are satisfied, the defocus amount is determined. The quantity is reliable.

【数3】E>E1 且つ Cex/E<G1 ここで、E1,G1は所定値である。数式3において、
Eは被写体のコントラストに依存する値であり、値が大
きいほどコントラストが高く信頼性が高いことになり、
Cex/Eは像の一致度に主に依存し、0に近いほど信
頼性が高いことになる。そして、信頼性ありと判定され
るとデフォーカス量DFに基づいて撮影レンズ1が駆動
される。
[Equation 3] E> E1 and Cex / E <G1 Here, E1 and G1 are predetermined values. In Equation 3,
E is a value that depends on the contrast of the subject. The larger the value, the higher the contrast and the higher the reliability.
Cex / E mainly depends on the degree of coincidence of images, and the closer it is to 0, the higher the reliability. Then, when it is determined that there is reliability, the taking lens 1 is driven based on the defocus amount DF.

【0007】イメージセンサー9のセンサー列9A、9
Bにより光電変換された被写体像信号は、被写体の輝度
に応じて出力レベルが異なる。そのため、被写体の輝度
に関わらず、被写体像信号が焦点検出演算に適するレベ
ルになるように、被写体像信号を増幅する必要がある。
また、電荷蓄積時間を制御することにより、被写体像信
号を焦点検出演算に適したレベルにすることも可能であ
る。上述した位相差検出方式による焦点検出動作を繰り
返し行うことにより、撮影レンズのデフォーカス量を繰
り返し検出する。そして、検出されたデフォーカス量が
信頼性有りと判定されると、検出されたデフォーカス量
に基づいて撮影レンズの駆動を行い、撮影レンズの焦点
調節状態が合焦または合焦状態と見なせるデフォーカス
量となるまで駆動を行う。また、撮影レンズの焦点調節
状態が合焦または合焦状態と見なせるデフォーカス量に
あると判定された後も、繰り返し焦点検出動作を行うこ
とによって、撮影レンズの焦点調節状態が合焦状態であ
ると見なせるデフォーカス量を越えたと判定されたとき
には、ただちに合焦または合焦状態と見なせるデフォー
カス量になるまで撮影レンズを駆動することができる。
このように、繰り返し焦点検出動作を行うことにより撮
影レンズは常に合焦状態を維持する。
The sensor rows 9A and 9 of the image sensor 9
The output level of the subject image signal photoelectrically converted by B varies depending on the brightness of the subject. Therefore, it is necessary to amplify the subject image signal so that the subject image signal has a level suitable for focus detection calculation regardless of the luminance of the subject.
Further, by controlling the charge storage time, it is possible to bring the subject image signal to a level suitable for focus detection calculation. By repeatedly performing the focus detection operation by the phase difference detection method described above, the defocus amount of the photographing lens is repeatedly detected. When the detected defocus amount is determined to be reliable, the shooting lens is driven based on the detected defocus amount, and the focus adjustment state of the shooting lens can be regarded as in-focus or in-focus state. Drive is performed until the focus amount is reached. Further, even after it is determined that the focus adjustment state of the taking lens is in focus or the defocus amount which can be regarded as the in-focus state, the focus adjustment state of the taking lens is in focus state by repeatedly performing the focus detection operation. When it is determined that the defocus amount that can be regarded as being exceeded is exceeded, the taking lens can be driven immediately until the defocus amount that can be regarded as the focused state or the focused state is reached.
In this way, by repeatedly performing the focus detection operation, the photographing lens always maintains the in-focus state.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、イメー
ジセンサー9のセンサー列9A、9Bから出力される被
写体像信号には、種々の電気回路からのノイズ成分や、
光電変換素子の暗電流によるノイズ成分などが光電変換
素子ごとにランダムに重畳している。また、光電変換素
子の暗電流は動作温度が高くなるほど増加することが知
られている。そこで、例えば、信号増幅回路により、イ
メージセンサー9のセンサー列9A、9Bから出力され
る被写体像信号を焦点検出演算に適するレベルとなるよ
うに増幅すると、被写体像信号だけでなく被写体像信号
に重畳するノイズ成分も増幅される。
However, the object image signals output from the sensor arrays 9A and 9B of the image sensor 9 include noise components from various electric circuits,
Noise components due to dark current of the photoelectric conversion elements are randomly superimposed on each photoelectric conversion element. Further, it is known that the dark current of the photoelectric conversion element increases as the operating temperature increases. Therefore, for example, when the signal amplification circuit amplifies the subject image signal output from the sensor arrays 9A and 9B of the image sensor 9 to a level suitable for focus detection calculation, the signal is superimposed not only on the subject image signal but also on the subject image signal. The noise component that is generated is also amplified.

【0009】この問題を図3により詳細に説明する。図
3に示すグラフは、被写体像信号にノイズ成分が重畳し
ている様子を示す図である。図において、縦軸は信号出
力の大きさを示し、vを付した破線は焦点検出演算に適
した出力レベルを示す。また、横軸はイメージセンサー
9のセンサー列9Aの光電変換素子a1...anの並
びを示す。なお以下では、被写体像信号には被写体像の
信号成分とノイズ成分とが含まれているものとし、これ
らをそれぞれ被写体像成分およびノイズ成分と呼ぶ。図
3(a)、(b)−1、(c)−1は被写体像信号の増
幅前の信号出力を示し、図3(b)−2、(c)−2は
被写体像信号の増幅後の信号出力を示す。図3に示すグ
ラフ中のAn1、Bn1、Bn2、Cn1、Cn2はノ
イズ成分の大きさを表し、As1、Bs1、Bs2、C
s1、Cs2は被写体像成分の大きさを表す。図3
(a)に示すイメージセンサー9からの出力信号は焦点
検出演算に適切なレベルであるから、この被写体像信号
を増幅する必要はない(増幅率1倍)。一方、図3
(b)−1に示す被写体像信号の出力は、図3(a)の
被写体像信号の出力の約半分であるから、焦点検出演算
に適する出力レベルにするためには、約2倍の増幅率で
増幅する必要がある。2倍の増幅率で増幅した結果を図
3(b)−2に示す。図3(b)−1に示す被写体像成
分の大きさBs1を2倍に増幅したたので、Bs2はB
s1の約2倍の大きさになる。ところが、被写体像信号
と同様にノイズ成分も増幅されるので、Bn1も約2倍
のBn2の大きさになる。つまり、図3(a)における
被写体像成分As1に対するノイズ成分An1の割合よ
りも、図3(b)−2における被写体像成分Bs2に対
するノイズ成分Bn2の割合の方が大きくなる。
This problem will be described in detail with reference to FIG. The graph shown in FIG. 3 is a diagram showing how a noise component is superimposed on a subject image signal. In the figure, the vertical axis indicates the magnitude of the signal output, and the broken line with v indicates the output level suitable for focus detection calculation. Further, the horizontal axis represents the photoelectric conversion elements a1. . . The sequence of an is shown. In the following, the subject image signal includes a subject image signal component and a noise component, which are referred to as a subject image component and a noise component, respectively. 3 (a), (b) -1, and (c) -1 show signal outputs before amplification of the subject image signal, and FIGS. 3 (b) -2 and (c) -2 show after signal amplification of the subject image signal. The signal output of is shown. An1, Bn1, Bn2, Cn1, and Cn2 in the graph shown in FIG. 3 represent the magnitudes of noise components, and As1, Bs1, Bs2, and C
s1 and Cs2 represent the size of the subject image component. FIG.
Since the output signal from the image sensor 9 shown in (a) is at a level suitable for focus detection calculation, it is not necessary to amplify this subject image signal (amplification factor is 1). On the other hand, FIG.
Since the output of the subject image signal shown in (b) -1 is about half of the output of the subject image signal of FIG. 3 (a), in order to obtain an output level suitable for focus detection calculation, amplification of about twice is required. Need to be amplified at a rate. The result of amplification with a double amplification factor is shown in FIG. Since the size Bs1 of the subject image component shown in FIG. 3B-1 is doubled, Bs2 is B
It is about twice the size of s1. However, since the noise component is also amplified as in the subject image signal, Bn1 is about twice as large as Bn2. That is, the ratio of the noise component Bn2 to the subject image component Bs2 in FIG. 3B-2 is larger than the ratio of the noise component An1 to the subject image component As1 in FIG. 3A.

【0010】同様に、図3(c)−1に示す被写体増信
号の出力は図3(a)に示す被写体増信号の出力の約1
/4であるから、焦点検出演算に適する出力レベルにす
るためには、約4倍の増幅率で増幅する必要がある。4
倍の増幅率で増幅した結果を図3(c)−2に示す。図
3(c)−1に示す被写体像成分の大きさCs1を4倍
に増幅したので、Cs2はCS1の約4倍の大きさにな
る。ところが、被写体像成分と同様にノイズ成分も増幅
されるから、Cn1も約4倍のCn2の大きさになる。
つまり、図3(b)−2における被写体像信号Bs2に
対するノイズ成分Bn2の割合よりも、図3(c)−2
における被写体像信号Cs2に対するノイズ成分Cn2
の割合の方が大きくなる。以上のことから、被写体像信
号に対する増幅率が高くなるほど、被写体像成分に対す
るノイズ成分の割合が大きくなることが分かる。上述し
たノイズはイメージセンサー9の一対のセンサー列9
A、9Bの複数の光電変換素子にランダムに現れるの
で、上述した相関演算を行うと対の2次像の一致度に大
きな影響を与えることになり、焦点検出演算結果は大き
くばらついてしまう。
Similarly, the output of the subject increase signal shown in FIG. 3 (c) -1 is about 1 of the output of the subject increase signal shown in FIG. 3 (a).
Therefore, in order to obtain an output level suitable for focus detection calculation, it is necessary to perform amplification with a gain of about 4 times. Four
The result of amplification with a double amplification factor is shown in FIG. Since the size Cs1 of the subject image component shown in FIG. 3C-1 is amplified four times, Cs2 is about four times as large as CS1. However, since the noise component is amplified in the same manner as the subject image component, Cn1 becomes about four times as large as Cn2.
That is, rather than the ratio of the noise component Bn2 to the subject image signal Bs2 in FIG. 3B-2, FIG.
Noise component Cn2 for the subject image signal Cs2 at
The ratio becomes larger. From the above, it can be seen that the higher the amplification factor for the subject image signal, the greater the ratio of the noise component to the subject image component. The above-mentioned noise is caused by the pair of sensor rows 9 of the image sensor 9.
Since they appear randomly in the plurality of photoelectric conversion elements A and 9B, the correlation calculation described above has a great influence on the degree of coincidence between the secondary images of the pair, and the focus detection calculation result greatly varies.

【0011】また、蓄積時間を長くした場合にもノイズ
成分が増える。これを図3を用いて詳細に説明する。こ
こで、図3(a)、(b)−1、(c)−1は同じ蓄積
時間で電荷の蓄積を行ったものとし、図3(b)−2、
(c)−2は、図3(b)−1、(c)−1に示す被写
体像信号が焦点検出演算に適する出力レベルとなる蓄積
時間を設定して、電荷の蓄積を行なったものとする。ま
た、An1、Bn1、Bn2、Cn1、Cn2は暗電流
の大きさを表し、他の符号は上述したとおりとする。図
3(a)は、イメージセンサー9の出力が焦点検出演算
に適したレベルとなる蓄積時間で電荷蓄積を行なったも
のとする。図3(b)−1に示す被写体像信号の出力
は、図3(a)の場合と同じ蓄積時間で蓄積を行ったに
もかかわらず、図3(a)の被写体像信号の出力の約半
分である。したがって、図3(b)−1の場合は、焦点
検出演算に適した出力レベルにするために、図3(a)
に比べ約2倍の蓄積時間で蓄積を行う必要がある。2倍
の蓄積時間で蓄積を行った結果を図3(b)−2に示
す。図3(b)−2に示す被写体像成分の大きさBs2
は、2倍の蓄積時間で蓄積を行ったのでBs1の約2倍
のBs2の大きさになる。ところが、暗電流も2倍の蓄
積時間で蓄積されるので、Bn1も約2倍のBn2の大
きさになる。つまり、図3(a)における被写体像成分
As1に対する暗電流An1の割合よりも、図3(b)
−2における被写体像成分Bs2に対する暗電流Bn2
の割合の方が大きくなることが分かる。
Also, the noise component increases when the accumulation time is lengthened. This will be described in detail with reference to FIG. 3 (a), 3 (b) -1 and 3 (c) -1 assume that the charges are accumulated in the same accumulation time.
(C) -2 indicates that the charge is accumulated by setting the accumulation time at which the subject image signal shown in FIGS. 3 (b) -1 and 3 (c) -1 becomes an output level suitable for the focus detection calculation. To do. Moreover, An1, Bn1, Bn2, Cn1, and Cn2 represent the magnitude of dark current, and other symbols are as described above. In FIG. 3A, it is assumed that the charge is stored for a storage time in which the output of the image sensor 9 is at a level suitable for focus detection calculation. The output of the subject image signal shown in FIG. 3B-1 is about the same as the output of the subject image signal of FIG. 3A even though the accumulation is performed in the same accumulation time as in the case of FIG. It is half. Therefore, in the case of FIG. 3B-1, in order to obtain an output level suitable for the focus detection calculation, FIG.
It is necessary to perform the storage in about twice as long as the storage time of FIG. 3B-2 shows the result of accumulation at twice the accumulation time. The magnitude Bs2 of the subject image component shown in FIG.
Has a value of Bs2, which is about twice as large as Bs1 because the data is stored for twice the storage time. However, since the dark current is also accumulated in twice the accumulation time, Bn1 is about twice as large as Bn2. That is, the ratio of the dark current An1 to the subject image component As1 in FIG.
Dark current Bn2 for the subject image component Bs2 at −2
It turns out that the ratio of is larger.

【0012】同様に、図3(c)−1に示す被写体像信
号の出力は、図3(a)に示す被写体像信号の出力の約
1/4であるから、焦点検出演算に適する出力レベルに
するためには約4倍の蓄積時間で蓄積を行う必要があ
る。4倍の蓄積時間で電荷の蓄積を行なった結果を図3
(c)−2に示す。図3(c)−2に示す被写体像成分
の大きさCs2は、4倍の蓄積時間で蓄積を行ったので
Cs1の約4倍のCs2の大きさになる。ところが、暗
電流も4倍の蓄積時間で蓄積されるので、Cn1も約4
倍のCn2の大きさになる。つまり、図3(b)−2に
示す被写体像信号Bs2に対する暗電流Bn2の割合よ
りも、図3(c)−2に示す被写体像信号Cs2に対す
る暗電流Cn2の割合の方が大きくなる。以上のことか
ら、蓄積時間が長くなるほど、被写体像成分に対する暗
電流の割合が大きくなることが分かる。つまり、蓄積時
間を長くした場合にも被写体像信号に占める暗電流のノ
イズ成分が増えるので、上述した相関演算を行うと対の
2次像の一致度に大きく影響を与え、焦点検出演算結果
は大きくばらついてしまう。
Similarly, the output of the subject image signal shown in FIG. 3 (c) -1 is about 1/4 of the output of the subject image signal shown in FIG. 3 (a), so that an output level suitable for focus detection calculation is obtained. In order to achieve this, it is necessary to carry out the storage in a storage time of about 4 times. Fig. 3 shows the result of charge accumulation with a quadruple charge time.
(C) -2. The size Cs2 of the subject image component shown in FIG. 3C-2 is about four times as large as Cs1 because the image is stored for four times as long as the storage time. However, since the dark current is also accumulated in the accumulation time of 4 times, Cn1 is also about 4 times.
It is twice as large as Cn2. That is, the ratio of the dark current Cn2 to the subject image signal Cs2 shown in FIG. 3C-2 is larger than the ratio of the dark current Bn2 to the subject image signal Bs2 shown in FIG. 3B-2. From the above, it can be seen that the ratio of dark current to the subject image component increases as the accumulation time increases. That is, even if the accumulation time is lengthened, the noise component of the dark current in the subject image signal increases. Therefore, if the above-described correlation calculation is performed, the degree of coincidence between the pair of secondary images is greatly affected, and the focus detection calculation result is It will vary greatly.

【0013】このように、被写体像信号に重畳するノイ
ズ成分によって焦点検出演算結果がばらつき、撮影レン
ズがいったん合焦した後も合焦近傍で細かく駆動される
上に、撮影レンズの焦点調節状態を示すファインダー内
の表示も不安定になるので、撮影者に煩わしさを与え
る。また、撮影レンズが合焦した時だけシャッターレリ
ーズが許可される、いわゆる合焦優先の撮影時には、ノ
イズ成分の重畳によって焦点検出演算結果がばらつき、
撮影レンズが合焦近傍にあってもシャッターレリーズが
禁止されることになり、シャッターチャンスを逃すこと
もある。
As described above, the focus detection calculation result varies due to the noise component superimposed on the subject image signal, and even after the photographic lens is once in focus, it is finely driven in the vicinity of the in-focus state and the focus adjustment state of the photographic lens is adjusted. The display in the viewfinder shown is also unstable, which makes the photographer annoyed. In addition, shutter release is allowed only when the shooting lens is in focus, so-called focus priority shooting, the focus detection calculation result varies due to superposition of noise components,
Even if the taking lens is near the in-focus state, shutter release is prohibited, which may miss a shutter chance.

【0014】本発明の目的は、被写体像信号に重畳する
ノイズ成分の影響を排除して正確な焦点検出を行うよう
にした焦点検出装置を提供することにある。
It is an object of the present invention to provide a focus detection device which eliminates the influence of noise components superimposed on a subject image signal to perform accurate focus detection.

【0015】[0015]

【課題を解決するための手段】上記目的を達成するため
に、請求項1の発明は、被写体像の光強度分布に応じた
被写体像信号を出力する光電変換素子列と、撮影レンズ
を通過した被写体からの光束を前記光電変換素子列へ導
き、前記被写体像を結像する焦点検出光学系と、前記光
電変換素子列から出力される被写体像信号を増幅する信
号増幅手段と、この信号増幅手段により増幅された被写
体像信号に基づいて前記撮影レンズの焦点調節状態を演
算する焦点検出演算手段と、この焦点検出演算手段によ
り演算された焦点調節状態を所定の合焦許容範囲と比較
して前記撮影レンズの合焦/非合焦を判定する合焦判定
手段とを備えた焦点検出装置であって、前記信号増幅手
段の増幅率に応じて前記合焦判定手段の合焦許容範囲を
変更する合焦許容範囲変更手段を備える。請求項2の発
明は、被写体像の光強度分布に応じた被写体像信号を出
力する光電変換素子列と、撮影レンズを通過した被写体
からの光束を前記光電変換素子列へ導き、前記被写体像
を結像する焦点検出光学系と、前記光電変換素子列の電
荷蓄積時間を制御する蓄積制御手段と、前記光電変換素
子列から出力された被写体像信号に基づいて前記撮影レ
ンズの焦点調節状態を演算する焦点検出演算手段と、こ
の焦点検出演算手段により演算された焦点調節状態を所
定の合焦許容範囲と比較して前記撮影レンズの合焦/非
合焦を判定する合焦判定手段とを備えた焦点検出装置で
あって、前記蓄積制御手段の電荷蓄積時間に応じて前記
合焦判定手段の合焦許容範囲を変更する合焦許容範囲変
更手段を備える。請求項3の発明は、被写体像の光強度
分布に応じた被写体像信号を出力する光電変換素子列
と、撮影レンズを通過した被写体からの光束を前記光電
変換素子列へ導き、前記被写体像を結像する焦点検出光
学系と、前記光電変換素子列から出力される被写体像信
号を増幅する信号増幅手段と、前記光電変換素子列の電
荷蓄積時間を制御する蓄積制御手段と、前記信号増幅手
段により増幅された被写体像信号に基づいて前記撮影レ
ンズの焦点調節状態を演算する焦点検出演算手段と、こ
の焦点検出演算手段により演算された焦点調節状態を所
定の合焦許容範囲と比較して前記撮影レンズの合焦/非
合焦を判定する合焦判定手段とを備えた焦点検出装置で
あって、前記信号増幅手段の増幅率と前記蓄積制御手段
の電荷蓄積時間とに応じて前記合焦判定手段の合焦許容
範囲を変更する合焦許容範囲変更手段を備える。請求項
4の発明は、被写体像の光強度分布に応じた被写体像信
号を出力する光電変換素子列と、撮影レンズを通過した
被写体からの光束を前記光電変換素子列へ導き、前記被
写体像を結像する焦点検出光学系と、前記光電変換素子
列から出力された被写体像信号に基づいて前記撮影レン
ズの焦点調節状態を演算する焦点検出演算手段と、この
焦点検出演算手段により演算された焦点調節状態を所定
の合焦許容範囲と比較して前記撮影レンズの合焦/非合
焦を判定する合焦判定手段とを備えた焦点検出装置であ
って、前記光電変換素子列の周囲温度を検出する温度検
出手段と、この温度検出手段により検出された周囲温度
に応じて前記合焦判定手段の合焦許容範囲を変更する合
焦許容範囲変更手段とを備える。請求項5の焦点検出装
置は前記光電変換素子列の周囲温度を検出する温度検出
手段を備え、前記合焦許容範囲変更手段によって、前記
蓄積制御手段の電荷蓄積時間に応じて変更した合焦許容
範囲を、前記温度検出手段により検出された周囲温度に
基づいて補正するようにしたものである。請求項6の焦
点検出装置は、前記光電変換素子列の周囲温度を検出す
る温度検出手段を備え、前記合焦許容範囲変更手段によ
って、前記信号増幅手段の増幅率と前記蓄積制御手段の
電荷蓄積時間とに応じて変更した合焦許容範囲を、前記
温度検出手段により検出された周囲温度に基づいて補正
するようにしたものである。
In order to achieve the above object, the invention of claim 1 passes through a photoelectric conversion element array for outputting a subject image signal according to the light intensity distribution of the subject image and a photographing lens. A focus detection optical system that guides the light flux from the subject to the photoelectric conversion element array to form the subject image, a signal amplification unit that amplifies the subject image signal output from the photoelectric conversion element array, and the signal amplification unit. The focus detection calculation means for calculating the focus adjustment state of the photographing lens based on the subject image signal amplified by the above, and the focus adjustment state calculated by the focus detection calculation means is compared with a predetermined focus allowable range, A focus detection device comprising a focus determination means for determining focus / non-focus of a photographing lens, wherein a focus allowable range of the focus determination means is changed according to an amplification factor of the signal amplification means. Focus tolerance Provided with a circumference change means. According to a second aspect of the present invention, a photoelectric conversion element array that outputs a subject image signal according to the light intensity distribution of the subject image, and a light flux from the subject that has passed through the photographic lens is guided to the photoelectric conversion element array to generate the subject image. A focus detection optical system for forming an image, a storage control means for controlling a charge storage time of the photoelectric conversion element array, and a focus adjustment state of the photographing lens based on a subject image signal output from the photoelectric conversion element array. And a focus determination unit that compares the focus adjustment state calculated by the focus detection calculation unit with a predetermined focus allowable range to determine whether the photographing lens is in focus or out of focus. The focus detection apparatus further includes focusing allowable range changing means for changing the focusing allowable range of the focusing determination means according to the charge accumulation time of the accumulation control means. According to a third aspect of the present invention, a photoelectric conversion element array that outputs a subject image signal corresponding to the light intensity distribution of the subject image and a light flux from the subject that has passed through the photographing lens are guided to the photoelectric conversion element array to generate the subject image. A focus detection optical system for forming an image, a signal amplification means for amplifying a subject image signal output from the photoelectric conversion element array, an accumulation control means for controlling a charge accumulation time of the photoelectric conversion element array, and the signal amplification means. The focus detection calculation means for calculating the focus adjustment state of the photographing lens based on the subject image signal amplified by the above, and the focus adjustment state calculated by the focus detection calculation means is compared with a predetermined focus allowable range, A focus detection device comprising focus determination means for determining focus / non-focus of a taking lens, wherein the focus is determined according to an amplification factor of the signal amplification means and a charge storage time of the storage control means. Size Comprising a focusing allowable range changing means for changing the focus tolerance means. According to a fourth aspect of the present invention, a photoelectric conversion element array that outputs a subject image signal according to the light intensity distribution of the subject image, and a light flux from the subject that has passed through the photographing lens is guided to the photoelectric conversion element array to generate the subject image. A focus detection optical system for forming an image, a focus detection calculation means for calculating a focus adjustment state of the photographing lens based on a subject image signal output from the photoelectric conversion element array, and a focus calculated by the focus detection calculation means. A focus detection device comprising: a focus determination unit that compares an adjustment state with a predetermined focus allowable range to determine whether the photographing lens is in focus or out of focus, and detects a surrounding temperature of the photoelectric conversion element array. The temperature detecting means for detecting the temperature and the focus allowable range changing means for changing the focus allowable range of the focus determining means according to the ambient temperature detected by the temperature detecting means. 6. The focus detection device according to claim 5, further comprising a temperature detection unit that detects an ambient temperature of the photoelectric conversion element array, and the focus permission range changed by the focus permission range change unit according to the charge accumulation time of the accumulation control unit. The range is corrected based on the ambient temperature detected by the temperature detecting means. 7. The focus detection device according to claim 6, further comprising temperature detection means for detecting an ambient temperature of the photoelectric conversion element array, wherein the focusing permissible range changing means allows the amplification factor of the signal amplification means and the charge accumulation of the accumulation control means. The permissible focusing range changed according to time is corrected based on the ambient temperature detected by the temperature detecting means.

【0016】[0016]

【作用】請求項1の焦点検出装置では、被写体像信号の
増幅率に応じて撮影レンズの合焦許容範囲を変更し、焦
点検出演算結果の焦点調節状態を変更後の合焦許容範囲
と比較して撮影レンズの合焦/非合焦を判定する。これ
により、被写体像信号の増幅率が高くなって被写体像信
号のノイズ成分が増加し、焦点検出演算結果が大きくば
らついても、そのばらつきをキャンセルするように合焦
許容範囲が変更されるので、正確な合焦/非合焦の判定
がなされ、合焦近傍での撮影レンズの動きと表示器によ
る合焦表示が安定する。請求項2の焦点検出装置では、
光電変換素子列の電荷蓄積時間に応じて撮影レンズの合
焦許容範囲を変更し、焦点検出演算結果の焦点調節状態
を変更後の合焦許容範囲と比較して撮影レンズの合焦/
非合焦を判定する。これにより、電荷蓄積時間が長くな
って被写体像信号のノイズ成分が増加し、焦点検出演算
結果が大きくばらついても、そのばらつきをキャンセル
するように合焦許容範囲が変更されるので、正確な合焦
/非合焦の判定がなされ、合焦近傍での撮影レンズの動
きと表示器による合焦表示が安定する。請求項3の焦点
検出装置では、被写体像信号の増幅率と光電変換素子列
の電荷蓄積時間とに応じて撮影レンズの合焦許容範囲を
変更し、焦点検出演算結果の焦点調節状態を変更後の合
焦許容範囲と比較して撮影レンズの合焦/非合焦を判定
する。これにより、増幅率が高くなり、且つ電荷蓄積時
間が長くなって光電変換素子列から出力される被写体像
信号のノイズ成分が増加し、焦点検出演算結果が大きく
ばらついても、そのばらつきをキャンセルするように合
焦許容範囲が変更されるので、正確な合焦/非合焦の判
定がなされ、合焦近傍での撮影レンズの動きと表示器に
よる合焦表示が安定する。請求項4の焦点検出装置で
は、光電変換素子列の周囲温度に応じて撮影レンズの合
焦許容範囲を変更し、焦点検出演算結果の焦点調節状態
を変更後の合焦許容範囲と比較して撮影レンズの合焦/
非合焦を判定する。これにより、周囲温度が高くなって
光電変換素子列から出力される被写体像信号の暗電流の
ノイズ成分が増加し、焦点検出演算結果が大きくばらつ
いても、そのばらつきをキャンセルするように合焦許容
範囲が変更されるので、正確な合焦/非合焦の判定がな
され、合焦近傍での撮影レンズの動きと表示器による合
焦表示が安定する。請求項5の焦点検出装置では、電荷
蓄積時間に応じて変更した合焦許容範囲を、光電変換素
子列の周囲温度に基づいて補正する。これにより、正確
な合焦/非合焦の判定がなされ、合焦近傍での撮影レン
ズの動きと表示器による合焦表示が安定する。請求項6
の焦点検出装置では、被写体像信号の増幅率と光電変換
素子列の電荷蓄積時間とに応じて変更した合焦許容範囲
を、光電変換素子列の周囲温度に基づいて補正する。こ
れにより、正確な合焦/非合焦の判定がなされ、合焦近
傍での撮影レンズの動きと表示器による合焦表示が安定
する。
According to another aspect of the present invention, the focus detection apparatus according to claim 1 changes the focus allowable range of the photographing lens according to the amplification factor of the object image signal, and compares the focus adjustment state of the focus detection calculation result with the changed focus allowable range. Then, the focus / non-focus of the photographing lens is determined. As a result, even if the amplification factor of the subject image signal is increased and the noise component of the subject image signal is increased, and the focus detection calculation result largely varies, the focusing allowable range is changed so as to cancel the variation, Accurate in-focus / out-of-focus determination is performed, and the movement of the taking lens near the in-focus state and the in-focus display on the display are stabilized. In the focus detection device according to claim 2,
The focus allowable range of the photographing lens is changed according to the charge accumulation time of the photoelectric conversion element array, and the focus adjustment state of the focus detection calculation result is compared with the changed focus allowable range to determine the focus of the photographing lens.
Determine out of focus. As a result, even if the charge accumulation time becomes long, the noise component of the subject image signal increases, and the focus detection calculation result greatly varies, the focus allowable range is changed so as to cancel the variation. Focus / non-focus is determined, and the movement of the taking lens near the focus and the focus display on the display are stabilized. In the focus detecting device according to claim 3, the focusing allowable range of the photographing lens is changed according to the amplification factor of the subject image signal and the charge accumulation time of the photoelectric conversion element array, and after changing the focus adjustment state of the focus detection calculation result. The in-focus / non-in-focus state of the taking lens is compared with the in-focus allowable range of. As a result, the amplification factor becomes high, the charge accumulation time becomes long, the noise component of the subject image signal output from the photoelectric conversion element array increases, and even if the focus detection calculation result largely varies, the variation is canceled. Since the permissible focus range is changed as described above, accurate in-focus / out-of-focus determination is performed, and the movement of the photographing lens near the in-focus state and the in-focus display on the display are stable. In the focus detection device according to claim 4, the focus allowable range of the photographing lens is changed according to the ambient temperature of the photoelectric conversion element array, and the focus adjustment state of the focus detection calculation result is compared with the changed focus allowable range. Focus of shooting lens /
Determine out of focus. As a result, even if the ambient temperature rises and the noise component of the dark current of the subject image signal output from the photoelectric conversion element array increases, and the focus detection calculation result largely fluctuates, the focus is allowed to cancel the fluctuation. Since the range is changed, accurate in-focus / out-of-focus determination is performed, and the movement of the photographing lens near the in-focus state and the in-focus display on the display are stable. In the focus detection device of the fifth aspect, the permissible focusing range changed according to the charge accumulation time is corrected based on the ambient temperature of the photoelectric conversion element array. As a result, accurate in-focus / out-of-focus determination is made, and the movement of the photographing lens near the in-focus state and the in-focus display on the display are stabilized. Claim 6
In the focus detection device, the allowable focus range changed according to the amplification factor of the subject image signal and the charge accumulation time of the photoelectric conversion element array is corrected based on the ambient temperature of the photoelectric conversion element array. As a result, accurate in-focus / out-of-focus determination is made, and the movement of the photographing lens near the in-focus state and the in-focus display on the display are stabilized.

【0017】[0017]

【実施例】本発明の焦点検出装置を一眼レフレックスカ
メラに適用した一実施例を説明する。図1は焦点検出装
置を備えた一眼レフレックスカメラの断面図である。な
お、図4に示す機器と同様な機器に対しては同一の符号
を付して説明を省略する。図において、10は信号増幅
回路、11は焦点検出演算回路、12は蓄積制御回路、
13はモータ駆動制御回路、14はモータ、15はメイ
ンミラー、16はサブミラー、17はフィルム面、18
はファインダースクリーン、19はペンタダハプリズ
ム、20は接眼レンズ、22は温度検出装置である。撮
影レンズ1を通過した被写体からの光束はメインミラー
15により上方に偏向され、ファインダースクリーン1
8、ペンタダハプリズム19、接眼レンズ20からなる
ファインダー光学系に導かれる。メインミラー15の後
方に配置されたフィルム面17には、感光フィルムが配
置される。撮影時にはメインミラー15とサブミラー1
6が撮影レンズ1とフィルム面17の光路から退避さ
れ、撮影レンズ1を通過した被写体からの光束によりフ
ィルム面17に配置された感光フィルムが露光される。
EXAMPLE An example in which the focus detection device of the present invention is applied to a single-lens reflex camera will be described. FIG. 1 is a sectional view of a single-lens reflex camera equipped with a focus detection device. It should be noted that the same reference numerals are given to the same devices as those shown in FIG. 4, and the description thereof will be omitted. In the figure, 10 is a signal amplification circuit, 11 is a focus detection calculation circuit, 12 is an accumulation control circuit,
13 is a motor drive control circuit, 14 is a motor, 15 is a main mirror, 16 is a sub-mirror, 17 is a film surface, 18
Is a finder screen, 19 is a penta roof prism, 20 is an eyepiece lens, and 22 is a temperature detecting device. The light flux from the subject that has passed through the taking lens 1 is deflected upward by the main mirror 15, and the finder screen 1
8, a penta roof prism 19, and an eyepiece lens 20 lead to a finder optical system. A photosensitive film is arranged on the film surface 17 arranged behind the main mirror 15. Main mirror 15 and sub mirror 1 at the time of shooting
6 is retracted from the optical paths of the taking lens 1 and the film surface 17, and the light beam from the subject passing through the taking lens 1 exposes the photosensitive film arranged on the film surface 17.

【0018】また、メインミラー15の一部分は半透過
になっており、この半透過部の後方にはサブミラー16
が取り付けてある。メインミラー15の半透過部を透過
した被写体からの光束は、サブミラー16によりカメラ
ボディの底方向に偏向され、撮影レンズ1のフィルム等
価面6の近傍に配置された焦点検出光学系8へ導かれ
る。さらに、焦点検出光学系8を通過した被写体からの
光束は電荷蓄積型イメージセンサー9へ導かれる。な
お、焦点検出光学系8とイメージセンサー9は、撮影画
面上に設定された焦点検出領域において焦点検出が可能
なように構成されている。イメージセンサー9は、セン
サー列9A、9B上に形成された被写体像の2次像を光
電変換し、被写体像の光強度分布に対応する電気的な被
写体像信号を発生して信号増幅回路10へ送る。
A part of the main mirror 15 is semi-transmissive, and the sub-mirror 16 is behind the semi-transmissive part.
Is attached. The light flux from the subject that has passed through the semi-transmissive portion of the main mirror 15 is deflected by the sub-mirror 16 toward the bottom of the camera body and is guided to the focus detection optical system 8 arranged near the film equivalent surface 6 of the taking lens 1. . Further, the light flux from the subject that has passed through the focus detection optical system 8 is guided to the charge storage type image sensor 9. The focus detection optical system 8 and the image sensor 9 are configured so that focus detection can be performed in the focus detection area set on the photographing screen. The image sensor 9 photoelectrically converts the secondary image of the subject image formed on the sensor rows 9A and 9B, generates an electrical subject image signal corresponding to the light intensity distribution of the subject image, and sends it to the signal amplification circuit 10. send.

【0019】信号増幅回路10は、イメージセンサー9
から出力される被写体像信号を増幅し、焦点検出演算回
路11へ送る。蓄積制御回路12は、この信号増幅回路
10の増幅率を制御する。焦点検出演算回路11は、被
写体像信号を上述した焦点検出演算により処理し、撮影
レンズ1の結像面とフィルム等価面6との間のデフォー
カス量を算出する。また、焦点検出演算回路11は増幅
された被写体像信号の情報を蓄積制御回路12へ送る。
蓄積制御回路12は次回の電荷蓄積時間と増幅率を決定
し、イメージセンサー9のセンサー列A、Bの電荷蓄積
動作を制御する。モータ駆動制御回路13は、焦点検出
演算回路11により算出されたデフォーカス量に基づい
てモータ14の駆動方向および駆動量を制御する。モー
タ14は撮影レンズ1と機械的に結合しており、モータ
駆動制御回路13により駆動量と駆動速度が制御され、
撮影レンズ1を合焦状態にする。
The signal amplifier circuit 10 includes an image sensor 9
The subject image signal output from the amplifier is amplified and sent to the focus detection calculation circuit 11. The storage control circuit 12 controls the amplification factor of the signal amplification circuit 10. The focus detection calculation circuit 11 processes the subject image signal by the focus detection calculation described above, and calculates the defocus amount between the image forming surface of the photographing lens 1 and the film equivalent surface 6. Further, the focus detection calculation circuit 11 sends the information of the amplified subject image signal to the storage control circuit 12.
The storage control circuit 12 determines the next charge storage time and the amplification factor, and controls the charge storage operation of the sensor arrays A and B of the image sensor 9. The motor drive control circuit 13 controls the drive direction and drive amount of the motor 14 based on the defocus amount calculated by the focus detection calculation circuit 11. The motor 14 is mechanically coupled to the taking lens 1, and the motor drive control circuit 13 controls the drive amount and drive speed.
The taking lens 1 is brought into the in-focus state.

【0020】以上の実施例の構成において、イメージセ
ンサー9が光電変換素子列を、焦点検出演算回路11が
焦点検出演算手段、合焦判定手段および合焦許容範囲変
更手段を、蓄積制御回路12が蓄積制御手段を、温度検
出装置22が温度検出手段をそれぞれ構成する。なお、
これらの各手段は上記実施例に限定されない。
In the configuration of the above embodiment, the image sensor 9 is the photoelectric conversion element array, the focus detection calculation circuit 11 is the focus detection calculation means, the focus determination means and the focus allowable range change means, and the storage control circuit 12 is the storage control circuit 12. The temperature detecting device 22 constitutes the temperature detecting means and the accumulation controlling means. In addition,
Each of these means is not limited to the above embodiment.

【0021】図2は焦点検出動作を示すフローチャート
である。図2により、実施例の焦点検出動作を説明す
る。ステップ(以下、図面では単にSと記述する)10
0において、不図示のカメラのメインスイッチが投入さ
れるか、あるいは不図示のレリーズボタンが半押しされ
ると、焦点検出動作を開始する。ステップ101で、蓄
積制御回路12に設定された蓄積時間でイメージセンサ
ー9の蓄積制御を行い、蓄積制御回路12に設定された
増幅率で信号増幅回路10により被写体像信号の増幅を
行う。なお、焦点検出動作を開始した直後には蓄積制御
を行うための情報がないので、初期設定に従って蓄積制
御を行う。ステップ102で、焦点検出演算回路11に
より、被写体像信号の増幅率に応じて合焦許容範囲の設
定を行う。例えば、基準合焦許容範囲をDo、増幅率の
倍率をGn、所定値をαとすると、合焦許容範囲Dは次
式により求められる。
FIG. 2 is a flow chart showing the focus detection operation. The focus detection operation of the embodiment will be described with reference to FIG. Step (hereinafter, simply referred to as S in the drawings) 10
At 0, when the main switch of the camera (not shown) is turned on or the release button (not shown) is half-pressed, the focus detection operation is started. In step 101, the accumulation control of the image sensor 9 is performed for the accumulation time set in the accumulation control circuit 12, and the object image signal is amplified by the signal amplification circuit 10 at the amplification factor set in the accumulation control circuit 12. Since there is no information for performing the storage control immediately after starting the focus detection operation, the storage control is performed according to the initial setting. In step 102, the focus detection calculation circuit 11 sets the permissible focusing range according to the amplification factor of the subject image signal. For example, if the reference allowable focus range is Do, the magnification of the amplification factor is Gn, and the predetermined value is α, the allowable focus range D is calculated by the following equation.

【数4】D=±{Do+α*(Gn−1)}## EQU4 ## D = ± {Do + α * (Gn-1)}

【0022】ステップ103で、焦点検出演算回路11
により、信号増幅回路10から被写体像信号を読み込ん
で撮影レンズ1のデフォーカス量を算出する。続くステ
ップ104で、焦点検出演算回路11により算出された
デフォーカス量がステップ102で設定された合焦許容
範囲内にあるか否かを判定する。合焦許容範囲内にあれ
ばステップ106へ進み、許容範囲外であればステップ
105へ進む。合焦許容範囲外の時はステップ105
で、焦点検出演算回路11により算出されたデフォーカ
ス量にしたがって、モータ駆動制御回路13によりモー
タ14を駆動制御し、撮影レンズ1を合焦位置へ駆動す
る。一方、合焦許容範囲内の時は、ステップ106でシ
ャッターレリーズを許可する。このように、被写体像信
号の増幅率が高い場合に被写体像信号のノイズ成分によ
る焦点検出演算結果のばらつきが発生しても、安定した
撮影動作が可能になる。
In step 103, the focus detection calculation circuit 11
Thus, the subject image signal is read from the signal amplification circuit 10 and the defocus amount of the taking lens 1 is calculated. In the following step 104, it is determined whether or not the defocus amount calculated by the focus detection calculation circuit 11 is within the focus allowable range set in step 102. If the focus is within the permissible range, the process proceeds to step 106, and if it is out of the permissible range, the process proceeds to step 105. If the focus is out of the allowable range, step 105
Then, according to the defocus amount calculated by the focus detection calculation circuit 11, the motor drive control circuit 13 drives and controls the motor 14 to drive the taking lens 1 to the in-focus position. On the other hand, when the focus is within the allowable range, the shutter release is permitted in step 106. In this way, when the amplification factor of the subject image signal is high, even if the focus detection calculation result varies due to the noise component of the subject image signal, a stable shooting operation becomes possible.

【0023】上述した実施例ではいわゆる合焦優先と
し、ステップ106でレリーズ許可を与えたが、いわゆ
るレリーズ優先とする場合は、ステップ106で表示器
に合焦表示を行うようにしてもよい。
In the above-described embodiment, the so-called focus priority is given and the release permission is given in step 106. However, when the so-called release priority is given, the focus display may be performed on the display device in step 106.

【0024】また、上述した実施例では被写体像信号の
増幅率に基づいて合焦許容範囲を設定したが、電荷蓄積
時間に基づいて合焦許容範囲を設定してもよい。この場
合は、基準合焦許容範囲をDo、基準蓄積時間をTo、
蓄積時間をTn、所定値をβとすると、合焦許容範囲D
は次式により求められる。
Further, in the above-mentioned embodiment, the permissible focusing range is set based on the amplification factor of the subject image signal, but the permissible focusing range may be set based on the charge accumulation time. In this case, the reference focus allowable range is Do, the reference accumulation time is To,
If the accumulation time is Tn and the predetermined value is β, the focus allowable range D
Is calculated by the following equation.

【数5】D=±{Do+β*(Tn−To)}, ただし、Tn<Toの時、Tn=To[Equation 5] D = ± {Do + β * (Tn-To)}, where Tn = To when Tn <To

【0025】さらに、被写体像信号の増幅率と蓄積時間
とに基づいて合焦許容範囲を設定するようにしてもよ
い。この場合は、基準合焦許容範囲をDo、増幅率の倍
率をGn、所定値をα、基準蓄積時間をTo、蓄積時間
をTn、所定値をβとすると、合焦許容範囲Dは次式に
より求められる。
Further, the focusing allowable range may be set based on the amplification factor of the subject image signal and the accumulation time. In this case, assuming that the standard focus allowable range is Do, the amplification factor magnification is Gn, the predetermined value is α, the reference accumulation time is To, the accumulation time is Tn, and the predetermined value is β, the focus allowable range D is Required by.

【数6】D=±{Do+α*(Gn−1)+β*(Tn
−To)}, ただし、Tn<Toの時、Tn=To
## EQU6 ## D = ± {Do + α * (Gn-1) + β * (Tn
-To)}, where Tn <To when Tn <To

【0026】さらにまた、暗電流はイメージセンサー9
の動作温度が高いほど大きくなるので、温度検出装置2
2による検出温度に基づいて合焦許容範囲Dを設定する
ようにしてもよい。この場合は、数式5または数式6の
所定値βを、温度が高いほど大きな値になる、温度kに
依存する変数β(k)としてそれぞれ数式7または数式
8により合焦許容範囲Dを求める。
Furthermore, the dark current is detected by the image sensor 9
The higher the operating temperature, the higher the temperature.
The permissible focusing range D may be set based on the temperature detected by 2. In this case, the predetermined permissible range D of Equation 5 or Equation 6 is determined by Equation 7 or Equation 8 as a variable β (k) depending on the temperature k, which becomes larger as the temperature increases, respectively.

【数7】D=±{Do+β(k)*(Tn−To)}, ただし、Tn<Toの時、Tn=To(7) D = ± {Do + β (k) * (Tn-To)}, where Tn <To when Tn <To

【数8】D=±{Do+α*(Gn−1)+β(k)*
(Tn−To)}, ただし、Tn<Toの時、Tn=To
## EQU8 ## D = ± {Do + α * (Gn-1) + β (k) *
(Tn-To)}, where Tn <To when Tn <To

【0027】[0027]

【発明の効果】以上説明したように請求項1の発明によ
れば、被写体像信号の増幅率に応じて撮影レンズの合焦
許容範囲を変更し、焦点検出演算結果の焦点調節状態を
変更後の合焦許容範囲と比較して撮影レンズの合焦/非
合焦を判定するようにしたので、被写体像信号の増幅率
が高くなって被写体像信号のノイズ成分が増加し、それ
により焦点検出演算結果が大きくばらついても、そのば
らつきをキャンセルするように合焦許容範囲が変更され
て正確な合焦/非合焦の判定がなされ、合焦近傍での撮
影レンズの動きと表示器による合焦表示が安定する。請
求項2の発明によれば、光電変換素子列の電荷蓄積時間
に応じて撮影レンズの合焦許容範囲を変更し、焦点検出
演算結果の焦点調節状態を変更後の合焦許容範囲と比較
して撮影レンズの合焦/非合焦を判定するようにしたの
で、電荷蓄積時間が長くなって被写体像信号のノイズ成
分が増加し、それにより焦点検出演算結果が大きくばら
ついても、そのばらつきをキャンセルするように合焦許
容範囲が変更されて正確な合焦/非合焦の判定がなさ
れ、合焦近傍での撮影レンズの動きと表示器による合焦
表示が安定する。請求項3の発明によれば、被写体像信
号の増幅率と光電変換素子列の電荷蓄積時間とに応じて
撮影レンズの合焦許容範囲を変更し、焦点検出演算結果
の焦点調節状態を変更後の合焦許容範囲と比較して撮影
レンズの合焦/非合焦を判定するようにしたので、増幅
率が高くなり、且つ電荷蓄積時間が長くなって光電変換
素子列から出力される被写体像信号のノイズ成分が増加
し、それにより焦点検出演算結果が大きくばらついて
も、そのばらつきをキャンセルするように合焦許容範囲
が変更されて正確な合焦/非合焦の判定がなされ、合焦
近傍での撮影レンズの動きと表示器による合焦表示が安
定する。請求項4の発明によれば、光電変換素子列の周
囲温度に応じて撮影レンズの合焦許容範囲を変更し、焦
点検出演算結果の焦点調節状態を変更後の合焦許容範囲
と比較して撮影レンズの合焦/非合焦を判定するように
したので、周囲温度が高くなって光電変換素子列から出
力される被写体像信号の暗電流のノイズ成分が増加し、
それにより焦点検出演算結果が大きくばらついても、そ
のばらつきをキャンセルするように合焦許容範囲が変更
されて正確な合焦/非合焦の判定がなされ、合焦近傍で
の撮影レンズの動きと表示器による合焦表示が安定す
る。請求項5の発明によれば、電荷蓄積時間に応じて変
更した合焦許容範囲を、光電変換素子列の周囲温度に基
づいて補正するようにしたので、正確な合焦/非合焦の
判定がなされ、合焦近傍での撮影レンズの動きと表示器
による合焦表示が安定する。請求項6の発明によれば、
被写体像信号の増幅率と光電変換素子列の電荷蓄積時間
とに応じて変更した合焦許容範囲を、光電変換素子列の
周囲温度に基づいて補正するようにしたので、正確な合
焦/非合焦の判定がなされ、合焦近傍での撮影レンズの
動きと表示器による合焦表示が安定する。
As described above, according to the invention of claim 1, the permissible focusing range of the photographing lens is changed according to the amplification factor of the subject image signal, and the focus adjustment state of the focus detection calculation result is changed. Since the in-focus / out-of-focus of the taking lens is determined by comparing with the in-focus permissible range, the amplification factor of the subject image signal increases and the noise component of the subject image signal increases, which enables focus detection. Even if there is a large variation in the calculation result, the focus allowable range is changed to cancel the variation and accurate focus / non-focus determination is made, and the movement of the shooting lens near the focus and the display Focus display is stable. According to the invention of claim 2, the focusing allowable range of the photographing lens is changed according to the charge accumulation time of the photoelectric conversion element array, and the focus adjustment state of the focus detection calculation result is compared with the changed focusing allowable range. Since the in-focus / out-of-focus state of the taking lens is determined by using the charge accumulation time, the noise component of the subject image signal increases, and even if the focus detection calculation result varies greatly, the variation can be reduced. The permissible focus range is changed so as to cancel, and accurate in-focus / out-of-focus determination is made, and the movement of the photographing lens near the in-focus state and the in-focus display on the display are stabilized. According to the invention of claim 3, the permissible focusing range of the photographing lens is changed according to the amplification factor of the subject image signal and the charge accumulation time of the photoelectric conversion element array, and the focus adjustment state of the focus detection calculation result is changed. Since the in-focus / out-of-focus of the taking lens is determined by comparing with the in-focus permissible range, the amplification factor is high and the charge accumulation time is long, so that the subject image output from the photoelectric conversion element array is increased. Even if the noise component of the signal increases and the result of the focus detection calculation fluctuates greatly, the focus allowable range is changed to cancel the fluctuation, and accurate in-focus / out-of-focus determination is made. The movement of the taking lens in the vicinity and the focus display on the display are stable. According to the invention of claim 4, the focus allowable range of the photographing lens is changed according to the ambient temperature of the photoelectric conversion element array, and the focus adjustment state of the focus detection calculation result is compared with the focus allowable range after the change. Since the focus / non-focus of the photographing lens is determined, the ambient temperature rises and the noise component of the dark current of the subject image signal output from the photoelectric conversion element array increases,
As a result, even if the focus detection calculation result largely varies, the focus allowable range is changed so as to cancel the variation, and accurate focus / non-focus determination is performed. The focus display on the display is stable. According to the fifth aspect of the invention, the focus allowable range changed according to the charge accumulation time is corrected based on the ambient temperature of the photoelectric conversion element array, so accurate focus / non-focus determination can be made. The movement of the taking lens near the in-focus state and the in-focus display on the display are stabilized. According to the invention of claim 6,
The permissible focusing range changed according to the amplification factor of the subject image signal and the charge accumulation time of the photoelectric conversion element array is corrected based on the ambient temperature of the photoelectric conversion element array. The focus is determined, and the movement of the taking lens near the focus and the focus display on the display are stabilized.

【図面の簡単な説明】[Brief description of drawings]

【図1】一実施例の構成を示すブロック図。FIG. 1 is a block diagram showing the configuration of an embodiment.

【図2】一実施例の焦点検出動作を示すフローチャー
ト。
FIG. 2 is a flowchart showing a focus detection operation of one embodiment.

【図3】被写体像信号の説明図。FIG. 3 is an explanatory diagram of a subject image signal.

【図4】位相差検出方式の焦点検出装置の光学系および
イメージセンサーを示す図。
FIG. 4 is a diagram showing an optical system and an image sensor of a phase difference detection type focus detection device.

【図5】相関演算の説明図。FIG. 5 is an explanatory diagram of correlation calculation.

【図6】相関演算の説明図。FIG. 6 is an explanatory diagram of correlation calculation.

【符号の説明】[Explanation of symbols]

1 撮影レンズ 2 視野マスク 3 フィールドレンズ 6 フィルム等価面 7 バンドパスフィルター 8 焦点検出光学系 9 イメージセンサー 15 メインミラー 16 サブミラー 17 フィルム面 18 ファインダースクリーン 19 ペンタダハプリズム 20 接眼レンズ 21,31 絞り開口部の逆投影像 22 温度検出装置 41,42 絞り開口部 51,52 再結像レンズ 1 Photographic lens 2 Field mask 3 Field lens 6 Equivalent surface of film 7 Bandpass filter 8 Focus detection optical system 9 Image sensor 15 Main mirror 16 Sub-mirror 17 Film surface 18 Finder screen 19 Penta roof prism 20 Eyepiece lens 21, 31 Inverse of aperture opening Projected image 22 Temperature detection device 41, 42 Aperture opening 51, 52 Re-imaging lens

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G03B 3/00 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location G03B 3/00 A

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 被写体像の光強度分布に応じた被写体像
信号を出力する光電変換素子列と、 撮影レンズを通過した被写体からの光束を前記光電変換
素子列へ導き、前記被写体像を結像する焦点検出光学系
と、 前記光電変換素子列から出力される被写体像信号を増幅
する信号増幅手段と、 この信号増幅手段により増幅された被写体像信号に基づ
いて前記撮影レンズの焦点調節状態を演算する焦点検出
演算手段と、 この焦点検出演算手段により演算された焦点調節状態を
所定の合焦許容範囲と比較して前記撮影レンズの合焦/
非合焦を判定する合焦判定手段とを備えた焦点検出装置
であって、 前記信号増幅手段の増幅率に応じて前記合焦判定手段の
合焦許容範囲を変更する合焦許容範囲変更手段を備える
ことを特徴とする焦点検出装置。
1. A photoelectric conversion element array that outputs an object image signal according to a light intensity distribution of an object image, and a luminous flux from an object that has passed through a photographing lens is guided to the photoelectric conversion element array to form the object image. Focus detection optical system, signal amplification means for amplifying a subject image signal output from the photoelectric conversion element array, and a focus adjustment state of the photographing lens is calculated based on the subject image signal amplified by the signal amplification means. And a focus detection calculation unit that compares the focus adjustment state calculated by the focus detection calculation unit with a predetermined focus allowable range.
A focus detection apparatus comprising a focus determination means for determining non-focus, wherein a focus allowable range changing means for changing a focus allowable range of the focus determination means according to an amplification factor of the signal amplification means. A focus detection device comprising:
【請求項2】 被写体像の光強度分布に応じた被写体像
信号を出力する光電変換素子列と、 撮影レンズを通過した被写体からの光束を前記光電変換
素子列へ導き、前記被写体像を結像する焦点検出光学系
と、 前記光電変換素子列の電荷蓄積時間を制御する蓄積制御
手段と、 前記光電変換素子列から出力された被写体像信号に基づ
いて前記撮影レンズの焦点調節状態を演算する焦点検出
演算手段と、 この焦点検出演算手段により演算された焦点調節状態を
所定の合焦許容範囲と比較して前記撮影レンズの合焦/
非合焦を判定する合焦判定手段とを備えた焦点検出装置
であって、 前記蓄積制御手段の電荷蓄積時間に応じて前記合焦判定
手段の合焦許容範囲を変更する合焦許容範囲変更手段を
備えることを特徴とする焦点検出装置。
2. A photoelectric conversion element array that outputs an object image signal according to the light intensity distribution of the object image, and a luminous flux from the object that has passed through a photographing lens is guided to the photoelectric conversion element array to form the object image. A focus detection optical system, a storage control unit that controls the charge storage time of the photoelectric conversion element array, and a focus that calculates the focus adjustment state of the photographing lens based on a subject image signal output from the photoelectric conversion element array. The detection / calculation means and the focus adjustment state calculated by the focus detection / calculation means are compared with a predetermined focusing permissible range to focus / focus the photographing lens.
A focus detection device comprising a focus determination means for determining out-of-focus, wherein a focus allowable range is changed to change a focus allowable range of the focus determination means according to a charge accumulation time of the accumulation control means. A focus detection device comprising means.
【請求項3】 被写体像の光強度分布に応じた被写体像
信号を出力する光電変換素子列と、 撮影レンズを通過した被写体からの光束を前記光電変換
素子列へ導き、前記被写体像を結像する焦点検出光学系
と、 前記光電変換素子列から出力される被写体像信号を増幅
する信号増幅手段と、 前記光電変換素子列の電荷蓄積時間を制御する蓄積制御
手段と、 前記信号増幅手段により増幅された被写体像信号に基づ
いて前記撮影レンズの焦点調節状態を演算する焦点検出
演算手段と、 この焦点検出演算手段により演算された焦点調節状態を
所定の合焦許容範囲と比較して前記撮影レンズの合焦/
非合焦を判定する合焦判定手段とを備えた焦点検出装置
であって、 前記信号増幅手段の増幅率と前記蓄積制御手段の電荷蓄
積時間とに応じて前記合焦判定手段の合焦許容範囲を変
更する合焦許容範囲変更手段を備えることを特徴とする
焦点検出装置。
3. A photoelectric conversion element array that outputs an object image signal according to the light intensity distribution of the object image, and a luminous flux from the object that has passed through a photographing lens is guided to the photoelectric conversion element array to form the object image. Focus detection optical system, signal amplification means for amplifying a subject image signal output from the photoelectric conversion element array, storage control means for controlling charge storage time of the photoelectric conversion element array, and amplification by the signal amplification means. Focus detection calculation means for calculating the focus adjustment state of the photographing lens based on the subject image signal thus obtained, and the focus adjustment state calculated by the focus detection calculation means compared with a predetermined permissible focusing range. Focus of /
A focus detection device comprising focus determination means for determining out-of-focus, wherein focus determination of the focus determination means is determined according to an amplification factor of the signal amplification means and a charge storage time of the storage control means. A focus detection apparatus comprising a focus allowable range changing means for changing a range.
【請求項4】 被写体像の光強度分布に応じた被写体像
信号を出力する光電変換素子列と、 撮影レンズを通過した被写体からの光束を前記光電変換
素子列へ導き、前記被写体像を結像する焦点検出光学系
と、 前記光電変換素子列から出力された被写体像信号に基づ
いて前記撮影レンズの焦点調節状態を演算する焦点検出
演算手段と、 この焦点検出演算手段により演算された焦点調節状態を
所定の合焦許容範囲と比較して前記撮影レンズの合焦/
非合焦を判定する合焦判定手段とを備えた焦点検出装置
であって、 前記光電変換素子列の周囲温度を検出する温度検出手段
と、 この温度検出手段により検出された周囲温度に応じて前
記合焦判定手段の合焦許容範囲を変更する合焦許容範囲
変更手段とを備えることを特徴とする焦点検出装置。
4. A photoelectric conversion element array that outputs an object image signal according to the light intensity distribution of the object image, and a luminous flux from the object that has passed through a photographing lens is guided to the photoelectric conversion element array to form the object image. Focus detection optical system, focus detection calculation means for calculating the focus adjustment state of the photographing lens based on the subject image signal output from the photoelectric conversion element array, and focus adjustment state calculated by the focus detection calculation means Is compared with a predetermined permissible focusing range,
A focus detection device comprising a focus determination means for determining out-of-focus, wherein a temperature detection means for detecting an ambient temperature of the photoelectric conversion element array, and an ambient temperature detected by the temperature detection means. A focus detection apparatus comprising: a focus allowable range changing unit that changes a focus allowable range of the focus determination unit.
【請求項5】 請求項2に記載の焦点検出装置におい
て、 前記光電変換素子列の周囲温度を検出する温度検出手段
を備え、 前記合焦許容範囲変更手段は、前記蓄積制御手段の電荷
蓄積時間に応じて変更した合焦許容範囲を、前記温度検
出手段により検出された周囲温度に基づいて補正するこ
とを特徴とする焦点検出装置。
5. The focus detection device according to claim 2, further comprising a temperature detection unit that detects an ambient temperature of the photoelectric conversion element array, and the permissible focusing range change unit is a charge storage time of the storage control unit. The focus detection device is characterized in that the permissible focusing range changed according to the above is corrected based on the ambient temperature detected by the temperature detection means.
【請求項6】 請求項3に記載の焦点検出装置におい
て、 前記光電変換素子列の周囲温度を検出する温度検出手段
を備え、 前記合焦許容範囲変更手段は、前記信号増幅手段の増幅
率と前記蓄積制御手段の電荷蓄積時間とに応じて変更し
た合焦許容範囲を、前記温度検出手段により検出された
周囲温度に基づいて補正することを特徴とする焦点検出
装置。
6. The focus detection device according to claim 3, further comprising: a temperature detection unit that detects an ambient temperature of the photoelectric conversion element array, wherein the focusing allowable range changing unit includes an amplification factor of the signal amplification unit. A focus detection device, characterized in that the focus allowable range changed according to the charge storage time of the storage control means is corrected based on the ambient temperature detected by the temperature detection means.
JP26561894A 1994-10-28 1994-10-28 Focus detection device Expired - Lifetime JP3550601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26561894A JP3550601B2 (en) 1994-10-28 1994-10-28 Focus detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26561894A JP3550601B2 (en) 1994-10-28 1994-10-28 Focus detection device

Publications (2)

Publication Number Publication Date
JPH08122626A true JPH08122626A (en) 1996-05-17
JP3550601B2 JP3550601B2 (en) 2004-08-04

Family

ID=17419643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26561894A Expired - Lifetime JP3550601B2 (en) 1994-10-28 1994-10-28 Focus detection device

Country Status (1)

Country Link
JP (1) JP3550601B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021010022A1 (en) * 2019-07-12 2021-01-21 ソニー株式会社 Imaging device and diaphragm mechanism control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021010022A1 (en) * 2019-07-12 2021-01-21 ソニー株式会社 Imaging device and diaphragm mechanism control method
US11637966B2 (en) 2019-07-12 2023-04-25 Sony Group Corporation Imaging device and diaphragm mechanism control method

Also Published As

Publication number Publication date
JP3550601B2 (en) 2004-08-04

Similar Documents

Publication Publication Date Title
JP2753495B2 (en) Camera zoom lens automatic zooming device
US5166722A (en) Camera image shake detecting apparatus
JP3569973B2 (en) Focus adjustment device
JPH07181369A (en) Automatic focusing camera, and automatic focusing method of camera
JP4209660B2 (en) Digital camera and camera system
JPS5926708A (en) Focusing method of zoom lens
JP3590806B2 (en) Image sensor system and automatic focus detection device
JP2008191391A (en) Focusing mechanism, and camera
JP4950634B2 (en) Imaging apparatus and imaging system
JP2850336B2 (en) Focus detection device
JPH02300730A (en) Auto-focus camera
JP4810160B2 (en) Focus detection apparatus and control method thereof
JP2002131624A (en) Multipoint automatic focusing camera
JPH08122626A (en) Focus detector
JP2004012493A (en) Focus detector
JP4182546B2 (en) Focus detection device
JP2000131595A (en) Camera and focusing device
JPH05227465A (en) Automatic focusing device
JP2006251033A (en) Single-lens reflex electronic camera
JP2000019386A (en) Camera
JP4882184B2 (en) Focus detection device
JP2001350087A (en) Automatic focusing device and camera system
JP4558174B2 (en) Ranging device
JP4773769B2 (en) Focus detection device
JP2005128293A (en) Focus detector

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040405

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term