JPH08122501A - Low refractive index antireflection film - Google Patents

Low refractive index antireflection film

Info

Publication number
JPH08122501A
JPH08122501A JP6255007A JP25500794A JPH08122501A JP H08122501 A JPH08122501 A JP H08122501A JP 6255007 A JP6255007 A JP 6255007A JP 25500794 A JP25500794 A JP 25500794A JP H08122501 A JPH08122501 A JP H08122501A
Authority
JP
Japan
Prior art keywords
film
coating
refractive index
silica sol
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6255007A
Other languages
Japanese (ja)
Other versions
JP3635692B2 (en
Inventor
Tatsuya Nogami
達哉 野上
Rie Sakai
里枝 酒井
Takeshi Hosoya
猛 細谷
Takakazu Nakada
孝和 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP25500794A priority Critical patent/JP3635692B2/en
Publication of JPH08122501A publication Critical patent/JPH08122501A/en
Application granted granted Critical
Publication of JP3635692B2 publication Critical patent/JP3635692B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/478Silica
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/77Coatings having a rough surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/113Deposition methods from solutions or suspensions by sol-gel processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE: To provide a low refractive index-antireflection film for reducing the reflection on the surface of plastic or glass and a transparent substrate having this film. CONSTITUTION: A coating liquid consisting of (a) silica sol having 5-30nm particle size and (b) at least one component selected from the group consisting of hydrolyzate of alkoxysilane, hydrolyzate of metal alkoxide and metal salt, and contained in an organic solvent at the ratios of 10-50 pts.wt. (b) expressed in terms of metal oxide to 10-100 pts.wt. SiO2 of (a) is applied to a substrate. Then, it is cured to obtain the film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、プラスチックおよびガ
ラス表面の反射を低減するための低屈折率反射防止膜に
関し、更にはディスプレイ表面やレンズ等に有用な低屈
折率反射防止膜を有する透明基材を提供するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-refractive-index antireflection film for reducing reflection on the surfaces of plastics and glass, and further a transparent substrate having a low-refractive-index antireflection film useful for display surfaces, lenses and the like. The material is provided.

【0002】[0002]

【従来の技術】従来、基材上に基材よりも低い屈折率の
被膜を施すことにより反射率が低下することが知られて
おり、低屈折率の被膜が反射防止膜として利用されてい
る。一般に低屈折率被膜は、安定な低屈折率物質である
MgF2 等を、真空蒸着などの気相法により、基材上に
形成する事によって得られる。
2. Description of the Related Art Conventionally, it has been known that a reflectance of a substrate is lowered by applying a coating having a refractive index lower than that of the substrate, and a coating having a low refractive index is used as an antireflection film. . Generally, a low-refractive index film is obtained by forming a stable low-refractive index substance such as MgF 2 on a substrate by a vapor phase method such as vacuum deposition.

【0003】一方、低屈折率被膜と高屈折率被膜を基材
上に、交互に積層し多層化する事によっても、高い反射
防止効果が得られることが知られており、通常、SiO
2 に代表される低屈折率物質と、TiO2 、ZrO2
の高屈折率物質を、交互に蒸着等により成膜する気相法
や、ゾルゲル法等により得られる塗布液を塗布、焼成す
る方法によって、形成される。
On the other hand, it is known that a high antireflection effect can also be obtained by alternately laminating a low refractive index coating and a high refractive index coating on a base material to form a multilayer structure.
A low-refractive index material typified by 2 and a high-refractive index material such as TiO 2 and ZrO 2 are alternately deposited to form a film by a vapor phase method or a sol-gel method. Formed by the method.

【0004】真空蒸着等の気相法による反射防止膜の形
成は、一般に装置が大がかりであり、大面積の膜形成に
は不向きである。又、気相法による低屈折率被膜と高屈
折率被膜を交互に積層し多層化する方法は、製造に長時
間を要し、実用的では無い。多層被膜の形成方法とし
て、近年ゾルゲル法による塗布法が用いられているが、
大面積の基体に塗布、焼成を繰り返す為、経済的ではな
く、さらに多数回の焼成を繰り返す為、均一な被膜の形
成が困難であるばかりでなく、基体の変形や、被膜にク
ラックが入る等の問題があった。
The formation of an antireflection film by a vapor phase method such as vacuum deposition generally requires a large-scale apparatus and is not suitable for forming a large area film. Further, a method of alternately laminating a low refractive index coating and a high refractive index coating by a vapor phase method to form a multilayer structure requires a long time for production and is not practical. As a method for forming a multilayer coating film, a coating method using a sol-gel method has been used in recent years.
It is not economical because coating and baking are repeated on a large area substrate, and it is difficult to form a uniform coating because the baking is repeated a large number of times, and the substrate is deformed or the coating cracks. There was a problem.

【0005】これらの問題を解決するために、簡便に反
射防止膜が得られる塗布法による、低屈折率被膜形成法
がいくつか提案されている。特開平5−105422号
公報には、MgF2 微粒子を含有する塗布液が提案され
ているが、得られる被膜の機械的強度、基材との密着力
に劣る等の問題がある。特開平6−157076号公報
には、異なる分子量を有するアルコキシシランの加水分
解縮合物の混合物を塗布液とする事により、被膜表面に
微細な凹凸を形成し、低屈折率の反射防止膜とする事が
提案されているが、被膜形成時の相対湿度制御による被
膜表面凹凸のコントロールや、異なる分子量を有する縮
合物の製造が煩雑である等の問題があった。
In order to solve these problems, there have been proposed some low refractive index film forming methods by a coating method which can easily obtain an antireflection film. Japanese Unexamined Patent Publication No. 5-105422 proposes a coating liquid containing MgF 2 fine particles, but has problems such as poor mechanical strength of the obtained coating and poor adhesion to a substrate. In JP-A-6-157076, a mixture of hydrolysis-condensation products of alkoxysilanes having different molecular weights is used as a coating liquid to form fine irregularities on the surface of the coating film to form an antireflection film having a low refractive index. However, there have been problems such as the control of the surface roughness of the coating by controlling the relative humidity during the coating formation and the complicated production of the condensate having different molecular weights.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記の問題
を解決し、機械的強度に優れ、基材との密着力が高い低
屈折率反射防止膜、並びにこの低屈折率反射防止膜が施
された透明基材を提供しようとするものである。
DISCLOSURE OF THE INVENTION The present invention solves the above problems and provides a low refractive index antireflection film having excellent mechanical strength and high adhesion to a substrate, and a low refractive index antireflection film. It is intended to provide an applied transparent substrate.

【0007】[0007]

【課題を解決するための手段】本発明は、5〜30nm
の粒子径を有するシリカゾル(a)と、アルコキシシラ
ンの加水分解物、金属アルコキシドの加水分解物及び金
属塩からなる群より選ばれた少なくとも1種の成分
(b)からなり、且つ(a)のSiO2 100重量部に
対して、(b)を金属酸化物に換算して10〜50重量
部の割合で有機溶媒に含有した塗布液を、基材に塗布し
た後、硬化する事により得られる低屈折率反射防止膜で
ある。
The present invention provides 5-30 nm
A silica sol (a) having a particle size of, and at least one component (b) selected from the group consisting of a hydrolyzate of an alkoxysilane, a hydrolyzate of a metal alkoxide and a metal salt, and Obtained by applying a coating solution containing 10 to 50 parts by weight of (b) as a metal oxide to an organic solvent to 100 parts by weight of SiO 2 and then curing it. It is a low refractive index antireflection film.

【0008】上記の低屈折率反射防止膜を作成する塗布
液において、(a)成分のシリカゾルは、5〜30nm
(ナノメートル)の粒子径を有するシリカ粒子が水又は
有機溶剤に分散したゾルである。本発明に用いられるシ
リカゾルは、ケイ酸アルカリ塩中のアルカリ金属イオン
をイオン交換等で脱アルカリする方法や、ケイ酸アルカ
リ塩を鉱酸で中和する方法等で得られた活性ケイ酸を縮
合して得られる公知の水性シリカゾル、アルコキシシラ
ンを有機溶媒中で塩基性触媒の存在下に加水分解と縮合
する事により得られる公知のシリカゾル、更には上記の
水性シリカゾル中の水を蒸留法等により有機溶剤に置換
する事により得られる有機溶剤系シリカゾル(オルガノ
シリカゾル)が用いられる。本発明に用いられるシリカ
ゾルは、水性シリカゾル及び有機溶剤系シリカゾルのど
ちらでも使用する事が出来る為に、有機溶剤系シリカゾ
ルの製造に際し、完全に水を有機溶媒に置換する必要は
ない。本願発明に用いられるシリカゾルはSiO2 とし
て5〜50重量%濃度の固形分を含有する。本願発明で
は基材の表面に微小な凹凸を形成する為にシリカ粒子が
用いられるが、上記シリカゾル中のシリカ粒子の構造は
如何なる形状であっても用いる事が出来る。例えば、球
状、針状、板状、数珠状につながった形状等が挙げられ
る。上記有機溶剤系シリカゾルに用いられる有機溶剤
は、例えばメタノール、エタノール、イソプロパノー
ル、ブタノール等のアルコール類、アセトン、メチルエ
チルケトン、メチルイソブチルケトン等のケトン類、酢
酸メチル、酢酸エチル、酢酸ブチル等のエステル類、ジ
イソプロピルエーテル等のエーテル類、エチレングリコ
ール、プロピレングリコール、ヘキシレングリコール等
のグリコール類、エチルセロソルブ、ブチルセロソル
ブ、エチルカルビトール、ブチルカルビトール、ジエチ
ルセロソルブ、ジエチルカルビトール等のグリコールエ
ーテル類、ヘキサン、ヘプタン等の脂肪族炭化水素類、
ベンゼン、トルエン、キシレン等の芳香族炭化水素類、
N−メチルピロリドン、ジメチルフォルムアミド等が挙
げられ、これらを単独で又は混合して用いる事が出来る
が、特に、アルコール類、グリコールエーテル類等の親
水性溶剤が好ましい。
In the coating liquid for forming the above low refractive index antireflection film, the silica sol of the component (a) is 5 to 30 nm.
A sol in which silica particles having a particle diameter of (nanometer) are dispersed in water or an organic solvent. The silica sol used in the present invention is a method of de-alkalizing the alkali metal ion in the silicic acid alkali salt by ion exchange or a method of neutralizing the silicic acid alkali salt with a mineral acid to condense active silicic acid. A known aqueous silica sol obtained by the above, a known silica sol obtained by condensing an alkoxysilane in an organic solvent in the presence of a basic catalyst, and further, water in the above aqueous silica sol by a distillation method or the like. An organic solvent-based silica sol (organo silica sol) obtained by substituting with an organic solvent is used. Since the silica sol used in the present invention can be used as either an aqueous silica sol or an organic solvent-based silica sol, it is not necessary to completely replace water with an organic solvent in the production of the organic solvent-based silica sol. The silica sol used in the present invention contains a solid content of 5 to 50% by weight as SiO 2 . In the present invention, silica particles are used to form fine irregularities on the surface of the substrate, but the silica particles in the silica sol may have any shape. For example, a spherical shape, a needle shape, a plate shape, a shape in which beads are connected, and the like can be given. The organic solvent used in the organic solvent-based silica sol, for example, alcohols such as methanol, ethanol, isopropanol, butanol, acetone, methyl ethyl ketone, ketones such as methyl isobutyl ketone, methyl acetate, ethyl acetate, esters such as butyl acetate, Ethers such as diisopropyl ether, glycols such as ethylene glycol, propylene glycol, hexylene glycol, etc., glycol ethers such as ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, diethyl cellosolve, diethyl carbitol, hexane, heptane, etc. Of aliphatic hydrocarbons,
Aromatic hydrocarbons such as benzene, toluene, xylene,
N-methylpyrrolidone, dimethylformamide and the like can be mentioned, and these can be used alone or in combination, and hydrophilic solvents such as alcohols and glycol ethers are particularly preferable.

【0009】上記の低屈折率反射防止膜を作成する塗布
液において、(b)成分は金属酸化物を形成する前駆体
であり被膜形成機能を有する成分である。(b)成分に
用いられるアルコキシシランの加水分解物は、アルコキ
シシランを酸性触媒又は塩基性触媒の存在下に有機溶媒
中で加水分解することによって得られる。この酸性触媒
としては、例えば硝酸、塩酸等の鉱酸やシュウ酸、酢酸
等の有機酸が挙げられ、また塩基性触媒としては、例え
ばアンモニア等が挙げられる。上記アルコキシシランと
しては、例えばテトラメトキシシラン、テトラエトキシ
シラン、テトラプロポキシシラン、テトラブトキシシラ
ン等のテトラアルコキシシラン類、メチルトリメトキシ
シラン、メチルトリエトキシシラン、エチルトリメトキ
シシラン、エチルトリエトキシシラン、プロピルトリメ
トキシシラン、プロピルトリエトキシシラン、ブチルト
リメトキシシラン、ブチルトリエトキシシラン、ペンチ
ルトリメトキシシラン、ペンチルトリエトキシシラン、
ヘキシルトリメトキシシラン、ヘキシルトリエトキシシ
ラン、ヘプチルトリメトキシシラン、ヘプチルトリエト
キシシラン、オクチルトリメトキシシラン、オクチルト
リエトキシシラン、ステアリルトリメトキシシラン、ス
テアリルトリエトキシシラン、ビニルトリメトキシシラ
ン、ビニルトリエトキシシラン、3−クロロプロピルト
リメトキシシラン、3−クロロプロピルトリエトキシシ
ラン、3−ヒドロキシプロピルトリメトキシシラン、3
−ヒドロキシプロピルトリエトキシシラン、3−グリシ
ドキシプロピルトリメトキシシラン、3−グリシドキシ
トリエトキシシラン、3−メタクリルオキシトリメトキ
シシラン、3−メタクリルオキシトリエトキシシラン、
フェニルトリメトキシシラン、フェニルトリエトキシシ
ラン、トリフルオロプロピルトリメトキシシラン、トリ
フルオロプロピルトリエトキシシラン等のトリアルコキ
シシラン類、又は、ジメチルジメトキシシラン、ジメチ
ルジエトキシシラン等のジアルコキシシラン類等が挙げ
られ、これらを単独で又は2種以上組み合わせて用いる
事ができる。上記アルコキシシランの中でも、テトラメ
トキシシラン、テトラエトキシシラン等のテトラアルコ
キシシラン、メチルトリメトキシシラン、メチルトリエ
トキシシラン、エチルトリメトキシシラン、エチルトリ
エトキシシラン等のトリアルコキシシランを好ましく用
いる事が出来る。
In the coating solution for forming the low refractive index antireflection film, the component (b) is a precursor that forms a metal oxide and has a film forming function. The alkoxysilane hydrolyzate used as the component (b) is obtained by hydrolyzing the alkoxysilane in an organic solvent in the presence of an acidic catalyst or a basic catalyst. Examples of the acidic catalyst include mineral acids such as nitric acid and hydrochloric acid, and organic acids such as oxalic acid and acetic acid, and examples of the basic catalyst include ammonia. Examples of the alkoxysilane include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetraalkoxysilanes such as tetrabutoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, and propyl. Trimethoxysilane, propyltriethoxysilane, butyltrimethoxysilane, butyltriethoxysilane, pentyltrimethoxysilane, pentyltriethoxysilane,
Hexyltrimethoxysilane, hexyltriethoxysilane, heptyltrimethoxysilane, heptyltriethoxysilane, octyltrimethoxysilane, octyltriethoxysilane, stearyltrimethoxysilane, stearyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3-chloropropyltriethoxysilane, 3-hydroxypropyltrimethoxysilane, 3
-Hydroxypropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxytriethoxysilane, 3-methacryloxytrimethoxysilane, 3-methacryloxytriethoxysilane,
Trialkoxysilanes such as phenyltrimethoxysilane, phenyltriethoxysilane, trifluoropropyltrimethoxysilane, trifluoropropyltriethoxysilane, and dialkoxysilanes such as dimethyldimethoxysilane and dimethyldiethoxysilane. These can be used alone or in combination of two or more. Among the above alkoxysilanes, tetraalkoxysilanes such as tetramethoxysilane and tetraethoxysilane, trialkoxysilanes such as methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane and ethyltriethoxysilane can be preferably used.

【0010】上記の低屈折率反射防止膜を作成する塗布
液において、(b)成分に用いられる金属アルコキシド
の加水分解物は、金属アルコキシドを酸性触媒又は塩基
性触媒の存在下に有機溶媒中で加水分解することによっ
て得られる。この触媒は上記アルコキシシランの加水分
解に用いられる触媒と同様の触媒を用いる事が出来る。
上記金属アルコキシドとしては、例えばチタニウムテト
ラエトキシド、チタニウムテトラプロポキシド、チタニ
ウムテトラブトキシド等のチタニウムテトラアルコキシ
ド化合物、ジルコニウムテトラエトキシド、ジルコニウ
ムテトラプロポキシド、ジルコニウムテトラブトキシド
等のジルコニウムテトラアルコキシド化合物、アルミニ
ウムトリブトキシド、アルミニウムトリイソプロポキシ
ド、アルミニウムトリエトキシド等のアルミニウムトリ
アルコキシド化合物、バリウムジエトキシド等のバリウ
ムジアルコキシド化合物、タンタリウムペンタプロポキ
シド、タンタリウムペンタブトキシド等のタンタリウム
ペンタアルコキシド化合物、セリウムテトラメトキシ
ド、セリウムテトラプロポキシド等のセリウムテトラア
ルコキシド化合物、イットリウムトリプロポキシド等の
イットリウムトリアルコキシド化合物、ニオビウムペン
タメトキシド、ニオビウムペンタエトキシド、ニオビウ
ムペンタブトキシド等のニオビウムペンタアルコキシド
化合物、カドミウムジメトキシド、カドミウムジエトキ
シド等のカドミウムジアルコキド化合物等が挙げられ、
これらを単独で又は2種以上組み合わせて用いる事が出
来る。上記の金属アルコキシドの中でも、チタニウムテ
トラアルコキシド化合物、ジルコニウムテトラアルコキ
シド化合物、アルミニウムトリアルコキシド化合物、タ
ンタリウムペンタアルコキシド化合物を好ましく用いる
事が出来る。
In the coating solution for forming the above low refractive index antireflection film, the hydrolyzate of the metal alkoxide used as the component (b) is a metal alkoxide in an organic solvent in the presence of an acidic catalyst or a basic catalyst. Obtained by hydrolysis. As this catalyst, the same catalyst as that used for the hydrolysis of the alkoxysilane can be used.
Examples of the metal alkoxide include titanium tetraethoxide, titanium tetrapropoxide, titanium tetraalkoxide compounds such as titanium tetrabutoxide, zirconium tetraethoxide, zirconium tetrapropoxide, zirconium tetraalkoxide compounds such as zirconium tetrabutoxide, aluminum tributoxide. , Aluminum triisopropoxide, aluminum trialkoxide compounds such as aluminum triethoxide, barium dialkoxide compounds such as barium diethoxide, tantalum pentapropoxide, tantalum pentaalkoxide compounds such as tantalum pentabutoxide, cerium tetramethoxy , Cerium tetraalkoxide compounds such as cerium tetrapropoxide, Examples include yttrium trialkoxide compounds such as yttrium tripropoxide, niobium pentamethoxide, niobium pentaethoxide, niobium pentaalkoxide compounds such as niobium pentabtoxide, cadmium dialkoxide compounds such as cadmium dimethoxide, and cadmium diealkoxide. The
These can be used alone or in combination of two or more. Among the above metal alkoxides, titanium tetraalkoxide compounds, zirconium tetraalkoxide compounds, aluminum trialkoxide compounds, and tantalum pentaalkoxide compounds can be preferably used.

【0011】上記の低屈折率反射防止膜を作成する塗布
液において、(b)成分に用いられる金属塩は、被膜形
成能を有すれば如何なる金属塩も使用する事ができる。
例えばアルミニウム、ビスマス、イットリウム、ジルコ
ニウム、セリウム、インジウム等の塩酸塩、硝酸塩、硫
酸塩、蓚酸塩、酢酸塩及びそれらの塩基性塩等が挙げら
れ、これらを単独で又は2種以上組み合わせて使用する
事が出来る。上記の金属塩の中でも、硝酸塩、塩酸塩、
蓚酸塩が好ましく、電子材料に使用する場合は不純物の
問題から硝酸塩、蓚酸塩が好ましい。
In the coating liquid for forming the above low refractive index antireflection film, any metal salt can be used as the metal salt used as the component (b) as long as it has a film forming ability.
Examples thereof include aluminum, bismuth, yttrium, zirconium, cerium, indium, and other hydrochlorides, nitrates, sulfates, oxalates, acetates, and basic salts thereof. These are used alone or in combination of two or more. I can do things. Among the above metal salts, nitrates, hydrochlorides,
Oxalate is preferable, and when it is used for electronic materials, nitrate and oxalate are preferable from the viewpoint of impurities.

【0012】上記のアルコキシシラン及び金属アルコキ
シドの加水分解、並びに金属塩の溶解の際に使用する有
機溶剤は、例えばメタノール、エタノール、プロパノー
ル、ブタノール等のアルコール類、アセトン、メチルエ
チルケトン等のケトン類、ベンゼン、トルエン、キシレ
ン等の芳香族炭化水素類、エチレングリコール、プロピ
レングリコール、ヘキシレングリコール等のグリコール
類、エチルセロソルブ、ブチルセロソルブ、エチルカル
ビトール、ブチルカルビトール、ジエチルセロソルブ、
ジエチルカルビトール等のグリコールエーテル類、N−
メチルピロリドン、ジメチルフォルムアミド等が挙げら
れ、それらを単独で又は2種以上混合して使用する事が
出来る。また、塗布液の長期保存性を高める為や、塗布
液を基材に塗布した際の乾燥むらを防止する目的で、加
水分解終了後、副生する低沸点のアルコール類を留去し
て、塗布液中の溶剤を高沸点化、高粘度化する事が出来
る。
The organic solvent used in the hydrolysis of the above alkoxysilane and metal alkoxide and the dissolution of the metal salt is, for example, alcohols such as methanol, ethanol, propanol and butanol, ketones such as acetone and methyl ethyl ketone, and benzene. , Toluene, xylene and other aromatic hydrocarbons, ethylene glycol, propylene glycol, hexylene glycol and other glycols, ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, diethyl cellosolve,
Glycol ethers such as diethyl carbitol, N-
Methylpyrrolidone, dimethylformamide and the like can be mentioned, and they can be used alone or in combination of two or more kinds. Further, in order to improve the long-term storage stability of the coating solution, or for the purpose of preventing unevenness in drying when the coating solution is applied to the substrate, after the hydrolysis is completed, the low boiling point alcohol by-produced is distilled off, It is possible to increase the boiling point and viscosity of the solvent in the coating liquid.

【0013】上記の(b)成分は、アルコキシシランの
加水分解物、金属アルコキシドの加水分解物及び金属塩
からなる群より選ばれた少なくとも1種の成分を含有す
るが、特に、アルコキシシランの加水分解物を単独で使
用する場合、アルコキシシランの加水分解物と金属塩を
併用する場合、金属アルコキシドの加水分解物と金属塩
を併用する場合、アルコキシシランの加水分解物と金属
アルコキシドの加水分解物と金属塩の3種を同時に使用
する場合が好ましい。(b)成分から2種以上の成分を
含有する場合は、アルコキシシランの加水分解物、金属
アルコキシドの加水分解物、及び金属塩の組成比は、重
量部として、(アルコキシシランの加水分解物):(金
属アルコキシドの加水分解物):(金属塩)=1:0.
05〜5:0.05〜5が好ましい。この組成比は、
(b)成分から2種の成分を選択する場合や、3種の成
分を選択する場合のどちらの場合にも適用できる。但
し、アルコキシシランの加水分解物はSiO2 として計
算し、金属アルコキシドの加水分解物はMOn/2 (nは
金属原子Mの原子価)として計算し、金属塩はM’On/
2 (nは金属原子M’の原子価)として計算される。
The component (b) contains at least one component selected from the group consisting of a hydrolyzate of an alkoxysilane, a hydrolyzate of a metal alkoxide and a metal salt. When the decomposed product is used alone, when the alkoxysilane hydrolyzate and the metal salt are used together, when the metal alkoxide hydrolyzate and the metal salt are used together, the alkoxysilane hydrolyzate and the metal alkoxide hydrolyzate It is preferable to use three kinds of metal salt and metal salt at the same time. When two or more components are contained from the component (b), the composition ratio of the hydrolyzate of the alkoxysilane, the hydrolyzate of the metal alkoxide, and the metal salt is (part by weight) of the hydrolyzate of the alkoxysilane. : (Hydrolyzate of metal alkoxide): (metal salt) = 1: 0.
05-5: 0.05-5 are preferable. This composition ratio is
It can be applied to both cases of selecting two kinds of components from the component (b) and selecting three kinds of components. However, the hydrolyzate of the alkoxysilane is calculated as SiO 2 , the hydrolyzate of the metal alkoxide is calculated as MO n / 2 (n is the valence of the metal atom M), and the metal salt is M′O n /.
2 (n is the valence of the metal atom M ′).

【0014】上記の(b)成分がアルコキシシランや金
属アルコキシドと金属塩を併用する場合は、アルコキシ
シランや金属アルコキシドを金属塩の存在下で加水分解
する方法や、上記のアルコキシドを加水分解した後に金
属塩を添加する方法がある。アルコキシシランや金属ア
ルコキシドを金属塩の存在下で加水分解する方法の場合
は、使用する金属塩が酸性を呈する塩であれば、加水分
解時に触媒を添加する必要がない。
When the component (b) is a combination of an alkoxysilane or metal alkoxide and a metal salt, a method of hydrolyzing the alkoxysilane or metal alkoxide in the presence of the metal salt, or a method of hydrolyzing the above alkoxide There is a method of adding a metal salt. In the case of the method of hydrolyzing an alkoxysilane or a metal alkoxide in the presence of a metal salt, it is not necessary to add a catalyst at the time of hydrolysis if the metal salt used is an acid salt.

【0015】上記のアルコキシドの加水分解は、アルコ
キシシランと金属アルコキシドを、それぞれ別に加水分
解する方法や、同時に両者を加水分解する方法がある
が、アルコキシシランの加水分解液と金属アルコキシド
を混合し、その後更に加水分解を進める方法が好まし
い。この時、加水分解はアルコキシ基のモル数に対して
0.5〜5倍モル、好ましくは0.5〜2.5倍モルの
水の添加によって行われ、水の添加は通常室温で行われ
るが、必要に応じて50〜150℃の加熱下に行う事も
出来る。加水分解の終了後、熟成の目的で50〜150
℃の温度で0.5〜5時間加熱する事ができる。水性シ
リカゾルを使用する場合、有機溶剤系シリカゾルが水を
含有する場合、或いは加水分解に用いる触媒を水に溶解
して水溶液の形態で使用する場合でも、この加水分解反
応に添加される水の総量は、上記のシリカゾル中の水や
触媒水溶液中の水も含めてアルコキシ基のモル数に対し
て5倍モル以下である。
The above-mentioned hydrolysis of the alkoxide can be carried out by separately hydrolyzing the alkoxysilane and the metal alkoxide, or by simultaneously hydrolyzing the both, but by mixing the hydrolysis liquid of the alkoxysilane and the metal alkoxide, After that, a method of further promoting hydrolysis is preferable. At this time, the hydrolysis is carried out by adding 0.5 to 5 times mol, preferably 0.5 to 2.5 times mol of water, relative to the number of moles of the alkoxy group, and water is usually added at room temperature. However, if necessary, it can be carried out under heating at 50 to 150 ° C. 50 ~ 150 for the purpose of aging after the completion of hydrolysis
It can be heated at a temperature of ° C for 0.5 to 5 hours. When using an aqueous silica sol, even when the organic solvent-based silica sol contains water, or even when the catalyst used for hydrolysis is dissolved in water and used in the form of an aqueous solution, the total amount of water added to this hydrolysis reaction Is 5 times or less the molar number of the alkoxy group including the water in the silica sol and the water in the catalyst aqueous solution.

【0016】上記(b)成分で、金属アルコキシドを使
用する場合は、加水分解速度が早い為に加水分解速度を
調節する目的で、アセチルアセトン、アセト酢酸エチル
等のβ−ジケトン類、エチレングリコール、ヘキシレン
グリコール等のグリコール類等の安定化剤を添加して、
加水分解速度を制御する事が出来る。上記(b)成分
で、金属塩を使用する場合は、上記の塗布液を基材に塗
布してから乾燥する間に、金属塩が結晶化して塗布され
た膜の表面に析出する為に起こる被膜成分の不均一化を
防止する目的で、析出防止剤を添加する事ができる。こ
の析出防止剤は、例えばエチレングリコール、N−メチ
ルピロリドン、ジメチルフォルムアミド、ジメチルアセ
トアミド及びそれらの誘導体が挙げられ、これらを単独
で又は2種以上の混合物として用いることが出来る。そ
の使用量は、金属塩をM’On/2 〔nは金属原子M’の
原子価〕に換算して、重量比でM’On/2の1重量部に
対して、析出防止剤を少なくとも1重量部以上である。
When a metal alkoxide is used as the component (b), the rate of hydrolysis is high, and therefore the β-diketones such as acetylacetone and ethyl acetoacetate, ethylene glycol, and the like are used for the purpose of controlling the rate of hydrolysis. Add stabilizers such as glycols such as xylene glycol,
The rate of hydrolysis can be controlled. When a metal salt is used as the component (b), it occurs because the metal salt is crystallized and deposited on the surface of the coated film during drying after coating the substrate with the coating liquid. A precipitation inhibitor may be added for the purpose of preventing nonuniformity of the coating components. Examples of this precipitation inhibitor include ethylene glycol, N-methylpyrrolidone, dimethylformamide, dimethylacetamide and their derivatives, and these can be used alone or as a mixture of two or more kinds. The amount of the metal salt is converted into M′O n / 2 [n is the valence of the metal atom M ′], and the precipitation inhibitor is added to 1 part by weight of M′O n / 2 by weight. Is at least 1 part by weight or more.

【0017】本発明の低屈折率反射防止膜を作成する塗
布液において、(a)成分のシリカゾルのSiO2 とし
て100重量部に対して、(b)成分を金属酸化物に換
算して10〜50重量部、好ましくは15〜40重量部
の割合で用いる事がよい。上記の(b)成分を金属酸化
物に換算する際に、金属酸化物はその金属の代表的な酸
化物の組成式として表される。即ち、その金属の最も安
定な酸化物の形として、その金属酸化物を構成する金属
原子と酸素原子についてそれぞれの原子数の最も簡単な
整数比で表したものであり、例えば、SiO2 、TiO
2 、ZrO2 、Al2 3 、BaO、Ta2 5 、Ce
2 、Y2 3 、Nb2 5 、CdO、Bi2 3 、I
2 3 の形態として計算する。(a)成分と(b)成
分よりなる塗布液は、固形分として0.1〜15重量%
含有し、粘度が1〜150〔mPa・s〕、好ましくは
1〜80〔mPa・s〕である。上記の塗布液は、所望
によりセルロース系化合物を代表とする増粘剤を含有す
る事が出来る。
In the coating solution for forming the low refractive index antireflection film of the present invention, the component (b) is converted to a metal oxide in an amount of 10 parts by weight per 100 parts by weight of SiO 2 of the silica sol of the component (a). It may be used in an amount of 50 parts by weight, preferably 15 to 40 parts by weight. When the component (b) is converted into a metal oxide, the metal oxide is represented by a composition formula of a typical oxide of the metal. That is, the most stable oxide form of the metal is represented by the simplest integer ratio of the number of atoms of each of the metal atoms and oxygen atoms constituting the metal oxide, such as SiO 2 and TiO 2 .
2 , ZrO 2 , Al 2 O 3 , BaO, Ta 2 O 5 , Ce
O 2 , Y 2 O 3 , Nb 2 O 5 , CdO, Bi 2 O 3 , I
Calculated as the form of n 2 O 3 . The coating liquid comprising the components (a) and (b) has a solid content of 0.1 to 15% by weight.
It is contained and has a viscosity of 1 to 150 [mPa · s], preferably 1 to 80 [mPa · s]. The above coating liquid may contain a thickener represented by a cellulosic compound, if desired.

【0018】上記の塗布液は、ディッピング、スピンコ
ート、転写印刷、刷毛塗り、ロールコート、スプレー等
の通常使用される塗布法により基材に塗布する事が出来
る。得られた塗布膜は、50〜80℃の温度で乾燥した
後、100℃以上、好ましくは100〜500℃の温度
で0.5〜1時間で硬化させる事ができる。この加熱硬
化は、オーブン炉、ホットプレート等の装置を用いて行
うことが出来る。得られた膜は、屈折率が1.28〜
1.38、表面硬度が鉛筆硬度で4H〜9Hである。更
に、塗布液中の(b)成分に金属アルコキシド又は金属
塩を含有する場合は、成膜して乾燥後に、低圧又は高圧
水銀ランプにより180〜400nmの波長の紫外線
(UV)を100mJ/cm2 (ミリジュール/平方セ
ンチメートル)以上照射する事により塗膜中で硬化反応
が促進して、120〜150℃の比較的低温で硬化させ
ても機械的な強度に優れた高い硬度を持った塗膜とする
事が出来る。本発明では、1回の塗布と焼成により所望
とする物性の膜を形成する事が出来る。
The above-mentioned coating liquid can be applied to the substrate by a commonly used coating method such as dipping, spin coating, transfer printing, brush coating, roll coating, and spraying. The obtained coating film can be dried at a temperature of 50 to 80 ° C. and then cured at a temperature of 100 ° C. or higher, preferably 100 to 500 ° C. for 0.5 to 1 hour. This heat curing can be performed using an apparatus such as an oven furnace or a hot plate. The obtained film has a refractive index of 1.28 to
The surface hardness is 1.38 and the pencil hardness is 4H to 9H. Furthermore, when the component (b) in the coating liquid contains a metal alkoxide or a metal salt, 100 mJ / cm 2 of ultraviolet ray (UV) having a wavelength of 180 to 400 nm is applied by a low pressure or high pressure mercury lamp after film formation and drying. By irradiating more than (millijoule / square centimeter), the curing reaction is accelerated in the coating film, and the coating film has high mechanical strength and high hardness even when cured at a relatively low temperature of 120 to 150 ° C. You can do it. In the present invention, a film having desired physical properties can be formed by coating and baking once.

【0019】本発明では、塗布する基材を透明な基材と
する事により、上記の低屈折率反射防止膜を有する透明
基材を得る事が出来る。この透明基材としては、プラス
チックスやガラスが挙げられ、特に、LCD(液晶表
示)やCRT(ブラウン管型表示)等のディスプレイ表
面やレンズ等に好ましく用いる事が出来る。
In the present invention, a transparent substrate having the above-described low refractive index antireflection film can be obtained by using a transparent substrate as the substrate to be coated. Examples of the transparent base material include plastics and glass, which can be preferably used particularly for display surfaces such as LCD (liquid crystal display) and CRT (cathode ray tube display) and lenses.

【0020】[0020]

【作用】本発明の低屈折率反射防止膜を作成する塗布液
において(a)成分として用いるシリカゾルは、粒子径
が5〜30nmの範囲のシリカ粒子を特定割合で用いる
事により、被膜表面に微小な凹凸が形成され屈折率を低
下させるために良好な反射防止効果が得られるものであ
る。これは、微小な凹凸が形成された部分(膜表面)
は、上記シリカ粒子(屈折率は約1.45)と空気(屈
折率は1.00)よりなる為に、擬似的に1.28〜
1.38程度の屈折率を有する事となるので、基材(例
えば、ガラスの屈折率は約1.54程度、プラスチック
スの屈折率は約1.60程度)の屈折率よりも低くなり
反射防止効果が出現すると考えられる。
The silica sol used as the component (a) in the coating liquid for forming the low refractive index antireflection film of the present invention has fine particles on the surface of the coating film by using silica particles having a particle diameter in the range of 5 to 30 nm in a specific ratio. Since such unevenness is formed and the refractive index is lowered, a good antireflection effect can be obtained. This is the part (membrane surface) where minute irregularities are formed.
Is composed of the above silica particles (refractive index of about 1.45) and air (refractive index of 1.00), so that it is simulated from 1.28 to
Since it has a refractive index of about 1.38, it is lower than the refractive index of the base material (for example, the refractive index of glass is about 1.54, the refractive index of plastics is about 1.60), and the reflection It is thought that a preventive effect will appear.

【0021】しかし、5nm未満の粒子径のシリカゾル
は安定に製造する事が困難であると共に、被膜表面に凹
凸が形成され難い為に好ましくなく、また30nmを超
える粒子径のシリカゾルを用いる場合は、得られた被膜
が光の散乱により白濁し透明性が低下するので好ましく
ない。上記塗布液において、(b)成分のアルコキシシ
ランの加水分解物、金属アルコキシドの加水分解物、又
は析出防止剤と組合せた金属塩は、それぞれが被膜形成
能力を有している。更に、金属アルコキシドの加水分解
物や金属塩は、耐薬品性の向上、紫外線(UV)硬化
性、高い温度を加えずに硬化する性能等の機能を有して
いる。(a)成分のシリカゾルのSiO2 100重量部
に対して、(b)成分が金属酸化物に換算して10重量
部未満では、加熱硬化して得られる膜の機械的強度や基
材との密着性が低下して好ましくなく、また50重量部
を超える場合は、シリカ粒子の割合が少なくなるので、
表面の微小な凹凸の形成が不十分となり、屈折率の低下
が充分に起こらず反射防止効果が不充分となる。
However, a silica sol having a particle size of less than 5 nm is not preferable because it is difficult to stably produce it, and it is difficult to form irregularities on the coating surface, and when a silica sol having a particle size of more than 30 nm is used, The resulting coating is not preferable because it becomes cloudy due to light scattering and the transparency is reduced. In the above coating liquid, the hydrolyzate of the alkoxysilane, the hydrolyzate of the metal alkoxide, or the metal salt combined with the precipitation inhibitor as the component (b) each has a film forming ability. Further, the hydrolyzate and metal salt of metal alkoxide have functions such as improved chemical resistance, ultraviolet (UV) curability, and the ability to cure without applying high temperature. When the amount of the component (b) is less than 10 parts by weight in terms of the metal oxide with respect to 100 parts by weight of SiO 2 of the silica sol of the component (a), the mechanical strength of the film obtained by heat curing and the compatibility with the base material Adhesiveness is reduced, which is not preferable, and when it exceeds 50 parts by weight, the proportion of silica particles decreases,
Formation of minute irregularities on the surface is insufficient, the refractive index is not sufficiently lowered, and the antireflection effect is insufficient.

【0022】本発明に用いられる塗布液の固形分濃度
は、0.1重量%より小さいと、一回の塗布により得ら
れる被膜の厚みが薄く、所定の厚みを得るためには多数
回の塗布が必要となり効率的でない。一方、15重量%
より大きいと、一回の塗布により得られる被膜の厚みが
厚くなり、均一な被膜を得ることが困難となり、また塗
布液の貯蔵安定性が乏しくなり、塗布液の粘度の増加や
ゲル化等を引き起こすので好ましくない。
When the solid content concentration of the coating solution used in the present invention is less than 0.1% by weight, the thickness of the coating film obtained by one coating is small, and the coating is repeated many times to obtain a predetermined thickness. Is required and not efficient. On the other hand, 15% by weight
If it is larger, the thickness of the coating obtained by one-time coating becomes thicker, it becomes difficult to obtain a uniform coating, and the storage stability of the coating liquid becomes poor, increasing the viscosity of the coating liquid, gelling, etc. It is not preferable because it causes.

【0023】[0023]

【実施例】【Example】

(a)成分の調製 シリカゾル(a1):粒子径15nmでSiO2 として
30重量%のシリカ粒子を含有しIPA(イソプロパノ
ール)を分散媒とするシリカゾル。 シリカゾル(a2):粒子径8nmでSiO2 として3
0重量%のシリカ粒子を含有しメタノールを分散媒とす
るシリカゾル。
Preparation of component (a) Silica sol (a1): A silica sol having a particle diameter of 15 nm and containing 30% by weight of silica particles as SiO 2 and having IPA (isopropanol) as a dispersion medium. Silica sol (a2): particle size 8 nm, 3 as SiO 2
A silica sol containing 0% by weight of silica particles and using methanol as a dispersion medium.

【0024】シリカゾル(a3):粒子径12nmでS
iO2 として30重量%のシリカ粒子を含有しメタノー
ルを分散媒とするシリカゾル。 シリカゾル(a4):粒子径25nmでSiO2 として
30重量%のシリカ粒子を含有しメタノールを分散媒と
するシリカゾル。 シリカゾル(a5):エタノール中でテトラエトキシシ
ランをアンモニア水で加水分解を行い、粒子径が15n
mのシリカゾルを製造し、これをメタノールで溶媒置換
を行い、SiO2 として10重量%のシリカ粒子を含有
したメタノールを分散媒とするシリカゾル。
Silica sol (a3): S with a particle size of 12 nm
A silica sol containing 30% by weight of silica particles as iO 2 and using methanol as a dispersion medium. Silica sol (a4): A silica sol having a particle diameter of 25 nm and containing 30% by weight of silica particles as SiO 2 and using methanol as a dispersion medium. Silica sol (a5): Tetraethoxysilane is hydrolyzed with aqueous ammonia in ethanol to give a particle size of 15n.
A silica sol prepared by producing a silica sol of m, performing solvent substitution with methanol, and using methanol containing 10% by weight of silica particles as SiO 2 as a dispersion medium.

【0025】シリカゾル(a6):粒子径40nmでS
iO2 として30重量%のシリカ粒子を含有しメタノー
ルを分散媒とするシリカゾル。 シリカゾル(a7):粒子径80nmでSiO2 として
30重量%のシリカ粒子を含有しメタノールを分散媒と
するシリカゾル。 (b)成分(被膜形成成分)の調製 被膜形成成分(b1):還流管を備えつけた反応フラス
コにアルコキシシランとして、テトラエトキシシラン2
0.8gと、溶媒としてエタノールを70.1gを入
れ、マグネチックスターラーを用いて攪拌、混合した。
そこへ、触媒として蓚酸0.1gを水9gに溶解したも
のを添加し混合した。混合後、液温は約10℃発熱し
た。そのまま30分間攪拌を続け、次いで76℃で60
分間加温し、その後、室温まで冷却して、固形分濃度が
SiO2 として6重量%含まれる被膜形成成分(b1)
を作成した。
Silica sol (a6): S with a particle size of 40 nm
A silica sol containing 30% by weight of silica particles as iO 2 and using methanol as a dispersion medium. Silica sol (a7): A silica sol having a particle diameter of 80 nm and containing 30% by weight of silica particles as SiO 2 and using methanol as a dispersion medium. Preparation of component (b) (film forming component) Film forming component (b1): Tetraethoxysilane 2 as alkoxysilane in a reaction flask equipped with a reflux tube.
0.8 g and 70.1 g of ethanol as a solvent were added, and the mixture was stirred and mixed using a magnetic stirrer.
What dissolved oxalic acid 0.1g in water 9g as a catalyst was added and mixed there. After mixing, the liquid temperature exothermed about 10 ° C. Continue stirring for 30 minutes, then at 60 ° C for 60 minutes.
After heating for 1 minute and then cooling to room temperature, a film-forming component (b1) having a solid content concentration of 6% by weight as SiO 2.
It was created.

【0026】被膜形成成分(b2):還流管を備えつけ
た反応フラスコにアルコキシシランとして、テトラエト
キシシラン14.6gと、溶媒としてブチルセロソルブ
38.8gを入れ、マグネチックスターラーを用いて攪
拌、混合した。そこへ、金属塩として硝酸ジルコニル2
水和物2.3gを水3.8gと60%濃度の硝酸0.4
gの混合溶液に溶解し、さらに析出防止剤としてエチレ
ングリコール7.6gを混合したものを上記反応フラス
コに添加し混合した。混合後、液温は20℃から28℃
へ発熱した。そのまま30分攪拌を続けアルコキシシラ
ンの加水分解物と金属塩の混合物とした。別の還流管を
備えつけた反応フラスコに金属アルコキシドとしてテト
ラプロポキシチタン2.5gと溶媒としてブチルセロソ
ルブ30.0gを入れ30分間攪拌した後、引続き攪拌
しながら先のアルコキシシラン加水分解物と金属塩の混
合物を添加混合し、固形分濃度が金属酸化物換算〔Si
2 +ZrO2 +TiO2 〕で6重量%含まれる被膜形
成成分(b2)を作成した。
Film-forming component (b2): equipped with a reflux tube
As an alkoxysilane,
14.6 g of xysilane and butyl cellosolve as a solvent
Add 38.8 g and stir with a magnetic stirrer.
Stir and mix. Zirconyl nitrate 2 as a metal salt there
2.3 g of the hydrate was added to 3.8 g of water and 0.4% of 60% strength nitric acid.
g as a precipitation inhibitor.
Mixed with 7.6 g of glycol glycol
It was added to the mixture and mixed. After mixing, the liquid temperature is 20 ℃ to 28 ℃
Fever. Continue to stir for 30 minutes as it is and alkoxy sila
And a metal salt. Another reflux tube
Tet as a metal alkoxide in the equipped reaction flask
2.5g lapropoxy titanium and butyl cello as solvent
Add 30.0 g of rubbing and stir for 30 minutes, then continue stirring
While mixing the above alkoxysilane hydrolyzate and metal salt,
Compound is added and mixed, and the solid content concentration is converted to metal oxide [Si
O 2+ ZrO2+ TiO2] 6% by weight
The component (b2) was prepared.

【0027】被膜形成成分(b3):還流管を備えつけ
た反応フラスコにアルコキシシランとして、メチルトリ
エトキシシラン15.1gと、溶媒としてブチルセロソ
ルブ45.6gを入れ、マグネチックスターラーを用い
て攪拌、混合した。そこへ、金属塩として硝酸アルミニ
ウム9水和物3.8gを水1.6gと析出防止剤として
エチレングリコール2.5gに溶解混合したものを添加
し混合した。混合後、液温は20℃から28℃へ発熱し
た。そのまま30分攪拌を続けアルコキシシランの加水
分解物と金属塩の混合物とした。別の還流管を備えつけ
た反応フラスコに金属アルコキシドとしてテトラプロポ
キシチタン1.4gと溶媒としてブチルセロソルブ3
0.0gを入れ30分間攪拌した後、引続き攪拌しなが
ら先のアルコキシシラン加水分解物と金属塩の混合物を
添加混合し、固形分濃度が金属酸化物換算〔SiO2
Al2 3 +TiO2 〕で6重量%含まれる被膜形成成
分(b3)を作成した。
Film-forming component (b3): 15.13 g of methyltriethoxysilane as an alkoxysilane and 45.6 g of butyl cellosolve as a solvent were placed in a reaction flask equipped with a reflux tube, and the mixture was stirred and mixed using a magnetic stirrer. . 3.8 g of aluminum nitrate nonahydrate as a metal salt was dissolved and mixed in 1.6 g of water and 2.5 g of ethylene glycol as a precipitation inhibitor, and the mixture was added thereto. After mixing, the liquid temperature exothermed from 20 ° C to 28 ° C. The mixture was stirred for 30 minutes as it was to obtain a mixture of a hydrolyzate of alkoxysilane and a metal salt. In a reaction flask equipped with another reflux tube, 1.4 g of tetrapropoxy titanium as a metal alkoxide and butyl cellosolve 3 as a solvent.
After adding 0.0 g and stirring for 30 minutes, the mixture of the alkoxysilane hydrolyzate and the metal salt was added and mixed while continuously stirring, and the solid content concentration was converted to metal oxide [SiO 2 +
A film forming component (b3) containing 6% by weight of Al 2 O 3 + TiO 2 ] was prepared.

【0028】被膜形成成分(b4):還流管を備えつけ
た反応フラスコに、金属塩として硝酸アルミニウム9水
和物44.3gを析出防止剤としてエチレングリコール
30.7gにマグネチックスターラーを用いて溶解さ
せ、更にブチルセロソルブ25.0gを添加し、固形分
濃度が金属酸化物〔Al2 3 〕で6重量%の被膜形成
成分(b4)を作成した。
Film-forming component (b4): In a reaction flask equipped with a reflux tube, 44.3 g of aluminum nitrate nonahydrate as a metal salt was dissolved in 30.7 g of ethylene glycol as a precipitation inhibitor using a magnetic stirrer. Then, 25.0 g of butyl cellosolve was further added to prepare a film-forming component (b4) having a solid content of metal oxide [Al 2 O 3 ] of 6% by weight.

【0029】被膜形成成分(b5):還流管を備えつけ
た反応フラスコに、金属塩として硝酸アルミニウム9水
和物9.4gを水1.1gと、析出防止剤としてエチレ
ングリコール21.8gにマグネチックスターラーを用
いて溶解させ、更に溶媒としてブチルセロソルブを1
4.5gを添加し混合した。別の還流管を備えつけた反
応フラスコに金属アルコキシドとしてテトラプロポキシ
チタン16.8gと安定化剤としてヘキシレングリコー
ル36.4gを入れ30分間撹拌した後、上記の硝酸ア
ルミニウム溶解液を撹拌しながら添加して混合し、その
後30分間撹拌を続けた。そして固形分濃度が金属酸化
物〔Al2 3 +TiO2 〕で6重量%の被膜形成成分
(b5)を作成した。
Film-forming component (b5): In a reaction flask equipped with a reflux tube, 9.4 g of aluminum nitrate nonahydrate as a metal salt, 1.1 g of water, and 21.8 g of ethylene glycol as a precipitation inhibitor were magnetically added. Dissolve using a stirrer, and add 1 butyl cellosolve as a solvent.
4.5 g was added and mixed. Into a reaction flask equipped with another reflux tube, 16.8 g of tetrapropoxy titanium as a metal alkoxide and 36.4 g of hexylene glycol as a stabilizer were put and stirred for 30 minutes, and then the above-mentioned aluminum nitrate solution was added while stirring. And mixed for 30 minutes. Then, a film-forming component (b5) having a solid content concentration of metal oxide [Al 2 O 3 + TiO 2 ] of 6% by weight was prepared.

【0030】被膜形成成分(b6):還流管を備えつけ
た反応フラスコに、金属アルコキシドとしてテトラプロ
ポキシチタン21.3gと安定化剤としてヘキシレング
リコール30.0gを入れ、マグネチックスターラーを
用いて30分間撹拌した後、触媒として60重量%濃度
の硝酸0.8gと水1.4gと溶媒としてプチルセロソ
ルブ46.5gの混合溶液を撹拌しながら添加して混合
し、その後30分間撹拌を続けた。そして固形分濃度が
金属酸化物〔TiO2 〕6重量%の被膜形成成分(b
6)を作成した。
Film-forming component (b6): 21.3 g of tetrapropoxytitanium as a metal alkoxide and 30.0 g of hexylene glycol as a stabilizer were placed in a reaction flask equipped with a reflux tube, and a magnetic stirrer was used for 30 minutes. After stirring, a mixed solution of 0.8 g of nitric acid having a concentration of 60% by weight as a catalyst, 1.4 g of water, and 46.5 g of putylcellosolve as a solvent was added with stirring and mixed, and then the stirring was continued for 30 minutes. And a film-forming component (b) having a solid content concentration of 6% by weight of metal oxide [TiO 2 ].
6) was created.

【0031】被膜形成成分(b7):還流管を備えつけ
た反応フラスコに、アルコキシシランとしてテトラエト
キシシラン17.2gと溶媒としてブチルセロソルブ3
5.3gを入れ、マグネチックスターラーを用いて撹拌
した後、金属塩として硝酸アルミニウム9水和物7.7
gを水4.5gと析出防止剤としてエチレングリコール
35.3gに溶解したものを添加して混合した。混合
後、液温は20℃から25℃へ発熱した。そのまま30
分間撹拌し、固形分濃度が金属酸化物に換算して〔Si
2 +Al2 3 〕で6重量%の被膜形成成分(b7)
を作成した。
Film-forming component (b7): In a reaction flask equipped with a reflux tube, 17.2 g of tetraethoxysilane as an alkoxysilane and butyl cellosolve 3 as a solvent.
After adding 5.3 g and stirring with a magnetic stirrer, aluminum nitrate nonahydrate 7.7 as a metal salt was added.
What was dissolved in 4.5 g of water and 35.3 g of ethylene glycol as a precipitation inhibitor was added and mixed. After mixing, the liquid temperature exothermed from 20 ° C to 25 ° C. 30 as it is
Stir for minutes and convert the solid content to metal oxide [Si
O 2 + Al 2 O 3 ], 6% by weight of film-forming component (b7)
It was created.

【0032】溶媒(s1):エタノール。 溶媒(s2):ブチルセロソルブ。 実施例1 上記の被膜形成成分(b1)10gと、粒子径15nm
でSiO2 として30重量%のシリカ粒子を含有しIP
A(イソプロパノール)を分散媒とするシリカゾル(a
1)13.3gと、溶媒としてエタノール(s1)3
4.2g及びブチルセロソルブ(s2)57.5gをマ
グネチックスターラーを用いて混合し、塗布液とした。
この塗布液の固形分重量比(被膜形成成分b1/シリカ
粒子a1)は、6/40である。この塗布液の組成は表
1に記載した。このようにして得られた塗布液を、波長
550nmの透過率が91%の厚さ1.1mmのソーダ
ライムガラス基板上にスピンコーターを用いて成膜し、
80℃のホットプレート上で5分間乾燥させた後、30
0℃のクリンオーブンで60分間加熱して、膜厚約10
00Å(オングストローム)の硬化被膜とした。そし
て、波長550nmで分光光度計(島津製作所製、W−
160型)により透過率の測定を行った。その結果を表
2に記載した。同様の方法によりシリコン基板上に膜厚
約1000Å(オングストローム)の硬化被膜を作成
し、屈折率の測定を行った。屈折率はエリプソメーター
((株)溝尻光学工業所製)により測定した。更に、成
膜性は、基板上に成膜された上記の被膜を目視で判断
し、無色透明であれば(○)とし、その他は(白濁)と
評価した。その結果を表2に記載した。
Solvent (s1): ethanol. Solvent (s2): butyl cellosolve. Example 1 10 g of the above film-forming component (b1) and a particle diameter of 15 nm
IP containing 30% by weight of silica particles as SiO 2
Silica sol with A (isopropanol) as a dispersion medium (a
1) 13.3 g and ethanol (s1) 3 as a solvent
4.2 g and butyl cellosolve (s2) 57.5 g were mixed using a magnetic stirrer to obtain a coating liquid.
The solid content weight ratio (coating-forming component b1 / silica particles a1) of this coating solution is 6/40. The composition of this coating solution is shown in Table 1. The coating liquid thus obtained was deposited on a 1.1 mm thick soda lime glass substrate having a transmittance of 91% at a wavelength of 550 nm using a spin coater,
After drying on a hot plate at 80 ° C for 5 minutes, 30
Heat in a 0 ° C clean oven for 60 minutes to obtain a film thickness of about 10
It was a cured film of 00Å (angstrom). And a spectrophotometer with a wavelength of 550 nm (manufactured by Shimadzu Corporation, W-
The transmittance was measured with a 160 type). The results are shown in Table 2. A cured coating having a film thickness of about 1000 Å (angstrom) was formed on a silicon substrate by the same method, and the refractive index was measured. The refractive index was measured by an ellipsometer (manufactured by Mizojiri Optical Co., Ltd.). Further, the film-forming property was evaluated by visually observing the above-mentioned film formed on the substrate, and if it was colorless and transparent, it was evaluated as (◯), and the others were evaluated as (white turbidity). The results are shown in Table 2.

【0033】実施例2〜6 被膜形成成分(b1)と、シリカゾル(a1〜a4)
と、溶媒を表1に記載の割合で混合して塗布液とした。
実施例1と同様の方法により、得られた塗布液を用いて
ガラス板上に膜厚約1000Åの硬化被膜を作成し波長
550nmの透過率と、シリコン基板上に膜厚約100
0Åの硬化被膜を作成し屈折率の測定を行った。更に成
膜性を評価した。その測定結果を表2に示した。
Examples 2 to 6 Film-forming component (b1) and silica sol (a1 to a4)
And the solvent were mixed at the ratios shown in Table 1 to obtain a coating liquid.
By the same method as in Example 1, a cured coating having a film thickness of about 1000Å was formed on the glass plate using the obtained coating solution, and the transmittance at a wavelength of 550 nm and the film thickness of about 100 on a silicon substrate.
A 0 Å cured film was prepared and the refractive index was measured. Further, the film forming property was evaluated. The measurement results are shown in Table 2.

【0034】実施例7 被膜形成成分(b1)10gと、粒子径15nmでSi
2 として30重量%シリカ粒子を含有しIPA(イソ
プロパノール)を分散媒とするシリカゾル(a1)1
3.3gと、溶媒としてエタノール(s1)70gをマ
グネチックスターラーを用いて混合し、塗布液とした。
この塗布液の固形分重量比(被膜形成成分b1/シリカ
粒子a1)は、6/40である。この塗布液の組成は表
1に記載した。
Example 7 10 g of the film-forming component (b1) and Si having a particle diameter of 15 nm
Silica sol (a1) 1 containing 30% by weight of silica particles as O 2 and IPA (isopropanol) as a dispersion medium
3.3 g and 70 g of ethanol (s1) as a solvent were mixed using a magnetic stirrer to obtain a coating liquid.
The solid content weight ratio (coating-forming component b1 / silica particles a1) of this coating solution is 6/40. The composition of this coating solution is shown in Table 1.

【0035】このようにして得られた塗布液を用いて、
厚さ1.1mmのソーダライムガラス基板上にディップ
コートにより基板の両面に成膜し、80℃のクリンオー
ブンで10分間乾燥させた後、300℃のクリンオーブ
ンで30分間加熱して、膜厚約1000Åの硬化被膜と
した。また、同様にシリコン基板上に膜厚約1000Å
の硬化被膜を作成した。そして、実施例1と同様の方法
により、ガラス基板上の硬化被膜を波長550nmの光
で透過率を測定し、更に、シリコン基板上の硬化被膜の
屈折率を測定した。更に成膜性を評価した。その測定結
果を表2に示した。
Using the coating liquid thus obtained,
A film is formed on both sides of a 1.1 mm thick soda lime glass substrate by dip coating, dried in a 80 ° C. clean oven for 10 minutes, and then heated in a 300 ° C. clean oven for 30 minutes to obtain a film thickness. A hardened film of about 1000Å was used. Similarly, a film thickness of about 1000Å on a silicon substrate
A cured coating of was prepared. Then, in the same manner as in Example 1, the transmittance of the cured coating on the glass substrate was measured with light having a wavelength of 550 nm, and the refractive index of the cured coating on the silicon substrate was measured. Further, the film forming property was evaluated. The measurement results are shown in Table 2.

【0036】実施例8 被膜形成成分(b2)10gと、粒子径15nmでSi
2 として30重量%のシリカ粒子を含有しIPA(イ
ソプロパノール)を分散媒とするシリカゾル(a1)1
3.3gと、溶媒としてエタノール(s1)34.2g
及びブチルセロソルブ(s2)57.5gをマグネチッ
クスターラーを用いて混合し、塗布液とした。この塗布
液の固形分重量比(被膜形成成分b2/シリカ粒子a
1)は、6/40である。この塗布液の組成は表1に記
載した。この様にして得られた塗布液により、厚さ1.
1mmのソーダライムガラス基板上にスピンコーターを
用いて成膜し、80℃のホットプレート上で5分間乾燥
させた後、高圧水銀ランプ(1000W 照度200m
J/cm2 、波長360nm)で5分間UV(紫外線)
照射を行い、更に300℃のクリンオーブンで30分間
加熱して、膜厚約1000Åの硬化被膜とした。同様の
方法によりシリコン基板上に膜厚約1000Åの硬化被
膜を作成した。そして、実施例1の方法と同様の方法に
より、ガラス基板上の硬化被膜を波長550nmの光で
透過率を測定し、更に、シリコン基板上の硬化被膜の屈
折率を測定した。更に成膜性を評価した。その測定結果
を表2に示した。
Example 8 10 g of the film-forming component (b2) and Si having a particle diameter of 15 nm
Silica sol (a1) 1 containing 30% by weight of silica particles as O 2 and IPA (isopropanol) as a dispersion medium
3.3 g and 34.2 g of ethanol (s1) as a solvent
And 57.5 g of butyl cellosolve (s2) were mixed using a magnetic stirrer to obtain a coating liquid. The weight ratio of the solid content of this coating solution (film-forming component b2 / silica particles a)
1) is 6/40. The composition of this coating solution is shown in Table 1. The coating liquid thus obtained has a thickness of 1.
A film was formed on a 1 mm soda lime glass substrate using a spin coater and dried on a hot plate at 80 ° C. for 5 minutes, and then a high pressure mercury lamp (1000 W, illuminance 200 m
J / cm 2 , wavelength 360nm) for 5 minutes UV (ultraviolet)
Irradiation was performed and heating was further performed in a cleansing oven at 300 ° C. for 30 minutes to obtain a cured film having a film thickness of about 1000Å. A cured film having a film thickness of about 1000Å was formed on a silicon substrate by the same method. Then, by the same method as in Example 1, the transmittance of the cured coating on the glass substrate was measured with light having a wavelength of 550 nm, and further, the refractive index of the cured coating on the silicon substrate was measured. Further, the film forming property was evaluated. The measurement results are shown in Table 2.

【0037】実施例9 被膜形成成分(b3)10gと、粒子径15nmでSi
2 として30重量%のシリカ粒子を含有しIPA(イ
ソプロパノール)を分散媒とするシリカゾル(a1)1
3.3gと、溶媒としてエタノール(s1)34.2g
及びブチルセロソルブ(s2)57.5gをマグネチッ
クスターラーを用いて混合し、塗布液とした。この塗布
液の固形分重量比(被膜形成成分b3/シリカ粒子a
1)は、6/40である。この塗布液の組成は表1に記
載した。このようにして得られた塗布液を、波長550
nmの透過率が86%のポリエチレンテレフタレートフ
ィルム上にスピンコーターを用いて成膜し、80℃のホ
ットプレート上で5分間乾燥させた後、高圧水銀ランプ
(1000W 照度200mJ/cm2 、波長360n
m)で5分間UV(紫外線)照射を行い、120℃のク
リンオーブンで60分間加熱して、膜厚約1000Åの
硬化被膜とした。同様にシリコン基板上に膜厚約100
0Åの硬化被膜を作成した。そして、実施例1と同様の
方法により、ガラス基板上の硬化被膜を波長550nm
の光で透過率を測定し、更に、シリコン基板上の硬化被
膜の屈折率を測定した。更に成膜性を評価した。その測
定結果を表2に示した。
Example 9 10 g of the film-forming component (b3) and Si having a particle diameter of 15 nm
Silica sol (a1) 1 containing 30% by weight of silica particles as O 2 and IPA (isopropanol) as a dispersion medium
3.3 g and 34.2 g of ethanol (s1) as a solvent
And 57.5 g of butyl cellosolve (s2) were mixed using a magnetic stirrer to obtain a coating liquid. Solid content weight ratio of this coating solution (coating forming component b3 / silica particles a
1) is 6/40. The composition of this coating solution is shown in Table 1. The coating liquid thus obtained was treated at a wavelength of 550
A film was formed on a polyethylene terephthalate film having a transmittance of 86% of 86% by using a spin coater and dried on a hot plate at 80 ° C. for 5 minutes, and then a high pressure mercury lamp (1000 W, illuminance 200 mJ / cm 2 , wavelength 360 n).
m) for 5 minutes, and UV (ultraviolet) irradiation was performed for 60 minutes in a clean oven at 120 ° C. to obtain a cured film having a film thickness of about 1000 Å. Similarly, a film thickness of about 100 on a silicon substrate
A 0Å cured coating was created. Then, in the same manner as in Example 1, the cured film on the glass substrate was coated with a wavelength of 550 nm.
The light transmittance of the cured film was measured with the light of Example 1, and the refractive index of the cured film on the silicon substrate was measured. Further, the film forming property was evaluated. The measurement results are shown in Table 2.

【0038】実施例10 被膜形成成分(b1)10gと、メタノール分散シリカ
ゾル(a5)40gと、溶媒としてエタノール(s1)
7.5g及びブチルセロソルブ(s2)57.5gをマ
グネチックスターラーを用いて混合し、塗布液とした。
この塗布液の固形分重量比(被膜形成成分b1/シリカ
粒子a5)は、6/40である。この塗布液の組成は表
1に記載した。実施例1と同様の方法により、得られた
塗布液を用いてガラス板上に膜厚約1000Åの硬化被
膜を作成し波長550nmの透過率と、シリコン基板上
に膜厚約1000Åの硬化被膜を作成し屈折率の測定を
行った。更に成膜性を評価した。その測定結果を表2に
示した。
Example 10 10 g of the film-forming component (b1), 40 g of methanol-dispersed silica sol (a5), and ethanol (s1) as a solvent.
7.5 g and butyl cellosolve (s2) 57.5 g were mixed using a magnetic stirrer to obtain a coating liquid.
The solid content weight ratio (coating-forming component b1 / silica particles a5) of this coating solution is 6/40. The composition of this coating solution is shown in Table 1. By the same method as in Example 1, a cured film having a film thickness of about 1000 Å was prepared on the glass plate using the obtained coating solution, and a transmittance of wavelength 550 nm and a cured film having a film thickness of about 1000 Å were formed on the silicon substrate. It was created and the refractive index was measured. Further, the film forming property was evaluated. The measurement results are shown in Table 2.

【0039】実施例11〜14 被膜形成成分(b4〜b7)と、シリカゾル(a1)
と、溶媒を表1に記載の割合で混合して塗布液とした。
得られた塗布液を用いて実施例8と同様の硬化方法によ
りガラス板上及びシリコン基板上に膜厚約1000Åの
硬化被膜を作成した。そして、実施例1と同様の方法に
より、ガラス基板上の硬化被膜を波長550nmの光で
透過率を測定し、更に、シリコン基板上の硬化被膜の屈
折率を測定した。更に成膜性を評価した。その測定結果
を表2に示した。
Examples 11 to 14 Film-forming components (b4 to b7) and silica sol (a1)
And the solvent were mixed at the ratios shown in Table 1 to obtain a coating liquid.
Using the obtained coating liquid, a cured film having a film thickness of about 1000Å was formed on the glass plate and the silicon substrate by the same curing method as in Example 8. Then, in the same manner as in Example 1, the transmittance of the cured coating on the glass substrate was measured with light having a wavelength of 550 nm, and the refractive index of the cured coating on the silicon substrate was measured. Further, the film forming property was evaluated. The measurement results are shown in Table 2.

【0040】比較例1 被膜形成成分(b1)10gと、粒子径40nmでSi
2 として30重量%のシリカ粒子を含有しメタノール
を分散媒とするシリカゾル(a6)13.3gと、溶媒
としてエタノール(s1)34.2g及びブチルセロソ
ルブ(s2)57.5gをマグネチックスターラーを用
いて混合し、塗布液とした。この塗布液の固形分重量比
(被膜形成成分b1/シリカ粒子a6)は、6/40で
ある。この塗布液の組成は表1に記載した。
Comparative Example 1 10 g of the film-forming component (b1) and Si having a particle size of 40 nm
Using a magnetic stirrer, 13.3 g of silica sol (a6) containing 30% by weight of silica particles as O 2 and methanol as a dispersion medium, 34.2 g of ethanol (s1) and 57.5 g of butyl cellosolve (s2) as a solvent were used. And mixed to obtain a coating solution. The solid content weight ratio (coating-forming component b1 / silica particles a6) of this coating solution is 6/40. The composition of this coating solution is shown in Table 1.

【0041】実施例1と同様に、得られた塗布液を用い
てガラス板上に膜厚約1000Åの硬化被膜を作成し波
長550nmの透過率と、シリコン基板上に膜厚約10
00Åの硬化被膜を作成し屈折率の測定を行った。更に
成膜性を評価した。その測定結果を表2に示した。 比較例2〜3 被膜形成成分(b1)と、シリカゾル(a7、a1)
と、溶媒を表1に記載の割合で混合して塗布液とした。
実施例1と同様に、得られた塗布液を用いてガラス板上
に膜厚約1000Åの硬化被膜を作成し波長550nm
の透過率と、シリコン基板上に膜厚約1000Åの硬化
被膜を作成し屈折率の測定を行った。更に成膜性を評価
した。その測定結果を表2に示した。
In the same manner as in Example 1, a cured coating having a film thickness of about 1000 Å was formed on a glass plate using the obtained coating solution, and a transmittance of wavelength 550 nm and a film thickness of about 10 on a silicon substrate.
A cured film of 00Å was formed and the refractive index was measured. Further, the film forming property was evaluated. The measurement results are shown in Table 2. Comparative Examples 2 to 3 Film forming component (b1) and silica sol (a7, a1)
And the solvent were mixed at the ratios shown in Table 1 to obtain a coating liquid.
In the same manner as in Example 1, a cured coating having a film thickness of about 1000Å was formed on a glass plate using the obtained coating liquid, and a wavelength of 550 nm
And a refractive index was measured by forming a cured film having a film thickness of about 1000Å on a silicon substrate. Further, the film forming property was evaluated. The measurement results are shown in Table 2.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【表2】 [Table 2]

【0044】[0044]

【表3】 [Table 3]

【0045】表の実施例1〜14より判る様に、本発明
では5〜30nmの粒子径を有するシリカゾル(a)
と、アルコキシシランの加水分解物、金属アルコキシド
の加水分解物及び金属塩からなる群より選ばれた少なく
とも1種の成分(b)からなり、且つ(a)のSiO2
100重量部に対して、(b)を金属酸化物に換算して
10〜50重量部の割合で有機溶媒に含有した塗布液
を、基材に塗布した後、硬化する事により低屈折率で反
射防止機能を有する硬化被膜が得られる。
As can be seen from Examples 1 to 14 in the table, in the present invention, silica sol (a) having a particle size of 5 to 30 nm is used.
And at least one component (b) selected from the group consisting of a hydrolyzate of an alkoxysilane, a hydrolyzate of a metal alkoxide, and a metal salt, and SiO 2 of (a)
With respect to 100 parts by weight, (b) is converted to a metal oxide in an amount of 10 to 50 parts by weight, and a coating solution containing an organic solvent is applied to a substrate and then cured to obtain a low refractive index. A cured coating having an antireflection function is obtained.

【0046】なお、実施例9の透過率の測定は、透過率
91%のソーダライムガラスに代えて、透過率86%の
ポリエチレンテレフタレートフィルムを用いたために、
得られた硬化被膜の透過率は91.5%であったが、本
願発明の膜によって基材(ポリエチレンテレフタレート
フィルム)の屈折率が低下した為に相対的に基材の透過
率も向上し良好な反射防止効果が得られた。また、実施
例7の透過率は98.1%と高いが、これはディップコ
ートにより基材の両面に成膜しているため、より透過性
が向上し極めて良好な反射防止効果が得られた。
The measurement of the transmittance in Example 9 was carried out because a polyethylene terephthalate film having a transmittance of 86% was used in place of the soda lime glass having a transmittance of 91%.
The transmittance of the obtained cured film was 91.5%, but the film of the present invention lowered the refractive index of the base material (polyethylene terephthalate film), so that the transmittance of the base material was also relatively improved. A good antireflection effect was obtained. Further, the transmittance of Example 7 is as high as 98.1%, but since it is formed on both sides of the substrate by dip coating, the transmittance is further improved and a very good antireflection effect is obtained. .

【0047】しかし、比較例1或いは2では用いるシリ
カゾルの粒子径が30nmを超えると硬化被膜の表面で
光の乱反射が起こり硬化被膜は白濁する。また、比較例
3では得られた硬化被膜中に存在するシリカ粒子の量が
少ないとやはり屈折率は高くなり良好な反射防止効果が
得られない。
However, in Comparative Example 1 or 2, when the particle diameter of the silica sol used exceeds 30 nm, diffuse reflection of light occurs on the surface of the cured coating, and the cured coating becomes cloudy. Further, in Comparative Example 3, when the amount of silica particles present in the obtained cured coating is small, the refractive index also becomes high and a good antireflection effect cannot be obtained.

【0048】[0048]

【発明の効果】本発明では、蒸着法等で用いられる大規
模な装置を使わずに、スピンコート法やディップコート
法等の簡単な方法により、しかも1回の塗布と焼成によ
り機械的強度に優れ、基材との密着力が高い低屈折率反
射防止膜が得られる。また、本発明では、得られる硬化
被膜は屈折率が1.28〜1.38と低い為に、プラス
チックスやガラス製品の表面に反射防止機能を有する被
膜を付与する事が出来る。特に、ディスプレイやレンズ
等の透明な基材の表面に反射防止機能を有する被膜を付
与する事に適している。
According to the present invention, the mechanical strength can be improved by a simple method such as a spin coating method or a dip coating method without using a large-scale apparatus used in a vapor deposition method or the like, and by applying and baking once. A low-refractive-index antireflection film that is excellent and has high adhesion to a substrate can be obtained. Further, in the present invention, since the cured film obtained has a low refractive index of 1.28 to 1.38, a film having an antireflection function can be provided on the surface of plastics or glass products. In particular, it is suitable for providing a film having an antireflection function on the surface of a transparent substrate such as a display and a lens.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中田 孝和 千葉県船橋市坪井町722番地1 日産化学 工業株式会社中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takakazu Nakata 1 722, Tsuboi-cho, Funabashi-shi, Chiba Nissan Chemical Industry Co., Ltd. Central Research Laboratory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 5〜30nmの粒子径を有するシリカゾ
ル(a)と、アルコキシシランの加水分解物、金属アル
コキシドの加水分解物及び金属塩からなる群より選ばれ
た少なくとも1種の成分(b)からなり、且つ(a)の
SiO2 100重量部に対して、(b)を金属酸化物に
換算して10〜50重量部の割合で有機溶媒に含有した
塗布液を、基材に塗布した後、硬化する事により得られ
る低屈折率反射防止膜。
1. A silica sol (a) having a particle size of 5 to 30 nm, and at least one component (b) selected from the group consisting of a hydrolyzate of an alkoxysilane, a hydrolyzate of a metal alkoxide, and a metal salt. And a coating solution containing (a) in an organic solvent at a ratio of 10 to 50 parts by weight in terms of metal oxide based on 100 parts by weight of SiO 2 was applied to the substrate. A low-refractive-index antireflection film obtained by subsequent curing.
【請求項2】 屈折率が、1.28〜1.38である請
求項1に記載の低屈折率反射防止膜。
2. The low refractive index antireflection film according to claim 1, which has a refractive index of 1.28 to 1.38.
【請求項3】 請求項1又は請求項2に記載の低屈折率
反射防止膜を有する透明基材。
3. A transparent substrate having the low refractive index antireflection film according to claim 1 or 2.
JP25500794A 1994-10-20 1994-10-20 Low refractive index antireflection film Expired - Lifetime JP3635692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25500794A JP3635692B2 (en) 1994-10-20 1994-10-20 Low refractive index antireflection film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25500794A JP3635692B2 (en) 1994-10-20 1994-10-20 Low refractive index antireflection film

Publications (2)

Publication Number Publication Date
JPH08122501A true JPH08122501A (en) 1996-05-17
JP3635692B2 JP3635692B2 (en) 2005-04-06

Family

ID=17272911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25500794A Expired - Lifetime JP3635692B2 (en) 1994-10-20 1994-10-20 Low refractive index antireflection film

Country Status (1)

Country Link
JP (1) JP3635692B2 (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0887179A1 (en) * 1996-12-09 1998-12-30 Nippon Sheet Glass Co., Ltd. Non-fogging article and process for the production thereof
WO1999029635A1 (en) * 1997-12-09 1999-06-17 Nippon Sheet Glass Co., Ltd. Antireflection glass plate, process for producing the same, and antireflection coating composition
WO2001042156A1 (en) * 1999-12-13 2001-06-14 Nippon Sheet Glass Co., Ltd. Low-reflection film and solar cell panel
JP2001235604A (en) * 1999-12-14 2001-08-31 Nissan Chem Ind Ltd Antireflection film, method of forming antireflection film, and antireflection glass
US6291535B1 (en) 1998-12-09 2001-09-18 Nissan Chemical Industries, Ltd. Silica-magnesium fluoride hydrate composite sols and process for their preparation
WO2003023461A1 (en) * 2001-09-10 2003-03-20 Nippon Sheet Glass Co., Ltd. Convex film and method for forming the same
WO2003027015A1 (en) * 2001-09-21 2003-04-03 Merck Patent Gmbh Novel hybrid sol for producing abrasion-resistant sio2 antireflection coatings
KR20030040064A (en) * 2001-11-13 2003-05-22 스미또모 가가꾸 고오교오 가부시끼가이샤 Composition comprising a hydrolyzable organosilicon compound and coating obtained from the same
WO2005101063A1 (en) 2004-04-14 2005-10-27 Lg Chem, Ltd. Anti-reflective coating composition and coating film with excellent stain resistance
WO2006057119A1 (en) * 2004-11-26 2006-06-01 Asahi Glass Company, Limited Inorganic coating composition, coating film with low refractive index and method for forming coating film with low refractive index
WO2006114321A1 (en) * 2005-04-28 2006-11-02 Schott Ag Anti-reflection coating and method for applying same
JP2007136849A (en) * 2005-11-18 2007-06-07 Toppan Printing Co Ltd Composition of low refractive index, antireflection material, and display
JP2008003122A (en) * 2006-06-20 2008-01-10 Toppan Printing Co Ltd Antireflection film
JP2008122528A (en) * 2006-11-09 2008-05-29 Toppan Printing Co Ltd Antireflection laminate, polarizing plate, and image display apparatus
WO2008136894A3 (en) * 2007-05-01 2009-04-02 Guardian Industries Method of making a photovoltaic device with scratch-resistant antireflective coating mid resulting product
WO2008112047A3 (en) * 2007-03-09 2009-04-30 Guardian Industries Method of making a photovoltaic device with scratch-resistant antireflective coating and resulting product
JP2009128844A (en) * 2007-11-28 2009-06-11 Canon Inc Optical system and optical instrument having same
JPWO2008001675A1 (en) * 2006-06-27 2009-11-26 株式会社ニコン Optical multilayer thin film, optical element, and method of manufacturing optical multilayer thin film
JP2011046595A (en) * 2009-07-30 2011-03-10 Canon Inc Method for producing magnesium fluoride coating, antireflection coating, and optical element
JP2011242463A (en) * 2010-05-14 2011-12-01 Daicel Chem Ind Ltd Low reflection film and producing method thereof
WO2011157820A1 (en) 2010-06-18 2011-12-22 Dsm Ip Assets B.V. Inorganic oxide coating
WO2012008427A1 (en) * 2010-07-12 2012-01-19 セントラル硝子株式会社 Low-reflective film, method for formation thereof and low-reflective member equipped therewith, and coating solution for formation of low-reflective film, method for preparation thereof and low-reflective member equipped therewith
US8110249B2 (en) 2006-07-10 2012-02-07 Lg Chem, Ltd. UV-curable antireflective coating composition, antireflective coating film using the same, and its manufacturing method
WO2012028626A3 (en) * 2010-09-01 2012-07-26 Agc Glass Europe Glass substrate coated with an anti-reflective layer
US8293000B2 (en) 2006-07-10 2012-10-23 Lg Chem, Ltd. Antireflective coating composition with stain resistance, antireflective coating film using the same, and its manufacturing method
JP2012214339A (en) * 2011-03-31 2012-11-08 Dainippon Printing Co Ltd Inorganic nano particle dispersion liquid
EP2637047A2 (en) 2004-09-16 2013-09-11 Nikon Corporation MgF2 optical thin film including amorphous silicon oxide binder, optical element provided with the same, and method for producing mgF2 optical thin film
WO2015147278A1 (en) * 2014-03-28 2015-10-01 三菱マテリアル株式会社 Film-forming liquid composition
EP2937319A1 (en) 2014-04-25 2015-10-28 Mitsubishi Materials Corporation Composition for forming a thin layer with low refractive index, manufacturing method thereof, and manufacturing method of a thin layer with low refractive index
KR20150131499A (en) 2014-05-15 2015-11-25 미쓰비시 마테리알 가부시키가이샤 Composition for forming a thin layer of low refractive index, manufacturing method thereof, and manufacturing method of a thin layer of low refractive index
CN105440742A (en) * 2015-06-09 2016-03-30 东莞南玻太阳能玻璃有限公司 Low-cost colloidal silica anti-reflection coating liquid and preparation and application thereof
WO2016051750A1 (en) * 2014-09-30 2016-04-07 日本板硝子株式会社 Low reflection coating, glass plate, glass substrate and photoelectric conversion device
US9644113B2 (en) 2014-04-25 2017-05-09 Mitsubishi Materials Corporation Composition for forming a thin layer with low refractive index, manufacturing method thereof, and manufacturing method of a thin layer with low refractive index
KR20170107441A (en) 2015-01-20 2017-09-25 미쓰비시 마테리알 가부시키가이샤 Liquid composition for forming low-refractive film
JPWO2017018004A1 (en) * 2015-07-30 2018-05-24 富士フイルム株式会社 LAMINATE, SOLID-STATE IMAGING DEVICE, LAMINATE MANUFACTURING METHOD, KIT
BE1024950B1 (en) * 2011-08-31 2018-08-23 Agc Glass Europe Glass substrate coated with an anti-reflective layer
WO2018163929A1 (en) 2017-03-08 2018-09-13 三菱マテリアル株式会社 Low-refractive-index film-forming liquid composition and method of forming low-refractive-index film using same
US10316146B2 (en) 2015-01-30 2019-06-11 Toray Industries, Inc. Resin composition, solid imaging element obtained using same, and process for producing same

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0887179A4 (en) * 1996-12-09 2000-08-30 Nippon Sheet Glass Co Ltd Non-fogging article and process for the production thereof
EP0887179A1 (en) * 1996-12-09 1998-12-30 Nippon Sheet Glass Co., Ltd. Non-fogging article and process for the production thereof
WO1999029635A1 (en) * 1997-12-09 1999-06-17 Nippon Sheet Glass Co., Ltd. Antireflection glass plate, process for producing the same, and antireflection coating composition
US6291535B1 (en) 1998-12-09 2001-09-18 Nissan Chemical Industries, Ltd. Silica-magnesium fluoride hydrate composite sols and process for their preparation
EP1167313A4 (en) * 1999-12-13 2007-09-12 Nippon Sheet Glass Co Ltd Low-reflection glass article
WO2001042156A1 (en) * 1999-12-13 2001-06-14 Nippon Sheet Glass Co., Ltd. Low-reflection film and solar cell panel
JP4841782B2 (en) * 1999-12-13 2011-12-21 日本板硝子株式会社 Low reflective film and solar panel
JP2001235604A (en) * 1999-12-14 2001-08-31 Nissan Chem Ind Ltd Antireflection film, method of forming antireflection film, and antireflection glass
WO2003023461A1 (en) * 2001-09-10 2003-03-20 Nippon Sheet Glass Co., Ltd. Convex film and method for forming the same
CN100400450C (en) * 2001-09-21 2008-07-09 默克专利股份有限公司 Novel hybrid sol for producing abrasion-resistant SiO2 antireflection coatings
US7241505B2 (en) 2001-09-21 2007-07-10 Merck Patent, Gmbh Hybrid sol for the production of abrasion-resistant SiO2 antireflection coatings
WO2003027015A1 (en) * 2001-09-21 2003-04-03 Merck Patent Gmbh Novel hybrid sol for producing abrasion-resistant sio2 antireflection coatings
KR20030040064A (en) * 2001-11-13 2003-05-22 스미또모 가가꾸 고오교오 가부시끼가이샤 Composition comprising a hydrolyzable organosilicon compound and coating obtained from the same
US7204877B2 (en) 2004-04-14 2007-04-17 Lg Chem, Ltd. Anti-reflective coating composition and coating film with excellent stain resistance
WO2005101063A1 (en) 2004-04-14 2005-10-27 Lg Chem, Ltd. Anti-reflective coating composition and coating film with excellent stain resistance
EP2637047A2 (en) 2004-09-16 2013-09-11 Nikon Corporation MgF2 optical thin film including amorphous silicon oxide binder, optical element provided with the same, and method for producing mgF2 optical thin film
EP2990839A1 (en) 2004-09-16 2016-03-02 Nikon Corporation Mgf2 optical thin film including amorphous silicon oxide binder, optical element provided with the same, and method for producing mgf2 optical thin film
US9915761B2 (en) 2004-09-16 2018-03-13 Nikon Corporation Optical system having optical thin film including amorphous silicon oxide-based binder
WO2006057119A1 (en) * 2004-11-26 2006-06-01 Asahi Glass Company, Limited Inorganic coating composition, coating film with low refractive index and method for forming coating film with low refractive index
WO2006114321A1 (en) * 2005-04-28 2006-11-02 Schott Ag Anti-reflection coating and method for applying same
JP2007136849A (en) * 2005-11-18 2007-06-07 Toppan Printing Co Ltd Composition of low refractive index, antireflection material, and display
JP2008003122A (en) * 2006-06-20 2008-01-10 Toppan Printing Co Ltd Antireflection film
JPWO2008001675A1 (en) * 2006-06-27 2009-11-26 株式会社ニコン Optical multilayer thin film, optical element, and method of manufacturing optical multilayer thin film
US8098432B2 (en) 2006-06-27 2012-01-17 Nikon Corporation Optical multi-layer thin film, optical element, and method for producing the optical multi-layer thin film
US8293000B2 (en) 2006-07-10 2012-10-23 Lg Chem, Ltd. Antireflective coating composition with stain resistance, antireflective coating film using the same, and its manufacturing method
US8110249B2 (en) 2006-07-10 2012-02-07 Lg Chem, Ltd. UV-curable antireflective coating composition, antireflective coating film using the same, and its manufacturing method
JP2008122528A (en) * 2006-11-09 2008-05-29 Toppan Printing Co Ltd Antireflection laminate, polarizing plate, and image display apparatus
US8450600B2 (en) 2007-03-09 2013-05-28 Guardian Industries Corp. Photovoltaic device with scratch-resistant coating
EP2590222A1 (en) * 2007-03-09 2013-05-08 Guardian Industries Corp. Method of making a photovoltaic device with scratch-resistant antireflective coating and resulting product
WO2008112047A3 (en) * 2007-03-09 2009-04-30 Guardian Industries Method of making a photovoltaic device with scratch-resistant antireflective coating and resulting product
US7767253B2 (en) 2007-03-09 2010-08-03 Guardian Industries Corp. Method of making a photovoltaic device with antireflective coating
US8237047B2 (en) 2007-05-01 2012-08-07 Guardian Industries Corp. Method of making a photovoltaic device or front substrate for use in same with scratch-resistant coating and resulting product
WO2008136894A3 (en) * 2007-05-01 2009-04-02 Guardian Industries Method of making a photovoltaic device with scratch-resistant antireflective coating mid resulting product
JP2009128844A (en) * 2007-11-28 2009-06-11 Canon Inc Optical system and optical instrument having same
JP2011046595A (en) * 2009-07-30 2011-03-10 Canon Inc Method for producing magnesium fluoride coating, antireflection coating, and optical element
JP2011242463A (en) * 2010-05-14 2011-12-01 Daicel Chem Ind Ltd Low reflection film and producing method thereof
WO2011157820A1 (en) 2010-06-18 2011-12-22 Dsm Ip Assets B.V. Inorganic oxide coating
WO2012008427A1 (en) * 2010-07-12 2012-01-19 セントラル硝子株式会社 Low-reflective film, method for formation thereof and low-reflective member equipped therewith, and coating solution for formation of low-reflective film, method for preparation thereof and low-reflective member equipped therewith
JP2013537873A (en) * 2010-09-01 2013-10-07 エージーシー グラス ユーロップ Glass substrate coated with antireflection layer
CN103813993A (en) * 2010-09-01 2014-05-21 旭硝子欧洲玻璃公司 Glass substrate coated with anti-reflective layer
WO2012028626A3 (en) * 2010-09-01 2012-07-26 Agc Glass Europe Glass substrate coated with an anti-reflective layer
JP2012214339A (en) * 2011-03-31 2012-11-08 Dainippon Printing Co Ltd Inorganic nano particle dispersion liquid
BE1024950B1 (en) * 2011-08-31 2018-08-23 Agc Glass Europe Glass substrate coated with an anti-reflective layer
WO2015147278A1 (en) * 2014-03-28 2015-10-01 三菱マテリアル株式会社 Film-forming liquid composition
JP2015191090A (en) * 2014-03-28 2015-11-02 三菱マテリアル株式会社 Film formation liquid composition
US9644113B2 (en) 2014-04-25 2017-05-09 Mitsubishi Materials Corporation Composition for forming a thin layer with low refractive index, manufacturing method thereof, and manufacturing method of a thin layer with low refractive index
EP2937319A1 (en) 2014-04-25 2015-10-28 Mitsubishi Materials Corporation Composition for forming a thin layer with low refractive index, manufacturing method thereof, and manufacturing method of a thin layer with low refractive index
KR20150131499A (en) 2014-05-15 2015-11-25 미쓰비시 마테리알 가부시키가이샤 Composition for forming a thin layer of low refractive index, manufacturing method thereof, and manufacturing method of a thin layer of low refractive index
WO2016051750A1 (en) * 2014-09-30 2016-04-07 日本板硝子株式会社 Low reflection coating, glass plate, glass substrate and photoelectric conversion device
TWI701456B (en) * 2014-09-30 2020-08-11 日商日本板硝子股份有限公司 Low reflection coating, glass plate, glass substrate, and photoelectric conversion device
US20170243989A1 (en) * 2014-09-30 2017-08-24 Nippon Sheet Glass Company, Limited Low reflection coating, glass plate, glass substrate and photoelectric conversion device
JPWO2016051750A1 (en) * 2014-09-30 2017-08-31 日本板硝子株式会社 Low reflection coating, glass plate, glass substrate, and photoelectric conversion device
US10600923B2 (en) 2014-09-30 2020-03-24 Nippon Sheet Glass Company, Limited Low-reflection coating, glass sheet, glass substrate, and photoelectric conversion device
KR20170107441A (en) 2015-01-20 2017-09-25 미쓰비시 마테리알 가부시키가이샤 Liquid composition for forming low-refractive film
US10316146B2 (en) 2015-01-30 2019-06-11 Toray Industries, Inc. Resin composition, solid imaging element obtained using same, and process for producing same
CN105440742A (en) * 2015-06-09 2016-03-30 东莞南玻太阳能玻璃有限公司 Low-cost colloidal silica anti-reflection coating liquid and preparation and application thereof
JPWO2017018004A1 (en) * 2015-07-30 2018-05-24 富士フイルム株式会社 LAMINATE, SOLID-STATE IMAGING DEVICE, LAMINATE MANUFACTURING METHOD, KIT
WO2018163929A1 (en) 2017-03-08 2018-09-13 三菱マテリアル株式会社 Low-refractive-index film-forming liquid composition and method of forming low-refractive-index film using same
KR20190121293A (en) 2017-03-08 2019-10-25 미쓰비시 마테리알 가부시키가이샤 Low refractive index film forming liquid composition and method for forming low refractive index film using the same

Also Published As

Publication number Publication date
JP3635692B2 (en) 2005-04-06

Similar Documents

Publication Publication Date Title
JP3635692B2 (en) Low refractive index antireflection film
US8329305B2 (en) Coating film having low refractive index and water repellency
KR100352677B1 (en) Coating film having water repellency and low referactive index
JP4032185B2 (en) Coating with low refractive index and water repellency
KR101864458B1 (en) Low refractive index film-forming composition and method of forming low refractive index film using the same
US5328975A (en) Ultraviolet radiation absorbing coating
JP2001235604A (en) Antireflection film, method of forming antireflection film, and antireflection glass
JP2010209337A (en) Uniformly dispersed photocatalyst coating liquid, method for producing the same, and photocatalytically active composite material obtained by using the same
JP2003202406A (en) Antireflection film and display device
JP3881051B2 (en) Coating liquid for forming transparent film and substrate with film
KR102136939B1 (en) Titania-monomer dispersions and method for preparing the same
US20070155897A1 (en) Coating film having low refractive index and large water contact angle
KR102237333B1 (en) Liquid composition for forming low-refractive film
JP5458575B2 (en) Coating liquid for forming low refractive index film, production method thereof and antireflection material
JP5827107B2 (en) Method for preparing film forming composition and method for producing solar cell module
JP6778007B2 (en) Coating liquid for film formation, its manufacturing method, and coating base material manufacturing method
JP4812935B2 (en) Hard coat film forming method
JPH04247427A (en) Coating liquid for forming transparent film, base material with film and liquid crystal display cell
KR20140134867A (en) Anti-pollution coating solution composition with low reflective property and method for preparing it
JP5116285B2 (en) Base material with transparent coating
KR102596586B1 (en) Coating solution for forming film, method for producing the coating solution, and method for producing substrate with film
KR20080004723A (en) Photocatalyst coating solution
JP2003202960A (en) Touch panel
KR20150131499A (en) Composition for forming a thin layer of low refractive index, manufacturing method thereof, and manufacturing method of a thin layer of low refractive index
JP7169493B1 (en) Coating liquid, method for producing same, method for producing substrate with film

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041007

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8

EXPY Cancellation because of completion of term