JP3550601B2 - Focus detection device - Google Patents

Focus detection device Download PDF

Info

Publication number
JP3550601B2
JP3550601B2 JP26561894A JP26561894A JP3550601B2 JP 3550601 B2 JP3550601 B2 JP 3550601B2 JP 26561894 A JP26561894 A JP 26561894A JP 26561894 A JP26561894 A JP 26561894A JP 3550601 B2 JP3550601 B2 JP 3550601B2
Authority
JP
Japan
Prior art keywords
focus
subject image
photoelectric conversion
focus detection
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26561894A
Other languages
Japanese (ja)
Other versions
JPH08122626A (en
Inventor
正光 小澤
誠一 安川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP26561894A priority Critical patent/JP3550601B2/en
Publication of JPH08122626A publication Critical patent/JPH08122626A/en
Application granted granted Critical
Publication of JP3550601B2 publication Critical patent/JP3550601B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Description

【0001】
【産業上の利用分野】
本発明は撮影レンズの焦点調節状態を検出する焦点検出装置に関する。
【0002】
【従来の技術】
被写体の視差を有する一対の像を1対のイメージセンサー上に導き、これらのイメージセンサーの画像出力に基づいて一対の像の相対的なずれ量を算出し、撮影レンズの焦点調節状態を検出する位相差検出方式の焦点検出装置が知られている。
図4により、この種の焦点検出装置の概要を説明する。
撮影レンズ1の領域21を介して入射した被写体からの光束は、フィルム等価面6上で焦点を結んだ後、バンドパスフィルター7、視野マスク2、フィールドレンズ3、絞り開口部41および再結像レンズ51から構成される焦点検出光学系8を通り、イメージセンサー9のセンサー列9A上に結像する。同様に、撮影レンズ1の領域31を介して入射した被写体からの光束は、フィルム等価面6上で焦点を結んだ後、バンドパスフィルター7、視野マスク2、フィールドレンズ3、絞り開口部42および再結像レンズ52から構成される焦点検出光学系8を通り、イメージセンサー9のセンサー列9B上に結像する。
ここで、撮影レンズ1の領域21の大きさは絞り開口部41のフィールドレンズ3による逆投影像に等しく、同様に、領域31の大きさは絞り開口部42のフィールドレンズ3による逆投影像に等しい。
【0003】
焦点検出光学系8によりイメージセンサー9のセンサー列9A、9B上に結像した一対の被写体像の2次像は、撮影レンズ1により結像される被写体の鮮鋭像が予定焦点面よりも前に像を結ぶいわゆる前ピン状態では互いに近づき、逆に予定焦点面よりも後に像を結ぶいわゆる後ピン状態では互いに遠ざかる。また、撮影レンズ1により結像される被写体の鮮鋭像が予定焦点面に像を結ぶいわゆる合焦時には、イメージセンサー9のセンサー列9A、9B上の被写体像は相対的に一致する。
したがって、焦点検出光学系8により結像される一対の被写体像の2次像をイメージセンサー9のセンサー列9A、9Bで光電変換して電気信号に換え、これらの一対の被写体像信号を相関演算処理して一対の被写体像の2次像の相対位置を求めることにより、撮影レンズ1の焦点調節状態、ここでは合焦状態から離れている量とその方向(以下、デフォーカス量と呼ぶ)を検出する。
なお、焦点検出領域は、イメージセンサー9のセンサー列9A,9Bが焦点検出光学系8により逆投影されて予定焦点面近傍で重なった部分となる。
【0004】
次に、デフォーカス量を求める演算処理方法について述べる。
イメージセンサー9のセンサー列9A、9Bはそれぞれ複数の光電変換素子から成り、図5(a)、(b)に示すように複数の光電変換出力a1...an、b1...bnを出力する。そして、それぞれのデータ列を相対的に所定のデータ分Lずつシフトしながら相関演算を行う。具体的には相関量C(L)を次式により算出する。
【数1】
C(L)=Σ|ai−bj|
ここで、Σはi=k〜rの総和演算を表わす。また、Lはデータ列のシフト量に当たる整数であり、j−i=L、L=−lmax,...,−2,−1,0,1,2,...,lmax。
なお、数式1において、初項kと最終項rはシフト量Lに依存して変化させてもよい。
【0005】
こうして得られた相関量C(L)の中で、極小値となる相関量を与えるシフト量に図4に示す光学系およびイメージセンサーの光電変換素子のピッチ幅によって定まる定数を掛けたものがデフォーカス量となる。しかしながら、相関量C(L)は図5(c)に示すように離散的な値であり、検出可能なデフォーカス量の最小単位はイメージセンサー9のセンサー列9A、9Bの光電変換素子のピッチ幅によって制限されてしまう。
そこで、離散的な相関量C(L)に基づいて補間演算を行うことにより新たに極小値Cexを算出し、正確な焦点検出を行う方法が特開昭60−37513号公報に提案されている。これは、図6に示すように、極小値である相関量C(0)とその両側のシフト量での相関量C(1)、C(−1)によって算出する方法で、極小値Cexを与えるシフト量Fmとデフォーカス量DFは次式により求まる。
【数2】
DF=Kf*Fm,
Fm=L+DL/E,
DL={C(−1)−C(1)}/2,
Cex=C(0)−|DL|,
E=MAX[{C(1)−C(0)},{C(−1)−C(0)}]
ここで、MAX{Ca,Cb}はCaとCbの内の大きい方を選択することを意味し、Kfは図6に示す光学系およびイメージセンサー9の光電変換素子のピッチ幅によって定まる定数である。
【0006】
こうして得られたデフォーカス量が真にデフォーカス量を示しているのか、それともノイズなどによる相関量の揺らぎによるものなのかを判定する必要があり、次の条件を満たした時にデフォーカス量は信頼ありとする。
【数3】
E>E1 且つ Cex/E<G1
ここで、E1,G1は所定値である。
数式3において、Eは被写体のコントラストに依存する値であり、値が大きいほどコントラストが高く信頼性が高いことになり、Cex/Eは像の一致度に主に依存し、0に近いほど信頼性が高いことになる。そして、信頼性ありと判定されるとデフォーカス量DFに基づいて撮影レンズ1が駆動される。
【0007】
イメージセンサー9のセンサー列9A、9Bにより光電変換された被写体像信号は、被写体の輝度に応じて出力レベルが異なる。そのため、被写体の輝度に関わらず、被写体像信号が焦点検出演算に適するレベルになるように、被写体像信号を増幅する必要がある。また、電荷蓄積時間を制御することにより、被写体像信号を焦点検出演算に適したレベルにすることも可能である。
上述した位相差検出方式による焦点検出動作を繰り返し行うことにより、撮影レンズのデフォーカス量を繰り返し検出する。そして、検出されたデフォーカス量が信頼性有りと判定されると、検出されたデフォーカス量に基づいて撮影レンズの駆動を行い、撮影レンズの焦点調節状態が合焦または合焦状態と見なせるデフォーカス量となるまで駆動を行う。
また、撮影レンズの焦点調節状態が合焦または合焦状態と見なせるデフォーカス量にあると判定された後も、繰り返し焦点検出動作を行うことによって、撮影レンズの焦点調節状態が合焦状態であると見なせるデフォーカス量を越えたと判定されたときには、ただちに合焦または合焦状態と見なせるデフォーカス量になるまで撮影レンズを駆動することができる。
このように、繰り返し焦点検出動作を行うことにより撮影レンズは常に合焦状態を維持する。
【0008】
【発明が解決しようとする課題】
しかしながら、イメージセンサー9のセンサー列9A、9Bから出力される被写体像信号には、種々の電気回路からのノイズ成分や、光電変換素子の暗電流によるノイズ成分などが光電変換素子ごとにランダムに重畳している。また、光電変換素子の暗電流は動作温度が高くなるほど増加することが知られている。
そこで、例えば、信号増幅回路により、イメージセンサー9のセンサー列9A、9Bから出力される被写体像信号を焦点検出演算に適するレベルとなるように増幅すると、被写体像信号だけでなく被写体像信号に重畳するノイズ成分も増幅される。
【0009】
この問題を図3により詳細に説明する。
図3に示すグラフは、被写体像信号にノイズ成分が重畳している様子を示す図である。図において、縦軸は信号出力の大きさを示し、vを付した破線は焦点検出演算に適した出力レベルを示す。また、横軸はイメージセンサー9のセンサー列9Aの光電変換素子a1...anの並びを示す。なお以下では、被写体像信号には被写体像の信号成分とノイズ成分とが含まれているものとし、これらをそれぞれ被写体像成分およびノイズ成分と呼ぶ。
図3(a)、(b)−1、(c)−1は被写体像信号の増幅前の信号出力を示し、図3(b)−2、(c)−2は被写体像信号の増幅後の信号出力を示す。図3に示すグラフ中のAn1、Bn1、Bn2、Cn1、Cn2はノイズ成分の大きさを表し、As1、Bs1、Bs2、Cs1、Cs2は被写体像成分の大きさを表す。
図3(a)に示すイメージセンサー9からの出力信号は焦点検出演算に適切なレベルであるから、この被写体像信号を増幅する必要はない(増幅率1倍)。一方、図3(b)−1に示す被写体像信号の出力は、図3(a)の被写体像信号の出力の約半分であるから、焦点検出演算に適する出力レベルにするためには、約2倍の増幅率で増幅する必要がある。2倍の増幅率で増幅した結果を図3(b)−2に示す。図3(b)−1に示す被写体像成分の大きさBs1を2倍に増幅したたので、Bs2はBs1の約2倍の大きさになる。ところが、被写体像信号と同様にノイズ成分も増幅されるので、Bn1も約2倍のBn2の大きさになる。つまり、図3(a)における被写体像成分As1に対するノイズ成分An1の割合よりも、図3(b)−2における被写体像成分Bs2に対するノイズ成分Bn2の割合の方が大きくなる。
【0010】
同様に、図3(c)−1に示す被写体増信号の出力は図3(a)に示す被写体増信号の出力の約1/4であるから、焦点検出演算に適する出力レベルにするためには、約4倍の増幅率で増幅する必要がある。4倍の増幅率で増幅した結果を図3(c)−2に示す。図3(c)−1に示す被写体像成分の大きさCs1を4倍に増幅したので、Cs2はCS1の約4倍の大きさになる。ところが、被写体像成分と同様にノイズ成分も増幅されるから、Cn1も約4倍のCn2の大きさになる。
つまり、図3(b)−2における被写体像信号Bs2に対するノイズ成分Bn2の割合よりも、図3(c)−2における被写体像信号Cs2に対するノイズ成分Cn2の割合の方が大きくなる。
以上のことから、被写体像信号に対する増幅率が高くなるほど、被写体像成分に対するノイズ成分の割合が大きくなることが分かる。
上述したノイズはイメージセンサー9の一対のセンサー列9A、9Bの複数の光電変換素子にランダムに現れるので、上述した相関演算を行うと対の2次像の一致度に大きな影響を与えることになり、焦点検出演算結果は大きくばらついてしまう。
【0011】
また、蓄積時間を長くした場合にもノイズ成分が増える。これを図3を用いて詳細に説明する。ここで、図3(a)、(b)−1、(c)−1は同じ蓄積時間で電荷の蓄積を行ったものとし、図3(b)−2、(c)−2は、図3(b)−1、(c)−1に示す被写体像信号が焦点検出演算に適する出力レベルとなる蓄積時間を設定して、電荷の蓄積を行なったものとする。また、An1、Bn1、Bn2、Cn1、Cn2は暗電流の大きさを表し、他の符号は上述したとおりとする。
図3(a)は、イメージセンサー9の出力が焦点検出演算に適したレベルとなる蓄積時間で電荷蓄積を行なったものとする。図3(b)−1に示す被写体像信号の出力は、図3(a)の場合と同じ蓄積時間で蓄積を行ったにもかかわらず、図3(a)の被写体像信号の出力の約半分である。したがって、図3(b)−1の場合は、焦点検出演算に適した出力レベルにするために、図3(a)に比べ約2倍の蓄積時間で蓄積を行う必要がある。2倍の蓄積時間で蓄積を行った結果を図3(b)−2に示す。図3(b)−2に示す被写体像成分の大きさBs2は、2倍の蓄積時間で蓄積を行ったのでBs1の約2倍のBs2の大きさになる。ところが、暗電流も2倍の蓄積時間で蓄積されるので、Bn1も約2倍のBn2の大きさになる。
つまり、図3(a)における被写体像成分As1に対する暗電流An1の割合よりも、図3(b)−2における被写体像成分Bs2に対する暗電流Bn2の割合の方が大きくなることが分かる。
【0012】
同様に、図3(c)−1に示す被写体像信号の出力は、図3(a)に示す被写体像信号の出力の約1/4であるから、焦点検出演算に適する出力レベルにするためには約4倍の蓄積時間で蓄積を行う必要がある。4倍の蓄積時間で電荷の蓄積を行なった結果を図3(c)−2に示す。図3(c)−2に示す被写体像成分の大きさCs2は、4倍の蓄積時間で蓄積を行ったのでCs1の約4倍のCs2の大きさになる。ところが、暗電流も4倍の蓄積時間で蓄積されるので、Cn1も約4倍のCn2の大きさになる。
つまり、図3(b)−2に示す被写体像信号Bs2に対する暗電流Bn2の割合よりも、図3(c)−2に示す被写体像信号Cs2に対する暗電流Cn2の割合の方が大きくなる。
以上のことから、蓄積時間が長くなるほど、被写体像成分に対する暗電流の割合が大きくなることが分かる。
つまり、蓄積時間を長くした場合にも被写体像信号に占める暗電流のノイズ成分が増えるので、上述した相関演算を行うと対の2次像の一致度に大きく影響を与え、焦点検出演算結果は大きくばらついてしまう。
【0013】
このように、被写体像信号に重畳するノイズ成分によって焦点検出演算結果がばらつき、撮影レンズがいったん合焦した後も合焦近傍で細かく駆動される上に、撮影レンズの焦点調節状態を示すファインダー内の表示も不安定になるので、撮影者に煩わしさを与える。また、撮影レンズが合焦した時だけシャッターレリーズが許可される、いわゆる合焦優先の撮影時には、ノイズ成分の重畳によって焦点検出演算結果がばらつき、撮影レンズが合焦近傍にあってもシャッターレリーズが禁止されることになり、シャッターチャンスを逃すこともある。
【0014】
本発明の目的は、被写体像信号に重畳するノイズ成分の影響を排除して正確な焦点検出を行うようにした焦点検出装置を提供することにある。
【0015】
【課題を解決するための手段】
上記目的を達成するために、請求項1の発明は、被写体像の光強度分布に応じた被写体像信号を出力する光電変換素子列と、撮影レンズを通過した被写体からの光束を前記光電変換素子列へ導き、前記被写体像を結像する焦点検出光学系と、前記光電変換素子列から出力される被写体像信号を増幅する信号増幅手段と、この信号増幅手段により増幅された被写体像信号に基づいて前記撮影レンズの焦点調節状態を演算する焦点検出演算手段と、この焦点検出演算手段により演算された焦点調節状態を所定の合焦許容範囲と比較して前記撮影レンズの合焦/非合焦を判定する合焦判定手段とを備えた焦点検出装置であって、前記信号増幅手段の増幅率が高くなるほど前記合焦判定手段の合焦許容範囲が広くなるように変更する合焦許容範囲変更手段を備える。
請求項2の発明は、被写体像の光強度分布に応じた被写体像信号を出力する光電変換素子列と、撮影レンズを通過した被写体からの光束を前記光電変換素子列へ導き、前記被写体像を結像する焦点検出光学系と、前記光電変換素子列の電荷蓄積時間を制御する蓄積制御手段と、前記光電変換素子列から出力された被写体像信号に基づいて前記撮影レンズの焦点調節状態を演算する焦点検出演算手段と、この焦点検出演算手段により演算された焦点調節状態を所定の合焦許容範囲と比較して前記撮影レンズの合焦/非合焦を判定する合焦判定手段とを備えた焦点検出装置であって、前記蓄積制御手段の電荷蓄積時間が長くなるほど前記合焦判定手段の合焦許容範囲が広くなるように変更する合焦許容範囲変更手段を備える。
請求項3の発明は、被写体像の光強度分布に応じた被写体像信号を出力する光電変換素子列と、撮影レンズを通過した被写体からの光束を前記光電変換素子列へ導き、前記被写体像を結像する焦点検出光学系と、前記光電変換素子列から出力される被写体像信号を増幅する信号増幅手段と、前記光電変換素子列の電荷蓄積時間を制御する蓄積制御手段と、前記信号増幅手段により増幅された被写体像信号に基づいて前記撮影レンズの焦点調節状態を演算する焦点検出演算手段と、この焦点検出演算手段により演算された焦点調節状態を所定の合焦許容範囲と比較して前記撮影レンズの合焦/非合焦を判定する合焦判定手段とを備えた焦点検出装置であって、前記信号増幅手段の増幅率と前記蓄積制御手段の電荷蓄積時間とに応じて前記合焦判定手段の合焦許容範囲を変更し、増幅率が高くなるほど、電荷蓄積時間が長くなるほど合焦許容範囲を広くする合焦許容範囲変更手段を備える。
請求項4の発明は、被写体像の光強度分布に応じた被写体像信号を出力する光電変換素子列と、撮影レンズを通過した被写体からの光束を前記光電変換素子列へ導き、前記被写体像を結像する焦点検出光学系と、前記光電変換素子列から出力された被写体像信号に基づいて前記撮影レンズの焦点調節状態を演算する焦点検出演算手段と、この焦点検出演算手段により演算された焦点調節状態を所定の合焦許容範囲と比較して前記撮影レンズの合焦/非合焦を判定する合焦判定手段とを備えた焦点検出装置であって、前記光電変換素子列の周囲温度を検出する温度検出手段と、この温度検出手段により検出された周囲温度が高くなるほど前記合焦判定手段の合焦許容範囲が広くなるように変更する合焦許容範囲変更手段とを備える。
請求項5の焦点検出装置は前記光電変換素子列の周囲温度を検出する温度検出手段を備え、前記合焦許容範囲変更手段によって、前記蓄積制御手段の電荷蓄積時間に応じて変更した合焦許容範囲を、前記温度検出手段により検出された周囲温度に基づいて補正するようにしたものである。
請求項6の焦点検出装置は、前記光電変換素子列の周囲温度を検出する温度検出手段を備え、前記合焦許容範囲変更手段によって、前記信号増幅手段の増幅率と前記蓄積制御手段の電荷蓄積時間とに応じて変更した合焦許容範囲を、前記温度検出手段により検出された周囲温度に基づいて補正するようにしたものである。
【0016】
【作用】
請求項1の焦点検出装置では、被写体像信号の増幅率が高くなるほど撮影レンズの合焦許容範囲が広くなるように変更し、焦点検出演算結果の焦点調節状態を変更後の合焦許容範囲と比較して撮影レンズの合焦/非合焦を判定する。これにより、被写体像信号の増幅率が高くなって被写体像信号のノイズ成分が増加し、焦点検出演算結果が大きくばらついても、そのばらつきをキャンセルするように合焦許容範囲が広く変更されるので、正確な合焦/非合焦の判定がなされ、合焦近傍での撮影レンズの動きと表示器による合焦表示が安定する。
請求項2の焦点検出装置では、光電変換素子列の電荷蓄積時間が長くなるほど撮影レンズの合焦許容範囲が広くなるように変更し、焦点検出演算結果の焦点調節状態を変更後の合焦許容範囲と比較して撮影レンズの合焦/非合焦を判定する。これにより、電荷蓄積時間が長くなって被写体像信号のノイズ成分が増加し、焦点検出演算結果が大きくばらついても、そのばらつきをキャンセルするように合焦許容範囲が広く変更されるので、正確な合焦/非合焦の判定がなされ、合焦近傍での撮影レンズの動きと表示器による合焦表示が安定する。
請求項3の焦点検出装置では、被写体像信号の増幅率が高くなるほど、光電変換素子列の電荷蓄積時間が長くなるほど、撮影レンズの合焦許容範囲が広くなるように変更し、焦点検出演算結果の焦点調節状態を変更後の合焦許容範囲と比較して撮影レンズの合焦/非合焦を判定する。これにより、増幅率が高くなり、且つ電荷蓄積時間が長くなって光電変換素子列から出力される被写体像信号のノイズ成分が増加し、焦点検出演算結果が大きくばらついても、そのばらつきをキャンセルするように合焦許容範囲が広く変更されるので、正確な合焦/非合焦の判定がなされ、合焦近傍での撮影レンズの動きと表示器による合焦表示が安定する。
請求項4の焦点検出装置では、光電変換素子列の周囲温度が高くなるほど撮影レンズの合焦許容範囲が広くなるように変更し、焦点検出演算結果の焦点調節状態を変更後の合焦許容範囲と比較して撮影レンズの合焦/非合焦を判定する。これにより、周囲温度が高くなって光電変換素子列から出力される被写体像信号の暗電流のノイズ成分が増加し、焦点検出演算結果が大きくばらついても、そのばらつきをキャンセルするように合焦許容範囲が広く変更されるので、正確な合焦/非合焦の判定がなされ、合焦近傍での撮影レンズの動きと表示器による合焦表示が安定する。
請求項5の焦点検出装置では、電荷蓄積時間に応じて変更した合焦許容範囲を、光電変換素子列の周囲温度に基づいて補正する。これにより、正確な合焦/非合焦の判定がなされ、合焦近傍での撮影レンズの動きと表示器による合焦表示が安定する。
請求項6の焦点検出装置では、被写体像信号の増幅率と光電変換素子列の電荷蓄積時間とに応じて変更した合焦許容範囲を、光電変換素子列の周囲温度に基づいて補正する。これにより、正確な合焦/非合焦の判定がなされ、合焦近傍での撮影レンズの動きと表示器による合焦表示が安定する。
【0017】
【実施例】
本発明の焦点検出装置を一眼レフレックスカメラに適用した一実施例を説明する。
図1は焦点検出装置を備えた一眼レフレックスカメラの断面図である。なお、図4に示す機器と同様な機器に対しては同一の符号を付して説明を省略する。
図において、10は信号増幅回路、11は焦点検出演算回路、12は蓄積制御回路、13はモータ駆動制御回路、14はモータ、15はメインミラー、16はサブミラー、17はフィルム面、18はファインダースクリーン、19はペンタダハプリズム、20は接眼レンズ、22は温度検出装置である。
撮影レンズ1を通過した被写体からの光束はメインミラー15により上方に偏向され、ファインダースクリーン18、ペンタダハプリズム19、接眼レンズ20からなるファインダー光学系に導かれる。
メインミラー15の後方に配置されたフィルム面17には、感光フィルムが配置される。撮影時にはメインミラー15とサブミラー16が撮影レンズ1とフィルム面17の光路から退避され、撮影レンズ1を通過した被写体からの光束によりフィルム面17に配置された感光フィルムが露光される。
【0018】
また、メインミラー15の一部分は半透過になっており、この半透過部の後方にはサブミラー16が取り付けてある。メインミラー15の半透過部を透過した被写体からの光束は、サブミラー16によりカメラボディの底方向に偏向され、撮影レンズ1のフィルム等価面6の近傍に配置された焦点検出光学系8へ導かれる。さらに、焦点検出光学系8を通過した被写体からの光束は電荷蓄積型イメージセンサー9へ導かれる。
なお、焦点検出光学系8とイメージセンサー9は、撮影画面上に設定された焦点検出領域において焦点検出が可能なように構成されている。
イメージセンサー9は、センサー列9A、9B上に形成された被写体像の2次像を光電変換し、被写体像の光強度分布に対応する電気的な被写体像信号を発生して信号増幅回路10へ送る。
【0019】
信号増幅回路10は、イメージセンサー9から出力される被写体像信号を増幅し、焦点検出演算回路11へ送る。蓄積制御回路12は、この信号増幅回路10の増幅率を制御する。
焦点検出演算回路11は、被写体像信号を上述した焦点検出演算により処理し、撮影レンズ1の結像面とフィルム等価面6との間のデフォーカス量を算出する。また、焦点検出演算回路11は増幅された被写体像信号の情報を蓄積制御回路12へ送る。蓄積制御回路12は次回の電荷蓄積時間と増幅率を決定し、イメージセンサー9のセンサー列A、Bの電荷蓄積動作を制御する。
モータ駆動制御回路13は、焦点検出演算回路11により算出されたデフォーカス量に基づいてモータ14の駆動方向および駆動量を制御する。モータ14は撮影レンズ1と機械的に結合しており、モータ駆動制御回路13により駆動量と駆動速度が制御され、撮影レンズ1を合焦状態にする。
【0020】
以上の実施例の構成において、イメージセンサー9が光電変換素子列を、焦点検出演算回路11が焦点検出演算手段、合焦判定手段および合焦許容範囲変更手段を、蓄積制御回路12が蓄積制御手段を、温度検出装置22が温度検出手段をそれぞれ構成する。なお、これらの各手段は上記実施例に限定されない。
【0021】
図2は焦点検出動作を示すフローチャートである。図2により、実施例の焦点検出動作を説明する。
ステップ(以下、図面では単にSと記述する)100において、不図示のカメラのメインスイッチが投入されるか、あるいは不図示のレリーズボタンが半押しされると、焦点検出動作を開始する。ステップ101で、蓄積制御回路12に設定された蓄積時間でイメージセンサー9の蓄積制御を行い、蓄積制御回路12に設定された増幅率で信号増幅回路10により被写体像信号の増幅を行う。なお、焦点検出動作を開始した直後には蓄積制御を行うための情報がないので、初期設定に従って蓄積制御を行う。
ステップ102で、焦点検出演算回路11により、被写体像信号の増幅率に応じて合焦許容範囲の設定を行う。例えば、基準合焦許容範囲をDo、増幅率の倍率をGn、所定値をαとすると、合焦許容範囲Dは次式により求められる。
【数4】
D=±{Do+α*(Gn−1)}
【0022】
ステップ103で、焦点検出演算回路11により、信号増幅回路10から被写体像信号を読み込んで撮影レンズ1のデフォーカス量を算出する。続くステップ104で、焦点検出演算回路11により算出されたデフォーカス量がステップ102で設定された合焦許容範囲内にあるか否かを判定する。合焦許容範囲内にあればステップ106へ進み、許容範囲外であればステップ105へ進む。合焦許容範囲外の時はステップ105で、焦点検出演算回路11により算出されたデフォーカス量にしたがって、モータ駆動制御回路13によりモータ14を駆動制御し、撮影レンズ1を合焦位置へ駆動する。一方、合焦許容範囲内の時は、ステップ106でシャッターレリーズを許可する。
このように、被写体像信号の増幅率が高い場合に被写体像信号のノイズ成分による焦点検出演算結果のばらつきが発生しても、安定した撮影動作が可能になる。
【0023】
上述した実施例ではいわゆる合焦優先とし、ステップ106でレリーズ許可を与えたが、いわゆるレリーズ優先とする場合は、ステップ106で表示器に合焦表示を行うようにしてもよい。
【0024】
また、上述した実施例では被写体像信号の増幅率に基づいて合焦許容範囲を設定したが、電荷蓄積時間に基づいて合焦許容範囲を設定してもよい。この場合は、基準合焦許容範囲をDo、基準蓄積時間をTo、蓄積時間をTn、所定値をβとすると、合焦許容範囲Dは次式により求められる。
【数5】
D=±{Do+β*(Tn−To)},
ただし、Tn<Toの時、Tn=To
【0025】
さらに、被写体像信号の増幅率と蓄積時間とに基づいて合焦許容範囲を設定するようにしてもよい。この場合は、基準合焦許容範囲をDo、増幅率の倍率をGn、所定値をα、基準蓄積時間をTo、蓄積時間をTn、所定値をβとすると、合焦許容範囲Dは次式により求められる。
【数6】
D=±{Do+α*(Gn−1)+β*(Tn−To)},
ただし、Tn<Toの時、Tn=To
【0026】
さらにまた、暗電流はイメージセンサー9の動作温度が高いほど大きくなるので、温度検出装置22による検出温度に基づいて合焦許容範囲Dを設定するようにしてもよい。この場合は、数式5または数式6の所定値βを、温度が高いほど大きな値になる、温度kに依存する変数β(k)としてそれぞれ数式7または数式8により合焦許容範囲Dを求める。
【数7】
D=±{Do+β(k)*(Tn−To)},
ただし、Tn<Toの時、Tn=To
【数8】
D=±{Do+α*(Gn−1)+β(k)*(Tn−To)},
ただし、Tn<Toの時、Tn=To
【0027】
【発明の効果】
以上説明したように請求項1の発明によれば、被写体像信号の増幅率が高くなるほど撮影レンズの合焦許容範囲が広くなるように変更し、焦点検出演算結果の焦点調節状態を変更後の合焦許容範囲と比較して撮影レンズの合焦/非合焦を判定するようにしたので、被写体像信号の増幅率が高くなって被写体像信号のノイズ成分が増加し、それにより焦点検出演算結果が大きくばらついても、そのばらつきをキャンセルするように合焦許容範囲が広く変更されて正確な合焦/非合焦の判定がなされ、合焦近傍での撮影レンズの動きと表示器による合焦表示が安定する。
請求項2の発明によれば、光電変換素子列の電荷蓄積時間が長くなるほど撮影レンズの合焦許容範囲が広くなるように変更し、焦点検出演算結果の焦点調節状態を変更後の合焦許容範囲と比較して撮影レンズの合焦/非合焦を判定するようにしたので、電荷蓄積時間が長くなって被写体像信号のノイズ成分が増加し、それにより焦点検出演算結果が大きくばらついても、そのばらつきをキャンセルするように合焦許容範囲が広く変更されて正確な合焦/非合焦の判定がなされ、合焦近傍での撮影レンズの動きと表示器による合焦表示が安定する。
請求項3の発明によれば、被写体像信号の増幅率が高くなるほど、光電変換素子列の電荷蓄積時間が長くなるほど、撮影レンズの合焦許容範囲が広くなるように変更し、焦点検出演算結果の焦点調節状態を変更後の合焦許容範囲と比較して撮影レンズの合焦/非合焦を判定するようにしたので、増幅率が高くなり、且つ電荷蓄積時間が長くなって光電変換素子列から出力される被写体像信号のノイズ成分が増加し、それにより焦点検出演算結果が大きくばらついても、そのばらつきをキャンセルするように合焦許容範囲が広く変更されて正確な合焦/非合焦の判定がなされ、合焦近傍での撮影レンズの動きと表示器による合焦表示が安定する。
請求項4の発明によれば、光電変換素子列の周囲温度が高くなるほど撮影レンズの合焦許容範囲が広くなるように変更し、焦点検出演算結果の焦点調節状態を変更後の合焦許容範囲と比較して撮影レンズの合焦/非合焦を判定するようにしたので、周囲温度が高くなって光電変換素子列から出力される被写体像信号の暗電流のノイズ成分が増加し、それにより焦点検出演算結果が大きくばらついても、そのばらつきをキャンセルするように合焦許容範囲が広く変更されて正確な合焦/非合焦の判定がなされ、合焦近傍での撮影レンズの動きと表示器による合焦表示が安定する。
請求項5の発明によれば、電荷蓄積時間に応じて変更した合焦許容範囲を、光電変換素子列の周囲温度に基づいて補正するようにしたので、正確な合焦/非合焦の判定がなされ、合焦近傍での撮影レンズの動きと表示器による合焦表示が安定する。
請求項6の発明によれば、被写体像信号の増幅率と光電変換素子列の電荷蓄積時間とに応じて変更した合焦許容範囲を、光電変換素子列の周囲温度に基づいて補正するようにしたので、正確な合焦/非合焦の判定がなされ、合焦近傍での撮影レンズの動きと表示器による合焦表示が安定する。
【図面の簡単な説明】
【図1】一実施例の構成を示すブロック図。
【図2】一実施例の焦点検出動作を示すフローチャート。
【図3】被写体像信号の説明図。
【図4】位相差検出方式の焦点検出装置の光学系およびイメージセンサーを示す図。
【図5】相関演算の説明図。
【図6】相関演算の説明図。
【符号の説明】
1 撮影レンズ
2 視野マスク
3 フィールドレンズ
6 フィルム等価面
7 バンドパスフィルター
8 焦点検出光学系
9 イメージセンサー
15 メインミラー
16 サブミラー
17 フィルム面
18 ファインダースクリーン
19 ペンタダハプリズム
20 接眼レンズ
21,31 絞り開口部の逆投影像
22 温度検出装置
41,42 絞り開口部
51,52 再結像レンズ
[0001]
[Industrial applications]
The present invention relates to a focus detection device that detects a focus adjustment state of a photographing lens.
[0002]
[Prior art]
A pair of images having a parallax of a subject is guided on a pair of image sensors, a relative shift amount between the pair of images is calculated based on image outputs of these image sensors, and a focus adjustment state of the photographing lens is detected. 2. Description of the Related Art A phase difference detection type focus detection device is known.
An outline of this type of focus detection device will be described with reference to FIG.
The light beam from the subject incident through the area 21 of the photographing lens 1 is focused on the film equivalent surface 6, and then the bandpass filter 7, the field mask 2, the field lens 3, the aperture opening 41, and the re-imaging. The light passes through a focus detection optical system 8 composed of a lens 51 and forms an image on a sensor array 9A of the image sensor 9. Similarly, the luminous flux from the subject incident through the area 31 of the photographing lens 1 is focused on the film equivalent surface 6, and then the bandpass filter 7, the field mask 2, the field lens 3, the aperture opening 42, The light passes through the focus detection optical system 8 composed of the re-imaging lens 52 and forms an image on the sensor array 9B of the image sensor 9.
Here, the size of the area 21 of the taking lens 1 is equal to the back projection image of the aperture opening 41 by the field lens 3, and similarly, the size of the area 31 is the back projection image of the aperture opening 42 by the field lens 3. equal.
[0003]
The secondary image of the pair of subject images formed on the sensor rows 9A and 9B of the image sensor 9 by the focus detection optical system 8 is such that the sharp image of the subject formed by the photographing lens 1 is located before the planned focal plane. In a so-called front focus state where an image is formed, they approach each other, and conversely, in a so-called rear focus state where an image is formed behind a predetermined focal plane, they move away from each other. When a sharp image of a subject formed by the photographing lens 1 forms an image on a predetermined focal plane, that is, when the subject is in focus, the subject images on the sensor arrays 9A and 9B of the image sensor 9 relatively match.
Therefore, the secondary image of the pair of subject images formed by the focus detection optical system 8 is photoelectrically converted by the sensor arrays 9A and 9B of the image sensor 9 and converted into electric signals, and the pair of subject image signals are correlated. By processing and calculating the relative position of the secondary image of the pair of subject images, the focus adjustment state of the photographing lens 1, here, the amount away from the in-focus state and its direction (hereinafter, referred to as defocus amount) To detect.
Note that the focus detection area is a portion where the sensor rows 9A and 9B of the image sensor 9 are back-projected by the focus detection optical system 8 and overlapped near the planned focal plane.
[0004]
Next, an arithmetic processing method for obtaining the defocus amount will be described.
Each of the sensor rows 9A and 9B of the image sensor 9 includes a plurality of photoelectric conversion elements, and as shown in FIGS. 5A and 5B, a plurality of photoelectric conversion outputs a1. . . an, b1. . . bn is output. Then, a correlation operation is performed while relatively shifting each data string by a predetermined data amount L. Specifically, the correlation amount C (L) is calculated by the following equation.
(Equation 1)
C (L) = Σ | ai−bj |
Here, Σ represents the summation operation of i = k to r. L is an integer corresponding to the shift amount of the data string, ji = L, L = −lmax,. . . , -2, -1, 0, 1, 2,. . . , Lmax.
In Equation 1, the first term k and the last term r may be changed depending on the shift amount L.
[0005]
Among the correlation amounts C (L) obtained in this manner, the value obtained by multiplying the shift amount giving the minimum correlation value by a constant determined by the pitch width of the photoelectric conversion elements of the optical system and the image sensor shown in FIG. It becomes the focus amount. However, the correlation amount C (L) is a discrete value as shown in FIG. 5C, and the minimum unit of the detectable defocus amount is the pitch of the photoelectric conversion elements of the sensor rows 9A and 9B of the image sensor 9. It is limited by width.
Therefore, a method of calculating a new minimum value Cex by performing an interpolation operation based on the discrete correlation amount C (L) and performing accurate focus detection has been proposed in Japanese Patent Application Laid-Open No. 60-37513. . This is, as shown in FIG. 6, a method of calculating the correlation value C (0), which is the minimum value, and the correlation amounts C (1), C (-1) with the shift amounts on both sides of the correlation value. The given shift amount Fm and defocus amount DF are obtained by the following equations.
(Equation 2)
DF = Kf * Fm,
Fm = L + DL / E,
DL = {C (−1) −C (1)} / 2,
Cex = C (0) − | DL |,
E = MAX [{C (1) -C (0)}, {C (-1) -C (0)}]
Here, MAX {Ca, Cb} means selecting the larger one of Ca and Cb, and Kf is a constant determined by the pitch width of the photoelectric conversion element of the optical system and the image sensor 9 shown in FIG. .
[0006]
It is necessary to determine whether the defocus amount obtained in this way truly indicates the defocus amount or whether the defocus amount is due to fluctuations in the correlation amount due to noise or the like. There is.
(Equation 3)
E> E1 and Cex / E <G1
Here, E1 and G1 are predetermined values.
In Equation 3, E is a value that depends on the contrast of the subject. The larger the value, the higher the contrast and the higher the reliability. Cex / E mainly depends on the degree of coincidence of the images, and the closer to 0, the higher the reliability. Will be high. Then, when it is determined that there is reliability, the photographing lens 1 is driven based on the defocus amount DF.
[0007]
The output level of the subject image signal photoelectrically converted by the sensor arrays 9A and 9B of the image sensor 9 differs depending on the brightness of the subject. Therefore, it is necessary to amplify the subject image signal so that the subject image signal is at a level suitable for the focus detection calculation regardless of the brightness of the subject. Further, by controlling the charge accumulation time, the subject image signal can be set to a level suitable for the focus detection calculation.
By repeatedly performing the focus detection operation using the above-described phase difference detection method, the defocus amount of the photographing lens is repeatedly detected. When it is determined that the detected defocus amount is reliable, the photographing lens is driven based on the detected defocus amount, and the focus adjustment state of the photographing lens is defocused or defocused. Drive is performed until the focus amount is reached.
Further, even after it is determined that the focus adjustment state of the photographing lens is in focus or a defocus amount that can be regarded as the in-focus state, the focus adjustment state of the photographing lens is in the focused state by repeatedly performing the focus detection operation. When it is determined that the defocus amount has exceeded the defocus amount that can be considered, the imaging lens can be driven immediately until the focus or the defocus amount that can be considered as the focused state is reached.
As described above, by repeatedly performing the focus detection operation, the photographing lens always maintains the in-focus state.
[0008]
[Problems to be solved by the invention]
However, noise components from various electric circuits and noise components due to dark current of photoelectric conversion elements are randomly superimposed on the subject image signals output from the sensor arrays 9A and 9B of the image sensor 9 for each photoelectric conversion element. are doing. It is known that the dark current of a photoelectric conversion element increases as the operating temperature increases.
Therefore, for example, when the subject image signals output from the sensor arrays 9A and 9B of the image sensor 9 are amplified to a level suitable for focus detection calculation by a signal amplification circuit, the subject image signals are superimposed on the subject image signals as well as the subject image signals. Noise component is also amplified.
[0009]
This problem will be described in detail with reference to FIG.
The graph shown in FIG. 3 is a diagram illustrating a state in which a noise component is superimposed on the subject image signal. In the figure, the vertical axis indicates the magnitude of the signal output, and the dashed line with v indicates the output level suitable for the focus detection calculation. The horizontal axis represents the photoelectric conversion elements a1. . . Indicates the arrangement of an. Hereinafter, it is assumed that the subject image signal includes a signal component of the subject image and a noise component, and these are referred to as a subject image component and a noise component, respectively.
3 (a), (b) -1 and (c) -1 show the signal outputs before the amplification of the subject image signal, and FIGS. 3 (b) -2 and (c) -2 show the signal outputs after the amplification of the subject image signal. 3 shows the signal output. In the graph shown in FIG. 3, An1, Bn1, Bn2, Cn1, and Cn2 represent the magnitude of the noise component, and As1, Bs1, Bs2, Cs1, and Cs2 represent the magnitude of the subject image component.
Since the output signal from the image sensor 9 shown in FIG. 3A is at an appropriate level for the focus detection calculation, there is no need to amplify this subject image signal (amplification factor is 1). On the other hand, the output of the subject image signal shown in FIG. 3B-1 is about half of the output of the subject image signal of FIG. 3A. It is necessary to amplify by a factor of two. FIG. 3B-2 shows the result of amplification at a double amplification rate. Since the size Bs1 of the subject image component shown in FIG. 3B-1 is doubled, Bs2 is about twice as large as Bs1. However, since the noise component is also amplified in the same manner as the subject image signal, Bn1 is about twice as large as Bn2. That is, the ratio of the noise component Bn2 to the subject image component Bs2 in FIG. 3B-2 is larger than the ratio of the noise component An1 to the subject image component As1 in FIG.
[0010]
Similarly, the output of the subject increase signal shown in FIG. 3 (c) -1 is about 1/4 of the output of the subject increase signal shown in FIG. 3 (a). Need to be amplified with an amplification factor of about 4 times. FIG. 3 (c) -2 shows the result of amplification at a 4-fold amplification rate. Since the size Cs1 of the subject image component shown in FIG. 3C-1 is amplified four times, Cs2 is about four times as large as CS1. However, since the noise component is also amplified in the same manner as the subject image component, Cn1 is about four times as large as Cn2.
That is, the ratio of the noise component Cn2 to the subject image signal Cs2 in FIG. 3C-2 is larger than the ratio of the noise component Bn2 to the subject image signal Bs2 in FIG.
From the above, it can be seen that as the amplification factor for the subject image signal increases, the ratio of the noise component to the subject image component increases.
Since the above-mentioned noise appears at random in the plurality of photoelectric conversion elements of the pair of sensor rows 9A and 9B of the image sensor 9, the above-described correlation operation has a great effect on the degree of coincidence of the pair of secondary images. In addition, the focus detection calculation results greatly vary.
[0011]
Also, when the accumulation time is increased, the noise component increases. This will be described in detail with reference to FIG. Here, FIGS. 3 (a), (b) -1, and (c) -1 assume that electric charges are accumulated in the same accumulation time, and FIGS. 3 (b) -2 and (c) -2 show the figures. It is assumed that charge accumulation is performed by setting an accumulation time during which the subject image signals shown in 3 (b) -1 and (c) -1 have output levels suitable for focus detection calculation. Also, An1, Bn1, Bn2, Cn1, and Cn2 represent the magnitude of the dark current, and the other symbols are as described above.
In FIG. 3A, it is assumed that charge accumulation is performed during an accumulation time when the output of the image sensor 9 is at a level suitable for the focus detection calculation. The output of the subject image signal shown in FIG. 3B-1 is approximately equal to the output of the subject image signal of FIG. Half. Therefore, in the case of FIG. 3 (b) -1, it is necessary to perform the accumulation in about twice as long as in FIG. 3 (a) in order to make the output level suitable for the focus detection calculation. FIG. 3B-2 shows the result of performing the accumulation for twice the accumulation time. The size Bs2 of the subject image component shown in FIG. 3B-2 is about twice as large as Bs1 because the accumulation is performed in twice the accumulation time. However, since the dark current is also accumulated in twice the accumulation time, Bn1 is about twice as large as Bn2.
That is, it can be seen that the ratio of the dark current Bn2 to the subject image component Bs2 in FIG. 3B-2 is larger than the ratio of the dark current An1 to the subject image component As1 in FIG.
[0012]
Similarly, the output of the subject image signal shown in FIG. 3 (c) -1 is about 1 / of the output of the subject image signal shown in FIG. 3 (a), so that the output level is suitable for focus detection calculation. Needs to be accumulated in about four times the accumulation time. FIG. 3C-2 shows the result of accumulating the electric charges in four times the accumulation time. The size Cs2 of the subject image component shown in FIG. 3C-2 is about four times Cs2 since Cs1 is accumulated for four times the accumulation time. However, since the dark current is also accumulated in four times as long as the accumulation time, Cn1 is about four times as large as Cn2.
That is, the ratio of the dark current Cn2 to the subject image signal Cs2 shown in FIG. 3C-2 is larger than the ratio of the dark current Bn2 to the subject image signal Bs2 shown in FIG.
From the above, it can be seen that the ratio of the dark current to the subject image component increases as the accumulation time increases.
That is, even when the accumulation time is lengthened, the noise component of the dark current occupying the subject image signal increases. Therefore, when the above-described correlation operation is performed, the degree of coincidence between the paired secondary images is greatly affected. It will vary greatly.
[0013]
As described above, the focus detection calculation result fluctuates due to the noise component superimposed on the subject image signal, and even after the photographing lens is once focused, it is finely driven in the vicinity of the in-focus state. Is also unstable, giving the photographer annoyance. In addition, in the case of so-called focusing priority, the focus detection calculation result fluctuates due to the superposition of noise components, and the shutter release is performed even when the shooting lens is in the vicinity of focus. You will be banned and you may miss a photo opportunity.
[0014]
SUMMARY OF THE INVENTION It is an object of the present invention to provide a focus detection device that performs accurate focus detection while eliminating the influence of a noise component superimposed on a subject image signal.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 includes a photoelectric conversion element array that outputs a subject image signal according to a light intensity distribution of a subject image, and a photoelectric conversion element that outputs a light flux from a subject that has passed through a photographic lens. A focus detection optical system that guides the subject image to the column, forms an image of the subject, a signal amplifying unit that amplifies a subject image signal output from the photoelectric conversion element row, and a subject image signal amplified by the signal amplifying unit. Focus detection calculating means for calculating the focus adjustment state of the photographic lens, and comparing the focus adjustment state calculated by the focus detection calculation means with a predetermined allowable focus range to focus or defocus the photographic lens. A focus detection device comprising: The higher the Focusable range of the focus determination means So that It is provided with a focusing allowable range changing means for changing.
According to a second aspect of the present invention, a photoelectric conversion element array for outputting a subject image signal according to a light intensity distribution of a subject image, and a light beam from a subject that has passed through a photographic lens are guided to the photoelectric conversion element row to convert the subject image. A focus detection optical system that forms an image; an accumulation control unit that controls a charge accumulation time of the photoelectric conversion element array; and a focus adjustment state of the photographing lens based on a subject image signal output from the photoelectric conversion element array. And a focus determination unit for comparing the focus adjustment state calculated by the focus detection calculation unit with a predetermined allowable focus range to determine whether the photographing lens is in focus or out of focus. A focus detection device, wherein the charge storage time of the storage control means is The longer Focusable range of the focus determination means So that It is provided with a focusing allowable range changing means for changing.
According to a third aspect of the present invention, a photoelectric conversion element array that outputs a subject image signal according to the light intensity distribution of the subject image, and a light beam from the subject that has passed through a photographic lens is guided to the photoelectric conversion element row to convert the subject image. A focus detection optical system that forms an image; a signal amplifying unit that amplifies a subject image signal output from the photoelectric conversion element array; an accumulation control unit that controls a charge accumulation time of the photoelectric conversion element array; Focus detection calculating means for calculating the focus adjustment state of the photographing lens based on the subject image signal amplified by the above, and comparing the focus adjustment state calculated by the focus detection calculation means with a predetermined in-focus allowable range, A focus detection device comprising: focus determination means for determining whether the photographing lens is in focus or out of focus, wherein the focus is determined in accordance with an amplification factor of the signal amplification means and a charge accumulation time of the accumulation control means. Size Change the focus allowable range of means However, the higher the amplification rate and the longer the charge accumulation time, the wider the focusing allowable range. And a focus permissible range changing unit.
According to a fourth aspect of the present invention, a photoelectric conversion element array that outputs a subject image signal according to a light intensity distribution of a subject image, and a light beam from a subject that has passed through a photographic lens are guided to the photoelectric conversion element row to convert the subject image. A focus detection optical system for forming an image; focus detection calculation means for calculating a focus adjustment state of the photographing lens based on a subject image signal output from the photoelectric conversion element array; and a focus calculated by the focus detection calculation means. A focus determining unit for comparing the adjustment state with a predetermined allowable focus range to determine whether the photographing lens is in focus or out of focus. Temperature detecting means to be detected and the ambient temperature detected by the temperature detecting means The higher the Focusable range of the focus determination means So that Focusing range changing means for changing.
6. The focus detection device according to claim 5, further comprising a temperature detection unit for detecting an ambient temperature of the photoelectric conversion element array, wherein the focus allowable range changed by the focus allowable range changing unit in accordance with the charge accumulation time of the accumulation control unit. The range is corrected based on the ambient temperature detected by the temperature detecting means.
7. The focus detection device according to claim 6, further comprising a temperature detection unit for detecting an ambient temperature of the photoelectric conversion element array, wherein the focus allowable range changing unit changes an amplification factor of the signal amplification unit and a charge accumulation of the accumulation control unit. The focus permissible range changed according to time is corrected based on the ambient temperature detected by the temperature detecting means.
[0016]
[Action]
In the focus detection device according to the first aspect, the amplification factor of the subject image signal The higher the Focusing range of shooting lens So that Then, the focus adjustment state of the focus detection calculation result is compared with the changed allowable focus range to determine whether the photographing lens is in focus or out of focus. As a result, even if the amplification factor of the subject image signal increases, the noise component of the subject image signal increases, and even if the focus detection calculation results vary widely, the allowable focus range is set so as to cancel the variation. Wide Since the focus is changed, an accurate in-focus / out-of-focus determination is made, and the movement of the photographing lens near the in-focus state and the in-focus display by the display unit are stabilized.
In the focus detection device according to the second aspect, the charge accumulation time of the photoelectric conversion element array The longer Focusing range of shooting lens So that Then, the focus adjustment state of the focus detection calculation result is compared with the changed focus allowable range to determine whether the photographing lens is in focus or out of focus. As a result, even if the charge accumulation time is prolonged and the noise component of the subject image signal increases, and the focus detection calculation result greatly varies, the allowable focus range is set so as to cancel the variation. Wide Since the focus is changed, an accurate in-focus / out-of-focus determination is made, and the movement of the photographing lens near the in-focus state and the in-focus display by the display unit are stabilized.
In the focus detection device according to the third aspect, the amplification factor of the subject image signal Is higher, Charge accumulation time of photoelectric conversion element row Is longer, Focusing range of shooting lens So that Then, the focus adjustment state of the focus detection calculation result is compared with the changed allowable focus range to determine whether the photographing lens is in focus or out of focus. As a result, the amplification factor increases, the charge accumulation time increases, the noise component of the subject image signal output from the photoelectric conversion element array increases, and even if the focus detection calculation results vary widely, the variations are canceled. Focus tolerance Wide Since the focus is changed, an accurate in-focus / out-of-focus determination is made, and the movement of the photographing lens near the in-focus state and the in-focus display by the display unit are stabilized.
In the focus detection device according to the fourth aspect, the ambient temperature of the photoelectric conversion element row The higher the Focusing range of shooting lens So that Then, the focus adjustment state of the focus detection calculation result is compared with the changed allowable focus range to determine whether the photographing lens is in focus or out of focus. As a result, the noise component of the dark current of the subject image signal output from the photoelectric conversion element array increases due to an increase in the ambient temperature, and even when the focus detection calculation result greatly varies, the focus tolerance is set so as to cancel the variation. Range Wide Since the focus is changed, an accurate in-focus / out-of-focus determination is made, and the movement of the photographing lens near the in-focus state and the in-focus display by the display unit are stabilized.
According to a fifth aspect of the present invention, the allowable focus range changed according to the charge accumulation time is corrected based on the ambient temperature of the photoelectric conversion element array. As a result, accurate in-focus / out-of-focus determination is made, and the movement of the taking lens near the in-focus state and the in-focus display by the display unit are stabilized.
According to another aspect of the present invention, the allowable focus range changed according to the amplification factor of the subject image signal and the charge accumulation time of the photoelectric conversion element array is corrected based on the ambient temperature of the photoelectric conversion element array. As a result, accurate in-focus / out-of-focus determination is made, and the movement of the taking lens near the in-focus state and the in-focus display on the display are stabilized.
[0017]
【Example】
An embodiment in which the focus detection device of the present invention is applied to a single-lens reflex camera will be described.
FIG. 1 is a cross-sectional view of a single-lens reflex camera provided with a focus detection device. The same reference numerals are given to the same devices as those shown in FIG. 4, and the description is omitted.
In the figure, 10 is a signal amplifier circuit, 11 is a focus detection arithmetic circuit, 12 is a storage control circuit, 13 is a motor drive control circuit, 14 is a motor, 15 is a main mirror, 16 is a sub mirror, 17 is a film surface, and 18 is a finder. A screen, 19 is a penta roof prism, 20 is an eyepiece, and 22 is a temperature detecting device.
The light beam from the subject that has passed through the taking lens 1 is deflected upward by the main mirror 15 and guided to a finder optical system including a finder screen 18, a penta roof prism 19, and an eyepiece 20.
A photosensitive film is arranged on a film surface 17 arranged behind the main mirror 15. At the time of photographing, the main mirror 15 and the sub-mirror 16 are retracted from the optical path between the photographing lens 1 and the film surface 17, and the light beam from the subject passing through the photographing lens 1 exposes the photosensitive film disposed on the film surface 17.
[0018]
A part of the main mirror 15 is semi-transmissive, and a sub-mirror 16 is mounted behind the semi-transmissive part. The light beam from the subject transmitted through the semi-transmissive part of the main mirror 15 is deflected by the sub-mirror 16 toward the bottom of the camera body, and is guided to the focus detection optical system 8 arranged near the film equivalent surface 6 of the photographing lens 1. . Further, the light beam from the subject that has passed through the focus detection optical system 8 is guided to the charge accumulation type image sensor 9.
Note that the focus detection optical system 8 and the image sensor 9 are configured so that focus can be detected in a focus detection area set on a shooting screen.
The image sensor 9 photoelectrically converts a secondary image of the subject image formed on the sensor rows 9A and 9B, generates an electrical subject image signal corresponding to the light intensity distribution of the subject image, and sends the signal to the signal amplifier circuit 10. send.
[0019]
The signal amplification circuit 10 amplifies the subject image signal output from the image sensor 9 and sends the amplified signal to the focus detection calculation circuit 11. The accumulation control circuit 12 controls the amplification factor of the signal amplification circuit 10.
The focus detection calculation circuit 11 processes the subject image signal by the above-described focus detection calculation, and calculates a defocus amount between the imaging surface of the photographing lens 1 and the film equivalent surface 6. Further, the focus detection calculation circuit 11 sends the amplified information of the subject image signal to the accumulation control circuit 12. The accumulation control circuit 12 determines the next charge accumulation time and amplification factor, and controls the charge accumulation operation of the sensor arrays A and B of the image sensor 9.
The motor drive control circuit 13 controls the drive direction and the drive amount of the motor 14 based on the defocus amount calculated by the focus detection calculation circuit 11. The motor 14 is mechanically connected to the taking lens 1, and the driving amount and the driving speed are controlled by the motor drive control circuit 13 to bring the taking lens 1 into a focused state.
[0020]
In the configuration of the above embodiment, the image sensor 9 is a photoelectric conversion element array, the focus detection calculation circuit 11 is a focus detection calculation unit, a focus determination unit and a focus allowable range changing unit, and the accumulation control circuit 12 is a storage control unit. And the temperature detecting device 22 constitutes a temperature detecting means. Incidentally, these means are not limited to the above embodiment.
[0021]
FIG. 2 is a flowchart showing the focus detection operation. The focus detection operation of the embodiment will be described with reference to FIG.
In step (hereinafter simply referred to as S in the drawings) 100, when a main switch of a camera (not shown) is turned on or a release button (not shown) is half-pressed, a focus detection operation is started. In step 101, the accumulation control of the image sensor 9 is performed for the accumulation time set in the accumulation control circuit 12, and the subject image signal is amplified by the signal amplification circuit 10 at the amplification factor set in the accumulation control circuit 12. Immediately after the start of the focus detection operation, there is no information for performing the accumulation control, so the accumulation control is performed according to the initial setting.
In step 102, the focus detection calculation circuit 11 sets an allowable focusing range according to the amplification factor of the subject image signal. For example, assuming that the reference focus allowable range is Do, the amplification factor magnification is Gn, and the predetermined value is α, the focus allowable range D is obtained by the following equation.
(Equation 4)
D = ± {Do + α * (Gn−1)}
[0022]
In step 103, the focus detection calculation circuit 11 reads the subject image signal from the signal amplification circuit 10 and calculates the defocus amount of the photographic lens 1. In the following step 104, it is determined whether or not the defocus amount calculated by the focus detection calculation circuit 11 is within the allowable focus range set in step 102. If it is within the allowable focus range, the process proceeds to step 106, and if it is outside the allowable range, the process proceeds to step 105. If it is out of the permissible focusing range, in step 105, the motor drive control circuit 13 drives and controls the motor 14 in accordance with the defocus amount calculated by the focus detection calculation circuit 11, and drives the photographing lens 1 to the in-focus position. . On the other hand, if it is within the allowable focus range, the shutter release is permitted in step 106.
As described above, when the amplification factor of the subject image signal is high, even if the focus detection calculation result varies due to the noise component of the subject image signal, a stable shooting operation can be performed.
[0023]
In the above-described embodiment, the so-called focus priority is set, and the release permission is given in step 106. However, when the so-called release priority is set, focus display may be performed on the display in step 106.
[0024]
In the above-described embodiment, the allowable focusing range is set based on the amplification factor of the subject image signal. However, the allowable focusing range may be set based on the charge accumulation time. In this case, assuming that the reference focus allowable range is Do, the reference accumulation time is To, the accumulation time is Tn, and the predetermined value is β, the focus allowable range D is obtained by the following equation.
(Equation 5)
D = ± {Do + β * (Tn−To)},
However, when Tn <To, Tn = To
[0025]
Further, the allowable focusing range may be set based on the amplification factor and the accumulation time of the subject image signal. In this case, if the reference focus allowable range is Do, the amplification factor magnification is Gn, the predetermined value is α, the reference storage time is To, the storage time is Tn, and the predetermined value is β, the focus allowable range D is given by the following equation. Required by
(Equation 6)
D = ± {Do + α * (Gn−1) + β * (Tn−To)},
However, when Tn <To, Tn = To
[0026]
Furthermore, since the dark current increases as the operating temperature of the image sensor 9 increases, the focusing allowable range D may be set based on the temperature detected by the temperature detecting device 22. In this case, the focus allowable range D is obtained by using the predetermined value β of Expression 5 or Expression 6 as a variable β (k) depending on the temperature k, which becomes larger as the temperature becomes higher.
(Equation 7)
D = ± {Do + β (k) * (Tn−To)},
However, when Tn <To, Tn = To
(Equation 8)
D = ± {Do + α * (Gn−1) + β (k) * (Tn−To)},
However, when Tn <To, Tn = To
[0027]
【The invention's effect】
As described above, according to the first aspect of the invention, the amplification factor of the subject image signal The higher the Focusing range of shooting lens So that The focus adjustment state of the focus detection calculation result is compared with the changed focus allowable range to determine whether the photographing lens is in focus or out of focus, so that the amplification factor of the subject image signal increases. Even if the noise component of the subject image signal increases and the focus detection calculation result greatly fluctuates, the allowable focus range is canceled so as to cancel the variation. Wide The in-focus / out-of-focus determination is made by the change, and the movement of the photographing lens near the in-focus state and the in-focus display on the display are stabilized.
According to the invention of claim 2, the charge storage time of the photoelectric conversion element array The longer Focusing range of shooting lens So that The focus adjustment state of the focus detection calculation result is compared with the changed permissible focusing range to determine whether the photographing lens is in focus or out of focus. Noise component increases and the focus detection calculation results vary widely, so that the allowable focus range is set to cancel the variation. Wide The in-focus / out-of-focus determination is made by the change, and the movement of the photographing lens near the in-focus state and the in-focus display on the display are stabilized.
According to the invention of claim 3, the amplification factor of the subject image signal Is higher, Charge accumulation time of photoelectric conversion element row Is longer, Focusing range of shooting lens So that The focus adjustment state of the focus detection calculation result is compared with the focus allowable range after the change to determine whether the photographing lens is in focus or out of focus, so that the amplification factor is increased and the charge accumulation time is increased. Is longer, the noise component of the subject image signal output from the photoelectric conversion element array increases, and as a result, even if the focus detection calculation result greatly varies, the allowable focus range is set so as to cancel the variation. Wide The focus and the out-of-focus are accurately determined by the change, and the movement of the photographing lens in the vicinity of the in-focus state and the in-focus display by the display are stabilized.
According to the invention of claim 4, the ambient temperature of the photoelectric conversion element row The higher the Focusing range of shooting lens So that The focus adjustment state of the focus detection calculation result is compared with the changed focus allowable range to determine whether the photographing lens is in focus or out of focus. Even if the noise component of the dark current of the subject image signal output from the device increases, and the focus detection calculation result varies greatly, the focus allowable range is set so as to cancel the variation. Wide The in-focus / out-of-focus determination is made by the change, and the movement of the photographing lens near the in-focus state and the in-focus display on the display are stabilized.
According to the fifth aspect of the present invention, the in-focus allowable range changed in accordance with the charge accumulation time is corrected based on the ambient temperature of the photoelectric conversion element array, so that accurate in-focus / out-of-focus determination is made. Is performed, and the movement of the taking lens in the vicinity of the in-focus state and the in-focus display on the display unit are stabilized.
According to the invention of claim 6, the allowable focus range changed in accordance with the amplification factor of the subject image signal and the charge accumulation time of the photoelectric conversion element array is corrected based on the ambient temperature of the photoelectric conversion element array. As a result, accurate in-focus / out-of-focus determination is made, and the movement of the taking lens near the in-focus state and the in-focus display on the display are stabilized.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of an embodiment.
FIG. 2 is a flowchart illustrating a focus detection operation according to one embodiment.
FIG. 3 is an explanatory diagram of a subject image signal.
FIG. 4 is a diagram showing an optical system and an image sensor of a focus detection device using a phase difference detection method.
FIG. 5 is an explanatory diagram of a correlation operation.
FIG. 6 is an explanatory diagram of a correlation operation.
[Explanation of symbols]
1 Shooting lens
2 Field mask
3 Field lens
6 Film equivalent surface
7 Bandpass filter
8 Focus detection optical system
9 Image sensor
15 Main mirror
16 sub mirror
17 Film side
18 Finder screen
19 penta roof prism
20 eyepieces
21, 31 Back projection image of aperture opening
22 Temperature detector
41, 42 aperture opening
51,52 Re-imaging lens

Claims (6)

被写体像の光強度分布に応じた被写体像信号を出力する光電変換素子列と、
撮影レンズを通過した被写体からの光束を前記光電変換素子列へ導き、前記被写体像を結像する焦点検出光学系と、
前記光電変換素子列から出力される被写体像信号を増幅する信号増幅手段と、この信号増幅手段により増幅された被写体像信号に基づいて前記撮影レンズの焦点調節状態を演算する焦点検出演算手段と、
この焦点検出演算手段により演算された焦点調節状態を所定の合焦許容範囲と比較して前記撮影レンズの合焦/非合焦を判定する合焦判定手段とを備えた焦点検出装置であって、
前記信号増幅手段の増幅率が高くなるほど前記合焦判定手段の合焦許容範囲が広くなるように変更する合焦許容範囲変更手段を備えることを特徴とする焦点検出装置。
A photoelectric conversion element array that outputs a subject image signal according to the light intensity distribution of the subject image,
A focus detection optical system that guides a light beam from the subject that has passed through the taking lens to the photoelectric conversion element array, and forms the subject image;
Signal amplifying means for amplifying a subject image signal output from the photoelectric conversion element array, focus detection calculating means for calculating a focus adjustment state of the photographing lens based on the subject image signal amplified by the signal amplifying means,
A focus detection device comprising: a focus determination unit configured to compare the focus adjustment state calculated by the focus detection calculation unit with a predetermined allowable focus range to determine whether the photographing lens is in focus or out of focus. ,
A focus detection device comprising: a focus permissible range changing unit that changes the focus permissible range of the focus determining unit so that the focus permissible range increases as the amplification factor of the signal amplifying unit increases .
被写体像の光強度分布に応じた被写体像信号を出力する光電変換素子列と、
撮影レンズを通過した被写体からの光束を前記光電変換素子列へ導き、前記被写体像を結像する焦点検出光学系と、
前記光電変換素子列の電荷蓄積時間を制御する蓄積制御手段と、
前記光電変換素子列から出力された被写体像信号に基づいて前記撮影レンズの焦点調節状態を演算する焦点検出演算手段と、
この焦点検出演算手段により演算された焦点調節状態を所定の合焦許容範囲と比較して前記撮影レンズの合焦/非合焦を判定する合焦判定手段とを備えた焦点検出装置であって、
前記蓄積制御手段の電荷蓄積時間が長くなるほど前記合焦判定手段の合焦許容範囲が広くなるように変更する合焦許容範囲変更手段を備えることを特徴とする焦点検出装置。
A photoelectric conversion element array that outputs a subject image signal according to the light intensity distribution of the subject image,
A focus detection optical system that guides a light beam from the subject that has passed through the taking lens to the photoelectric conversion element array, and forms the subject image;
Accumulation control means for controlling the charge accumulation time of the photoelectric conversion element row,
Focus detection calculation means for calculating a focus adjustment state of the photographing lens based on a subject image signal output from the photoelectric conversion element row;
A focus detection device comprising: a focus determination unit configured to compare the focus adjustment state calculated by the focus detection calculation unit with a predetermined allowable focus range to determine whether the photographing lens is in focus or out of focus. ,
Focus detecting apparatus comprising: a focus tolerance range changing means for changing to focus allowable range of the focus determination unit as the charge accumulation time becomes longer wider of said storage control means.
被写体像の光強度分布に応じた被写体像信号を出力する光電変換素子列と、
撮影レンズを通過した被写体からの光束を前記光電変換素子列へ導き、前記被写体像を結像する焦点検出光学系と、
前記光電変換素子列から出力される被写体像信号を増幅する信号増幅手段と、
前記光電変換素子列の電荷蓄積時間を制御する蓄積制御手段と、
前記信号増幅手段により増幅された被写体像信号に基づいて前記撮影レンズの焦点調節状態を演算する焦点検出演算手段と、
この焦点検出演算手段により演算された焦点調節状態を所定の合焦許容範囲と比較して前記撮影レンズの合焦/非合焦を判定する合焦判定手段とを備えた焦点検出装置であって、
前記信号増幅手段の増幅率と前記蓄積制御手段の電荷蓄積時間とに応じて前記合焦判定手段の合焦許容範囲を変更し、増幅率が高くなるほど、電荷蓄積時間が長くなるほど合焦許容範囲を広くする合焦許容範囲変更手段を備えることを特徴とする焦点検出装置。
A photoelectric conversion element array that outputs a subject image signal according to the light intensity distribution of the subject image,
A focus detection optical system that guides a light beam from the subject that has passed through the taking lens to the photoelectric conversion element array, and forms the subject image;
Signal amplification means for amplifying a subject image signal output from the photoelectric conversion element array,
Accumulation control means for controlling the charge accumulation time of the photoelectric conversion element row,
Focus detection calculating means for calculating the focus adjustment state of the photographing lens based on the subject image signal amplified by the signal amplifying means;
A focus detection device comprising: a focus determination unit configured to compare the focus adjustment state calculated by the focus detection calculation unit with a predetermined allowable focus range to determine whether the photographing lens is in focus or out of focus. ,
The focus permissible range of the focus determination unit is changed according to the amplification factor of the signal amplifying unit and the charge accumulation time of the accumulation control unit. As the amplification factor increases, the focus permissible range increases as the charge accumulation time increases. A focus allowable range changing means for widening the focus detection range.
被写体像の光強度分布に応じた被写体像信号を出力する光電変換素子列と、
撮影レンズを通過した被写体からの光束を前記光電変換素子列へ導き、前記被写体像を結像する焦点検出光学系と、
前記光電変換素子列から出力された被写体像信号に基づいて前記撮影レンズの焦点調節状態を演算する焦点検出演算手段と、
この焦点検出演算手段により演算された焦点調節状態を所定の合焦許容範囲と比較して前記撮影レンズの合焦/非合焦を判定する合焦判定手段とを備えた焦点検出装置であって、
前記光電変換素子列の周囲温度を検出する温度検出手段と、
この温度検出手段により検出された周囲温度が高くなるほど前記合焦判定手段の合焦許容範囲が広くなるように変更する合焦許容範囲変更手段とを備えることを特徴とする焦点検出装置。
A photoelectric conversion element array that outputs a subject image signal according to the light intensity distribution of the subject image,
A focus detection optical system that guides a light beam from the subject that has passed through the taking lens to the photoelectric conversion element array, and forms the subject image;
Focus detection calculation means for calculating a focus adjustment state of the photographing lens based on a subject image signal output from the photoelectric conversion element row;
A focus detection device comprising: a focus determination unit configured to compare the focus adjustment state calculated by the focus detection calculation unit with a predetermined allowable focus range to determine whether the photographing lens is in focus or out of focus. ,
Temperature detection means for detecting the ambient temperature of the photoelectric conversion element row,
A focus detection device comprising: a focus permissible range changing unit that changes the focus permissible range of the focus determination unit so that the focus permissible range becomes wider as the ambient temperature detected by the temperature detector becomes higher .
請求項2に記載の焦点検出装置において、
前記光電変換素子列の周囲温度を検出する温度検出手段を備え、
前記合焦許容範囲変更手段は、前記蓄積制御手段の電荷蓄積時間に応じて変更した合焦許容範囲を、前記温度検出手段により検出された周囲温度に基づいて補正することを特徴とする焦点検出装置。
The focus detection device according to claim 2,
A temperature detecting unit for detecting an ambient temperature of the photoelectric conversion element row,
The focus detection device according to claim 1, wherein the focus allowable range changing unit corrects the focus allowable range changed according to the charge storage time of the storage control unit based on an ambient temperature detected by the temperature detection unit. apparatus.
請求項3に記載の焦点検出装置において、
前記光電変換素子列の周囲温度を検出する温度検出手段を備え、
前記合焦許容範囲変更手段は、前記信号増幅手段の増幅率と前記蓄積制御手段の電荷蓄積時間とに応じて変更した合焦許容範囲を、前記温度検出手段により検出された周囲温度に基づいて補正することを特徴とする焦点検出装置。
The focus detection device according to claim 3,
A temperature detecting unit for detecting an ambient temperature of the photoelectric conversion element row,
The focus permissible range changing unit is configured to set a focus permissible range changed according to an amplification factor of the signal amplifying unit and a charge accumulation time of the accumulation control unit based on an ambient temperature detected by the temperature detecting unit. A focus detection device for performing correction.
JP26561894A 1994-10-28 1994-10-28 Focus detection device Expired - Lifetime JP3550601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26561894A JP3550601B2 (en) 1994-10-28 1994-10-28 Focus detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26561894A JP3550601B2 (en) 1994-10-28 1994-10-28 Focus detection device

Publications (2)

Publication Number Publication Date
JPH08122626A JPH08122626A (en) 1996-05-17
JP3550601B2 true JP3550601B2 (en) 2004-08-04

Family

ID=17419643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26561894A Expired - Lifetime JP3550601B2 (en) 1994-10-28 1994-10-28 Focus detection device

Country Status (1)

Country Link
JP (1) JP3550601B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11637966B2 (en) 2019-07-12 2023-04-25 Sony Group Corporation Imaging device and diaphragm mechanism control method

Also Published As

Publication number Publication date
JPH08122626A (en) 1996-05-17

Similar Documents

Publication Publication Date Title
KR101395015B1 (en) Camera, focus detection method and control method
JP5121120B2 (en) Focus detection apparatus and optical instrument
JP2008309882A (en) Digital camera
JP5366643B2 (en) Imaging device
JP4687291B2 (en) Focus adjustment device and imaging device
JP2008310072A (en) Digital camera
JP2006254413A (en) Imaging apparatus and camera body
JP4641502B2 (en) Focus detection apparatus and optical instrument
JP3569973B2 (en) Focus adjustment device
JP2008242333A (en) Imaging apparatus and method of controlling the same
JP3590806B2 (en) Image sensor system and automatic focus detection device
JP3550601B2 (en) Focus detection device
JP5170266B2 (en) Imaging device and camera body
US5604561A (en) Focus state detection device
JP2008191391A (en) Focusing mechanism, and camera
JP2850336B2 (en) Focus detection device
JP4810160B2 (en) Focus detection apparatus and control method thereof
JP3385172B2 (en) Automatic focus detection device using two-dimensional sensor
JP4938922B2 (en) Camera system
JP2004012493A (en) Focus detector
JP5012091B2 (en) Focus adjustment device
JP4182546B2 (en) Focus detection device
JP4882184B2 (en) Focus detection device
JP2006106429A (en) Camera
JP5065466B2 (en) Focus detection apparatus and optical instrument

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040405

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term