JP6916497B1 - Thermophysical property measuring device and method for measuring thermal conductivity - Google Patents

Thermophysical property measuring device and method for measuring thermal conductivity Download PDF

Info

Publication number
JP6916497B1
JP6916497B1 JP2021031643A JP2021031643A JP6916497B1 JP 6916497 B1 JP6916497 B1 JP 6916497B1 JP 2021031643 A JP2021031643 A JP 2021031643A JP 2021031643 A JP2021031643 A JP 2021031643A JP 6916497 B1 JP6916497 B1 JP 6916497B1
Authority
JP
Japan
Prior art keywords
heat source
thermal conductivity
temperature sensor
sheet
packer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021031643A
Other languages
Japanese (ja)
Other versions
JP2022132911A (en
Inventor
栄起 濱元
栄起 濱元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAITAMA PREFECTURE
Original Assignee
SAITAMA PREFECTURE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAITAMA PREFECTURE filed Critical SAITAMA PREFECTURE
Priority to JP2021031643A priority Critical patent/JP6916497B1/en
Application granted granted Critical
Publication of JP6916497B1 publication Critical patent/JP6916497B1/en
Publication of JP2022132911A publication Critical patent/JP2022132911A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

【課題】一般的な熱交換井または孔内水がない浅層の地盤の孔井にも適用できる容易な熱伝導率の測定方法、およびこの測定方法に使用できる熱物性測定装置を提供する。【解決手段】伸縮部位を有するパッカー、上記伸縮部位に流体を注出入する手段、上記伸縮部位に巻回する円筒状熱源、上記円筒状熱源の外周側に配置されている温度センサ、上記円筒状熱源に電力を供給する電源、および上記温度センサで測定される温度を記録する記録手段を含み、上記円筒状熱源はシート状発熱体からなるか、または弾性部材と上記シート状発熱体とからなり、上記パッカーは上記伸縮部位の収縮時は上記円筒状熱源および上記温度センサとともに孔井内を移動可能であり、上記伸縮部位は膨張時に上記シート状発熱体および上記温度センサを孔壁に密着させる、孔井内の原位置で地盤の熱物性を測定するための熱物性測定装置、ならびにこれを用いた熱伝導率の測定方法。【選択図】図1PROBLEM TO BE SOLVED: To provide a simple method for measuring thermal conductivity which can be applied to a general heat exchange well or a well in shallow ground where there is no water in a hole, and a thermophysical property measuring device which can be used for this measuring method. SOLUTION: A packer having an expansion / contraction portion, a means for pouring fluid into the expansion / contraction portion, a cylindrical heat source wound around the expansion / contraction portion, a temperature sensor arranged on the outer peripheral side of the cylindrical heat source, the cylindrical shape. The cylindrical heat source comprises a power source for supplying power to the heat source and a recording means for recording the temperature measured by the temperature sensor, or the cylindrical heat source is composed of a sheet-shaped heat generating body or an elastic member and the sheet-shaped heat generating body. The packer can move in the hole together with the cylindrical heat source and the temperature sensor when the expansion / contraction portion contracts, and the expansion / contraction portion brings the sheet-shaped heating element and the temperature sensor into close contact with the hole wall during expansion. A thermophysical property measuring device for measuring the thermal physical properties of the ground at the in-situ in the hole, and a method for measuring the thermal conductivity using the device. [Selection diagram] Fig. 1

Description

本発明は、熱物性測定装置および熱伝導率の測定方法に関する。より詳しくは、本発明は地盤の熱物性を孔井内の原位置で測定するための熱物性測定装置および、地盤の熱伝導率の原位置での測定方法に関する。 The present invention relates to a thermophysical property measuring device and a method for measuring thermal conductivity. More specifically, the present invention relates to a thermophysical property measuring device for measuring the thermophysical properties of the ground at the in-situ in the well, and a method for measuring the thermal conductivity of the ground at the in-situ.

土壌や地盤の熱伝導率は、地球科学分野や資源分野、環境分野、農業分野、土木建設分野等において重要な物理量である。特に、近年国内外で普及している、再生可能エネルギーのひとつである地中熱エネルギーを利用した地中熱利用システムでは、その設計や施工の際、採熱量を推定するために地盤の熱伝導率を把握することが必要である。 The thermal conductivity of soil and ground is an important physical quantity in the fields of earth science, resources, environment, agriculture, civil engineering and construction. In particular, in geothermal heat utilization systems that use geothermal energy, which is one of the renewable energies that have become widespread in Japan and overseas in recent years, the heat conduction of the ground is used to estimate the amount of heat collected during its design and construction. It is necessary to know the rate.

地中熱利用システムの設置の際によく用いられる熱伝導率を求めるための熱応答試験としては温水循環法がある。この方法では、温度センサを取り付けたU字状のパイプ(U字管)を孔井内に挿入し、挿入後に孔壁とそのU字管の間に珪砂等を充填したうえで、U字管の内部に温水を流し、U字管に取り付けた温度センサの時間変化からその深度の熱伝導率を、U字管の出入口の温度の時間変化から深さ方向の平均的な熱伝導率を求める(特許文献1、特許文献2、非特許文献1) There is a hot water circulation method as a thermal response test for determining the thermal conductivity, which is often used when installing a geothermal heat utilization system. In this method, a U-shaped pipe (U-shaped pipe) to which a temperature sensor is attached is inserted into a well, and after insertion, silica sand or the like is filled between the hole wall and the U-shaped pipe, and then the U-shaped pipe is formed. Hot water is flowed inside, and the thermal conductivity of the depth is obtained from the time change of the temperature sensor attached to the U-shaped tube, and the average thermal conductivity in the depth direction is obtained from the time change of the temperature at the entrance and exit of the U-shaped tube ( Patent Document 1, Patent Document 2, Non-Patent Document 1)

また、簡便に熱伝導率を測定する方法として電熱ヒータを用いる方法が提案されている。この方式のひとつとして孔内を加熱するために線状の電熱ヒータ(電熱線)を用い、それに温度センサを沿わせ、電熱線を加熱させながら温度の時間変化をモニタリングすることで熱伝導率を測定する方法が開発され、実用化されている(非特許文献2)。 Further, a method using an electric heater has been proposed as a method for easily measuring the thermal conductivity. As one of these methods, a linear electric heating heater (heating wire) is used to heat the inside of the hole, and a temperature sensor is placed along it to monitor the change in temperature over time while heating the heating wire to improve the thermal conductivity. A measuring method has been developed and put into practical use (Non-Patent Document 2).

さらに、地中熱利用システムの熱交換井のような大きな孔径の孔井で電熱ヒータを用いた方法を適用するための試みとして、鋼鉄製の容器の内部に巻回された電熱線を入れ、孔内を加熱し熱伝導率を測定する方法が開発されている(特許文献3)。 Furthermore, as an attempt to apply the method using an electric heater in a well with a large hole diameter such as a heat exchange well of a geothermal heat utilization system, a wound heating wire was inserted inside a steel container. A method of heating the inside of a hole and measuring the thermal conductivity has been developed (Patent Document 3).

特開2003−4680号公報Japanese Unexamined Patent Publication No. 2003-4680 特開2018−173293号公報Japanese Unexamined Patent Publication No. 2018-173293 特開2007−263957号公報Japanese Unexamined Patent Publication No. 2007-263957

地中熱利用促進協会,一定加熱・温水循環方式熱応答試験(TRT)技術書 2018年8月版,http://www.geohpaj.org/wp/wp-content/uploads/trt_draft_20180830.pdfGeothermal Utilization Promotion Association, Constant Heating / Hot Water Circulation Method Thermal Response Test (TRT) Technical Book August 2018, http://www.geohpaj.org/wp/wp-content/uploads/trt_draft_20180830.pdf ジオシステムホームページ,http://www.geo-system.jp/image/TCP_HCpunf190131.pdfGeosystem homepage, http://www.geo-system.jp/image/TCP_HCpunf190131.pdf

特許文献1等に記載の方法は、U字管を地中に埋設する必要があり、地上の装置が大がかりとなるという課題がある。また、熱応答試験の実施後にU字管を地中から引き抜くことは実際には困難であるため、このU字管をそのまま地中熱利用システムの熱交換パイプとして用いることが一般的である。したがって、熱応答試験を実施し、採熱量が不足していることが明らかになったとしても熱交換井を深く掘り増しする等の対応をとることが難しい。もし採熱量が不足している場合には、改めて新規の熱交換井を掘削しなおし、採熱量を確保するという対応をとらざるをえない。 The method described in Patent Document 1 and the like has a problem that a U-shaped pipe needs to be buried in the ground and a device on the ground becomes large-scale. Further, since it is actually difficult to pull out the U-shaped pipe from the ground after the heat response test is carried out, it is common to use this U-shaped pipe as it is as a heat exchange pipe of the geothermal heat utilization system. Therefore, even if it becomes clear that the amount of heat collected is insufficient by conducting a heat response test, it is difficult to take measures such as digging deeper into the heat exchange well. If the amount of heat collected is insufficient, it is necessary to re-drill a new heat exchange well to secure the amount of heat collected.

非特許文献2に記載の方法は熱源が線状で、その区間内の孔内水全体を温める必要があることから多くの時間と熱量を必要とするとともに、孔内の中心部にセンサを入れることが難しいという課題がある。そのためこの方法が適用できる孔井は小孔径の孔井(概ね孔径100mm程度まで)と言われている。しかし、地中熱利用システムで設置する熱交換井の孔径は、一般的に150mm程度と大きいため、この方法を地中熱利用システムの熱交換井に適用することは難しい。 The method described in Non-Patent Document 2 requires a lot of time and heat because the heat source is linear and it is necessary to heat the entire water in the hole in the section, and a sensor is inserted in the center of the hole. There is a problem that it is difficult. Therefore, the pits to which this method can be applied are said to be pits with a small pore diameter (generally up to a pore diameter of about 100 mm). However, since the hole diameter of the heat exchange well installed in the geothermal heat utilization system is generally as large as about 150 mm, it is difficult to apply this method to the heat exchange well of the geothermal heat utilization system.

特許文献3に記載の方法では孔壁により近い場所で孔内を加熱しているものの、実際には孔壁と鋼鉄製の容器の間には、孔内水が挟まれており、対流などの熱的影響を無視することができない。このような熱的な影響を低減するために鋼鉄製容器を孔井の孔径と略同じ外径で設計したとすると、孔曲がり(掘削過程で途中から曲がってしまったもの)がある孔井では物理的に孔井に挿入することすらできない。さらに測定作業を行ううえで孔内に挿入する鋼鉄製の容器とその内容物が重く、吊りおろしや引き揚げの作業は容易ではない。 In the method described in Patent Document 3, the inside of the hole is heated in a place closer to the hole wall, but in reality, the water in the hole is sandwiched between the hole wall and the steel container, and convection or the like is caused. The thermal effect cannot be ignored. If the steel container is designed with an outer diameter that is approximately the same as the hole diameter of the hole in order to reduce such thermal effects, the hole will be bent (the one that was bent in the middle of the excavation process). It cannot even be physically inserted into the hole. Furthermore, the steel container to be inserted into the hole and its contents are heavy for the measurement work, and the work of hanging and lowering is not easy.

また、上記の従来の方法はいずれも、孔壁を直接加熱するのではなく、発熱体近傍の孔内水を温め、その孔内水が壁面を加熱するという間接的なものである。したがって、孔内水が存在しない浅層の土壌や地盤には適用することができないという問題があった。 Further, all of the above-mentioned conventional methods are indirect methods in which the hole wall is not directly heated, but the water in the hole in the vicinity of the heating element is heated, and the water in the hole heats the wall surface. Therefore, there is a problem that it cannot be applied to shallow soil or ground where there is no in-pore water.

本発明の課題は、上記の従来方法の課題を解決した地盤の熱物性測定装置および熱伝導率の測定方法を提供することである。具体的には、一般的な熱交換井に適用可能であり、従来の方法では測定が困難である孔内水がない浅層の地盤の孔井にも適用することができる容易な熱伝導率の測定方法、および当該測定方法に使用できる熱物性測定装置を提供することである。 An object of the present invention is to provide a thermal property measuring device for ground and a method for measuring thermal conductivity, which solves the above-mentioned problems of the conventional method. Specifically, it can be applied to general heat exchange wells, and it can be easily applied to wells in shallow ground where there is no water in the holes, which is difficult to measure by conventional methods. To provide a method for measuring the above-mentioned material and a thermophysical property measuring device that can be used for the measuring method.

本発明者らは、上記課題の解決のため鋭意検討し、従来から地盤改良のための工法や地盤調査のために用いられているパッカーを活用して地盤の熱物性を測定できることを見出した。そして、この知見に基づきさらに検討を重ねて、本発明を完成させた。
具体的には、本発明は以下のとおりである。
The present inventors have diligently studied to solve the above problems, and have found that the thermal physical properties of the ground can be measured by utilizing a construction method for ground improvement and a packer conventionally used for ground investigation. Then, based on this finding, further studies were carried out to complete the present invention.
Specifically, the present invention is as follows.

<1>孔井内の原位置で地盤の熱物性を測定するための熱物性測定装置であって、
流体の注出入により収縮および膨張する伸縮部位を有するパッカー、上記伸縮部位に上記流体を注出入する手段、上記伸縮部位に巻回する円筒状熱源、上記円筒状熱源の外周側に配置されている温度センサ、上記円筒状熱源に電力を供給する電源、および上記温度センサで測定される温度を記録する記録手段を含み、
上記円筒状熱源はシート状発熱体からなるか、または弾性部材と上記シート状発熱体とからなり、
上記パッカーは上記伸縮部位の収縮時は上記円筒状熱源および上記温度センサとともに上記孔井内を移動可能であり、
上記伸縮部位は膨張時に上記シート状発熱体および上記温度センサを上記孔井の孔壁に密着させる、熱物性測定装置。
<2>上記シート状発熱体がシリコンラバーヒータである、<1>に記載の熱物性測定装置。
<3>上記伸縮部位と上記シート状発熱体との間に断熱部材を有する、<1>または<2>に記載の熱物性測定装置。
<4>上記流体が空気である、<1>〜<3>のいずれかに記載の熱物性測定装置。
<5>上記パッカーがパイプとチューブ状の伸縮部材とを含み、上記伸縮部材が上記パイプの一部に巻回し、上記一部の外周と上記伸縮部材とにより上記伸縮部位が形成されている、<1>〜<4>のいずれかに記載の熱物性測定装置。
<6>上記記録手段が上記温度センサで測定される温度の時系列データを記録する、<1>〜<5>のいずれかに記載の熱物性測定装置。
<1> A thermophysical property measuring device for measuring the thermophysical properties of the ground at the in-situ position in the hole.
A packer having a stretchable portion that contracts and expands when the fluid is poured in and out, a means for pouring and pouring the fluid into the stretchable portion, a cylindrical heat source that winds around the stretchable portion, and an outer peripheral side of the cylindrical heat source. It includes a temperature sensor, a power source that powers the cylindrical heat source, and a recording means that records the temperature measured by the temperature sensor.
The cylindrical heat source is composed of a sheet-shaped heating element, or is composed of an elastic member and the sheet-shaped heating element.
The packer can move in the borehole together with the cylindrical heat source and the temperature sensor when the expansion / contraction portion contracts.
The expansion / contraction portion is a thermophysical characteristic measuring device in which the sheet-shaped heating element and the temperature sensor are brought into close contact with the hole wall of the well when expanded.
<2> The thermophysical property measuring device according to <1>, wherein the sheet-shaped heating element is a silicon rubber heater.
<3> The thermophysical characteristic measuring device according to <1> or <2>, which has a heat insulating member between the stretchable portion and the sheet-shaped heating element.
<4> The thermophysical characteristic measuring device according to any one of <1> to <3>, wherein the fluid is air.
<5> The packer includes a pipe and a tubular elastic member, the elastic member is wound around a part of the pipe, and the elastic portion is formed by the outer circumference of the partial portion and the elastic member. The thermophysical property measuring device according to any one of <1> to <4>.
<6> The thermophysical characteristic measuring device according to any one of <1> to <5>, wherein the recording means records time-series data of the temperature measured by the temperature sensor.

<7>地盤の熱伝導率を孔井内の原位置で測定するための熱伝導率測定方法であって、<1>〜<6>のいずれかに記載の熱物性測定装置を用いる熱伝導率測定方法。
<8>上記パッカー、上記円筒状熱源および上記温度センサを上記孔井内に配置すること、
上記伸縮部位を膨張させて、上記シート状発熱体および上記温度センサを上記孔井の孔壁に密着させること、
上記シート状発熱体により上記孔壁を加熱すること
上記温度センサで測定される温度の上記加熱に由来する変化の時系列データを上記記録手段により記録すること、および
上記時系列データを理論解または数値解析を用いて作成した基準曲線と比較して熱伝導率を求めることを含む、<7>に記載の熱伝導率測定方法。
<7> A thermal conductivity measuring method for measuring the thermal conductivity of the ground at the in-situ position in the well, and the thermal conductivity using the thermophysical property measuring device according to any one of <1> to <6>. Measuring method.
<8> Placing the packer, the cylindrical heat source, and the temperature sensor in the well.
Inflating the stretchable portion to bring the sheet-shaped heating element and the temperature sensor into close contact with the hole wall of the hole.
Heating the hole wall with the sheet-shaped heating element Recording the time-series data of the change in the temperature measured by the temperature sensor due to the heating by the recording means, and theoretically solving the time-series data or The method for measuring thermal conductivity according to <7>, which comprises obtaining the thermal conductivity by comparing with a reference curve created by using numerical analysis.

本発明により、一般的な熱交換井で使用できる熱物性測定装置が提供される。本発明の熱物性測定装置を用いて、従来の原位置における熱伝導率測定方法では測定が困難であった孔内水がない浅層の土壌や地盤の熱伝導率も測定可能である。また、本発明の熱物性測定装置は孔井内に吊り下ろす部分を軽量化することができるため作業が容易である。 The present invention provides a thermophysical property measuring device that can be used in a general heat exchange well. Using the thermophysical property measuring device of the present invention, it is possible to measure the thermal conductivity of shallow soil or ground without perforated water, which was difficult to measure by the conventional in-situ thermal conductivity measuring method. In addition, the thermophysical characteristic measuring device of the present invention can be easily operated because the portion suspended in the well can be reduced in weight.

本発明の熱物性測定装置の例の概念図である。It is a conceptual diagram of the example of the thermophysical characteristic measuring apparatus of this invention. 本発明の熱物性測定装置の使用形態を示す図である。It is a figure which shows the usage form of the thermophysical characteristic measuring apparatus of this invention. 無限長の円筒状熱源による表面温度の理論モデルの概念図である。It is a conceptual diagram of the theoretical model of the surface temperature by an infinite length cylindrical heat source. 理論解を用いた熱伝導率の基準曲線の例を示す図である。It is a figure which shows the example of the reference curve of thermal conductivity using a theoretical solution. 熱容量による温度変化への影響を検証した例を示す図である。It is a figure which shows the example which verified the influence on the temperature change by a heat capacity. 本発明の熱物性測定装置における発熱量と孔壁温度の変化を無限長の円筒状熱源のモデルによって評価した例を示す図である。It is a figure which shows the example which evaluated the change of the calorific value and the hole wall temperature in the thermophysical property measuring apparatus of this invention by the model of the cylindrical heat source of infinite length. 本発明の熱物性測定装置で得られる温度データを数値解析による方法で解析する場合の計算グリッドの例である。This is an example of a calculation grid when the temperature data obtained by the thermophysical characteristic measuring apparatus of the present invention is analyzed by a method by numerical analysis. 本発明の熱物性測定装置で得られる温度データを比較するために、数値解析による方法で求めた熱伝導率の基準曲線の例を示す図である。It is a figure which shows the example of the reference curve of the thermal conductivity obtained by the method by the numerical analysis in order to compare the temperature data obtained by the thermophysical characteristic measuring apparatus of this invention. 本発明に係る実施例として行った試験で得られた温度データと数値解析による方法で求めた熱伝導率の基準曲線を比較した図である。It is a figure which compared the temperature data obtained in the test performed as the Example which concerns on this invention, and the reference curve of the thermal conductivity obtained by the method by a numerical analysis.

以下、本発明を詳細に説明する。
本明細書において、地盤とは、地殻であり土壌で構成されるものである。本明細書において、地盤というときは、主に、その中(地中)に孔井が設けられる地盤を意味している。
本明細書において、孔井とは掘削孔である。孔井は特に地盤を掘削して設けられた円筒状の穴であることが好ましい。孔井の例としては、地中熱利用システムの熱交換井等として掘削された穴、地質ボーリング調査孔などがあげられる。なお、熱交換井のボーリング掘削においては、ケーシングを挿入しながら掘削する方式が一般的である。また、地盤が未固結な泥や砂で構成されている場合には、孔井内の地盤が崩れやすいことからケーシングで保護する場合がある。本明細書において、孔井はケーシングを備えるものであってもよい。したがって、本明細書において、孔壁というときは、孔井でのケーシングの有無に応じて、孔井内の地盤の内壁またはケーシングの内壁を意味する。
Hereinafter, the present invention will be described in detail.
In the present specification, the ground is the crust and is composed of soil. In the present specification, the term "ground" mainly means the ground in which a hole is provided (in the ground).
In the present specification, a well is a drilling hole. The hole is particularly preferably a cylindrical hole provided by excavating the ground. Examples of the wells include holes excavated as heat exchange wells of geothermal heat utilization systems, geological boring survey holes, and the like. In the boring excavation of heat exchange wells, a method of excavating while inserting a casing is common. In addition, if the ground is composed of unconsolidated mud or sand, the ground in the hole is likely to collapse, so it may be protected by a casing. In the present specification, the hole may be provided with a casing. Therefore, in the present specification, the term "hole wall" means the inner wall of the ground in the hole or the inner wall of the casing depending on the presence or absence of the casing in the hole.

一般に、地盤の熱物性や熱伝導率を測定する方法は大きく2つに大別される。ひとつは、土壌や地質試料、岩石試料を採集したうえで、地上の実験室内で針状のセンサ(ニードルプローブ)や据え置き型のセンサを試料に貫入または据え置いて測定した値を利用する方法(室内測定法)である。もうひとつは孔井などにセンサ等を挿入し測定対象の深度の原位置で測定した値を利用する方法(原位置測定法)である。 In general, the methods for measuring the thermal properties and thermal conductivity of the ground are roughly classified into two types. One is to collect soil, geological samples, and rock samples, and then use the values measured by penetrating or stationary needle-shaped sensors (needle probes) or stationary sensors in the laboratory on the ground (indoors). Measurement method). The other is a method (in-situ measurement method) in which a sensor or the like is inserted into a hole or the like and the value measured at the in-situ position at the depth of the measurement target is used.

室内測定法の課題として地盤の試料を地中から採集する際に物理的変形が生じたり、試料内部の圧力が地上で開放されることで変形が生じたりすることで、試料の状態が変化することがある。その結果として室内での測定値と原位置で測定値とで差異が生じる場合がある。そのため、地中環境下で存在する状態の熱伝導率を知るためには原位置測定法が適している。 As a problem of the indoor measurement method, the state of the sample changes due to physical deformation when collecting the ground sample from the ground or deformation caused by the pressure inside the sample being released on the ground. Sometimes. As a result, there may be a difference between the indoor measurement value and the in-situ measurement value. Therefore, the in-situ measurement method is suitable for knowing the thermal conductivity of the state existing in the underground environment.

また、一般に数メートル程度の深さの地中は、地下水があり、これが土粒子や岩石の亀裂に間隙水として存在する。このような間隙水の効果も考慮した熱伝導率は特に「有効熱伝導率」といい、さらに地下水が流れている場合にはその移流効果も含む効果を考慮した熱伝導率を「見かけ有効熱伝導率」という。例えば、地中熱利用システムの熱交換井の設計や施工の事前評価には、この「見かけ有効熱伝導率」が必須である。これらの「有効熱伝導率」や「見かけ有効熱伝導率」を測定するためには、地中の状態を保持したまま測定可能な原位置測定法が必要不可欠である。
本発明は原位置測定法による熱伝導率測定方法と該方法に使用することができる熱物性測定装置に関する。
In general, there is groundwater in the ground at a depth of several meters, which exists as pore water in the cracks of soil particles and rocks. The thermal conductivity considering the effect of such pore water is particularly called "effective thermal conductivity", and when groundwater is flowing, the thermal conductivity considering the effect including the advection effect is called "apparent effective heat". It is called "conductivity". For example, this "apparent effective thermal conductivity" is indispensable for the preliminary evaluation of the design and construction of heat exchange wells in geothermal heat utilization systems. In order to measure these "effective thermal conductivity" and "apparent effective thermal conductivity", an in-situ measurement method that can measure while maintaining the underground state is indispensable.
The present invention relates to a method for measuring thermal conductivity by an in-situ measuring method and a thermophysical property measuring device that can be used in the method.

熱物性測定装置
本発明の熱物性測定装置は、流体の注出入により収縮および膨張する伸縮部位を有するパッカー、上記伸縮部位に上記流体を注出入する手段、上記の伸縮部位に巻回する円筒状熱源、上記円筒状熱源の外周側に配置されている温度センサ、上記円筒状熱源に電力を供給する電源、および上記温度センサで測定される温度を記録する記録手段を含む。本発明の熱物性測定装置は孔井内の原位置で地盤の熱物性を測定することができる。
Thermophysical property measuring device The thermophysical property measuring device of the present invention is a packer having a stretchable portion that contracts and expands when a fluid is poured in and out, a means for pouring and pouring the fluid into the stretchable portion, and a cylindrical shape that winds around the stretchable portion. It includes a heat source, a temperature sensor arranged on the outer peripheral side of the cylindrical heat source, a power source for supplying power to the cylindrical heat source, and a recording means for recording the temperature measured by the temperature sensor. The thermophysical property measuring device of the present invention can measure the thermophysical properties of the ground at the in-situ position in the well.

<パッカー>
パッカーは、流体の注出入により収縮および膨張する伸縮部位を含む。パッカーは伸縮部位とともに、流体の注出入によって収縮および膨張しない部位を含んでいてもよい。例えば、パッカーは、伸縮部位を構成する伸縮部材と、この伸縮部材を保持する直線状のパイプを含んで構成される。典型的には、伸縮部材がパイプの一部(例えば一方の端部に近い部分)に巻回する構造があげられる。例えば、パッカーは略円柱状の構造を有し、伸縮部位は円周方向に収縮および膨張する。伸縮部位が収縮および膨張する方位の伸縮部位の形状およびサイズは、測定を行なう孔井に合わせたものとし、収縮時はパッカーが孔井内を移動可能であり、かつ膨張時は伸縮部位が円筒状熱源中のシート状発熱体および温度センサを、シート状発熱体および温度センサを孔井の孔壁に密着させることができるように設計する。すなわち、略円柱状のパッカーの伸縮部位は孔井の孔径と略同じ直径の外周となるサイズとする。パイプに巻回する円筒状である伸縮部位の高さは、円筒状熱源中のシート状発熱体の全面を押圧することができるように、シート状発熱体の高さ以上であることが好ましい。
<Packer>
The packer includes a stretch site that contracts and expands as the fluid is poured in and out. The packer may include a stretchable portion as well as a portion that does not contract or expand due to the inflow and outflow of fluid. For example, the packer is configured to include a stretchable member that constitutes the stretchable portion and a linear pipe that holds the stretchable member. Typically, there is a structure in which the telescopic member is wound around a part of the pipe (for example, a part near one end). For example, the packer has a substantially columnar structure, and the stretchable portion contracts and expands in the circumferential direction. The shape and size of the stretchable part in the direction in which the stretchable part contracts and expands shall be adjusted to the pit to be measured, and the packer can move in the pit during contraction, and the stretchable part is cylindrical during expansion. The sheet-shaped heating element and temperature sensor in the heat source are designed so that the sheet-shaped heating element and temperature sensor can be brought into close contact with the hole wall of the well. That is, the expansion / contraction portion of the substantially columnar packer has a size that is substantially the same diameter as the hole diameter of the well. The height of the cylindrical expansion / contraction portion wound around the pipe is preferably equal to or higher than the height of the sheet-shaped heating element so that the entire surface of the sheet-shaped heating element in the cylindrical heat source can be pressed.

パッカーの伸縮部位には例えば、天然ゴム、ナイロンなどの樹脂、または布などの伸縮部材が用いられる。パッカーの伸縮部位は伸縮部材のみからなっていてもよいが、伸縮部材と他の部材から構成されていてもよい。例えばチューブ状の伸縮部材(ゴムチューブなど)をパイプの長さ方向の一部の外周に巻回し、この一部の外周と伸縮部材との間に形成される空間に流体の注入および該空間から流体を注出することができる。すなわち、上記の一部の外周と伸縮部材とにより伸縮部位が形成されていてもよい。パイプ内と上記空間との間には流体の注出入口を設けることができる。さらにパイプ内には、この注出入口と流体を注出入する手段とを接続するチューブを設けることができる。または、上記パイプ外において上記空間にチューブの一端を挿入し、他端を流体を注出入する手段と接続してもよい。 For the stretchable portion of the packer, for example, a resin such as natural rubber or nylon, or a stretchable member such as cloth is used. The expansion / contraction portion of the packer may be composed of only the expansion / contraction member, but may be composed of the expansion / contraction member and other members. For example, a tubular stretchable member (rubber tube, etc.) is wound around a part of the outer circumference of the pipe in the length direction, and fluid is injected into the space formed between the part of the outer circumference and the stretchable member, and from the space. The fluid can be poured out. That is, the expansion / contraction portion may be formed by the above-mentioned partial outer circumference and the expansion / contraction member. A fluid inlet / outlet can be provided between the inside of the pipe and the space. Further, a tube for connecting the injection port and the means for injecting and injecting the fluid can be provided in the pipe. Alternatively, one end of the tube may be inserted into the space outside the pipe, and the other end may be connected to a means for injecting and discharging the fluid.

パッカーが上記のパイプを含むとき、パイプは、パッカーの伸縮部位と円筒状熱源と温度センサとを、孔井内で移動させる手段としても機能できる。例えば、伸縮部位の長さ(孔井に配置した際の高さ)に対して、十分に長いパイプを使用することにより、上記の機能を有しうる。また、パイプとしてねじ込み式パイプを使用することにより、地上で延長させながら孔井内を下降させる(吊り下ろす)こともできる。この方法により、2メートル以上の深さの孔井内の測定を行なう場合でも測定を容易に行なうことができる。パイプを地上で延長させる場合、流体注出入用チューブはパッカーの伸縮部位の直上でパイプ内部からパイプ外部に出し、パイプに沿って固定してもよい。 When the packer includes the above-mentioned pipe, the pipe can also function as a means for moving the expansion / contraction portion of the packer, the cylindrical heat source, and the temperature sensor in the borehole. For example, the above function can be obtained by using a pipe that is sufficiently long with respect to the length of the expansion / contraction portion (height when placed in the well). Further, by using a screw-in type pipe as a pipe, it is possible to lower (hang) the inside of the hole while extending it on the ground. By this method, the measurement can be easily performed even when the measurement is performed in a well having a depth of 2 meters or more. When the pipe is extended on the ground, the fluid injection / discharge tube may be extended from the inside of the pipe to the outside of the pipe directly above the expansion / contraction part of the packer and fixed along the pipe.

パイプとしては、例えば、金属製パイプ、塩ビパイプ(ポリ塩化ビニルを素材とするパイプ)、アクリルパイプなどを用いることができる。上記のようにねじ込み式パイプを用いることも好ましい。 As the pipe, for example, a metal pipe, a vinyl chloride pipe (a pipe made of polyvinyl chloride), an acrylic pipe or the like can be used. It is also preferable to use a screw-in type pipe as described above.

パッカーとしては、例えば、宮下が開発した地下水位測定用の簡易型パッカー(宮下雄次(2009): 可搬型の自噴高測定用パッカーシステムの開発,温地研報告第41巻, 69-72)等を用いることができる。パッカーとして、市販のパッカー(例えば、東陽商事株式会社 WEBカタログ、https://toyoshoji.com/t-38-t-46-t-58/参照)を用いてもよい。 As a packer, for example, a simple packer for groundwater level measurement developed by Miyashita (Yuji Miyashita (2009): Development of a portable packer system for self-injection height measurement, Onchiken Report Vol. 41, 69-72), etc. Can be used. As the packer, a commercially available packer (see, for example, Toyo Shoji Co., Ltd. WEB catalog, https://toyoshoji.com/t-38-t-46-t-58/) may be used.

パッカーの伸縮部位に注出入する流体としては、気体、液体、気体および液体の混合物などを用いることができる。流体の例としては、空気、窒素、水などがあげられる。 As the fluid to be poured into and from the stretchable portion of the packer, a gas, a liquid, a mixture of gases and liquids, and the like can be used. Examples of fluids include air, nitrogen, water and the like.

パッカーの伸縮部位は膨張時に、シート状発熱体および温度センサを孔壁に密着させることができる。このような密着触時にシート状発熱体により孔壁を加熱し温度センサにより該加熱による温度変化を測定することができる。上記の密着は、伸縮部位が膨張してシート状発熱体および温度センサを孔壁の方向に押圧することによって達成されていればよい。また、上記の密着は、シート状発熱体により孔壁を加熱することができ、かつ温度センサにより該加熱による温度変化を測定することができる程度の接触を意味する。パッカーの伸縮部位の収縮時は円筒状熱源および温度センサはパッカーとともに孔井内を移動可能である。したがって、本発明の熱物性測定装置はパッカーの伸縮部位の収縮および膨張を繰り返すことにより孔井内の任意の位置での熱物性を原位置で測定することができる。 When the packer expands and contracts, the sheet-shaped heating element and the temperature sensor can be brought into close contact with the hole wall. At the time of such close contact, the hole wall can be heated by the sheet-shaped heating element, and the temperature change due to the heating can be measured by the temperature sensor. The above adhesion may be achieved by expanding the expansion / contraction portion and pressing the sheet-shaped heating element and the temperature sensor in the direction of the hole wall. Further, the above-mentioned adhesion means contact to such an extent that the hole wall can be heated by the sheet-shaped heating element and the temperature change due to the heating can be measured by the temperature sensor. The cylindrical heat source and temperature sensor can move in the well together with the packer when the stretchable part of the packer contracts. Therefore, the thermophysical property measuring device of the present invention can measure the thermophysical characteristics at an arbitrary position in the well in the original position by repeating the contraction and expansion of the expansion / contraction portion of the packer.

<流体を注出入する手段>
パッカーの伸縮部位に流体を注出入する手段としては、ポンプを用いればよい。ポンプは、例えば、チューブを介してパッカーの伸縮部位における流体の注出入口に流体を注出入できるものであればよい。流体が空気の場合は、空気圧縮ポンプを用いることができる。パッカーの伸縮部位に上記流体を注出入する手段はさらに、流体を貯蔵するタンク、流体の量を計測する流量計、流体の注出入を制御する装置、電源などを含んでいてもよい。
<Means for pouring in and out of fluid>
A pump may be used as a means for injecting and injecting the fluid into the expansion / contraction portion of the packer. The pump may be, for example, one that can inject and inject the fluid to the inflow / outflow port of the fluid at the expansion / contraction portion of the packer via a tube. If the fluid is air, an air compression pump can be used. The means for pouring and pouring the fluid into the stretchable portion of the packer may further include a tank for storing the fluid, a flow meter for measuring the amount of the fluid, a device for controlling the pouring and pouring of the fluid, a power source, and the like.

<円筒状熱源>
本発明の熱物性測定装置は円筒状熱源を含む。円筒状熱源はシート状発熱体からなるか、またはシート状発熱体と弾性部材とからなる。シート状発熱体は円筒状熱源中の発熱部位となることができる。
<Cylindrical heat source>
The thermophysical characteristic measuring device of the present invention includes a cylindrical heat source. The cylindrical heat source consists of a sheet-shaped heating element or a sheet-shaped heating element and an elastic member. The sheet heating element can be a heating site in a cylindrical heat source.

シート状発熱体としては、パッカーの伸縮部位の収縮および膨張に追随するか、または追随して移動でき、さらに、孔壁に密着できる程度の柔軟性を有するものを用いる。シート状発熱体は耐水性であることが好ましい。耐水性のシート状発熱体を用いることにより、本発明の熱物性測定装置を使用して地下水面以下の位置での測定も容易となる。また、シート状発熱体は耐熱性および電気絶縁性を有することが好ましい。シート状発熱体の好ましい例としては、シリコンラバーヒータがあげられる。シリコンラバーヒータは、発熱体が両面からシリコーン樹脂シートで挟まれた構造を有する。シリコンラバーヒータとしては耐水性シリコンラバーヒータを用いることが好ましい。 As the sheet-shaped heating element, a heating element having flexibility enough to follow or move to follow the contraction and expansion of the expansion / contraction portion of the packer and to be in close contact with the hole wall is used. The sheet heating element is preferably water resistant. By using a water-resistant sheet-shaped heating element, it becomes easy to measure at a position below the water table using the thermophysical property measuring device of the present invention. Further, the sheet-shaped heating element preferably has heat resistance and electrical insulation. A preferable example of the sheet-shaped heating element is a silicon rubber heater. The silicon rubber heater has a structure in which a heating element is sandwiched between silicone resin sheets from both sides. As the silicon rubber heater, it is preferable to use a water resistant silicon rubber heater.

円筒状熱源はパッカーの伸縮部位に巻回しており、円筒状熱源中のシート状発熱体は、パッカーの伸縮部位の収縮および膨張に追随するか、または追随して移動するように構成されていればよい。したがって、シート状発熱体は、パッカーの伸縮部位表面に接着していてもよいが、伸縮部位の収縮および膨張に伴って、その収縮および膨張の方向に移動できるように伸縮部位の表面に近接する位置に配置されているのみでもよい。シート状発熱体と伸縮部位とは、全面で固定させず、面の一部で固定させるほうが膨張および伸縮の機構がスムーズに働きやすい。 The cylindrical heat source is wound around the expansion and contraction part of the packer, and the sheet heating element in the cylindrical heat source is configured to follow or move according to the contraction and expansion of the expansion and contraction part of the packer. Just do it. Therefore, the sheet heating element may be adhered to the surface of the stretchable portion of the packer, but is close to the surface of the stretchable portion so that it can move in the direction of the contraction and expansion as the stretchable portion contracts and expands. It may only be placed in position. It is easier for the expansion and contraction mechanism to work smoothly if the sheet-shaped heating element and the expansion / contraction part are not fixed on the entire surface but on a part of the surface.

円筒状熱源は、シート状発熱体と弾性部材とからなり、弾性部材によりシート状発熱体が、パッカーの伸縮部位の収縮および膨張に追随するように調整されていることが好ましい。弾性部材としては、ゴムシートを用いることができる。シート状発熱体と弾性部材とは、接着剤やステープラー等の固定具、縫合などの方法を用いて円筒型に組み合わされ、円筒状熱源となっていればよい。 The cylindrical heat source is composed of a sheet-shaped heating element and an elastic member, and it is preferable that the sheet-shaped heating element is adjusted by the elastic member so as to follow the contraction and expansion of the expansion / contraction portion of the packer. A rubber sheet can be used as the elastic member. The sheet-shaped heating element and the elastic member may be combined in a cylindrical shape by using an adhesive, a fixture such as a stapler, or a method such as suturing to form a cylindrical heat source.

円筒状熱源はパッカーの伸縮部位の全面を覆っていても、一部を覆っていてもよい。円筒状熱源の内周全面でパッカーの伸縮部位を覆っていて円筒状熱源の内周の一部でパッカーの伸縮部位を覆っていてもよいが、円筒状熱源の内周全面でパッカーの伸縮部位を覆っていることが好ましい。 The cylindrical heat source may cover the entire surface or a part of the stretchable portion of the packer. The expansion and contraction part of the packer may be covered by the entire inner circumference of the cylindrical heat source, and the expansion and contraction part of the packer may be covered by a part of the inner circumference of the cylindrical heat source. It is preferable to cover the.

シート状発熱体はパッカーの伸縮部位の全面を覆っていても、一部を覆っていてもよい。シート状発熱体は、例えば、孔井の孔径(直径)の2倍〜20倍の高さ(好ましくは5倍〜20倍の高さ)、かつ、孔井の円周の60°〜360°(好ましくは120°〜360°)を加熱していればよい。シート状発熱体はこの面積の加熱が可能な面積を有していればよい。シート状発熱体が、孔井の孔径(直径)の10倍以上の高さかつ、孔井の円周の360°を加熱できる熱物性測定装置を使用することにより、地盤の熱伝導率の測定に適用する場合に、理論解を用いた方法を用いることができる。 The sheet-shaped heating element may cover the entire surface or a part of the expansion / contraction portion of the packer. The sheet-shaped heating element is, for example, twice to 20 times as high as the hole diameter (diameter) of the hole (preferably 5 to 20 times as high) and 60 ° to 360 ° around the circumference of the hole. (Preferably 120 ° to 360 °) may be heated. The sheet-shaped heating element may have an area capable of heating this area. Measurement of the thermal conductivity of the ground by using a thermophysical property measuring device that allows the sheet-shaped heating element to be 10 times or more the height of the hole diameter (diameter) of the hole and heat 360 ° around the circumference of the hole. When applied to, a method using a theoretical solution can be used.

<電源>
本発明の熱物性測定装置は円筒状熱源に電力を供給する電源を備えている。電源はシート状発熱体のための電源であればよい。シート状発熱体は電源線により電源と接続することができる。電源線は、円筒状熱源を孔井内に挿入し、地上にて電源の操作が可能な長さとすることが好ましい。電源線は、例えば、パッカーを構成するパイプの中(内周側)または外(外周側)に配置すればよい。
<Power supply>
The thermophysical characteristic measuring device of the present invention includes a power source that supplies electric power to a cylindrical heat source. The power source may be a power source for a sheet-shaped heating element. The sheet-shaped heating element can be connected to the power supply by a power supply line. It is preferable that the power supply line has a length such that a cylindrical heat source is inserted into the well and the power supply can be operated on the ground. The power supply line may be arranged, for example, inside (inner circumference side) or outside (outer circumference side) of the pipes constituting the packer.

<温度センサ>
温度センサは、本発明の熱物性測定装置において、孔壁温度を時系列的に測定するための部材である。温度センサとしては、0.01℃の差異が測定できるものであることが好ましい。例えば、測定対象の温度や必要とする精度などによってサーミスタや白金抵抗測温体等を選択して用いることができる。本発明の熱物性測定装置において、温度センサは、円筒状熱源の外周側に設けられる。このとき、パッカーの伸縮部位、シート状発熱体、温度センサがこの順に配置されるものとする。
<Temperature sensor>
The temperature sensor is a member for measuring the hole wall temperature in time series in the thermophysical property measuring device of the present invention. It is preferable that the temperature sensor can measure a difference of 0.01 ° C. For example, a thermistor, a platinum resistance temperature detector, or the like can be selected and used depending on the temperature of the measurement target, the required accuracy, and the like. In the thermophysical characteristic measuring device of the present invention, the temperature sensor is provided on the outer peripheral side of the cylindrical heat source. At this time, it is assumed that the expansion / contraction portion of the packer, the sheet-shaped heating element, and the temperature sensor are arranged in this order.

温度センサはシート状発熱体における発熱部位が形成する領域の中心に近い部位に配置されることが好ましい。温度センサはシート状発熱体の表面に接着されていてもよいが、接着されていなくてもよい。 The temperature sensor is preferably arranged at a portion close to the center of the region formed by the heat generating portion in the sheet-shaped heating element. The temperature sensor may or may not be adhered to the surface of the sheet heating element.

本発明の熱物性測定装置において、温度センサは1つであってもよく、2つ以上であってもよい。例えば、測定する地盤の孔井での位置の土壌や地層を考慮し、温度センサを2つ以上設け、最適な位置のデータを採用してもよく、平均値のデータを採用してもよい。また、異なる地点のデータの解析を利用して、例えば、孔井の北側および南側の熱物性データを得ることもできる。 In the thermophysical characteristic measuring device of the present invention, the number of temperature sensors may be one or two or more. For example, in consideration of the soil and the stratum at the position of the ground in the pit to be measured, two or more temperature sensors may be provided and the data of the optimum position may be adopted, or the data of the average value may be adopted. It is also possible to obtain thermophysical property data on the north and south sides of the pit, for example, by using the analysis of the data at different points.

<記録手段>
本発明の熱物性測定装置は温度センサにより測定された温度を記録するための記録手段を備えている。温度センサと記録手段とは信号線で接続することができる。温度センサの信号線は、温度センサを孔井内に挿入し、地上に記録手段を配置することが可能な長さとすることが好ましい。信号線は、例えば、パッカーを構成するパイプの中(内周側)または外(外周側)に配置すればよい。記録手段としては、温度センサにより測定された温度の時系列データを記録することができる記録手段が好ましい。
<Recording means>
The thermophysical characteristic measuring device of the present invention includes a recording means for recording the temperature measured by the temperature sensor. The temperature sensor and the recording means can be connected by a signal line. The signal line of the temperature sensor is preferably of a length capable of inserting the temperature sensor into the well and arranging the recording means on the ground. The signal line may be arranged, for example, inside (inner circumference side) or outside (outer circumference side) of the pipes constituting the packer. As the recording means, a recording means capable of recording time-series data of the temperature measured by the temperature sensor is preferable.

<断熱部材>
本発明の熱物性測定装置においては、シート状発熱体からのパッカーへの熱の流れを防ぐため、パッカーの伸縮部位とシート状発熱体との間には断熱部材を設けることが好ましい。パッカーの伸縮部位と円筒状熱源との間に断熱部材を設けることがより好ましい。
<Insulation member>
In the thermophysical characteristic measuring device of the present invention, in order to prevent heat from flowing from the sheet-shaped heating element to the packer, it is preferable to provide a heat insulating member between the stretchable portion of the packer and the sheet-shaped heating element. It is more preferable to provide a heat insulating member between the stretchable portion of the packer and the cylindrical heat source.

<熱物性測定装置の例>
図1に本発明の熱物性測定装置の例を示す。
図1の熱物性測定装置は孔井内に挿入する円筒状熱源および温度センサとパッカーとを有し、さらに地上に設置する機器部分を有する。円筒状熱源は耐水性のシリコンラバーヒータ1、断熱シート2、伸縮性ゴムシート4から構成され、さらにその外周に接する部分に温度センサ3を有する。円筒状熱源は、ゴムチューブ5に巻回する円筒型の形状である。パッカーとしては宮下が開発した地下水位測定用の簡易型パッカーを使用しており、ゴムチューブ5および圧縮空気用チューブ6、パイプ7、ゴムチューブ固定ワイヤ8から構成されている。パイプ7には圧縮空気のチューブ内への供給や排出のための圧縮空気出入口9が設けられている。温度センサ3としてはサーミスタセンサが用いられている。
<Example of thermophysical property measuring device>
FIG. 1 shows an example of the thermophysical characteristic measuring device of the present invention.
The thermophysical characteristic measuring device of FIG. 1 has a cylindrical heat source to be inserted into a well, a temperature sensor, and a packer, and further has an equipment portion to be installed on the ground. The cylindrical heat source is composed of a water-resistant silicon rubber heater 1, a heat insulating sheet 2, and an elastic rubber sheet 4, and further has a temperature sensor 3 in a portion in contact with the outer periphery thereof. The cylindrical heat source has a cylindrical shape that is wound around the rubber tube 5. As the packer, a simple packer for groundwater level measurement developed by Miyashita is used, and it is composed of a rubber tube 5, a compressed air tube 6, a pipe 7, and a rubber tube fixing wire 8. The pipe 7 is provided with a compressed air inlet / outlet 9 for supplying and discharging compressed air into the tube. A thermistor sensor is used as the temperature sensor 3.

耐水性シリコンラバーヒータ1に対しパッカー側となる面(円筒状熱源の内周)には断熱シート2が貼り付けられている。耐水性シリコンラバーヒータ1には、パッカーの伸縮部位の膨張および収縮に追従させるために、端部に無発熱の伸縮性ゴムシート4が組み合わせて取り付けられ円筒状熱源を構成している。温度センサ3は、耐水性シリコンラバーヒータ1の高さ方向の中心に近い部位であって、伸縮性ゴムシート4からより遠い位置に設けられている。図1に本発明の熱物性測定装置は温度センサ信号線10およびヒータ用電源線11を有し、それらは、パイプ内部またはパイプ外部に沿わせ地上へ配線されている。 A heat insulating sheet 2 is attached to the surface (inner circumference of the cylindrical heat source) on the packer side with respect to the water resistant silicon rubber heater 1. A non-heat-generating elastic rubber sheet 4 is attached to the end of the water-resistant silicon rubber heater 1 in combination to form a cylindrical heat source in order to follow the expansion and contraction of the expansion and contraction portion of the packer. The temperature sensor 3 is provided at a position near the center of the water-resistant silicon rubber heater 1 in the height direction and at a position farther from the elastic rubber sheet 4. In FIG. 1, the thermophysical characteristic measuring device of the present invention has a temperature sensor signal line 10 and a heater power supply line 11, which are wired to the ground along the inside of the pipe or the outside of the pipe.

機器部分は、空気圧縮ポンプ12、温度記録器13、直流電源14から構成されている。なお耐水性シリコンラバーヒータ1、断熱シート2、温度センサ3、伸縮性ゴムシート4等については市販されている部材を活用することができる。 The equipment part includes an air compression pump 12, a temperature recorder 13, and a DC power supply 14. As for the water resistant silicon rubber heater 1, the heat insulating sheet 2, the temperature sensor 3, the elastic rubber sheet 4, and the like, commercially available members can be used.

本発明の熱物性測定装置の使用形態を図2に示す。熱物性測定装置として図1で示した例を使用する例である。
測定対象となる地盤の孔井にパッカーを、伸縮部位を収縮させた状態でパイプ7を用いて測定対象深度まで吊り下ろす。この際、ヒータ用電源線10および温度センサ信号線11は、パイプの外に固定しながらパイプを孔内に挿入する。
FIG. 2 shows a usage pattern of the thermophysical characteristic measuring device of the present invention. This is an example of using the example shown in FIG. 1 as a thermophysical characteristic measuring device.
A packer is hung from a well in the ground to be measured to a depth to be measured by using a pipe 7 in a state where the stretchable portion is contracted. At this time, the heater power supply line 10 and the temperature sensor signal line 11 are fixed outside the pipe while the pipe is inserted into the hole.

その後、地上から圧縮空気用チューブ6を介し圧縮空気を注入してパッカーの伸縮部位を膨張させ、耐水性シリコンラバーヒータ1と温度センサ3を孔壁に密着させる。次に地上の直流電源14によって一定の電力を供給し耐水性シリコンラバーヒータ1を発熱させ孔壁を加熱して測定を行なう。そして測定終了時に電源を切り、加熱を停止する。 After that, compressed air is injected from the ground through the compressed air tube 6 to expand the expansion / contraction portion of the packer, and the water-resistant silicon rubber heater 1 and the temperature sensor 3 are brought into close contact with the hole wall. Next, a constant electric power is supplied by the DC power supply 14 on the ground to heat the water-resistant silicon rubber heater 1 to heat the hole wall to perform measurement. Then, at the end of measurement, the power is turned off and heating is stopped.

加熱停止後、圧縮空気用チューブ6を介してパッカーの伸縮部位の圧縮空気を地上へ排出し、パッカーの伸縮部位およびそれに取り付けられた円筒状熱源を収縮させる。そして、パッカーを地上に回収して測定を終了するか、パッカーを孔井内で次の測定対象深度まで移動(下降が好ましい)し、同様の手順で測定を行なうことができる。測定は、浅い深度から深い深度へ進めることが好ましい。孔内水の擾乱がなく熱的な影響も小さいからである。 After the heating is stopped, the compressed air at the expansion / contraction portion of the packer is discharged to the ground through the compressed air tube 6, and the expansion / contraction portion of the packer and the cylindrical heat source attached thereto are contracted. Then, the packer can be collected on the ground to complete the measurement, or the packer can be moved to the next measurement target depth in the well (preferably descending), and the measurement can be performed in the same procedure. The measurement is preferably carried out from a shallow depth to a deep depth. This is because there is no disturbance of the water in the hole and the thermal effect is small.

熱伝導率の測定方法
本発明の熱物性測定装置は、地盤の熱伝導率の測定に用いることができる。例えば、地中熱利用システム設置のための熱交換井の掘削時の熱伝導率(地下水がある深度では、有効熱伝導率や見かけ有効熱伝導率)の測定に好ましく使用することができる。
Method for Measuring Thermal Conductivity The thermophysical property measuring device of the present invention can be used for measuring the thermal conductivity of the ground. For example, it can be preferably used for measuring the thermal conductivity (effective thermal conductivity or apparent effective thermal conductivity at a certain depth of groundwater) at the time of excavation of a heat exchange well for installing a geothermal heat utilization system.

地盤の熱伝導率は、本発明の熱物性測定装置の温度センサで測定される温度におけるシート状発熱体の加熱に由来する変化の時系列データを利用して、求めることができる。具体的には、後述する熱伝導率の解析方法に従い、理論解または数値解析を用いて作成した基準曲線と上記時系列データとを比較して熱伝導率を求めることができる。 The thermal conductivity of the ground can be determined by using time-series data of changes resulting from heating of the sheet-shaped heating element at the temperature measured by the temperature sensor of the thermophysical property measuring device of the present invention. Specifically, the thermal conductivity can be obtained by comparing the reference curve created by using the theoretical solution or the numerical analysis with the above time series data according to the method of analyzing the thermal conductivity described later.

温度センサで測定される温度の時系列データを記録する測定間隔は、測定対象とする地盤の土壌や地層位置の熱物性や必要とする測定精度、全測定時間に応じて適宜設定することができるが、可能な範囲で短いことが好ましく、例えば1分間隔程度が望ましい。
シート状発熱体および温度センサを孔壁に密着させた後は加熱前の自然状態の温度を60分以上測定することが好ましい。
The measurement interval for recording the time-series data of the temperature measured by the temperature sensor can be appropriately set according to the thermophysical properties of the soil and layer position of the ground to be measured, the required measurement accuracy, and the total measurement time. However, it is preferably as short as possible, for example, at intervals of about 1 minute.
After the sheet-shaped heating element and the temperature sensor are brought into close contact with the hole wall, it is preferable to measure the temperature in the natural state before heating for 60 minutes or more.

地盤の熱伝導率の測定を行なう際の、シート状発熱体での加熱のための電力量(または電圧および電流)は、必要な加熱量に沿って適切な値を設定することができる。適切な加熱量は、測定対象とする地盤の土壌や地層位置の熱物性によって異なるため孔井掘削時の地盤情報および円筒状熱源の理論モデルや数値解析の手法を用いて事前検討し適切な加熱量を設定することが好ましい。加熱時間は孔井の孔径や周辺の土壌や地盤の熱伝導率によって異なるが、数時間〜数日程度が好ましい。 The amount of electric energy (or voltage and current) for heating in the sheet-shaped heating element when measuring the thermal conductivity of the ground can be set to an appropriate value according to the required amount of heating. Since the appropriate amount of heating depends on the soil of the ground to be measured and the thermophysical properties of the stratum position, the appropriate heating should be examined in advance using the ground information at the time of drilling a hole, the theoretical model of the cylindrical heat source, and the numerical analysis method. It is preferable to set the amount. The heating time varies depending on the pore size of the well and the thermal conductivity of the surrounding soil and ground, but is preferably several hours to several days.

温度センサで測定される温度のシート状発熱体の加熱に由来する変化はシート状発熱体による加熱の工程の変化であっても、加熱後の温度の回復過程の変化であってもよい。すなわち、加熱過程における孔壁の温度時間変化(温度上昇)から熱伝導率を算出(加熱時法)してもよく、加熱後の温度の回復過程の温度変化も測定し熱伝導率を算出(回復時法)してもよい。回復過程の温度を測定する場合には加熱終了後、数時間〜数日にわたって温度記録を継続させることが好ましい。 The change in the temperature measured by the temperature sensor due to the heating of the sheet-shaped heating element may be a change in the heating process by the sheet-shaped heating element or a change in the temperature recovery process after heating. That is, the thermal conductivity may be calculated from the temperature-time change (temperature rise) of the hole wall in the heating process (heating method), or the temperature change in the temperature recovery process after heating is also measured to calculate the thermal conductivity (the heat conductivity is calculated). (Recovery method) may be used. When measuring the temperature in the recovery process, it is preferable to continue the temperature recording for several hours to several days after the completion of heating.

上述のように、孔井はケーシングを備えるものでもよい。ケーシングとしては通常鋼管などの管材が用いられる。また、管材としては口径150mm程度のものが用いられる。例えば、鋼管は熱抵抗が小さいため、適切な測定時間をとることでケーシングの内壁から周辺の地盤(地層)の熱伝導率を調べることが可能である。後述の数値解析による方法では、このケーシングの肉厚や熱物性も考慮した解析を行うことができ、厚い肉厚のケーシング等でも周辺の土壌や地盤の熱伝導率を求めることができる。本発明の熱物性測定装置は、シート状発熱体の大きさや加熱量等を適切に調整することで、様々な大きさの孔井での測定に用いることができる。もちろん、周辺の地層が岩盤や固結した地層などであって、孔井内の地盤の内壁が崩れにくい状態であれば、ケーシングを介さず裸孔状態で測定することも可能である。 As described above, the hole may be provided with a casing. As the casing, a pipe material such as a steel pipe is usually used. Further, as the pipe material, a material having a diameter of about 150 mm is used. For example, since steel pipes have low thermal resistance, it is possible to investigate the thermal conductivity of the surrounding ground (stratum) from the inner wall of the casing by taking an appropriate measurement time. In the method by numerical analysis described later, it is possible to perform an analysis in consideration of the wall thickness and thermal characteristics of this casing, and it is possible to obtain the thermal conductivity of the surrounding soil and ground even with a thick casing or the like. The thermophysical characteristic measuring device of the present invention can be used for measurement in holes of various sizes by appropriately adjusting the size, heating amount, etc. of the sheet-shaped heating element. Of course, if the surrounding strata are rocks or consolidated strata and the inner wall of the ground in the well is in a state where it does not easily collapse, it is possible to measure in a bare hole state without using a casing.

<解析方法>
熱伝導率を求める解析方法としては、理論解を用いる方法と数値解析を用いる方法がある。理論解を用いる方法としては地盤の温度上昇量を規定するKelvinの線源関数や円筒型熱源関数(いずれもIngersoll, L.R., Zobel, O.J. and Ingersoll, AC. (1954) Heat conduction with engineering, geological, and other applications. McGraw-Hill, New York, 325p.)に基づく解析方法が知られている。数値解析を用いる方法としては、有限差分法や有限要素法を用いた数値モデルによる解析方法が知られている。
<Analysis method>
As an analysis method for obtaining the thermal conductivity, there are a method using a theoretical solution and a method using a numerical analysis. Kelvin's radiation source function and cylindrical heat source function (both Ingersoll, LR, Zobel, OJ and Ingersoll, AC. (1954) Heat conduction with engineering, geological, and other applications. An analysis method based on McGraw-Hill, New York, 325p.) Is known. As a method using numerical analysis, an analysis method using a numerical model using a finite difference method or a finite element method is known.

理論解を用いる方法は、実際の測定の状況(測定装置の形状や孔井の状況等)が、理論解が想定しているモデルに適合する場合に使用することができる。その場合、精度よく計算コストも少なく解析できる。 The method using the theoretical solution can be used when the actual measurement situation (the shape of the measuring device, the state of the hole, etc.) matches the model assumed by the theoretical solution. In that case, the analysis can be performed accurately and with low calculation cost.

理論解を用いる方法の一例を以下で説明する。この例で用いる理論解はシート状発熱体を円筒状熱源とみなすことができる場合の一定加熱モデルによるものである。この理論解を用いて解析するためには以下に示す複数の適合条件を満たす必要がある。
(1)円筒状熱源の外径(本明細書において「円筒状熱源の外径」というときは、円筒状熱源の内側にあるパッカーの伸縮部位を膨張させ円筒状熱源を孔壁に密着させたときの円筒状熱源の外径を意味する。)に比べてその長さが十分長く無限長とみなせる場合(長さが外径の5〜10倍程度以上)、
(2)ケーシングの熱抵抗が小さくその熱的影響を無視できる場合(具体的にはケーシングの肉厚が薄く、材質の熱伝導率が大きい場合)、
(3)円筒状熱源が外径の全周で発熱できるとみなせる場合(具体的には、円筒状熱源中の弾性部材による無発熱部分の面積が小さく、発熱部分に比べて無発熱部分の影響が無視できる場合)、
(4)円筒状熱源の内側が断熱状態とみなせる場合(本発明の熱物性測定装置においては、シート状発熱体の内側に断熱部材を設けたり、パッカーの伸縮部位に注出入する流体を熱伝導率の小さな空気とすることで断熱状態とみなせる)。以上の適合条件を満たす場合に無限長の円筒状熱源モデルによる理論解を用いることができる。
An example of a method using a theoretical solution will be described below. The theoretical solution used in this example is based on a constant heating model when the sheet heating element can be regarded as a cylindrical heat source. In order to analyze using this theoretical solution, it is necessary to satisfy the following multiple conformance conditions.
(1) Outer diameter of the cylindrical heat source (In the present specification, when the term "outer diameter of the cylindrical heat source" is used, the expansion and contraction portion of the packer inside the cylindrical heat source is expanded so that the cylindrical heat source is brought into close contact with the hole wall. When the length is sufficiently long and can be regarded as infinite length (the length is about 5 to 10 times or more of the outer diameter) compared to the outer diameter of the cylindrical heat source at the time.
(2) When the thermal resistance of the casing is small and its thermal effect can be ignored (specifically, when the casing is thin and the material has high thermal conductivity).
(3) When it can be considered that the cylindrical heat source can generate heat over the entire circumference of the outer diameter (specifically, the area of the non-heating portion due to the elastic member in the cylindrical heat source is small, and the influence of the non-heating portion is larger than that of the heat generating portion. (If can be ignored),
(4) When the inside of the cylindrical heat source can be regarded as a heat insulating state (in the thermophysical property measuring device of the present invention, a heat insulating member is provided inside the sheet-shaped heating element, or the fluid poured into the stretchable part of the packer is heat-conducted. It can be regarded as a heat insulating state by using air with a small rate). A theoretical solution based on an infinitely long cylindrical heat source model can be used when the above compatibility conditions are satisfied.

無限長の円筒状熱源を一定加熱(単位長さあたりの発熱量Ql)した場合に、円筒状熱源から距離rにおける時間tの温度T(r,t)は、以下のような理論解で求められることが知られている。 When an infinitely long cylindrical heat source is constantly heated (calorific value Q l per unit length), the temperature T (r, t) at time t at a distance r from the cylindrical heat source is based on the following theoretical solution. It is known that it is required.

Figure 0006916497

Ti: 初期温度 (K)
Ql: 円筒状熱源の単位長さあたりの発熱量 (W/m)
k: 地層の熱伝導率 (W/m)
r: 円筒状熱源の中心からの距離 (m)
rb : 円筒状熱源の外径 (m)
L : 円筒状熱源の長さ (m)
Cp: 地層の熱容量 (J /K・m3)
J0: 第1種0次ベッセル関数
J1: 第1種1次ベッセル関数
Y0 : 第2種0次ベッセル関数
Y1 : 第2種1次ベッセル関数
x :積分変数
Figure 0006916497

T i : Initial temperature (K)
Q l : Calorific value per unit length of cylindrical heat source (W / m)
k: Thermal conductivity of the formation (W / m)
r: Distance from the center of the cylindrical heat source (m)
r b : Outer diameter of cylindrical heat source (m)
L: Length of cylindrical heat source (m)
C p : Heat capacity of the formation (J / K ・ m 3 )
J 0 : Type 1 0th-order Bessel function
J 1 : Type 1 linear Bessel function
Y 0 : Type 2 0th-order Bessel function
Y 1 : Type 2 linear Bessel function
x: Integral variable

円筒状熱源をボーリング孔壁(鋼管内部で測定する場合には鋼管の内壁)に密着させ、一定加熱した場合の孔壁(鋼管内部で測定する場合には鋼管の内壁)の温度は上式において、r=rbとすることで算出できる(図3)。 The temperature of the hole wall (inner wall of the steel pipe when measuring inside the steel pipe) when the cylindrical heat source is brought into close contact with the boring hole wall (inner wall of the steel pipe when measuring inside the steel pipe) and constantly heated is in the above equation. , R = r b , which can be calculated (Fig. 3).

Figure 0006916497
Figure 0006916497

熱伝導率は地質による差異が大きく、一般的に0.5〜4.0W/(m・K)程度の範囲の値をとる。なお、地下水の流れによる移流効果を含む場合には、その影響を考慮する必要がある。地下水の移流効果がある場合には見かけ有効熱伝導率は概ね1.5W/(m・K)以上の大きな値をとる。 The thermal conductivity varies greatly depending on the geology, and generally takes a value in the range of 0.5 to 4.0 W / (m · K). If the advection effect due to the flow of groundwater is included, it is necessary to consider the effect. When there is an advection effect of groundwater, the apparent effective thermal conductivity takes a large value of about 1.5 W / (m · K) or more.

解析の事例として、いくつかの熱伝導率の値を想定した場合における円筒状熱源表面の各温度変化を計算した結果を図4に示す。この計算は、外径r0=150mmの無限長の円筒状熱源を用い、単位長さあたりの発熱量Ql=50W/m(一定)で加熱させる場合を想定している。この条件のもとで、理論解を用いて熱伝導率を1.0〜2.5W/(K・m)で0.1W/(K・m)ずつ変えた場合の孔壁における温度の時系列変化の予測値を計算した。一般に掘削をする際には、対象深度を掘削する際の削り屑や周辺の地質柱状図情報から深度方向の地質についての事前情報を得ることができる。本事例においては、媒質が砂であるものとし、熱容量は砂の典型的な値3.03MJ/(K・m3)を採用した。 As an example of analysis, FIG. 4 shows the results of calculating each temperature change on the surface of the cylindrical heat source when some values of thermal conductivity are assumed. This calculation assumes the case of using an infinite length cylindrical heat source with an outer diameter r 0 = 150 mm and heating at a calorific value Q l = 50 W / m (constant) per unit length. Under this condition, the temperature at the hole wall when the thermal conductivity is changed by 0.1 W / (K ・ m) at 1.0 to 2.5 W / (K ・ m) using the theoretical solution. The predicted value of the series change was calculated. Generally, when excavating, it is possible to obtain advance information about the geology in the depth direction from the shavings when excavating the target depth and the information on the surrounding geological column. In this case, it is assumed that the medium is sand, and the heat capacity is 3.03 MJ / (Km 3 ), which is a typical value of sand.

図4から明らかなように、測定対象(地盤)の熱伝導率の違いによって円筒状熱源表面の温度Tの時間変化は異なり、熱伝導率が小さければ温度上昇幅が大きく、熱伝導率が大きければ温度上昇幅は小さい。温度上昇幅は、加熱量によって変わるため、測定対象の熱伝導率や測定時間、円筒状熱源の外径に合わせて加熱量を適宜増減させることで、測定精度を上げることができる。典型的な地層の場合には、本事例で示している発熱量Ql=50W/m(一定)前後が適している。測定時間は、ここでは100時間加熱した場合の計算を行っているが、地中熱利用システムの設計や施工に活用するうえで熱伝導率は一般に小数点以下1桁程度の精度を用いることが多く、その場合には20時間程度の測定時間で十分である。なお、従来の温水循環法における加熱時法では、60時間程度の加熱時間を必要(非特許文献1)とすることから本発明の方法は測定時間を半分以下に短縮可能である。 As is clear from FIG. 4, the time change of the temperature T of the surface of the cylindrical heat source differs depending on the difference in the thermal conductivity of the measurement target (ground). For example, the temperature rise is small. Since the temperature rise range changes depending on the heating amount, the measurement accuracy can be improved by appropriately increasing or decreasing the heating amount according to the thermal conductivity of the measurement target, the measurement time, and the outer diameter of the cylindrical heat source. In the case of a typical stratum, the calorific value Q l = 50 W / m (constant) shown in this example is suitable. The measurement time is calculated here when heated for 100 hours, but the thermal conductivity is generally calculated with an accuracy of about one digit after the decimal point when used in the design and construction of geothermal heat utilization systems. In that case, a measurement time of about 20 hours is sufficient. Since the heating method in the conventional hot water circulation method requires a heating time of about 60 hours (Non-Patent Document 1), the method of the present invention can reduce the measurement time to less than half.

以上のような評価によって、円筒状熱源によって加熱を行い円筒状熱源表面で温度を測定し、その時間変化から熱伝導率を求めることができる。具体的には、ここで示した手法に従い、事前に予想される熱伝導率の幅において0.1W/(m・K)間隔で計算し、各熱伝導率の基準曲線を作成しておく。そして実測によって得られた温度の時間変化の時系列データと基準曲線とを比較し、傾向の近い基準曲線を選択し、選択された基準曲線の熱伝導率が実測した対象の熱伝導率であると決定するというものである。また、他の解析方法としては、得られた温度の時間変化の時系列データを、上述した無限長の円筒状熱源加熱の理論解を用いて逆解析し未知数である熱伝導率を求めることもできる。 By the above evaluation, it is possible to heat with a cylindrical heat source, measure the temperature on the surface of the cylindrical heat source, and obtain the thermal conductivity from the time change. Specifically, according to the method shown here, the width of the thermal conductivity expected in advance is calculated at intervals of 0.1 W / (m · K), and a reference curve for each thermal conductivity is created. Then, the time-series data of the time change of the temperature obtained by the actual measurement is compared with the reference curve, the reference curve having a similar tendency is selected, and the thermal conductivity of the selected reference curve is the thermal conductivity of the measured object. It is to decide. As another analysis method, the time-series data of the obtained temperature change over time can be inversely analyzed using the above-mentioned theoretical solution of infinite length cylindrical heat source heating to obtain an unknown thermal conductivity. can.

上述の解析において、測定対象(媒質)は砂を仮定し、熱容量を砂の典型的な値3.03MJ/(K・m3)を採用している。熱容量Cpは、掘削時の削り屑や周辺の地質柱状図情報などから対象深度の地質に合わせて典型的な値を利用することが可能である。一般に地層の熱容量はそれぞれの地質間での差異は小さい。例えば、伝熱工学資料改訂第5版(日本機械学会)によれば、各地質に対して熱容量(MJ/K・m3)は以下のとおりである:砂(3.03)、砂礫(3.18)、粘土(3.13)、火山灰(3.05)、泥炭(3.20)、ローム層(3.44)、花崗岩(2.92)。 In the above analysis, the measurement target (medium) is assumed to be sand, and the heat capacity is set to a typical value of 3.03 MJ / (Km 3 ) for sand. It is possible to use a typical value of the heat capacity Cp according to the geology of the target depth from the shavings at the time of excavation and the information of the surrounding geological column chart. In general, the heat capacity of strata has a small difference between geological features. For example, according to the 5th edition of the revised heat transfer engineering data (Japan Society of Mechanical Engineers), the heat capacity (MJ / K ・ m 3 ) for each region is as follows: sand (3.03), gravel (3). .18), clay (3.13), volcanic ash (3.05), peat (3.20), loam layer (3.44), granite (2.92).

例えば、砂を想定すると、多くの場合、典型値の±0.1MJ/(K・m3)の熱容量の幅に収まる。この幅によって測定される温度データへの影響を検証した例を図5に示す。その結果によれば、熱容量による違いは上述した熱伝導率の効果に比べると微小であり、熱伝導率を0.1W/(K・m)の精度で解析するうえで、対象深度の地層の典型的な熱容量の値を用いることで支障はないことがわかる。 For example, assuming sand, in many cases, it falls within the range of heat capacity of ± 0.1 MJ / (Km 3), which is a typical value. An example of verifying the influence of this width on the temperature data measured is shown in FIG. According to the results, the difference due to heat capacity is small compared to the effect of thermal conductivity described above, and in order to analyze the thermal conductivity with an accuracy of 0.1 W / (Km), the stratum at the target depth It can be seen that there is no problem by using a typical heat capacity value.

また、ここでは発熱量を50W/mとして例示しているが、発熱量を30〜70W/mとし、それぞれの発熱量に対応する温度変化を計算した例を図6に示す。その結果によると、発熱量が大きければ温度上昇幅は大きくなることが分かる。適切な加熱量の選択は、実測データと比較しやすい基準曲線が得られるように測定する試料の熱物性(熱伝導率や熱容量)や測定時間、必要とする熱伝導率の精度を考慮して、理論解や数値解析の方法を用いて事前に検討する必要がある。 Further, although the calorific value is illustrated here as 50 W / m, an example in which the calorific value is 30 to 70 W / m and the temperature change corresponding to each calorific value is calculated is shown in FIG. According to the result, it can be seen that the larger the calorific value, the larger the temperature rise range. When selecting an appropriate amount of heat, consider the thermal characteristics (thermal conductivity and heat capacity) of the sample to be measured, the measurement time, and the accuracy of the required thermal conductivity so that a reference curve that can be easily compared with the measured data can be obtained. , It is necessary to examine in advance using theoretical solutions and numerical analysis methods.

無限長の円筒状熱源の理論モデルの適用が条件を満たさず、理論解を使用することが難しい場合には、数値解析を用いる方法を採用することができる。この方法は、理論解が適用できない測定環境や測定条件の場合にも適用することができる。この手法は、測定環境や測定条件を数値解析に反映させて温度データの解析を行うことができ、好ましい。数値解析を用いる方法では、例えば、シート状発熱体の形状や鋼管(ケーシング)の熱的影響、伸縮性ゴムシートの無発熱部分を考慮した解析を行うことができる。数値解析を用いる方法では物体の3次元的な形状や個々の物性量を反映した解析が行なわれる(図7)。数値解析を用いる方法は、必要とする精度を得るため適切なサイズの計算グリッドを用いる必要があり、解析解を用いる方法に比べると計算時間は一般には長めである。 When the application of the theoretical model of the infinite length cylindrical heat source does not satisfy the conditions and it is difficult to use the theoretical solution, the method using numerical analysis can be adopted. This method can also be applied to measurement environments and measurement conditions to which theoretical solutions cannot be applied. This method is preferable because the temperature data can be analyzed by reflecting the measurement environment and measurement conditions in the numerical analysis. In the method using numerical analysis, for example, it is possible to perform analysis considering the shape of the sheet-shaped heating element, the thermal effect of the steel pipe (casing), and the non-heating portion of the elastic rubber sheet. In the method using numerical analysis, analysis that reflects the three-dimensional shape of an object and individual physical properties is performed (Fig. 7). The method using numerical analysis needs to use a calculation grid of an appropriate size in order to obtain the required accuracy, and the calculation time is generally longer than the method using an analytical solution.

例として、有限要素法を用いて上記の影響を考慮した熱伝導率の基準曲線を作成する方法の例を以下に示す。なお有限要素法の解析には産業界や研究分野で広く用いられている汎用性の高い有限要素法ソフトウエアを用いることができる。 As an example, an example of a method of creating a reference curve of thermal conductivity considering the above effects by using the finite element method is shown below. For the analysis of the finite element method, highly versatile finite element method software widely used in industry and research fields can be used.

パッカーの伸縮部位を膨張させ孔壁に密着させた場合の円筒状熱源(耐水性シリコンラバーヒータと伸縮性ゴムを組み合わせたもの)は外径150mm(円筒状熱源の理論モデルで想定したセンサの外径と同様)とする。長さは400mmとし、鋼管(ケーシング)の肉厚は5mmとする。円筒状熱源においては、伸縮性ゴムを考慮して無発熱部分を円筒全面のうちの面積の8.3%とする。温度センサは、無発熱部分の反対側で、耐水性シリコンラバーヒータの長さの中心部に取り付ける。測定環境として周辺の地層は、水を含んだ飽和状態の砂層を仮定した熱物性(熱伝導率や熱容量)とし、加熱量Q=45W/m(面積当たりの発熱量は円筒の全面が発熱源の場合の発熱量50W/mと同等)とする。この条件のもとで、有限要素法による手法を用いて熱伝導率を1.0〜2.5W/(K・m)で0.1W/(K・m)の間隔で変えた場合の孔壁における温度の時系列変化の予測値を計算する。図8に各熱伝導率の基準曲線としてまとめた。理論解を用いた場合の熱伝導率の決定方法と同様に、基準曲線と実測した温度の時系列データを比較し、最も傾向が近いものをその熱伝導率とする。 The cylindrical heat source (a combination of a water-resistant silicone rubber heater and elastic rubber) when the expansion and contraction part of the packer is expanded and brought into close contact with the hole wall has an outer diameter of 150 mm (outside the sensor assumed in the theoretical model of the cylindrical heat source). Same as the diameter). The length is 400 mm, and the wall thickness of the steel pipe (casing) is 5 mm. In the cylindrical heat source, the non-heating portion is set to 8.3% of the area of the entire surface of the cylinder in consideration of elastic rubber. The temperature sensor is mounted at the center of the length of the water resistant silicone rubber heater, opposite the non-heating part. As a measurement environment, the surrounding geological formations have thermophysical characteristics (thermal conductivity and heat capacity) assuming a saturated sand layer containing water, and the heating amount Q = 45W / m (the calorific value per area is the entire surface of the cylinder as the heat source. (Equivalent to the calorific value of 50 W / m in the case of). Under this condition, the holes when the thermal conductivity is changed at intervals of 0.1 W / (K ・ m) at 1.0 to 2.5 W / (K ・ m) using the method by the finite element method. Calculate the predicted value of the time series change of the temperature on the wall. FIG. 8 is summarized as a reference curve for each thermal conductivity. Similar to the method for determining the thermal conductivity when the theoretical solution is used, the reference curve and the time series data of the measured temperature are compared, and the one having the closest tendency is taken as the thermal conductivity.

モデル装置を用いて、本発明の熱物性測定装置を用いて熱伝導率が測定できることの確認および本発明の熱物性測定装置がパッカーの伸縮部位の膨張および収縮によって孔井内で動作可能であることの確認を行なった。 Confirmation that the thermal conductivity can be measured using the thermophysical property measuring device of the present invention using the model device, and that the thermophysical characteristic measuring device of the present invention can operate in the borehole by expansion and contraction of the expansion and contraction part of the packer. Was confirmed.

熱伝導率測定
アクリルパイプに断熱部材を巻き付けたうえで、その外側に耐水性シリコンラバーヒータを巻き円筒状熱源とした試験機器を作製した。この試験機器のサイズは、一般的な地中熱交換井の孔径の約5分の1(20%)の縮尺に相当する外径32mmで、高さは100mmであった。この試験機器は、パッカーの伸縮部位に該当する構成を有してないモデル装置である。耐水性シリコンラバーヒータは全面加熱とした。耐水性シリコンラバーヒータは直流電源に接続した。耐水性シリコンラバーヒータの中央部外側に温度センサ(サーミスタセンサ)を耐水性フィルムによって取り付け、温度センサは温度記録器に接続した。なお、耐水性フィルムとしては、非常に薄いため熱抵抗が小さく温度測定に影響を及ばさないものを用いた。上記試験装置の測定部分(円筒状熱源および温度センサを含む部分)を、透明なアクリル容器(300mm×300mm×300mm)の中央部に入れ、アクリル容器に円筒状熱源が隠れるまで、寒天を薄い濃度で溶かした水を流し込んだ。自然状態で放置することにより、水と円筒状熱源とを密着させたまま寒天により水を固定した。純水を薄い濃度の寒天で固めた固形状の水試料は、熱物性が既知であり、熱伝導率の標準試料として一般的に用いられる。
Thermal conductivity measurement A test device was prepared by winding a heat insulating member around an acrylic pipe and then winding a water-resistant silicone rubber heater on the outside to use it as a cylindrical heat source. The size of this test equipment was an outer diameter of 32 mm, which corresponds to a scale of about one-fifth (20%) of the hole diameter of a general geothermal heat exchange well, and a height of 100 mm. This test device is a model device that does not have a configuration corresponding to the expansion / contraction part of the packer. The water resistant silicone rubber heater was entirely heated. The water resistant silicone rubber heater was connected to a DC power supply. A temperature sensor (thermistor sensor) was attached to the outside of the center of the water-resistant silicone rubber heater with a water-resistant film, and the temperature sensor was connected to the temperature recorder. As the water resistant film, a film having a low thermal resistance and not affecting the temperature measurement was used because it was very thin. Place the measurement part (the part including the cylindrical heat source and the temperature sensor) of the above test device in the central part of the transparent acrylic container (300 mm × 300 mm × 300 mm), and dilute the agar until the cylindrical heat source is hidden in the acrylic container. I poured the water melted in. By leaving it in a natural state, the water was fixed by agar while keeping the water and the cylindrical heat source in close contact with each other. A solid water sample obtained by solidifying pure water with agar having a low concentration has known thermophysical properties and is generally used as a standard sample of thermal conductivity.

水試料の自然状態の温度安定15.51℃のもと、直流電源から電力を供給し、耐水性シリコンラバーヒータを加熱した。電力量および加熱時間の設定は、先述した円筒状熱源の理論モデル(理論解および数値解析結果)を用いて、熱伝導率を0.1W/(m・K)分解能で測定するうえで適切な値として、単位長さあたりの発熱量45W/m、加熱時間は1200秒であることを事前に算出しこれを採用した。 Under the natural temperature stability of 15.51 ° C. of the water sample, electric power was supplied from a DC power source to heat the water-resistant silicon rubber heater. The electric energy and heating time settings are appropriate for measuring the thermal conductivity with a resolution of 0.1 W / (mK) using the theoretical model (theoretical solution and numerical analysis result) of the cylindrical heat source described above. As the values, it was calculated in advance that the calorific value per unit length was 45 W / m and the heating time was 1200 seconds, and this was adopted.

図9にこの加熱過程に実測した時間変化を示す。本実施例においては、数値解析による解析方法を採用し、熱伝導率を0.4〜0.7W/(m・K)までの0.1W/(m・K)間隔で、それぞれの熱伝導率に対応する温度変化(基準曲線)を計算した。この図において周辺の試料に十分熱が伝播する800秒以降のデータに着目すると、この固形状の水試料の熱伝導率は0.55W/(m・K)であると評価できる。固形状の水試料の典型的な熱伝導率(16℃)の値は0.59W/(m・K)である。この結果から、本発明の測定装置による測定結果を用いて解析を行なうことにより熱伝導率は0.1W/(m・K)の範囲内で十分測定できることが示された。 FIG. 9 shows the time change actually measured in this heating process. In this embodiment, an analysis method based on numerical analysis is adopted, and the thermal conductivity is set at 0.1 W / (m · K) intervals from 0.4 to 0.7 W / (m · K), respectively. The temperature change (reference curve) corresponding to the rate was calculated. Focusing on the data after 800 seconds in which heat is sufficiently propagated to the surrounding samples in this figure, it can be evaluated that the thermal conductivity of this solid water sample is 0.55 W / (m · K). A typical thermal conductivity (16 ° C.) value for a solid water sample is 0.59 W / (m · K). From this result, it was shown that the thermal conductivity can be sufficiently measured within the range of 0.1 W / (m · K) by performing the analysis using the measurement result by the measuring device of the present invention.

動作確認
孔井のモデルとして、熱交換井のケーシングを模したパイプを用意した。このパイプとしては内部を外から確認できる透明なアクリルパイプを採用し、サイズは実際のケーシングの外径の半分程度である外径65mmのものとした。
本発明の熱物性測定装置のモデルとして、パッカー、円筒状熱源および温度センサを含む小型装置を作製した。パッカーの伸縮部位を構成する伸縮部材としては、高さが250mmであるゴムチューブ、パッカーの芯棒には外径34mmのHIVP管(耐衝撃性硬質ポリ塩化ビニル管)を用いた。円筒状熱源を取り付けない状態でパッカーの伸縮部位を膨張させた場合には最大外径90mm程度まで膨らませることができた。パッカーの伸縮部位には、高さ120mm、外径55mm、厚さ1.5mmの円筒状熱源を取り付けた。円筒状熱源の発熱部分となる耐水性のシリコンラバーヒータは、円筒状熱源の全周360°のうち320°を占め、無発熱部分の伸縮性ゴムは40°であった。この円筒状熱源は伸縮性ゴムによりパッカーの伸縮部位の膨張に追随できるものであった。円筒状熱源を取り付けた状態で膨らませるとパッカーの伸縮部位は直径75mmまで膨張できた。これはケーシングを模擬した上記のアクリルパイプに内部から十分密着させることができるサイズである。耐水性シリコンラバーヒータの中央部外側には温度センサ(サーミスタ)を耐水性フィルムによって取り付けた。
Operation check As a model of the well, we prepared a pipe that imitated the casing of the heat exchange well. As this pipe, a transparent acrylic pipe whose inside can be confirmed from the outside was adopted, and the size was set to an outer diameter of 65 mm, which is about half the outer diameter of the actual casing.
As a model of the thermophysical property measuring device of the present invention, a small device including a packer, a cylindrical heat source, and a temperature sensor was manufactured. A rubber tube having a height of 250 mm was used as the expansion / contraction member constituting the expansion / contraction portion of the packer, and a HIVP tube (impact-resistant hard polyvinyl chloride tube) having an outer diameter of 34 mm was used as the core rod of the packer. When the expansion / contraction portion of the packer was inflated without the cylindrical heat source attached, it was possible to inflate it to a maximum outer diameter of about 90 mm. A cylindrical heat source having a height of 120 mm, an outer diameter of 55 mm, and a thickness of 1.5 mm was attached to the stretchable portion of the packer. The water-resistant silicone rubber heater, which is the heat-generating portion of the cylindrical heat source, occupies 320 ° of the entire circumference of 360 ° of the cylindrical heat source, and the elastic rubber of the non-heating portion is 40 °. This cylindrical heat source was able to follow the expansion of the stretchable part of the packer by the stretchable rubber. When inflated with the cylindrical heat source attached, the stretchable part of the packer could be inflated to a diameter of 75 mm. This is a size that can be sufficiently adhered to the above-mentioned acrylic pipe simulating a casing from the inside. A temperature sensor (thermistor) was attached to the outside of the center of the water-resistant silicone rubber heater with a water-resistant film.

作製した小型装置を上記のアクリルパイプ内に挿入し、動作を試験した。その結果、パッカーの伸縮部位の膨張時には円筒状熱源と温度センサとが地盤での孔井を模擬したアクリルパイプの内壁に密着することができ、かつパッカーの伸縮部位の収縮時には小型装置が上下方向に移動ができることが確認された。 The produced small device was inserted into the above-mentioned acrylic pipe and its operation was tested. As a result, the cylindrical heat source and the temperature sensor can be brought into close contact with the inner wall of the acrylic pipe simulating a well in the ground when the expansion and contraction part of the packer expands, and the small device moves up and down when the expansion and contraction part of the packer contracts. It was confirmed that it can be moved to.

本発明の熱物性測定装置によって、これまで線状の電熱ヒータを用いた方法では適用困難だった外径150mm以上の比較的太い孔井内でも測定が可能である。また、孔壁を直接加熱することで温水循環方式や従来の電熱ヒータ(電熱線や鋼鉄製容器による方法)を用いた方式に比べて測定時間を短縮することができる。例えば温水循環方式の加熱法においては、標準的に60時間程度の測定時間が必要である(非特許文献1)が、本発明では、その半分以下の20時間程度で測定が可能となる。さらに本発明の熱物性測定装置は、孔井内で吊り下ろす深度を自由に変えることができることから、対象とする地層の熱伝導率(有効熱伝導率や見かけ有効熱伝導率を含む)を特定の深度でピンポイントに測定するために用いることができる。 With the thermophysical property measuring device of the present invention, it is possible to measure even in a relatively thick hole with an outer diameter of 150 mm or more, which has been difficult to apply by the method using a linear electric heater. Further, by directly heating the hole wall, the measurement time can be shortened as compared with the hot water circulation method or the method using a conventional electric heater (method using a heating wire or a steel container). For example, in the heating method of the hot water circulation method, a measurement time of about 60 hours is standardly required (Non-Patent Document 1), but in the present invention, the measurement can be performed in about 20 hours, which is less than half of the measurement time. Further, since the thermophysical property measuring device of the present invention can freely change the depth of suspension in the well, the thermal conductivity (including effective thermal conductivity and apparent effective thermal conductivity) of the target formation can be specified. It can be used for pinpoint measurements at depth.

従来の原位置測定の方法では、発熱体と孔壁との間には隙間があるため加熱によって最初に装置と孔壁との間の地下水を温め、次に、孔壁を間接的に温めるといた。したがって孔内水が存在しない浅層の土壌や地盤の測定は難しいという課題があった。しかし、本発明の熱物性測定装置では孔壁を直接加熱するため、孔内水の有無にかかわらず浅層の地盤の測定が可能であり、浅層の地盤の熱伝導率を原位置で測定するために用いることができる。 In the conventional method of in-situ measurement, since there is a gap between the heating element and the hole wall, the groundwater between the device and the hole wall is first heated by heating, and then the hole wall is indirectly warmed. board. Therefore, there is a problem that it is difficult to measure shallow soil and ground where there is no in-pore water. However, since the thermophysical property measuring device of the present invention directly heats the hole wall, it is possible to measure the shallow ground regardless of the presence or absence of water in the hole, and the thermal conductivity of the shallow ground is measured at the in-situ. Can be used to

測定作業面においては、孔井内に配置する部分が軽量であるため、手動もしくは簡易な吊り下ろし機構によって測定が可能である。産業面での効果として、地中熱利用システムの設置時における熱応答試験のために、本発明の熱物性測定装置を用いることで、従来に比べて簡便に測定が可能であり、かつ測定時間の短縮化を図ることができる。また吊り下ろし、吊り上げの際には、パッカーの伸縮部位の流体を注出することで円筒状熱源の外形を小さくすることができることから、掘削過程で途中から曲がってしまった(孔曲がり)孔井内での測定にも適用が可能である。 On the measurement work surface, since the part arranged in the well is lightweight, measurement can be performed manually or by a simple hanging mechanism. As an industrial effect, by using the thermophysical characteristic measuring device of the present invention for the thermal response test at the time of installing the geothermal heat utilization system, it is possible to measure more easily than before and the measurement time. Can be shortened. In addition, when hanging and lifting, the outer shape of the cylindrical heat source can be reduced by pouring out the fluid in the expansion and contraction part of the packer, so the hole is bent in the middle of the excavation process. It can also be applied to the measurement in.

1 耐水性シリコンラバーヒータ
2 断熱シート
3 温度センサ
4 伸縮性ゴムシート
5 ゴムチューブ
6 圧縮空気用チューブ
7 パイプ
8 ゴムチューブ固定ワイヤ
9 圧縮空気出入口
10 温度センサ信号線
11 ヒータ用電源線
12 空気圧縮ポンプ
13 温度記録器
14 直流電源
101 パッカー
102 円筒状熱源
1 Water resistant silicone rubber heater 2 Insulation sheet 3 Temperature sensor 4 Elastic rubber sheet 5 Rubber tube 6 Compressed air tube 7 Pipe 8 Rubber tube fixing wire 9 Compressed air inlet / outlet 10 Temperature sensor signal line 11 Heater power supply line 12 Air compression pump 13 Temperature recorder 14 DC power supply 101 Packer 102 Cylindrical heat source

Claims (8)

孔井内の原位置で地盤の熱物性を測定するための熱物性測定装置であって、
流体の注出入により収縮および膨張する伸縮部位を有するパッカー、前記伸縮部位に前記流体を注出入する手段、前記伸縮部位に巻回する円筒状熱源、前記円筒状熱源の外周側に配置されている温度センサ、前記円筒状熱源に電力を供給する電源、および前記温度センサで測定される温度を記録する記録手段を含み、
前記円筒状熱源はシート状発熱体からなるか、または弾性部材と前記シート状発熱体とからなり、
前記パッカーは前記伸縮部位の収縮時は前記円筒状熱源および前記温度センサとともに前記孔井内を移動可能であり、
前記伸縮部位は膨張時に前記シート状発熱体および前記温度センサを前記孔井の孔壁に密着させる、熱物性測定装置。
It is a thermophysical property measuring device for measuring the thermophysical properties of the ground at the in-situ in the hole.
A packer having a stretchable portion that contracts and expands when the fluid is poured in and out, a means for pouring and pouring the fluid into the stretchable portion, a cylindrical heat source that winds around the stretchable portion, and an outer peripheral side of the cylindrical heat source. It includes a temperature sensor, a power source that powers the cylindrical heat source, and a recording means that records the temperature measured by the temperature sensor.
The cylindrical heat source is composed of a sheet-shaped heating element or an elastic member and the sheet-shaped heating element.
The packer can move in the well together with the cylindrical heat source and the temperature sensor when the expansion / contraction portion contracts.
The expansion / contraction portion is a thermophysical characteristic measuring device in which the sheet-shaped heating element and the temperature sensor are brought into close contact with the hole wall of the hole when expanded.
前記シート状発熱体がシリコンラバーヒータである、請求項1に記載の熱物性測定装置。 The thermophysical property measuring device according to claim 1, wherein the sheet-shaped heating element is a silicon rubber heater. 前記伸縮部位と前記シート状発熱体との間に断熱部材を有する、請求項1または2に記載の熱物性測定装置。 The thermophysical characteristic measuring device according to claim 1 or 2, further comprising a heat insulating member between the telescopic portion and the sheet-shaped heating element. 前記流体が空気である、請求項1〜3のいずれか一項に記載の熱物性測定装置。 The thermophysical characteristic measuring device according to any one of claims 1 to 3, wherein the fluid is air. 前記パッカーがパイプとチューブ状の伸縮部材とを含み、前記伸縮部材が前記パイプの一部に巻回し、前記一部の外周と前記伸縮部材とにより前記伸縮部位が形成されている、請求項1〜4のいずれか一項に記載の熱物性測定装置。 Claim 1 in which the packer includes a pipe and a tubular elastic member, the elastic member is wound around a part of the pipe, and the elastic portion is formed by the outer periphery of the part and the elastic member. The thermophysical property measuring device according to any one of the items to 4. 前記記録手段が前記温度センサで測定される温度の時系列データを記録する、請求項1〜5のいずれか一項に記載の熱物性測定装置。 The thermophysical characteristic measuring device according to any one of claims 1 to 5, wherein the recording means records time-series data of the temperature measured by the temperature sensor. 地盤の熱伝導率を孔井内の原位置で測定するための熱伝導率測定方法であって、請求項1〜6のいずれか一項に記載の熱物性測定装置を用いる熱伝導率測定方法。 A method for measuring thermal conductivity for measuring the thermal conductivity of the ground at the in-situ position in a well, and a method for measuring thermal conductivity using the thermophysical property measuring device according to any one of claims 1 to 6. 前記パッカー、前記円筒状熱源および前記温度センサを前記孔井内に配置すること、
前記伸縮部位を膨張させて、前記シート状発熱体および前記温度センサを前記孔井の孔壁に密着させること、
前記シート状発熱体により前記孔壁を加熱すること
前記温度センサで測定される温度の前記加熱に由来する変化の時系列データを前記記録手段により記録すること、および
前記時系列データを理論解または数値解析を用いて作成した基準曲線と比較して熱伝導率を求めることを含む、請求項7に記載の熱伝導率測定方法。
Placing the packer, the cylindrical heat source and the temperature sensor in the well.
Inflating the telescopic portion to bring the sheet-shaped heating element and the temperature sensor into close contact with the hole wall of the hole.
Heating the hole wall with the sheet-shaped heating element Recording the time-series data of the change in the temperature measured by the temperature sensor due to the heating by the recording means, and theoretically solving the time-series data or The method for measuring thermal conductivity according to claim 7, wherein the thermal conductivity is obtained by comparing with a reference curve created by using numerical analysis.
JP2021031643A 2021-03-01 2021-03-01 Thermophysical property measuring device and method for measuring thermal conductivity Active JP6916497B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021031643A JP6916497B1 (en) 2021-03-01 2021-03-01 Thermophysical property measuring device and method for measuring thermal conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021031643A JP6916497B1 (en) 2021-03-01 2021-03-01 Thermophysical property measuring device and method for measuring thermal conductivity

Publications (2)

Publication Number Publication Date
JP6916497B1 true JP6916497B1 (en) 2021-08-11
JP2022132911A JP2022132911A (en) 2022-09-13

Family

ID=77172631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021031643A Active JP6916497B1 (en) 2021-03-01 2021-03-01 Thermophysical property measuring device and method for measuring thermal conductivity

Country Status (1)

Country Link
JP (1) JP6916497B1 (en)

Also Published As

Publication number Publication date
JP2022132911A (en) 2022-09-13

Similar Documents

Publication Publication Date Title
CN1828012B (en) System and method of downhole thermal property measurement
Guo et al. Investigation on the thermal response of full-scale PHC energy pile and ground temperature in multi-layer strata
Signorelli et al. Numerical evaluation of thermal response tests
Murphy et al. Seasonal response of energy foundations during building operation
Wilke et al. Advanced thermal response tests: A review
MX2013014651A (en) Methods and apparatus for determining downhole parameters.
Alrtimi et al. An improved steady-state apparatus for measuring thermal conductivity of soils
Li et al. Experimental and numerical investigations on heat transfer in stratified subsurface materials
Loveridge et al. Thermal response testing through the Chalk aquifer in London, UK
Sung et al. Thermo-mechanical behavior of cast-in-place energy piles
Raymond et al. A novel thermal response test using heating cables
Akrouch et al. Thermal cone test to determine soil thermal properties
Raymond et al. Extending thermal response test assessments with inverse numerical modeling of temperature profiles measured in ground heat exchangers
Witte In situ estimation of ground thermal properties
Munn et al. Measuring fracture flow changes in a bedrock aquifer due to open hole and pumped conditions using active distributed temperature sensing
Yoon et al. Thermal transfer behavior in two types of W-shape ground heat exchangers installed in multilayer soils
Koubikana Pambou et al. Improving thermal response tests with wireline temperature logs to evaluate ground thermal conductivity profiles and groundwater fluxes
JP5334221B1 (en) Analysis method and analysis program for thermal response test and pumping test
Li et al. Study the performance of borehole heat exchanger considering layered subsurface based on field investigations
Seibertz et al. Development of in-aquifer heat testing for high resolution subsurface thermal-storage capability characterisation
Dalla Santa et al. Repeated ETRTs in a complex stratified geological setting: high-resolution thermal conductivity identification by multiple linear regression
Bandeira Neto et al. Thermal response of energy screw piles connected in series
JP6916497B1 (en) Thermophysical property measuring device and method for measuring thermal conductivity
Cheng et al. Estimation of oil reservoir thermal properties through temperature log data using inversion method
Lembcke et al. Analytical analysis of borehole experiments for the estimation of subsurface thermal properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210419

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210707

R150 Certificate of patent or registration of utility model

Ref document number: 6916497

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150