JPH06214045A - Fluid/flow sensor, and underground water investigating method using same - Google Patents

Fluid/flow sensor, and underground water investigating method using same

Info

Publication number
JPH06214045A
JPH06214045A JP24736292A JP24736292A JPH06214045A JP H06214045 A JPH06214045 A JP H06214045A JP 24736292 A JP24736292 A JP 24736292A JP 24736292 A JP24736292 A JP 24736292A JP H06214045 A JPH06214045 A JP H06214045A
Authority
JP
Japan
Prior art keywords
fluid
flow
optical fiber
flow sensor
heating wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24736292A
Other languages
Japanese (ja)
Inventor
Yukio Oi
幸雄 大井
Kiyoshi Mamiya
清 間宮
Seishi Fujii
勢之 藤井
Akinori Takahashi
昭教 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oyo Corp
Eneos Corp
Original Assignee
Japan Energy Corp
Oyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp, Oyo Corp filed Critical Japan Energy Corp
Priority to JP24736292A priority Critical patent/JPH06214045A/en
Publication of JPH06214045A publication Critical patent/JPH06214045A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Abstract

PURPOSE:To measure a fluid/flow con-dimensionally and continuouly in point of time, and also investigate underground water level or the position or magnitude of underground water flow. CONSTITUTION:A fluidflow sensor 10 has a lengthy structure in which an optical fiber 12 and a heating wire 14 are covered with a heat resisting electric insulating material 16 and integrated. This fluid/flow sensor is set in the ground, a current is carried to the heating wire to generate heat, and the temperature distribution laid along the optical fiber is measured, whereby underground water level or flow is investigated. Further, the fluid/flow sensor is inserted into a boring in which underground water is present, the current is carried to the heating wire to generate heat while measuring the temperature distribution laid along the optical fiber, and the magnitude of the flow of underground water is investigated by the change on standing of temperature distribution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光ファイバ式の流体・
流動センサ及びそれを用いた地下水調査方法に関するも
のである。更に詳しく述べると、光ファイバの近傍に電
熱線を配置して、被調査対象に対して積極的に温度上昇
という外乱を起こし、流体の存在や流動に起因する温度
変化を検出することにより、逆に流体の存在(有無及び
存在位置)や流動状態を調査する技術に関するものであ
る。この流体・流動センサは、特に地下水位や地下水流
動の調査・監視などに有用である。
BACKGROUND OF THE INVENTION The present invention relates to an optical fiber type fluid
The present invention relates to a flow sensor and a groundwater investigation method using the flow sensor. More specifically, by arranging a heating wire near the optical fiber, positively causing a disturbance such as a temperature rise on the object to be investigated, and detecting a temperature change due to the presence or flow of fluid, the reverse The present invention relates to a technology for investigating the existence (presence and absence and the existence position) of a fluid and the flow state. This fluid / flow sensor is particularly useful for investigation / monitoring of groundwater level and groundwater flow.

【0002】[0002]

【従来の技術】地下水の流動とは、流動位置、流動
速度、水位変動などを意味する。これらを調査・監視
する従来技術としては、地中にボーリング孔を掘削し、
その孔内に水位計を挿入して水位を測定する方法、水に
溶解する塩類を孔内に投入して電気伝導度を測定する方
法などがある。また土中の水分のサクション力を測定す
る場合もある。
2. Description of the Related Art Flow of groundwater means flow position, flow velocity, water level fluctuation, and the like. As a conventional technique for investigating and monitoring these, drilling a borehole in the ground,
There are a method of inserting a water level meter into the hole to measure the water level, and a method of introducing water-soluble salts into the hole to measure the electric conductivity. In addition, the suction force of water in the soil may be measured.

【0003】ところで現在のところ地下水調査とは無関
係の技術であるが、本願発明に関係する技術として光フ
ァイバ形温度分布計測システムがある。これは光ファイ
バにレーザパルス光を照射した時、光ファイバ中で発生
する後方散乱光のラマン散乱によるストークス光及び反
ストークス光の強度比が温度の関数であることを利用し
て温度を測定し、レーザパルス光を照射してから後方散
乱光として再び入射端に戻ってくるまでの遅延時間によ
って、散乱光発生地点を求めるものである。このシステ
ムは、光ファイバ自身がセンサであり、光ファイバに沿
った線上の温度分布を測定でき、約10kmの長さに延長
でき、位置の測定精度は約1m程度であると言われてい
る。この技術は、例えば自然環境の調査としては地熱温
度分布測定などに利用されている。
At present, an optical fiber type temperature distribution measuring system is a technology which is not related to groundwater investigation at present, but is related to the present invention. This is because when the optical fiber is irradiated with laser pulsed light, the temperature is measured by utilizing the fact that the intensity ratio of Stokes light and anti-Stokes light due to Raman scattering of backscattered light generated in the optical fiber is a function of temperature. The scattered light generation point is obtained by the delay time from the irradiation of the laser pulse light to the return to the incident end as the backscattered light. In this system, the optical fiber itself is a sensor, the temperature distribution on the line along the optical fiber can be measured, the length can be extended to about 10 km, and the position measurement accuracy is said to be about 1 m. This technique is used, for example, for measuring the geothermal temperature distribution as a survey of the natural environment.

【0004】[0004]

【発明が解決しようとする課題】上記のような従来の地
下水調査方法にはそれぞれ特徴があり、調査目的に応じ
て使い分けられている。しかし、例えば土中のサクショ
ン力の変化から地下水の流動を検知・測定しようとする
場合は、ポテンショメータを埋設するが、これは点測定
であり線状に連続的な測定を行おうとすると多数個のセ
ンサの埋設が必要となるなどの限界がある。またボーリ
ング孔を掘削して孔壁から孔内に地下水が湧出してくる
位置を検知しようとする場合、孔内に食塩を投入して混
合し、電気伝導度を測定して、その変化の大きい部分に
湧出があると判断するが、これも測定は断続的とならざ
るを得ない。
Each of the conventional groundwater investigation methods described above has its own characteristics, and is used properly according to the purpose of the investigation. However, when detecting and measuring the flow of groundwater from changes in the suction force in the soil, for example, a potentiometer is buried, but this is a point measurement, and if continuous measurement is performed linearly, a large number of There are limitations such as the need to embed sensors. When drilling a boring hole to detect the position where groundwater spouts from the hole wall into the hole, salt is poured into the hole, mixed, and the electrical conductivity is measured to make a large change. It is judged that there is a well in the part, but the measurement also has to be intermittent.

【0005】他方、光ファイバ形温度分布計測システム
は、単に温度分布(光ファイバの長手方向の各部の位置
での温度)を測定するものであるから、通常土と水とで
殆ど温度差のない地盤中では、それ自体では地下水調査
などには使いようがない。
On the other hand, since the optical fiber type temperature distribution measuring system merely measures the temperature distribution (the temperature at each position in the longitudinal direction of the optical fiber), there is almost no temperature difference between the soil and water. In the ground, it cannot be used by itself for groundwater research.

【0006】本発明の目的は、一次元的に且つ時間的に
連続した測定が可能な流体・流動センサを提供すること
である。本発明の他の目的は、地下水位の測定を一次元
的に又時間的に連続して行うことができ、また地下水流
動の位置や大きさも調査できる方法を提供することであ
る。
An object of the present invention is to provide a fluid / flow sensor capable of continuous measurement in one dimension and time. Another object of the present invention is to provide a method capable of continuously measuring the groundwater level one-dimensionally and temporally, and also capable of investigating the position and magnitude of the groundwater flow.

【0007】[0007]

【課題を解決するための手段】本発明は、光ファイバ
と、それに沿って配置した電熱線とを、耐熱性の電気絶
縁材で被覆し一体化した温度分布測定方式の流体・流動
センサである。光ファイバと電熱線とは近接配置されて
いればよく、それぞれの形状や組み合わせ方は任意であ
る。使用条件(周囲の環境)によっては、電気絶縁材と
して耐食性を有するものを用いる。
DISCLOSURE OF THE INVENTION The present invention is a temperature distribution measuring type fluid / flow sensor in which an optical fiber and a heating wire arranged along the optical fiber are covered with a heat-resistant electrical insulating material and integrated. . The optical fiber and the heating wire may be arranged close to each other, and their shapes and combinations are arbitrary. Depending on the usage conditions (ambient environment), an electrically insulating material having corrosion resistance is used.

【0008】また本発明は、光ファイバに沿って電熱線
を配置し、耐熱性の電気絶縁材で被覆し一体化した流体
・流動センサを地中に設置し、前記電熱線に通電して発
熱させ、前記光ファイバに沿った温度分布を測定するこ
とにより、地下水の水位あるいは流動を調査する方法で
ある。流体・流動センサを、地下水が存在するボーリン
グ孔内に挿入し、前記光ファイバに沿った温度分布を測
定しながら前記電熱線に通電して発熱させ、前記温度分
布の時間的変化により地下水の流動の大きさを調査する
方法もある。
Further, according to the present invention, a heating wire is arranged along an optical fiber, and a fluid / flow sensor integrated with a heat-resistant electric insulating material is installed in the ground, and the heating wire is energized to generate heat. And measuring the temperature distribution along the optical fiber to investigate the water level or flow of groundwater. A fluid / flow sensor is inserted into a borehole where groundwater is present, and the heating wire is energized to generate heat while measuring the temperature distribution along the optical fiber, and the flow of groundwater is caused by the temporal change in the temperature distribution. There is also a method of investigating the size of.

【0009】[0009]

【作用】被調査対象が例えほぼ均一な温度分布をなして
いたとしても、光ファイバに対して積極的に外乱(温度
上昇)を加えると、それに部分的に温度を変動させる要
因が作用した時に温度分布に変化が生じる。その要因と
しては、極端な物性(熱容量)の違いや流体の流動など
がある。従って、逆に外乱(温度上昇)を加えてから後
の温度分布を測定することにより、それら物性の違いや
流体流動などを調査することができる。
[Effect] Even if the object to be investigated has a substantially uniform temperature distribution, when a disturbance (temperature rise) is positively applied to the optical fiber, a factor that partially changes the temperature acts on it. The temperature distribution changes. The factors include extreme difference in physical properties (heat capacity) and fluid flow. Therefore, on the contrary, by measuring the temperature distribution after the disturbance (temperature rise) is applied, it is possible to investigate the difference in the physical properties and the fluid flow.

【0010】例えば土中では、通常、地下水の有無にか
かわらず各部の温度はほぼ一定である。流体・流動セン
サを土中に設けて、その電熱線に通電すると、センサ全
体がほぼ均一に発熱して周囲よりも温度が上昇する。と
ころが土(あるいは空気)と水とでは熱容量が異なるた
め、土に接している部分と水に接している部分では温度
の上昇程度が異なり、水に接している部分の温度は上が
らない。それ故、電熱線に通電しながら光ファイバにレ
ーザパルス光を照射して温度分布を測定することによ
り、地下水位を検知することが可能となる。また地下水
が流動していると除熱効果は更に高くなり、流動が大き
いほど温度上昇速度が小さいし、また平衡状態での温度
も低くなる。これらの現象を追跡することによって帯水
層の位置や地下水流動の大きさを検知することができ
る。
In the soil, for example, the temperature of each part is usually substantially constant regardless of the presence or absence of groundwater. When a fluid / flow sensor is installed in the soil and the heating wire is energized, the entire sensor heats up almost uniformly and the temperature rises above the surrounding temperature. However, since the heat capacity of soil (or air) is different from that of water, the degree of temperature rise is different between the part in contact with soil and the part in contact with water, and the temperature in the part in contact with water does not rise. Therefore, it is possible to detect the groundwater level by irradiating the optical fiber with laser pulsed light and measuring the temperature distribution while energizing the heating wire. When groundwater is flowing, the heat removal effect is further enhanced. The greater the flow, the smaller the temperature rising rate, and the lower the temperature at equilibrium. By tracking these phenomena, the location of the aquifer and the magnitude of groundwater flow can be detected.

【0011】[0011]

【実施例】図1は本発明に係る流体・流動センサの一実
施例を示す説明図である。この流体・流動センサ10
は、光ファイバ12と、該光ファイバに沿って近接配置
した電熱線14とを、耐熱性且つ耐食性の電気絶縁材1
6で共通に被覆し一体化した長尺構造である。
1 is an explanatory view showing an embodiment of a fluid / flow sensor according to the present invention. This fluid / flow sensor 10
Is a heat-resistant and corrosion-resistant electrical insulating material 1 for an optical fiber 12 and a heating wire 14 arranged closely along the optical fiber.
It is a long structure that is commonly covered with 6 and integrated.

【0012】図2のAはその流体・流動センサを使用し
た地下水調査方法の一例を示している。流体・流動セン
サ10を地盤20内で垂直方向に、下部で折り返すよう
に埋設する。電熱線の両端には電源を接続して一定電流
を流す。光ファイバの一端には温度分布測定装置を接続
する。ここで図示の位置に地下水位Lがあるとする。電
熱線は通電によって発熱し、流体・流動センサ10全体
はほぼ均一な温度(但し、周囲温度よりもはるかに高い
温度)に上昇しようとする。その時、流体・流動センサ
10は、上部では土に接しているが、下部では地下水に
接している。土と水とでは熱容量が大きく異なり、水の
方がはるかに大きいため、流体・流動センサ10の上部
と下部とで温度上昇が異なり、且つ平衡状態でも温度分
布に差が生じる。水に接している流体・流動センサ10
の下部の方が温度は低くなる。つまり図2のBに示すよ
うな温度分布を検出できる。この温度分布から、温度の
低いレベルL以下に地下水が存在していることが検知で
きる。
FIG. 2A shows an example of a groundwater investigation method using the fluid / flow sensor. The fluid / flow sensor 10 is embedded in the ground 20 in the vertical direction and folded back at the bottom. A power source is connected to both ends of the heating wire to flow a constant current. A temperature distribution measuring device is connected to one end of the optical fiber. Here, it is assumed that the groundwater level L is at the illustrated position. The heating wire generates heat when energized, and the entire fluid / flow sensor 10 tries to rise to a substantially uniform temperature (however, a temperature much higher than the ambient temperature). At that time, the fluid / flow sensor 10 is in contact with the soil at the upper portion, but is in contact with the groundwater at the lower portion. Since the heat capacities of soil and water are significantly different and that of water is much larger, the temperature rise is different between the upper and lower portions of the fluid / flow sensor 10, and there is a difference in temperature distribution even in the equilibrium state. Fluid / flow sensor 10 in contact with water
The temperature is lower in the lower part of. That is, the temperature distribution shown in B of FIG. 2 can be detected. From this temperature distribution, it can be detected that groundwater exists below the low temperature level L.

【0013】図3のAは流体・流動センサ10の使用状
況の他の例を示し、Bはその時の温度分布を示してい
る。地盤20内に形成したボーリング孔22内に流体・
流動センサ10を挿入する。流体・流動センサ10はボ
ーリング孔22の底部で折り返されている。電熱線の両
端に電源を接続して一定電流を流し、光ファイバの一端
に温度分布測定装置を接続する点は上記の例と同様であ
る。地中に帯水層24があり、地下水の流動があると、
その部分での除熱効果は更に高まる。つまり図3のBに
示すように地下水の流動がある部分では、流体・流動セ
ンサ10から熱が奪われ温度が低下する。平衡状態でも
一定の温度分布が生じ、それを測定することで地下水の
流動位置(帯水層の位置)を検知することができる。
FIG. 3A shows another example of the usage of the fluid / flow sensor 10, and B shows the temperature distribution at that time. Fluid in the boring hole 22 formed in the ground 20
The flow sensor 10 is inserted. The fluid / flow sensor 10 is folded back at the bottom of the boring hole 22. Similar to the above example, a power source is connected to both ends of the heating wire to flow a constant current, and a temperature distribution measuring device is connected to one end of the optical fiber. If there is an aquifer 24 in the ground and there is groundwater flow,
The heat removal effect in that portion is further enhanced. That is, as shown in FIG. 3B, heat is taken from the fluid / flow sensor 10 in the portion where there is groundwater flow, and the temperature drops. A constant temperature distribution is generated even in the equilibrium state, and by measuring it, the flow position of groundwater (position of aquifer) can be detected.

【0014】また流体・流動センサの電熱線に通電し始
めると、徐々に温度が上昇するが、その昇温速度は周囲
の状況に応じて変化する。例えば帯水層の位置で温度変
化を測定すると、図4に示すように、昇温曲線(時間経
過に対する温度の関係)は異なる。速やかに昇温する場
合からゆっくりと徐々に昇温するまで(曲線a,…,
d)さまざまである。地下水の流動が大きいほど除熱効
果は高くなるので、昇温速度は緩やかになる。つまり曲
線a→曲線dのように勾配が緩くなるほど流動が大きい
ことが分かる。従って、電熱線への通電を開始してから
後の温度変化を観測することで、地下水流動の大きさを
求めることが可能となる。また通電を停止すると徐々に
温度が降下し、その降温速度は周囲の状況に応じて変化
するから、降温曲線(曲線e,…,h)からも流動の大
きさを知ることができる。
When the heating wire of the fluid / flow sensor starts to be energized, the temperature gradually rises, but the rate of temperature rise changes depending on the surrounding conditions. For example, when the temperature change is measured at the position of the aquifer, the temperature rising curve (relationship of temperature with time) is different as shown in FIG. From the case where the temperature rises quickly to the time when the temperature rises gradually (curve a, ...,
d) It varies. The greater the flow of groundwater, the higher the heat removal effect, and the slower the heating rate. That is, it can be seen that the flow becomes larger as the gradient becomes gentler, as shown by the curve a → curve d. Therefore, it is possible to determine the magnitude of groundwater flow by observing the temperature change after the energization of the heating wire is started. Further, when the energization is stopped, the temperature gradually drops, and the rate of temperature drop changes according to the surrounding conditions, so the magnitude of the flow can be known from the temperature drop curves (curves e, ..., H).

【0015】図5は本発明方法の更に他の実施例を示し
ている。これらの例では、流体・流動センサ10を螺旋
状に巻き回して地盤20内に埋設したり(図5のA)、
地盤20に形成したボーリング孔22内に挿入してい
る。これによって分解能が向上する。例えば直径約30
cm(円周長1m)で1cmのピッチで巻き付けた構成とす
ると、直線状に配置した場合に比べて約100倍の精度
で地下水位や帯水層の位置を特定できることになる。な
お図示されていないが、これらの場合、流体・流動セン
サ10を円筒状のケーシングなどに巻き付け固定する構
成とすると、ボーリング孔などへの挿入も容易となり好
ましい。
FIG. 5 shows another embodiment of the method of the present invention. In these examples, the fluid / flow sensor 10 is spirally wound and embedded in the ground 20 (A in FIG. 5),
It is inserted into a boring hole 22 formed in the ground 20. This improves the resolution. For example, about 30 in diameter
If it is configured to be wound at a pitch of 1 cm with a cm (circumferential length of 1 m), the groundwater level and the position of the aquifer can be specified with about 100 times accuracy compared to the case where they are arranged in a straight line. Although not shown in the drawings, in these cases, it is preferable that the fluid / flow sensor 10 be wound around and fixed to a cylindrical casing or the like because it can be easily inserted into a boring hole or the like.

【0016】本発明に係る流体・流動センサは、上記の
ような構成のみに限定されるものではない。例えば図6
に示すように、光ファイバ32と電熱線34を同じよう
に中間部で折り曲げて近接配置し、耐熱性の電気絶縁材
36で共通に被覆するような構成でもよい。このように
すると、土中への埋設やボーリング孔内への挿入作業性
がより一層向上する。また電熱線の両端への電源の接続
も容易となる。なお光ファイバは一端からレーザパルス
光を照射し、後方散乱光を検知するものであるから、折
り返さずに1本のみ添設する構成でもよい。
The fluid / flow sensor according to the present invention is not limited to the above configuration. For example, in FIG.
As shown in FIG. 5, the optical fiber 32 and the heating wire 34 may be bent in the same manner at the intermediate portion and arranged close to each other, and may be commonly covered with the heat-resistant electric insulating material 36. By doing so, the workability of burying in the soil and inserting into the boring hole is further improved. Further, it becomes easy to connect the power source to both ends of the heating wire. Since the optical fiber irradiates the laser pulse light from one end to detect the backscattered light, only one optical fiber may be attached without being folded back.

【0017】本発明に係る流体・流動センサは、水以外
の液体の存在や流動の検知にも利用できるし、その他、
ガスの流動(噴出など)の検知などにも利用可能であ
る。
The fluid / flow sensor according to the present invention can be used to detect the presence or flow of a liquid other than water.
It can also be used to detect gas flow (spouting, etc.).

【0018】[0018]

【発明の効果】本発明は上記のように光ファイバと電熱
線とを近接して耐熱性の電気絶縁材で被覆した長尺構造
の流体・流動センサであるから、電熱線に通電して発熱
させ、光ファイバで温度分布を測定することで、流体の
存在位置あるいは流動状況を一次元的に且つ時間的に連
続して測定することが可能である。
As described above, the present invention is a fluid / flow sensor having a long structure in which the optical fiber and the heating wire are closely arranged and covered with a heat-resistant electric insulating material. Therefore, the heating wire is energized to generate heat. By measuring the temperature distribution with the optical fiber, it is possible to continuously measure the existing position or flow state of the fluid one-dimensionally and temporally.

【0019】特に地下水調査に適用すると、1本の流体
・流動センサを地中に直接埋設したり、ボーリング孔内
に挿入するだけでよく、そのためセンサの設置が容易
で、設置コストも低く、地下水の水位、帯水層の位置、
地下水流動状況を、センサの長手方向の全長にわたって
連続的に精度良く調査することが可能となる。
Especially when applied to groundwater investigation, it is only necessary to bury one fluid / flow sensor directly in the ground or insert it into the boring hole. Therefore, the sensor can be installed easily, the installation cost is low, and the groundwater Water level, aquifer position,
It is possible to continuously and accurately investigate the groundwater flow condition over the entire length of the sensor in the longitudinal direction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る流体・流動センサの一実施例を示
す説明図。
FIG. 1 is an explanatory view showing an embodiment of a fluid / flow sensor according to the present invention.

【図2】その使用状況と温度分布の一例を示す説明図。FIG. 2 is an explanatory diagram showing an example of its usage status and temperature distribution.

【図3】その使用状況と温度分布の他の例を示す説明
図。
FIG. 3 is an explanatory diagram showing another example of the usage status and temperature distribution.

【図4】本発明方法による地下水流動測定の説明図。FIG. 4 is an explanatory diagram of groundwater flow measurement by the method of the present invention.

【図5】本発明方法による調査状況の他の例を示す説明
図。
FIG. 5 is an explanatory view showing another example of the investigation situation by the method of the present invention.

【図6】本発明に係る流体・流動センサの他の実施例を
示す説明図。
FIG. 6 is an explanatory view showing another embodiment of the fluid / flow sensor according to the present invention.

【符号の説明】[Explanation of symbols]

10 流体・流動センサ 12 光ファイバ 14 電熱線 16 電気絶縁材 10 Fluid / Flow Sensor 12 Optical Fiber 14 Heating Wire 16 Electrical Insulation Material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤井 勢之 東京都千代田区九段北4丁目2番6号 応 用地質株式会社内 (72)発明者 高橋 昭教 東京都千代田区九段北4丁目2番6号 応 用地質株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Seyuki Fujii 4-26, Kudankita, Chiyoda-ku, Tokyo Within Geological Co., Ltd. No. 6 Applied Geotechnical Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光ファイバと、該光ファイバに沿って配
置した電熱線とを、耐熱性の電気絶縁材で被覆し一体化
したことを特徴とする温度分布測定方式の流体・流動セ
ンサ。
1. A fluid distribution / flow sensor of a temperature distribution measuring system, characterized in that an optical fiber and a heating wire arranged along the optical fiber are covered with a heat-resistant electric insulating material and integrated.
【請求項2】 光ファイバに沿って電熱線を配置し、耐
熱性の電気絶縁材で被覆し一体化した流体・流動センサ
を地中に設置し、前記電熱線に通電して発熱させ、前記
光ファイバに沿った温度分布を測定することにより、地
下水の水位あるいは流動を調査することを特徴とする地
下水調査方法。
2. A heating / heating wire is arranged along an optical fiber, and a fluid / flow sensor integrated with a heat-resistant electrical insulating material is installed in the ground, and the heating wire is energized to generate heat. A groundwater investigation method characterized by investigating groundwater level or flow by measuring temperature distribution along an optical fiber.
【請求項3】 光ファイバに沿って電熱線を配置し、耐
熱性の電気絶縁材で被覆し一体化した流体・流動センサ
を、地下水が存在するボーリング孔内に挿入し、前記光
ファイバに沿った温度分布を測定しながら前記電熱線に
通電して発熱させ、前記温度分布の時間的変化により地
下水の流動の大きさを調査することを特徴とする地下水
調査方法。
3. A fluid / flow sensor in which a heating wire is arranged along an optical fiber, and which is covered with a heat-resistant electric insulating material and integrated, is inserted into a borehole in which groundwater exists, and the fluid / flow sensor is inserted along the optical fiber. A method for investigating groundwater, characterized in that the heating wire is energized to generate heat while measuring the temperature distribution, and the magnitude of groundwater flow is investigated by the temporal change of the temperature distribution.
JP24736292A 1992-08-24 1992-08-24 Fluid/flow sensor, and underground water investigating method using same Pending JPH06214045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24736292A JPH06214045A (en) 1992-08-24 1992-08-24 Fluid/flow sensor, and underground water investigating method using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24736292A JPH06214045A (en) 1992-08-24 1992-08-24 Fluid/flow sensor, and underground water investigating method using same

Publications (1)

Publication Number Publication Date
JPH06214045A true JPH06214045A (en) 1994-08-05

Family

ID=17162298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24736292A Pending JPH06214045A (en) 1992-08-24 1992-08-24 Fluid/flow sensor, and underground water investigating method using same

Country Status (1)

Country Link
JP (1) JPH06214045A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010164536A (en) * 2009-01-19 2010-07-29 Japan Oil Gas & Metals National Corp Flow detection method of underground gas
JP2011174768A (en) * 2010-02-23 2011-09-08 Central Res Inst Of Electric Power Ind Device for measuring moisture content in depth direction of ground
WO2016068736A1 (en) 2014-10-31 2016-05-06 Neostrain Spółka Z Ograniczona Odpowiedzialnoscia Method, system and prefabricated multi-sensor integrated cable for detection and monitoring of a fluid flow, in particular of a fluid flow in filtration processes, especially of leakage in constructions and/or in ground
CN105676308A (en) * 2016-01-14 2016-06-15 中国地质大学(武汉) Single-well underground water seepage flow velocity and flow direction measuring method and measuring instrument

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010164536A (en) * 2009-01-19 2010-07-29 Japan Oil Gas & Metals National Corp Flow detection method of underground gas
JP2011174768A (en) * 2010-02-23 2011-09-08 Central Res Inst Of Electric Power Ind Device for measuring moisture content in depth direction of ground
WO2016068736A1 (en) 2014-10-31 2016-05-06 Neostrain Spółka Z Ograniczona Odpowiedzialnoscia Method, system and prefabricated multi-sensor integrated cable for detection and monitoring of a fluid flow, in particular of a fluid flow in filtration processes, especially of leakage in constructions and/or in ground
CN105676308A (en) * 2016-01-14 2016-06-15 中国地质大学(武汉) Single-well underground water seepage flow velocity and flow direction measuring method and measuring instrument
CN105676308B (en) * 2016-01-14 2018-01-30 中国地质大学(武汉) A kind of underground water in single well seepage velocity flow directional detection method and measuring instrument

Similar Documents

Publication Publication Date Title
US9541436B2 (en) Distributed two dimensional fluid sensor
Sayde et al. Feasibility of soil moisture monitoring with heated fiber optics
US8122951B2 (en) Systems and methods of downhole thermal property measurement
US9541665B2 (en) Fluid determination in a well bore
US9790782B2 (en) Identification of thermal conductivity properties of formation fluid
US6581445B1 (en) Distributed fiber optic moisture intrusion sensing system
JP4421627B2 (en) Heated groundwater logging method, heated groundwater logging sensor and measuring device for heated groundwater logging
Wu et al. Laboratory-scale assessment of a capillary barrier using fibre optic distributed temperature sensing (FO-DTS)
EP3213124B1 (en) Method, system and prefabricated multi-sensor integrated cable for detection and monitoring of a fluid flow, in particular of a fluid flow in filtration processes, especially of leakage in constructions and/or in ground
Côté et al. Water leakage detection using optical fiber at the Peribonka dam
JPH06214045A (en) Fluid/flow sensor, and underground water investigating method using same
JPH11142281A (en) Ground-water measuring instrument
US6393925B1 (en) Groundwater velocity probe
US20160259084A1 (en) Identification of heat capacity properties of formation fluid
JP2006194821A (en) Method for measuring moisture content in soil
Dornstädter Leakage detection in dams–state of the art
JP2612812B2 (en) Measurement system for moisture behavior / migration in stratum and method of exploration thereof
US3765240A (en) Method and apparatus for detecting oil leaks in cables
JP2011047847A (en) Ground water level detector
JPH0674768A (en) River bed dredging monitoring method
JPH1031077A (en) Method of detecting crack and electrode for measuring potential
Dornstädter et al. In situ detection of internal erosion
JPH06186349A (en) Method for detecting underground void
BR202018072291U2 (en) CONSTRUCTIVE ARRANGEMENT INTRODUCED IN SENSOR / PROBE OF MEASUREMENT OF CORROSION RATE BY ELECTRIC RESISTANCE
JP3048784U (en) Soil moisture sensor cable