JPH0812255B2 - Groundwater flow point, flow direction, flow velocity measurement method and its measuring instrument - Google Patents

Groundwater flow point, flow direction, flow velocity measurement method and its measuring instrument

Info

Publication number
JPH0812255B2
JPH0812255B2 JP63331958A JP33195888A JPH0812255B2 JP H0812255 B2 JPH0812255 B2 JP H0812255B2 JP 63331958 A JP63331958 A JP 63331958A JP 33195888 A JP33195888 A JP 33195888A JP H0812255 B2 JPH0812255 B2 JP H0812255B2
Authority
JP
Japan
Prior art keywords
flow
temperature
heaters
groundwater
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63331958A
Other languages
Japanese (ja)
Other versions
JPH02176591A (en
Inventor
誠 西垣
美彦 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JDC Corp
Original Assignee
JDC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JDC Corp filed Critical JDC Corp
Priority to JP63331958A priority Critical patent/JPH0812255B2/en
Priority to BR8906897A priority patent/BR8906897A/en
Publication of JPH02176591A publication Critical patent/JPH02176591A/en
Publication of JPH0812255B2 publication Critical patent/JPH0812255B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

【発明の詳細な説明】 《産業上の利用分野》 本発明は地盤中に存在する地下水につき、その流れが
存する位置と、その流向、流速の一方または双方を計測
するための方法および、当該方法の実施に用いられる測
定器に関する。
DETAILED DESCRIPTION OF THE INVENTION << Industrial Application Field >> The present invention relates to a method for measuring the position of the flow of groundwater existing in the ground and one or both of its flow direction and flow velocity, and the method. The present invention relates to a measuring instrument used for implementation of

《従来の技術》 既知の如く地下水は水資源の中で重要なものであるこ
と、また建設工事では止水、排水対策上から、地下水の
流向、流速測定の問題が重要視されて来ている。
<Prior art> As is well known, groundwater is important in water resources, and in construction work, the problems of measuring the flow direction and velocity of groundwater have been emphasized in terms of stopping water and drainage. .

ところで、これまで地盤に穿設したボーリング孔内
で、地下水の流動箇所、流向、流速を測定することが実
施されて来ており、当該測定方法としては、所謂地下水
検層、温度検層、ボアホールテレビの利用等が知られて
いる。
By the way, it has been practiced to measure groundwater flow locations, flow directions, and flow velocities in boreholes drilled in the ground, and the measurement methods include so-called groundwater logging, temperature logging, and borehole. The use of television is known.

しかし、上記の方法は、ボーリング孔内に電解物質や
温水を投入しなければならないが、この際、電解物質の
均一な混合が可成り難事となり、また広範囲な地域で同
時に測定を行うことができないと共に、上記の被測定対
象につき詳細な結果を得ようとすることは困難であっ
た。
However, in the above method, the electrolytic substance and warm water have to be put into the boring hole, but at this time, it becomes very difficult to uniformly mix the electrolytic substance, and the measurement cannot be performed simultaneously in a wide area. At the same time, it was difficult to obtain detailed results for the above-mentioned measured object.

《発明が解決しようとする課題》 本発明は、上記従来手段の諸問題に鑑み検討されたも
ので、その請求項(1)では全く何等の物質も地下水へ
注入することなく、複数のヒータと、その近傍に横方向
だけでなく縦方向へも離間させて所要複数の温度測定素
子を具備させた特殊な測定器を、地盤のボーリング孔に
埋装しておき、これらの各ヒータを通電加熱した際にお
ける縦方向、横方向配置の温度測定素子による温度分布
を時間の経過に対して測定し、これにより得られた夫々
の温度分布経時変化グラフに基づいて、地下水の流動箇
所がどこであるか、そしてその流向、流速の一方または
双方を測知できるようにし、これにより公害の生じな
い、簡易迅速な測知を可能にすると共に、高精度でしか
も広範囲にわたる同時測定をもなし得るようにしようと
するのが、その目的である。
<< Problems to be Solved by the Invention >> The present invention has been studied in view of the problems of the above-mentioned conventional means. In claim (1), a plurality of heaters are provided without injecting any substance into groundwater. , A special measuring instrument equipped with a plurality of required temperature measuring elements in the vicinity not only in the horizontal direction but also in the vertical direction is embedded in a boring hole in the ground, and each of these heaters is electrically heated. The temperature distribution of the temperature measuring elements in the vertical and horizontal directions at the time of measurement was measured with the passage of time, and based on each temperature distribution temporal change graph obtained by this, where is the location of groundwater flow? , And the flow direction, flow velocity, or both can be measured, which enables simple and quick measurement without causing pollution, and also enables highly accurate and wide-range simultaneous measurement. The purpose is to try.

請求項(2)にあっては、請求項(1)に係る方法を
実施するのに用いられる測定器につき、各別に通電可能
とした複数のヒータと、これに近設した複数の温度測定
素子とを基体に設けるだけでなく、当該温度測定素子を
横方向へ隣設すると共に、長尺な基体の長手方向にも、
所要複数だけ隣設することで、地下水を流向、流速だけ
でなく、ボーリング孔内の、どの深さ位置に地下水が流
れているかを測知できるようにし、これを用いることで
温度分布経時変化グラフが、簡易迅速に得られるように
し、前記測定方法の労力軽減、精度の時間短縮、向上を
実現し得るようにしようとしている。
According to claim (2), for the measuring instrument used for carrying out the method according to claim (1), a plurality of heaters that can be separately energized, and a plurality of temperature measuring elements provided near them Not only is this provided on the base body, but the temperature measuring element is provided next to it in the horizontal direction, and in the longitudinal direction of the long base body,
By arranging a required number of adjacent water sources, it is possible to detect not only the direction and flow velocity of groundwater, but also the depth position of groundwater flowing in the boring hole. However, it is intended to make it possible to obtain the measurement method simply and quickly, and to reduce the labor of the measurement method, shorten the accuracy time, and improve the accuracy.

請求項(3)にあっては、請求項(2)における測定
器の構成を加えて、その上下部位に空気、液体などの送
脱により膨張自在としたパッカーを付設することで、当
該測定器をボーリング孔内に配装した際、膨張させたパ
ッカーによって止水状態となし、測定箇所における地下
水が上下方向へ流動しないようにして、その測定結果に
対する信頼性を向上させようとするのが、その目的であ
る。
According to claim (3), in addition to the configuration of the measuring device according to claim (2), a packer that is inflatable by sending and releasing air, liquid, etc. is attached to the upper and lower parts thereof, thereby providing the measuring device. When it is installed in the boring hole, it is stopped by the expanded packer, the groundwater at the measurement point does not flow in the vertical direction, and it is tried to improve the reliability of the measurement result. That is the purpose.

《課題を解決するための手段》 本願は、上記の目的を達成するため請求項(1)にあ
っては、地下水をもった地盤にボーリング孔を穿設し、
このボーリング孔内に、横方向に離間させて縦長に配設
した所要複数のヒータと、当該各ヒータの近傍にあっ
て、縦方向に離間させ所要複数配設した温度測定素子と
が、基体に具備されている測定器を埋装し、上記複数の
ヒータに各別の通電を行い、これにより加熱に際して縦
方向に離間配置の上記各温度測定素子による時間の経過
に対する測温結果からは、縦方向温度分布経時変化グラ
フを、周方向に離間配置の上記各温度測定素子による時
間の経過に対する測温結果からは周方向温度分布経時変
化グラフを得、当該縦方向温度分布経時変化グラフか
ら、当該地下水の流動箇所を、周方向温度分布経時変化
グラフから、その流向、流速の一方または双方を測知す
るようにしたことを特徴とする地下水の流動箇所、流
向、流速測定方法を提供しようとしており、請求項
(2)では長尺な基体に、所要複数のヒータを横方向へ
離間させて縦長に配設し、これら各ヒータの近傍にあっ
て、縦方向に離間させて所要複数の温度測定素子が配設
され、これらのヒータ、温度測定素子に接続された夫々
各別のヒータ用リード線、温度測定素子リード線が、上
記の基体から導出されていることを特徴とする地下水の
流動箇所、流向、流速測定器を、そして、さらに請求項
(3)にあっては、請求項(2)の構成に対して、基体
の上下に、気体または液体の送脱自在としたパッカーが
付設されていることを、その内容としている。
<< Means for Solving the Problem >> In order to achieve the above-mentioned object, the present application provides a boring hole in the ground having groundwater, according to claim (1),
In the boring hole, a plurality of required heaters which are arranged in a horizontal direction and are vertically separated from each other, and a plurality of required temperature measurement elements which are provided in the vicinity of the heaters and which are arranged in a vertical direction and are separated from each other are formed on the substrate. The measuring instrument provided is embedded, and each of the plurality of heaters is energized separately, so that when heating, the temperature measurement results with respect to the passage of time by the temperature measuring elements arranged in the longitudinal direction are Directional temperature distribution over time graph, the circumferential temperature distribution over time graph is obtained from the temperature measurement results for the passage of time by the temperature measuring elements arranged in the circumferential direction, and from the longitudinal temperature distribution over time graph, Provides a groundwater flow point, flow direction, and flow velocity measurement method, which is characterized by detecting one or both of the flow direction and flow velocity from the circumferential temperature distribution temporal change graph. According to claim (2), a plurality of required heaters are arranged in a longitudinal direction on a long base body while being laterally separated from each other. The temperature measuring element is provided, and the heater, the respective heater lead wires connected to the temperature measuring element, and the temperature measuring element lead wire are derived from the base body. The flower, the flow direction, and the flow velocity measuring device according to claim 3, and further, in claim (3), the packer in which a gas or a liquid can be sent and released above and below the base body with respect to the configuration of claim (2). Is attached to the contents.

《作用》 請求項(1)に係る測定方法によるときは、各ヒータ
通電加熱すると、その周囲における地下水の温度が時間
に対し変化していくが、この際縦方向に離間して配設さ
れている各温度測定素子の温度を経時的に測知して行け
ば、縦方向温度分布経時変化グラフが得られ、このグラ
フのどこに低温度を示す箇所があるかを知れば、当該温
度測定素子の配設されている既知の位置から、地下水の
流動深さを求めることができる。
<< Operation >> According to the measurement method of claim (1), when each heater is energized and heated, the temperature of groundwater around the heater changes with time. If you measure the temperature of each temperature measuring element over time, you can obtain a graph of longitudinal temperature distribution over time, and if you know where in this graph there is a low temperature, The flow depth of groundwater can be determined from the known position where it is provided.

また、各ヒータを通電加熱した際における横方向に配
設されている各温度測定素子の時間に対する温度変化を
測定して行けば、周方向温度分布経時グラフが得られ、
このグラフの形態から、地下水の流向、流速を求めるこ
とができる。
Further, if the temperature change of each temperature measuring element arranged in the lateral direction when each heater is electrically heated is measured, a circumferential temperature distribution temporal graph is obtained,
From the form of this graph, the groundwater flow direction and flow velocity can be obtained.

次に請求項(2)の測定器によるときは、周方向に配
設の温度測定素子と、縦方向に配設の温度測定素子とが
夫々複数個だけ、基体に設けたヒータの近傍に設置され
ているから、上記請求項(1)に係る方法の実施に際
し、周方向温度分布経時変化グラフ、縦方向温度分布経
時変化グラフを高精度に測定することができ、しかもそ
の測知に人力を用いることなく目的を達し得ることとな
る。
Next, according to the measuring device of claim (2), a plurality of temperature measuring elements arranged in the circumferential direction and a plurality of temperature measuring elements arranged in the vertical direction are installed in the vicinity of the heater provided on the substrate. Therefore, when the method according to the above-mentioned claim (1) is carried out, the circumferential temperature distribution time-dependent change graph and the vertical direction temperature distribution time-dependent change graph can be measured with high accuracy, and moreover, human power is required for the measurement. The purpose can be achieved without using it.

さらに、請求項(2)にあっては、測定器をボーリン
グ孔に装入した後、上下のパッカーに空気等を送入して
やることで、これを膨満させてボーリング孔内壁に押当
させ、これにより測定器の上下部を止水状態とすること
ができるので、地下水が測定箇所にあって上から下に向
け流れてしまうことがなくなり、この結果地下水の流動
に関する測定値を、より正確なものとすることができ
る。
Further, according to claim (2), after the measuring device is inserted into the boring hole, air or the like is sent to the upper and lower packers to inflate it and press it against the inner wall of the boring hole. Since the upper and lower parts of the measuring instrument can be stopped with water, groundwater does not flow from top to bottom at the measurement point, and as a result, the measured value of groundwater flow can be more accurate. Can be

《実 施 例》 本願請求項(1)の測定方法を説示するに先立って請
求項(2)、請求項(3)に係る測定器について、これ
を第1図乃至第3図によって説示する。
<< Example >> Prior to explaining the measuring method of claim (1), the measuring device according to claim (2) and claim (3) will be explained with reference to FIGS. 1 to 3.

請求項(2)による測定器は、熱電導率が低い電気絶
縁材料等を細長い基体1を用いるが、これには、例えば
直径20〜60mm、長さ50cm以上のものを採択するのがよ
く、当該基体1には、所要複数のヒータ2,2‥‥‥が使
用時横方向に離間されるよう露設されて、縦方向(長手
方向)に平行状にて配装されていると共に、当該各ヒー
タ2,2‥‥‥の近傍にあって温度測定素子3,3‥‥‥が、
これまた露呈状態にて、かつ基体の長手方向へ離間させ
ることで、所要複数個だけ配設され、実際上当該素子3,
3‥‥‥には1/100〜1/1000℃程度の分解能が高いものを
使用するのがよい。
The measuring instrument according to claim (2) uses an elongated base 1 made of an electrically insulating material or the like having a low thermoconductivity. For this, it is preferable to adopt a substrate having a diameter of 20 to 60 mm and a length of 50 cm or more, A plurality of required heaters 2, 2, ... Are provided on the base body 1 so as to be separated in the horizontal direction during use, and are arranged in parallel in the vertical direction (longitudinal direction). The temperature measuring elements 3, 3 are located near the heaters 2, 2
Also, in the exposed state, and by separating them in the longitudinal direction of the substrate, only a required plurality of them are arranged, and in fact, the relevant element 3,
3 It is better to use a high resolution 1/100 to 1/1000 ° C.

ここで、図示例の基体1は円筒状であるが、その他の
形状のものを用いることができ、ヒータ2,2‥‥‥は何
れも直線状になっている。
Here, the substrate 1 in the illustrated example has a cylindrical shape, but other shapes can be used, and the heaters 2, 2, ... Are all linear.

さらに、上記ヒータ2,2‥‥‥は各別にその両端子2a,
2bからヒータ用リード線4a,4bが、基体1内に延出さ
れ、さらに、これらのヒータ用リード線4a,4bは、基体
1の一端面側から引き出されているコード5に集束され
て外部へ導出されており、従ってヒータ2,2‥‥‥に
は、各ヒータ毎に導電して、これを各別に加熱すること
ができる。
In addition, the heaters 2, 2 are individually connected to both terminals 2a,
Heater lead wires 4a, 4b extend from 2b into the base body 1. Further, these heater lead wires 4a, 4b are focused on a cord 5 drawn from one end surface side of the base body 1 and externally. Therefore, the heaters 2, 2 ... Can be electrically conducted for each heater and can be separately heated.

また温度測定素子3,3‥‥‥に接続の温度測定素子用
リード線6も、基体1内を通ってコード5に集束導出さ
れ、当該コード5は、後に第4図によって説示される通
り、温度測定装置7に接続されたコントローラ8に結線
されることとなる。
Further, the temperature measuring element lead wires 6 connected to the temperature measuring elements 3, 3 are also focused and led out to the cord 5 through the inside of the base body 1, and the cord 5 is, as explained later with reference to FIG. It will be connected to the controller 8 connected to the temperature measuring device 7.

次に請求項(2)による測定器にあっては、これまた
第1図乃至第3図によって示されている通り、前記基体
1の上下に夫々気体、液体を給送したり、これを脱出さ
せることで膨満自在としたパッカー9a,9bが設けられて
いる。
Next, in the measuring device according to claim (2), as also shown in FIGS. 1 to 3, gas and liquid are fed to and discharged from the upper and lower parts of the base body 1, respectively. Packers 9a and 9b are provided so that they can be inflated freely.

図示例では、上側のパッカー9aが基体1から延出され
ているコード5の外周に被着され、下側のパッカー9bは
基体1の下端部に連着してある。
In the illustrated example, the upper packer 9a is attached to the outer periphery of the cord 5 extending from the base 1, and the lower packer 9b is connected to the lower end of the base 1.

さらに、コード5内には、エアー等の供給パイプ10a
が設けられ、これがパッカー9aと連通されていると共
に、当該パッカー9aの下端と下側のパッカー9bとが、第
3図に示す如く基体1にあって挿通されている供給パイ
プ10bによって連結されており、従って供給パイプ10aか
らエアー等を供与することで上下のパッカー9a,9bが膨
満状態となるよう構成されている。
Further, in the cord 5, there is a supply pipe 10a for air or the like.
Is provided and is communicated with the packer 9a, and the lower end of the packer 9a and the lower packer 9b are connected by the supply pipe 10b that is inserted through the base body 1 as shown in FIG. Therefore, the upper and lower packers 9a and 9b are inflated by supplying air or the like from the supply pipe 10a.

そこで、上記の測定器を用いて請求項(1)に係る測
定方法を実施するには、先ず第4図によって示されてい
る如き準備をしておくこととなる。
Therefore, in order to carry out the measuring method according to claim (1) using the above-mentioned measuring device, first, preparation as shown in FIG. 4 is made.

すなわち、地盤Aにボーリング孔Bを穿設し、これに
前記の請求項(1)または請求項(2)に係る測定器を
降下する。(図中Hは地下水Wの水位を示している。) そして、請求項(2)の測定器にあっては、供給パイ
プ10aに連結しておいたコンプレッサCを稼動すること
で、パッカー9a,9bにエアーを送って膨満状態となし、
これにより、当該測定器をその位置に固定すると共に、
当該孔内にあって上下のパッカー9a,9b間である測定範
囲の地下水が、当該範囲から漏出流下してしまわないよ
うにするものであり、もちろん請求項(1)の測定器に
よるときは、所望位置で吊下の状態を保持することとな
る。
That is, the boring hole B is bored in the ground A, and the measuring instrument according to claim (1) or (2) is lowered into the boring hole B. (H in the figure indicates the water level of the groundwater W.) And, in the measuring instrument of claim (2), by operating the compressor C connected to the supply pipe 10a, the packer 9a, Sending air to 9b to make it full,
This fixes the measuring instrument in that position,
Groundwater in the measurement range in the hole, which is between the upper and lower packers 9a, 9b, is to prevent the groundwater from leaking down from the range, and of course, when using the measuring device of claim (1), The suspended state will be maintained at the desired position.

このような準備が終れば、所望の基体1のヒータ2に
通電することで、これを加熱し全体の温度測定素子2,3
‥‥‥によって、夫々の地点における温度を経時的に測
定し、この測定を一定時間行った後、当該ヒータ2への
電源を切り、温度測定素子3,3‥‥‥による温度測定を
そのまま継続し、各地点における測定温度が一定値にな
った時点にて、測定を終了する。
When such preparation is completed, the heater 2 of the desired substrate 1 is energized to heat it and heat the entire temperature measuring elements 2, 3
The temperature at each point is measured with time by using, and after this measurement is performed for a certain period of time, the power to the heater 2 is turned off, and the temperature measurement by the temperature measuring elements 3, 3 is continued. Then, the measurement ends when the measured temperature at each point reaches a constant value.

上記の如き側温によって、周方向と縦方向とにおける
時間に対する温度の関係が得られることとなるが、周方
向のものとは、各進度毎の全周にわたる温度測定素子3,
3‥‥‥による側温結果を示すこととなる周方向温度分
布経時変化グラフであり、その例が第5図(a)乃至
(e)に示されている。
By the side temperature as described above, the relationship of temperature with respect to time in the circumferential direction and the longitudinal direction will be obtained, but with the circumferential direction, the temperature measuring element 3 over the entire circumference for each progress,
3 is a graph showing a temporal change in temperature distribution in the circumferential direction, which shows the side temperature results according to 3 ..., Examples of which are shown in FIGS. 5 (a) to 5 (e).

この第5図にあって、黒点で示されているのがヒータ
2による加熱点であり、当該ヒータ2を加熱してボーリ
ング孔B内の水温を上げ、そのときの水温測定結果と、
ヒータの加熱を停止した後における水温変化を経時的に
測定した得た温度分布が示されており、当該各周方向温
度分布経時変化グラフから、例えば同図(a)の如く地
下水の流向が図面にあって上向きになっていることを知
ることができると共に、地下水の流れが早ければ、加熱
点の時間に対する温度低下は大となることから、その流
速をも測知することができる。
In FIG. 5, black dots indicate heating points by the heater 2. The heater 2 is heated to raise the water temperature in the boring hole B, and the water temperature measurement result at that time is
The temperature distribution obtained by measuring the water temperature change with time after the heating of the heater is stopped is shown. From the circumferential temperature distribution time change graph, for example, as shown in FIG. In addition, it is possible to know that the flow rate is upward, and if the flow of groundwater is fast, the temperature drop of the heating point with time is large, so that the flow velocity can also be measured.

さらに、深度方向に離間配置の温度測定素子により得
られる縦方向温度分布経時変化グラフとして、例えば第
6図の如き結果を得ることができる。
Further, as a longitudinal temperature distribution temporal change graph obtained by the temperature measuring elements arranged in the depth direction, a result as shown in FIG. 6 can be obtained.

これにより、深さに応じて時間に対する温度上昇、下
降の程度に差異があることがわかり、同図では、ヒータ
2を通電加熱して地下水を昇温させて行った場合を示し
ているが、地下水Wの流れている箇所では、温度上昇が
小さくなっており、これにより地下水Wの流動している
深さを知ることができる。
This shows that there is a difference in the degree of temperature rise and fall with time depending on the depth, and in the figure, the case where the heater 2 is electrically heated to raise the temperature of groundwater is shown. At the location where the groundwater W is flowing, the temperature rise is small, and thus the depth at which the groundwater W is flowing can be known.

《発明の効果》 本願に係る請求項(1)の測定方法によれば、ヒータ
も縦長で、温度測定素子も縦方向に離間して複数設け、
しかも横方向にもヒータと温度測定素子が複数配設さ
れ、これによって夫々縦方向温度分布経時変化グラフと
周方向温度分布経時変化グラフを測知するようにしたの
で、全く電解物質や温水などを投入して攪拌するといっ
た作業なしに、公害もなく、簡易迅速に高精度な地下水
の流動箇所、そしてその流向、流速の一方または双方を
知ることができると共に、広範囲にわたり各所での測定
を同時に実施することも可能となる。
<< Effects of the Invention >> According to the measurement method of claim (1) of the present application, the heater is also vertically long, and a plurality of temperature measurement elements are provided separately in the vertical direction,
Moreover, a plurality of heaters and temperature measuring elements are arranged in the horizontal direction as well, so that the vertical temperature distribution temporal change graph and the circumferential temperature distribution temporal change graph can be detected respectively, so that no electrolytic substance or hot water is You can easily and quickly know the location of groundwater, and its flow direction, flow velocity, or both, without the need to put it in and stir it, without pollution, and simultaneously perform measurements at a wide range of locations. It is also possible to do.

請求項(2)の測定器も前記の如く構成し、ヒータと
温度測定素子の配在が適切であることから、上記請求項
(1)の方法を実施するのに供し至便である。
Since the measuring device of claim (2) is also configured as described above and the heater and the temperature measuring element are appropriately arranged, it is convenient to carry out the method of claim (1).

さらに請求項(3)の測定器を用いれば、パッカーの
付設により、設定箇所における地下水が、他の原因によ
る影響から完全に遮断されることとなるため、地下水の
流動箇所や流向、流速の測定結果に高い信頼性をもたせ
ることが可能となる。
Further, by using the measuring device according to claim (3), the installation of the packer completely cuts off the groundwater at the set location from the influence of other causes. Therefore, the groundwater flow location, the flow direction, and the flow velocity can be measured. The result can be highly reliable.

【図面の簡単な説明】[Brief description of drawings]

第1図は本願の測定方法を実施するために用いる請求項
(2)に係る測定器の一部を切欠した正面略示図、第2
図は同上測定器の要部を示した拡大横倒正面図、第3図
は第2図のIII−III線断面図、第4図は当該測定器を用
いた前記測定方法の実施態様を示す現地盤縦断正面説明
図、第5図(a)(b)(c)(d)(e)は同法の実
測例を示した各種の周方向温度分布経時変化グラフ、第
6図は同じく実測例である縦方向温度分布経時変化グラ
フである。 1……基体 2……ヒータ 3……温度測定素子 4a,4b……ヒータ用リード線 6……温度測定素子用リード線 9a,9b……パッカー A……地盤 B……ボーリング孔 W……地下水
FIG. 1 is a schematic front view in which a part of a measuring instrument according to claim (2) used for carrying out the measuring method of the present application is cut away,
The figure shows an enlarged horizontal front view showing the main part of the measuring instrument, FIG. 3 is a sectional view taken along the line III-III in FIG. 2, and FIG. 4 shows an embodiment of the measuring method using the measuring instrument. Fig. 5 (a), (b), (c), (d), and (e) of the vertical section of the on-site panel are graphs of changes in the circumferential temperature distribution over time showing examples of actual measurements of the same method. It is an example of a vertical direction temperature distribution temporal change graph. 1 ... Substrate 2 ... Heater 3 ... Temperature measuring element 4a, 4b ... Head lead wire 6 ... Temperature measuring element lead wire 9a, 9b ... Packer A ... Ground B ... Boring hole W ... Groundwater

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】地下水をもった地盤にボーリング孔を穿設
し、このボーリング孔内に、横方向に離間させて縦長に
配設した所要複数のヒータと、当該各ヒータの近傍にあ
って、縦方向に離間させ所要複数配設した温度測定素子
とが、基体に具備されている測定器を埋装し、上記複数
のヒータに各別の通電を行い、これによる加熱に際して
縦方向に離間配置の上記各温度測定素子による時間の経
過に対する測温結果からは、縦方向温度分布経時変化グ
ラフを、周方向に離間配置の上記各温度測定素子による
時間の経過に対する測温結果からは周方向温度分布経時
変化グラフを得、当該縦方向温度分布経時変化グラフか
ら、当該地下水の流動箇所を、周方向温度分布経時変化
グラフから、その流向、流速の一方または双方を測知す
るようにしたことを特徴とする地下水の流動箇所、流
向、流速測定方法。
Claims: 1. A boring hole is bored in the ground having groundwater, and a plurality of required heaters vertically spaced apart from each other in the lateral direction are provided in the boring hole, and in the vicinity of the heaters. A plurality of required temperature measuring elements which are vertically separated from each other are embedded in a measuring device provided on the base body, and the plurality of heaters are separately energized, and the heaters are separately arranged in the vertical direction during heating. From the temperature measurement results with respect to the passage of time by each of the temperature measuring elements, a longitudinal temperature distribution temporal change graph is shown, and from the temperature measurement results with respect to the passage of time by the temperature measuring elements arranged in the circumferential direction, the circumferential temperature is shown. Obtaining a distribution temporal change graph, and measuring the flow location of the groundwater from the longitudinal temperature distribution temporal change graph, and measuring one or both of its flow direction and flow velocity from the circumferential temperature distribution temporal change graph. Flow point of ground water, characterized, flow direction, flow velocity measurement method.
【請求項2】長尺な基体に、所要複数のヒータを横方向
へ離間させて縦長に配設し、これら各ヒータの近傍にあ
って、縦方向に離間させて所要複数の温度測定素子が配
設され、これらのヒータ、温度測定素子に接続された夫
々各別のヒータ用リード線、温度測定素子用リード線
が、上記の基体から導出されていることを特徴とする地
下水の流動箇所、流向、流測測定器。
2. A plurality of required temperature measuring elements are provided on a long base in a vertically long manner while being separated from each other in the horizontal direction, and in the vicinity of each of the heaters, a plurality of required temperature measuring elements are provided apart from each other in the vertical direction. Arranged, these heaters, each different heater lead wire connected to the temperature measuring element, the temperature measuring element lead wire, the flow point of the groundwater, characterized in that it is derived from the base body, Flow direction, flow measuring instrument.
【請求項3】長尺な基体に、所要複数のヒータを横方向
へ離間させて縦長に配設し、これら各ヒータの近傍にあ
って、縦方向に離間させて所要複数の温度測定素子が配
設され、これらのヒータ、温度測定素子に接続された夫
々各別のヒータ用リード線、温度測定素子用リード線
が、上記の基体から導出され、上記基体の上下に、気体
または液体を送脱自在としたパッカーが設けられている
ことを特徴とする地下水の流動箇所、流向、流速測定
器。
3. A plurality of required heaters are arranged in a longitudinal direction on a long base body while being laterally spaced apart from each other. These heaters, the respective heater lead wires connected to the temperature measurement element, and the respective temperature measurement element lead wires are led out from the above-mentioned base body, and gas or liquid is sent above and below the base body. A groundwater flow point, flow direction, and flow velocity measuring device, which is equipped with a removable packer.
JP63331958A 1988-12-28 1988-12-28 Groundwater flow point, flow direction, flow velocity measurement method and its measuring instrument Expired - Fee Related JPH0812255B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63331958A JPH0812255B2 (en) 1988-12-28 1988-12-28 Groundwater flow point, flow direction, flow velocity measurement method and its measuring instrument
BR8906897A BR8906897A (en) 1988-12-28 1989-12-28 CLOSING ELEMENTS FOR SLIDES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63331958A JPH0812255B2 (en) 1988-12-28 1988-12-28 Groundwater flow point, flow direction, flow velocity measurement method and its measuring instrument

Publications (2)

Publication Number Publication Date
JPH02176591A JPH02176591A (en) 1990-07-09
JPH0812255B2 true JPH0812255B2 (en) 1996-02-07

Family

ID=18249545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63331958A Expired - Fee Related JPH0812255B2 (en) 1988-12-28 1988-12-28 Groundwater flow point, flow direction, flow velocity measurement method and its measuring instrument

Country Status (2)

Country Link
JP (1) JPH0812255B2 (en)
BR (1) BR8906897A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006012230B3 (en) * 2006-03-16 2007-06-14 Siemens Ag Fluid e.g. gas, flow measuring device for use in e.g. generator, has evaluation unit that is provided for evaluation of temperature going out from individual heat flow and influencing electromagnetic waves
CN106769779A (en) * 2017-01-22 2017-05-31 中国建筑设计咨询有限公司 A kind of device and method for calculating seepage action of ground water speed and direction

Also Published As

Publication number Publication date
BR8906897A (en) 1990-09-25
JPH02176591A (en) 1990-07-09

Similar Documents

Publication Publication Date Title
JP6918019B2 (en) Real-time fluid monitoring system and method
US6758271B1 (en) System and technique to improve a well stimulation process
US3981187A (en) Method for measuring the thermal conductivity of well casing and the like
US3668927A (en) Borehole thermal conductivity measurements
US4236113A (en) Electrical well logging tool, having an expandable sleeve, for determining if clay is present in an earth formation
JP4421627B2 (en) Heated groundwater logging method, heated groundwater logging sensor and measuring device for heated groundwater logging
NO151676B (en) DEVICE AND PROCEDURES FOR REPAIR OF BURNER
CN105136846B (en) Rock And Soil thermal physical property parameter in-situ test instrument
US3483730A (en) Method of detecting the movement of heat in a subterranean hydrocarbon bearing formation during a thermal recovery process
US2311757A (en) Thermometric method and apparatus for exploration of boreholes
JPH0812255B2 (en) Groundwater flow point, flow direction, flow velocity measurement method and its measuring instrument
US4171642A (en) Fluid producing formation tester
JP2680261B2 (en) Position measuring method and position measuring device for concrete crown
KR100643716B1 (en) The judgmentt methods of the grouting-result using the heating device and the temperature-monitoring equipments
US4547080A (en) Convective heat flow probe
RU2136880C1 (en) Method for investigation of wells
RU2194855C1 (en) Method of well research
JP3648719B2 (en) Crack detection method and potential measuring electrode
JPH11326359A (en) Measuring apparatus for flow direction and flow velocity of ground water
CN214403559U (en) Well temperature logging instrument
JPH06214045A (en) Fluid/flow sensor, and underground water investigating method using same
ES2386320T3 (en) Procedure for determining radial expansion and / or the content of DSV bodies hydraulic agglutination materials
JP6916497B1 (en) Thermophysical property measuring device and method for measuring thermal conductivity
SU1680965A1 (en) A method of estimating the interval of seal failure in large-diameter casing
US2977792A (en) Method for detecting fluid flow in or near a well bore

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees