JPH08122172A - Force sensor - Google Patents

Force sensor

Info

Publication number
JPH08122172A
JPH08122172A JP6253436A JP25343694A JPH08122172A JP H08122172 A JPH08122172 A JP H08122172A JP 6253436 A JP6253436 A JP 6253436A JP 25343694 A JP25343694 A JP 25343694A JP H08122172 A JPH08122172 A JP H08122172A
Authority
JP
Japan
Prior art keywords
vibrating body
piezoelectric element
support beam
resonance
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6253436A
Other languages
Japanese (ja)
Other versions
JP3503213B2 (en
Inventor
Masayoshi Miura
眞芳 三浦
Toshiyuki Iwazawa
利幸 岩澤
Ushio Sagawa
潮 寒川
Shinichiro Aoki
新一郎 青木
Takeo Sato
健夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP25343694A priority Critical patent/JP3503213B2/en
Publication of JPH08122172A publication Critical patent/JPH08122172A/en
Application granted granted Critical
Publication of JP3503213B2 publication Critical patent/JP3503213B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)

Abstract

PURPOSE: To perform drive in a stable resonant mode by constituting a specific relation between the entire length of a resonator, an excitation piezoelectric element and the length of a receiving piezoelectric element. CONSTITUTION: A dynamic amount sensor comprises an inertia body 100, a support beam 101, vibrator 102, and piezoelectric elements are provided on the both ends of the vibrator 102, which is constituted of exciting part 103, a propagation part 104 and a receiving part 105. And when acceleration is applied, the inertia body 100 moves up and down, a supporting beam 101 bends and the vibrator 102 expands and contracts. Therefore, when a force is applied, a resonant frequency of the vibrator 102 is changed, and the acceleration can be measured by detecting the frequency change. In addition, the vibrator resonates in various vibration mode. Likelihood of occurrence of the vibration mode is closely related with the length (a) of the exciting part 103, the length (b) of the receiving part 105 and the entire length l of the vibrator 102, and the force sensor can be driven in a stable resonant mode by setting them 0.2<=a/l<0.5, 0.2<=b/l<0.5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、物体に印加される加速
度、加重、圧力等の力学量を検出するセンサーに関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sensor for detecting mechanical quantities such as acceleration, weight, pressure applied to an object.

【0002】[0002]

【従来の技術】近年、自動車事故での安全を守るエアバ
ックシステムや、道路案内を行うナビゲーションシステ
ムなどの開発が盛んであり、それに伴い加速度センサー
や振動ジャイロのようなセンサーが開発されている。
2. Description of the Related Art In recent years, an airbag system for protecting safety in an automobile accident, a navigation system for guiding a road, and the like have been actively developed, and accordingly, sensors such as an acceleration sensor and a vibration gyro have been developed.

【0003】従来力検出素子としては、例えば特公昭5
3−1330号公報に示されているように、図9あるい
は図10の構造が知られている。図9において、それぞ
れ電極1が取り付けられている2枚の圧電振動板2、3
を一定の空隙を介在させて配置し、これら圧電振動板
2、3の各一端を基板4に固定すると共に同他端を間隔
板5により剛性的に結合してなるもので、圧電振動板
2、3の自由端に力Fが加えられた時に、このとき圧電
振動板2、3が受ける変位に基づくこれら圧電振動板
2、3の各固有振動数の変化を測定し、この結果に基づ
いて前記力Fを測定するようにしたものである。また図
10はカンチレバー6の上下面に段部7、溝8を形成
し、溝8を架橋して電極9の取り付けられている2枚の
圧電振動板10、11を固定してなるもので、カンチレ
バー6の自由端に力Fが印加されたとき圧電振動板1
0、11の各固有振動数の変化の差を検出して力Fを測
定するようにしたものである。
As a conventional force detecting element, for example, Japanese Patent Publication No.
As shown in Japanese Patent Publication No. 3-1330, the structure shown in FIG. 9 or 10 is known. In FIG. 9, two piezoelectric vibrating plates 2 and 3 each having an electrode 1 attached thereto
Of the piezoelectric vibrating plates 2 and 3 are fixed to the substrate 4 and the other ends thereof are rigidly coupled by the spacing plate 5. When a force F is applied to the free ends of the piezoelectric vibrating plates 3 and 3, the change in each natural frequency of the piezoelectric vibrating plates 2 and 3 is measured based on the displacement received by the piezoelectric vibrating plates 2 and 3 at this time. The force F is measured. Further, FIG. 10 shows a step portion 7 and a groove 8 formed on the upper and lower surfaces of the cantilever 6, and the two piezoelectric vibrating plates 10 and 11 to which electrodes 9 are attached are fixed by bridging the groove 8. Piezoelectric diaphragm 1 when force F is applied to the free end of cantilever 6
The force F is measured by detecting the difference between changes in natural frequencies 0 and 11.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記の従
来の構成の圧電振動板2、3、10、11では、種々の
モードの固有振動が生じる。すなわち、縦方向、横方向
の振動モードおよびその高次共振、梁全体の固有振動モ
ード、捻れ振動などが存在し、それらを明確に区別分離
して、使用したい固有振動モードのみを他と区別して取
り出し安定して共振状態を保つことが困難であった。
However, in the piezoelectric vibrating plates 2, 3, 10 and 11 having the above-mentioned conventional structure, natural vibrations of various modes occur. That is, there are vertical and horizontal vibration modes and their higher-order resonances, natural vibration modes of the entire beam, torsional vibrations, etc., which are clearly separated and separated, and only the natural vibration mode to be used is distinguished from others. It was difficult to stably take out and maintain the resonance state.

【0005】本発明は上記従来技術の課題を解決するも
ので、力の印加により、固有振動数の変化する振動体の
固有振動モードが、他の不要な共振モードと完全に分離
でき常に一定の共振状態を安定に保てる、力学量センサ
ーを提供することを目的とする。
The present invention is to solve the above-mentioned problems of the prior art, and by applying a force, the natural vibration mode of the vibrating body whose natural frequency changes can be completely separated from other unnecessary resonance modes and is always constant. An object of the present invention is to provide a mechanical quantity sensor that can maintain a stable resonance state.

【0006】[0006]

【課題を解決するための手段】この目的を達成するため
に本発明は、第1に力学量の作用により移動可能な慣性
体と、慣性体を支持する支持梁と、前記支持梁上に設け
られて両端を前記支持梁に固定された振動体と、前記振
動体の一端部付近に接合されて前記振動体を励振する励
振用圧電素子と、前記振動体の他端部付近に接合されて
前記振動体の振動を受信する受信用圧電素子とを具備
し、前記振動体の全長lと、前記励振用圧電素子の長さ
a及び前記受信用圧電素子の長さbとの間には、 0.2 ≦ a/l < 0.5 又は 0.2 ≦ b/l < 0.5 の関係があることを特徴とするものである。また第2
に、力学量の作用により移動可能な慣性体と、慣性体を
支持する支持梁と、前記支持梁上に設けられて両端を前
記支持梁に固定された振動体とを具備し、前記振動体の
1次共振周波数が、前記慣性体と前記支持梁の1次共振
周波数の10倍以上であることを特徴とするものであ
る。さらに第3に、力学量の作用により移動可能な慣性
体と、慣性体を支持する支持梁と、前記支持梁上に設け
られて両端を前記支持梁に固定された振動体と、前記振
動体上に接合された圧電素子と、前記圧電素子の表面上
に前記振動体の長手方向と交差する方向に分割された一
対の電極とを具備し、前記一対の電極の一方は振動体を
励振する励振用電極、他方は振動体の振動を受信する受
信用電極であることを特徴とするものである。
In order to achieve this object, the present invention firstly provides an inertial body movable by the action of a mechanical quantity, a support beam for supporting the inertial body, and a support beam provided on the support beam. A vibrating body having both ends fixed to the support beam, a piezoelectric element for excitation that is joined near one end of the vibrating body to excite the vibrating body, and joined near the other end of the vibrating body. A receiving piezoelectric element for receiving the vibration of the vibrating body, and between the total length 1 of the vibrating body and the length a of the exciting piezoelectric element and the length b of the receiving piezoelectric element, It is characterized by having a relationship of 0.2 ≤ a / l <0.5 or 0.2 ≤ b / l <0.5. Also the second
Further comprising: an inertial body that is movable by the action of a mechanical quantity; a support beam that supports the inertial body; and a vibrating body that is provided on the support beam and has both ends fixed to the support beam. The primary resonance frequency of is equal to or more than 10 times the primary resonance frequency of the inertial body and the support beam. Thirdly, an inertial body that is movable by the action of a mechanical quantity, a support beam that supports the inertial body, a vibrating body that is provided on the support beam and has both ends fixed to the support beam, and the vibrating body. A piezoelectric element bonded to the upper side and a pair of electrodes divided in a direction intersecting the longitudinal direction of the vibrating body on the surface of the piezoelectric element are provided, and one of the pair of electrodes excites the vibrating body. The excitation electrode and the other are reception electrodes for receiving the vibration of the vibrating body.

【0007】[0007]

【作用】本発明は上記構成によって、第1に、高次モー
ドの共振のピークを低下あるいは消滅させ、振動体の低
次モードの共振周波数が明確にピークを示し、安定した
共振モードでの駆動が可能となる。また第2に、振動体
の1次共振周波数が、慣性体と支持梁の1次共振周波数
の10倍以上としたものであり、梁全体の共振周波数の
影響を受けることなく、振動体を安定して共振させるこ
とができる。さらに第3に、振動体の1次共振周波数の
みを生じさせることができるので、常に同一モードの1
次共振における安定した駆動が可能であり、誤動作の少
ないセンサーが実現できる。
According to the present invention, with the above structure, first, the resonance peak of the higher-order mode is lowered or eliminated, and the resonance frequency of the lower-order mode of the vibrating body clearly shows the peak, and the driving in the stable resonance mode is performed. Is possible. Secondly, the primary resonance frequency of the vibrating body is 10 times or more the primary resonance frequency of the inertial body and the supporting beam, and the vibrating body is stabilized without being affected by the resonant frequency of the entire beam. And can resonate. Thirdly, since it is possible to generate only the primary resonance frequency of the vibrating body, it is possible to always generate the first mode of the same mode.
Stable driving is possible at the second resonance, and a sensor with few malfunctions can be realized.

【0008】[0008]

【実施例】【Example】

(実施例1)以下、本発明の第1の実施例について、図
面を参照しながら説明する。
(First Embodiment) A first embodiment of the present invention will be described below with reference to the drawings.

【0009】図1(a)、図1(b)は本発明の一実施
例における力学量センサーの断面図および平面図であ
る。図1(a)において、100は慣性体、101は支
持梁、102は振動体であり、前記振動体102は励振
部103、伝搬部104、受信部105より構成されて
いる。
1A and 1B are a sectional view and a plan view of a mechanical quantity sensor according to an embodiment of the present invention. In FIG. 1A, 100 is an inertial body, 101 is a support beam, and 102 is a vibrating body, and the vibrating body 102 is composed of an exciting unit 103, a propagating unit 104, and a receiving unit 105.

【0010】図1において、加速度が印加されると慣性
体100が上下し、支持梁101がたわむと共に振動体
102は伸び縮みする。そのため、力が作用した際に
は、振動体の共振周波数が変化することになり、この周
波数変化を検出することにより加速度を測定することが
できる。例えば、振動体の振動が糸の振動と仮定できる
とすると、共振周波数fは(数1)で表される。
In FIG. 1, when acceleration is applied, the inertial body 100 moves up and down, the support beam 101 bends, and the vibrating body 102 expands and contracts. Therefore, when a force acts, the resonance frequency of the vibrating body changes, and the acceleration can be measured by detecting this frequency change. For example, if it can be assumed that the vibration of the vibrating body is the vibration of the yarn, the resonance frequency f is represented by (Equation 1).

【0011】[0011]

【数1】 [Equation 1]

【0012】但しlは糸の長さ、Sは糸の張力、ρは糸
の単位長さ当りの質量、nは振動の次数を示す。(数
1)によれば、共振周波数fは糸の張力の平方根に比例
して変化し、力が作用した際に、振動体の張力が変化す
る構造であれば加速度、圧力、力等の力学量が測定でき
ることが分かる。
Here, 1 is the length of the yarn, S is the tension of the yarn, ρ is the mass per unit length of the yarn, and n is the order of vibration. According to (Equation 1), the resonance frequency f changes in proportion to the square root of the thread tension, and if the structure changes the tension of the vibrating body when a force is applied, the dynamics of acceleration, pressure, force, etc. It turns out that the quantity can be measured.

【0013】図2は図1の構成に於ける特性例である。
縦軸は振動体の共振周波数fであり、横軸は印加された
加速度を示す。これによると、加速度0のときの共振周
波数は22kHzであるが、120Gの加速度が印加さ
れた場合には27kHzに上昇する。1Gあたり約40
Hzの変化があり、変化率で言うと0.2%/Gで且つ
図にみられるように非常に大きな加速度まで測定でき、
ダイナミックレンジの広い加速度センサーが実現でき
た。なお、図1の構造では、慣性体の質量と支持梁部の
質量の比により感度が異なるが、図2のデータの場合慣
性体が支持梁部の7倍の構造のものであり、比較的微小
な支持梁のたわみが、振動体への大きな張力となって作
用し、大きな感度を出力することができたと考えられ
る。
FIG. 2 shows an example of characteristics in the configuration of FIG.
The vertical axis represents the resonance frequency f of the vibrating body, and the horizontal axis represents the applied acceleration. According to this, the resonance frequency when the acceleration is 0 is 22 kHz, but rises to 27 kHz when the acceleration of 120 G is applied. About 40 per 1G
There is a change in Hz, the rate of change is 0.2% / G, and it is possible to measure up to a very large acceleration as shown in the figure,
An acceleration sensor with a wide dynamic range was realized. In the structure of FIG. 1, the sensitivity varies depending on the ratio of the mass of the inertial body to the mass of the supporting beam portion. However, in the case of the data of FIG. 2, the inertial body has a structure seven times as large as that of the supporting beam portion. It is considered that the small deflection of the supporting beam acted as a large tension on the vibrating body, and a large sensitivity could be output.

【0014】本実施例の構造的な特徴の1つは、振動体
の構造であり、励振部、伝搬部、受信部により構成され
ている点である。一般に、圧電セラミックを共振させた
場合、圧電セラミック自体の厚み振動等の場合には、圧
電セラミック自体のインピーダンス変化を検出して共振
点を知る方法がある。しかしながら、本発明のように、
振動体が圧電セラミックと他の構造部材との接合体の場
合には、接合体の共振周波数において、必ずしも大きな
インピーダンス変化があるとは限らず、感度良く共振点
を検出できない場合が多い。それに比較して、本発明で
は前記接合体である振動体の振動を直接受信部で検出し
ているため、振動体の持つあらゆる振動を正確に検出す
ることが可能となり、適切な振動体構造の設計におい
て、寸法的な自由度が非常に大きなものとなる。
One of the structural features of this embodiment is the structure of the vibrating body, which is composed of an exciting section, a propagating section, and a receiving section. Generally, in the case where the piezoelectric ceramic is resonated and the thickness of the piezoelectric ceramic itself vibrates, there is a method of detecting the impedance change of the piezoelectric ceramic itself to know the resonance point. However, like the present invention,
When the vibrating body is a bonded body of a piezoelectric ceramic and another structural member, a large impedance change does not always occur at the resonant frequency of the bonded body, and the resonance point cannot be detected with good sensitivity in many cases. On the other hand, in the present invention, since the vibration of the vibrating body which is the bonded body is directly detected by the receiving unit, it becomes possible to accurately detect all the vibrations of the vibrating body, and it is possible to obtain an appropriate vibrating body structure. In designing, the degree of freedom in dimensions becomes extremely large.

【0015】図3は、図1の振動体102の振動状態を
説明するためのものである。図3(a)、(b)は振動
体102の部分を拡大図示した平面図および断面図であ
る。振動体102は両端に圧電素子が設けられており、
左端に励振部103、右端に受信部105が構成されて
いる。このような振動体は一般に、図3(c)〜(h)
に示されているように種々の振動モードで共振し、各々
1次〜6次共振モードと呼ばれている。これらの共振モ
ードが生じる、振動周波数は、振動体の厚みと長さそし
て振動体を構成する材質のヤング率などによって一義的
に決定され振動体の幅hには依存しない。
FIG. 3 is for explaining the vibration state of the vibrating body 102 of FIG. 3A and 3B are a plan view and a cross-sectional view in which a portion of the vibrating body 102 is enlarged and illustrated. The vibrating body 102 has piezoelectric elements provided at both ends,
The excitation unit 103 is formed at the left end, and the reception unit 105 is formed at the right end. Such a vibrating body is generally shown in FIGS.
Resonates in various vibration modes as shown in FIG. The vibration frequency at which these resonance modes occur is uniquely determined by the thickness and length of the vibrating body and the Young's modulus of the material forming the vibrating body, and does not depend on the width h of the vibrating body.

【0016】上記のような、共振モードの起き易さは、
励振部103の長さaと密接な関係がある、振動体は励
振部103の圧電素子の伸縮振動によって振動を起こ
し、励振の周波数が共振モードの生じる周波数と一致し
たとき、共振モードでの振動が生じることになる。ここ
で、励振部の長さaと生じ易い振動モードの関係を考え
るため、例として図3(f)の4次共振モードでの節と
節間の長さをxとする。励振部は圧電素子の伸縮により
変形するので励振部の自然な変形状態は励振部103の
両端を節とする弓状と考えられる。従ってaとxがほぼ
等しい状態となるような共振モードは生じ易いと考えら
れ、例えばxがaの半分程度になると、励振部の圧電素
子は伸びる部分と縮む部分の両方が生じることになり、
このような振動モードを強制振動により生じさせるのは
非常に困難なものとなる。
The easiness of occurrence of the resonance mode as described above is
The vibrating body, which is closely related to the length a of the excitation unit 103, vibrates due to the stretching vibration of the piezoelectric element of the excitation unit 103, and when the excitation frequency matches the frequency at which the resonance mode occurs, the vibration in the resonance mode occurs. Will occur. Here, in order to consider the relationship between the length a of the excitation part and the vibration mode that is likely to occur, the length between the nodes in the fourth resonance mode in FIG. Since the exciting part is deformed by the expansion and contraction of the piezoelectric element, the natural deformed state of the exciting part is considered to be a bow shape having nodes at both ends of the exciting part 103. Therefore, it is considered that a resonance mode in which a and x are substantially equal to each other is likely to occur. For example, when x is about half of a, the piezoelectric element of the excitation part has both an expanding part and a contracting part.
It is very difficult to generate such a vibration mode by forced vibration.

【0017】同様に、受信部105の長さbと図3
(f)における長さyについても、同様なことが言え、
b≒yのときには受信部104の圧電素子が全面で同一
方向の歪を受けるため充分な出力信号が得られるが、y
がbに比較して小さくなると受信部104の圧電素子に
は逆の歪が生じる部分ができるようになり、ある部分で
は正の電荷がまた他の部分では負の電荷が生じる状態と
なり、出力信号が低下することになる。
Similarly, the length b of the receiver 105 and FIG.
The same applies to the length y in (f),
When b≈y, a sufficient output signal is obtained because the piezoelectric element of the receiving unit 104 receives strain in the same direction on the entire surface, but y
Becomes smaller than b, the piezoelectric element of the receiving unit 104 has a portion where reverse distortion occurs, and a positive charge is generated in a certain portion and a negative charge is generated in another portion. Will be reduced.

【0018】図4は、励振部103、受信部105の寸
法を変化させたときの、受信部105から出力される出
力信号の周波数特性を示す実験結果である。横軸は励振
部103の圧電素子に印加される正弦波形の入力信号の
周波数を示しており、縦軸はそのときの受信部の圧電素
子からの出力電圧を示している。例えば、励振部103
に数Vの信号電圧を印加すると、受信部からは数mVか
ら数百mVの出力電圧が得られるが、その値は、共振周
波数で急激に大きくなるため、図4のように横軸に周波
数をとると共振周波数でピークを有する曲線が得られ
る。ここで、振動体102は4−2アロイに圧電素子
(住友金属性H5D)を接着させて作製し、4−2アロ
イ及び圧電素子の厚みは80μmとした。図3におい
て、h=2mm、l=10mmとし、励振部103およ
び受信部105の寸法a、bは等しい値として、a、b
を変化させた。
FIG. 4 is an experimental result showing the frequency characteristic of the output signal output from the receiving unit 105 when the dimensions of the exciting unit 103 and the receiving unit 105 are changed. The horizontal axis represents the frequency of the sinusoidal input signal applied to the piezoelectric element of the exciting unit 103, and the vertical axis represents the output voltage from the piezoelectric element of the receiving unit at that time. For example, the excitation unit 103
When a signal voltage of several V is applied to the receiver, an output voltage of several mV to several hundreds of mV is obtained from the receiver, but the value sharply increases at the resonance frequency, so that the horizontal axis indicates the frequency as shown in FIG. If is taken, a curve having a peak at the resonance frequency is obtained. Here, the vibrating body 102 was manufactured by adhering a piezoelectric element (Sumitomo Metallic H5D) to a 4-2 alloy, and the thickness of the 4-2 alloy and the piezoelectric element was 80 μm. In FIG. 3, h = 2 mm and l = 10 mm, and the dimensions a and b of the excitation unit 103 and the reception unit 105 are equal values, a and b
Was changed.

【0019】図4、(a)はa、bが比較的大きく、a
/l=0.45のときの周波数特性を示すが、1次、2
次、3次の共振モードでのピークがみられ、それ以上の
4次、5次共振のピークはみられない。これらの高次の
共振モードは、a、bが小さくなるにしたがって現れ、
例えば図4(b)のようにa/l=0.2では、6次共
振モードまで生じてくる。さらに、図4(c)はa/l
=0.15とa、bをさらに小さくした場合であるが、
あまりa、bが小さすぎると、1次、2次、3次の低次
の共振モードが消え、高次の共振モードのみ現れること
が分かった。
In FIG. 4A, a and b are relatively large, and
The frequency characteristics when /l=0.45 is shown.
Peaks in the third and third resonance modes are seen, and no further peaks in the fourth and fifth resonance modes are seen. These higher-order resonance modes appear as a and b become smaller,
For example, as shown in FIG. 4B, when a / l = 0.2, a 6th-order resonance mode occurs. Further, FIG. 4 (c) shows a / l.
= 0.15 and a and b are made smaller,
It has been found that when a and b are too small, the first, second, and third low-order resonance modes disappear, and only the high-order resonance modes appear.

【0020】一般に、高次の共振モードより低次の共振
モードの方が安定であると言われている。これは、図3
のような形状の振動体の場合に、図3(c)〜(h)で
示された振動モードの他に、幅方向(h)の共振や捻れ
振動の共振モードがあり、これらは、高次共振モードの
周波数近辺に現れ易く、周波数特性でいうと、高次共振
モードのピークの近傍に、他のモードのピークが生じ、
回路上、高次共振モードのピーク点の周波数で常時駆動
させる方法が難しくなるというようなことが理由であ
る。従って、本発明の構成に於いても、低次の共振モー
ドを使用するのが良く、1次、2次、3次共振モードの
うちのいづれかを選択するのが安全である。このうち3
次共振モードは、振動体102の伝搬部104のみに注
目した場合、この3次共振モードが伝搬部104の1次
共振モードに相当するので、安定な基本モードの1つと
考えることができる。1次、2次、3次のいづれかの共
振モードを使用する場合には、図4の結果から、0.2
≦a/l<0.5あるいは0.2≦b/l<0.5を満
たす構造が良いことが分かる。
It is generally said that the low-order resonance mode is more stable than the high-order resonance mode. This is shown in Figure 3.
In the case of a vibrating body having such a shape, in addition to the vibration modes shown in FIGS. 3C to 3H, there are resonance modes in the width direction (h) and torsional vibration modes. It tends to appear near the frequency of the next resonance mode, and in terms of frequency characteristics, peaks of other modes occur near the peak of the higher resonance mode,
The reason is that it becomes difficult to constantly drive the circuit at the frequency of the peak point of the higher-order resonance mode on the circuit. Therefore, also in the configuration of the present invention, it is preferable to use the low-order resonance mode, and it is safe to select any one of the first-order, second-order, and third-order resonance modes. 3 of these
When the attention is paid only to the propagation part 104 of the vibrating body 102, the third resonance mode corresponds to the first resonance mode of the propagation part 104, and thus the second resonance mode can be considered as one of stable fundamental modes. When using any one of the first, second, and third resonance modes, from the result of FIG.
It can be seen that a structure satisfying ≦ a / l <0.5 or 0.2 ≦ b / l <0.5 is preferable.

【0021】次に本実施例と比較するために他の構造の
力センサーについて説明する。図5(a)は、振動体の
他の構造を示す。図3との相違点は、圧電素子が振動体
全面に接合されており、圧電素子51上の電極が、励振
電極52と受信電極53に分割されており、励振電極5
2を励振用に、受信電極53を受信用に使用するもので
ある。すなわち、振動体の伝搬部54が圧電素子51と
平板の接合体で構成されており、励振部55や受信部5
6と厚みの差がない構造である。この構造において、出
力信号の周波数特性を測定したところ、図5(b)のよ
うになり、図3と比較してピーク値が低く、小さなピー
クがたくさん現れ、明快な基本モードと思える共振モー
ドを生じさせにくいことが分かった。これは、図3で示
される本実施例は励振部103及び受信部105と伝搬
部104の厚みが異なることによって、励振部103と
伝搬部104あるいは受信部105と伝搬部104の境
界付近に振動の節が生じ易くなり、例えば3次共振等の
ピークが大きく現れるためと想定される。
Next, a force sensor having another structure will be described for comparison with this embodiment. FIG. 5A shows another structure of the vibrating body. 3 is different from FIG. 3 in that the piezoelectric element is bonded to the entire surface of the vibrating body, and the electrode on the piezoelectric element 51 is divided into an excitation electrode 52 and a reception electrode 53.
2 is used for excitation and the reception electrode 53 is used for reception. That is, the propagating portion 54 of the vibrating body is composed of the piezoelectric element 51 and the flat plate, and the exciting portion 55 and the receiving portion 5 are connected.
The structure is the same as that of No. 6 in thickness. In this structure, when the frequency characteristic of the output signal is measured, it becomes as shown in FIG. 5 (b), the peak value is lower than that in FIG. 3, many small peaks appear, and the resonance mode which seems to be a clear fundamental mode. It turned out to be difficult to cause. This is because the present embodiment shown in FIG. 3 vibrates near the boundary between the excitation unit 103 and the propagation unit 104 or the reception unit 105 and the propagation unit 104 due to the different thicknesses of the excitation unit 103 and the reception unit 105 and the propagation unit 104. It is assumed that the node is likely to occur and a peak such as a third resonance appears largely.

【0022】なお、励振電極と受信電極を入れ替え、1
03を受信部、105を励振部としても当然同様な効果
が得られる。
It should be noted that the excitation electrode and the reception electrode are replaced by 1
Even if 03 is a receiving unit and 105 is an exciting unit, the same effect can be obtained.

【0023】(実施例2)以下、本発明の第2の実施例
について、図面を参照しながら説明する。
(Second Embodiment) A second embodiment of the present invention will be described below with reference to the drawings.

【0024】図1(a)、図1(b)は本発明の一実施
例における力学量センサーの断面図および平面図であ
る。図1の説明は実施例1と同様なので省略する。
1A and 1B are a sectional view and a plan view of a mechanical quantity sensor according to an embodiment of the present invention. Since the description of FIG. 1 is the same as that of the first embodiment, the description thereof is omitted.

【0025】図1において、振動体102は、慣性体1
00の移動にともなってたわむ支持梁101に設置され
ているが、慣性体100と支持梁101よりなる梁全体
についても、共振モードが存在する。この共振モードは
概略片持梁の振動と同様と考えて良いが、小さな力で慣
性体がよく動き、支持梁101のたわみが大きい方が、
センサーとしての感度は高くなるが、それだけ、梁全体
の共振周波数は低下する。この梁全体の共振周波数は、
測定したい印加される力の周波数範囲と関連する。すな
わち、例えば、自動車用の加速度センサーの場合には、
0〜500Hzの範囲の加速度を正確に測定する必要が
あるが、この範囲に梁全体の共振周波数が存在すると、
この共振周波数近傍の加速度を正確に測定することが困
難になる。したがって、梁全体の共振周波数は、低いほ
ど検出感度が高くなるけれども、測定したい周波数範囲
以上、例えば、500Hz以上、理想的には1kHzと
なるよう、設計されることが望ましい。
In FIG. 1, a vibrating body 102 is an inertial body 1.
Although it is installed on the support beam 101 that bends with the movement of 00, the resonance mode exists for the entire beam including the inertial body 100 and the support beam 101. This resonance mode can be considered to be substantially the same as the vibration of a cantilever beam, but the inertial body moves well with a small force and the deflection of the support beam 101 is large,
Although the sensitivity as a sensor increases, the resonance frequency of the entire beam decreases accordingly. The resonance frequency of this entire beam is
It is related to the frequency range of the applied force that one wants to measure. That is, for example, in the case of an acceleration sensor for automobiles,
It is necessary to accurately measure the acceleration in the range of 0 to 500 Hz, but if the resonance frequency of the entire beam exists in this range,
It becomes difficult to accurately measure the acceleration near the resonance frequency. Therefore, the lower the resonance frequency of the entire beam, the higher the detection sensitivity, but it is desirable to design the resonance frequency to be a frequency range to be measured or higher, for example, 500 Hz or higher, and ideally 1 kHz.

【0026】また、梁全体の共振周波数と、振動体10
2の共振周波数は互いに独立しており、互いに影響して
はならない。このことを説明するために、図6の実験結
果を示す。横軸は振動体102の励振部103の圧電素
子に印加される信号の周波数を、縦軸は受信部105か
らの出力信号電圧を示している。図6のデータは、図1
において、t1=0.4mm、t2=0.8mm、L1
=L2=H=5mm、図3においてl=5mm、a=b
=1.5mm、h=1mmの時のものである。図6の曲
線に於いて、fc0,fc1,fc2は梁全体の共振周
波数のピークであり、各々1次、2次、3次共振周波数
に相当する。また、fs0、fs1、fs2は、振動体
102の共振周波数であり、図3の(c)、(d)、
(e)に示された、1次、2次、3次共振モードに相当
する。図6において、fc0、fc1、fc2はfs0
と充分離れた位置にある。すなわち、梁全体の共振周波
数は振動体102の共振周波数と離れた位置にあり、互
いに影響し合うことないので非常に良好な結果が得られ
る構造であると言える。しかし、fc0、と fs0が
比較的近い周波数であった場合には、梁全体に高次の共
振周波数(例えばfc4等)がfs0と重なる場合が生
じ、振動体102の共振周波数を正確に検出することが
できなくなる。梁全体の共振には、高次の共振モードが
含まれることを考えると、使用する振動体102の共振
周波数と、梁全体の1次共振周波数は一桁以上離れてい
るのが安全で良好なセンサーを実現できる。
The resonance frequency of the entire beam and the vibrating body 10
The two resonance frequencies are independent of each other and must not influence each other. In order to explain this, the experimental result of FIG. 6 is shown. The horizontal axis represents the frequency of the signal applied to the piezoelectric element of the excitation unit 103 of the vibrating body 102, and the vertical axis represents the output signal voltage from the reception unit 105. The data in FIG.
At, t1 = 0.4 mm, t2 = 0.8 mm, L1
= L2 = H = 5 mm, 1 = 5 mm in FIG. 3, a = b
= 1.5 mm, h = 1 mm. In the curve of FIG. 6, fc0, fc1, and fc2 are peaks of the resonance frequency of the entire beam, which correspond to the primary, secondary, and tertiary resonance frequencies, respectively. Further, fs0, fs1, and fs2 are resonance frequencies of the vibrating body 102, and are (c), (d), and
This corresponds to the primary, secondary, and tertiary resonance modes shown in (e). In FIG. 6, fc0, fc1, and fc2 are fs0.
It is in a position far away from. That is, the resonance frequency of the entire beam is located away from the resonance frequency of the vibrating body 102 and does not affect each other, so that it can be said that the structure is such that a very good result is obtained. However, when the frequencies fc0 and fs0 are relatively close to each other, a high-order resonance frequency (for example, fc4) may overlap with fs0 in the entire beam, and the resonance frequency of the vibrating body 102 can be accurately detected. Can't do it. Considering that the resonance of the entire beam includes a higher-order resonance mode, it is safe and good that the resonance frequency of the vibrating body 102 used and the primary resonance frequency of the entire beam are separated by one digit or more. A sensor can be realized.

【0027】なお、励振電極と受信電極を入れ替え、1
03を受信部、105を励振部としても当然同様な効果
が得られる。
It should be noted that the excitation electrode and the reception electrode are exchanged, and 1
Even if 03 is a receiving unit and 105 is an exciting unit, the same effect can be obtained.

【0028】(実施例3)以下、本発明の第3の実施例
について、図面を参照しながら説明する。
(Embodiment 3) A third embodiment of the present invention will be described below with reference to the drawings.

【0029】図7、図8は、第3の実施例の振動体の構
造を示す。図3に示された振動体の構造は3次共振など
の高次共振が比較的生じ易い構造であったが、でき得れ
ば、単純な1次共振周波数のみが生じるような構造が望
まれる。図7、図8はそのような要求を満たす振動体構
造を示している。図7において、慣性体100および支
持梁101は図1と同様に構成され、支持梁101の上
面に両端固定の状態で短冊上の平板106が設置され、
その上部に圧電素子107が接合されている。平板10
6が絶縁体の場合は圧電素子107と平板106の間に
電極を設け、平板106が導電体の場合は平板106を
電極として、圧電素子の下面に一定電位が印加できるよ
うになっている。一方、圧電素子の上面は平板106の
両端を結ぶ線に対して左右に分割された、励振電極10
8と受信電極109が設けられている。
7 and 8 show the structure of the vibrating body of the third embodiment. The structure of the vibrating body shown in FIG. 3 is a structure in which higher-order resonance such as third-order resonance is relatively likely to occur, but if possible, a structure in which only simple primary resonance frequency is generated is desired. . 7 and 8 show a vibrating body structure that satisfies such requirements. In FIG. 7, the inertial body 100 and the support beam 101 are configured in the same manner as in FIG. 1, and a strip-shaped flat plate 106 is installed on the upper surface of the support beam 101 with both ends fixed,
The piezoelectric element 107 is joined to the upper part thereof. Flat plate 10
When 6 is an insulator, an electrode is provided between the piezoelectric element 107 and the flat plate 106, and when the flat plate 106 is a conductor, the flat plate 106 is used as an electrode so that a constant potential can be applied to the lower surface of the piezoelectric element. On the other hand, the upper surface of the piezoelectric element is divided into left and right sides with respect to a line connecting both ends of the flat plate 106.
8 and the receiving electrode 109 are provided.

【0030】図8は、図7の振動体部分を拡大図示した
ものである。このような構造では、振動体の固定端から
固定端まで、励振電極108が連続しており、励振電極
に励振電圧を印加した際、振動体全体の伸び縮みによる
図8(C)に示した1次共振モードが一番生じ易く、2
次、3次共振のような振動体のある部分では伸び、ある
部分では縮む形態の共振モードは、強制振動によって生
じなくなる。すなわち、図7のセンサーについて、図6
と同様なデータをとると、共振周波数fs0のみが明確
にピークを示し、fs1,fs2のピークが消滅する。
FIG. 8 is an enlarged view of the vibrating body portion of FIG. In such a structure, the excitation electrode 108 is continuous from the fixed end to the fixed end of the vibrating body, and when an exciting voltage is applied to the exciting electrode, the vibrating body is expanded and contracted as shown in FIG. 8C. First-order resonance mode is most likely to occur 2
A resonance mode, such as a third-order resonance, in which a part of the vibrating body expands and a part of the vibrating part contracts, is not generated by the forced vibration. That is, regarding the sensor of FIG.
Taking the same data as above, only the resonance frequency fs0 clearly shows a peak, and the peaks at fs1 and fs2 disappear.

【0031】図8(c)は両端固定梁の1次共振モード
を示している。これによると、両端が固定されているた
め、中央部のたわむ方向と端部に近い部分のたわむ方向
が逆方向になっていることがわかる。したがって、1次
共振モードの振動を使用した場合、受信電極109が梁
のどの部分でも同様な面積を有していた場合には、中央
部で発生する電荷と端部で発生する電荷が異符号である
ため、それらが相殺しあって、結果として出力電圧が低
下するという欠点が生じる。そこで本発明では、図8
(a)に示すように励振電極108を中央部で広く、端
部で狭くし、受信電極109はその逆で端部で広く、中
央部で狭く構成している。このように構成することによ
って受信電極に発生する電荷の異符号成分が減少し、受
信感度が上昇し、1次共振周波数でのピークを鋭く、高
いものとすることができる。
FIG. 8C shows the first-order resonance mode of the beam fixed at both ends. According to this, since both ends are fixed, it is understood that the bending direction of the central portion is opposite to the bending direction of the portion near the ends. Therefore, when the vibration of the primary resonance mode is used, if the receiving electrode 109 has the same area in any part of the beam, the charge generated in the central part and the charge generated in the end part have different signs. Therefore, they cancel each other out, resulting in a drawback that the output voltage decreases. Therefore, in the present invention, FIG.
As shown in (a), the excitation electrode 108 is wide at the central portion and narrow at the end portion, and the receiving electrode 109 is oppositely wide at the end portion and narrow at the central portion. With this configuration, the opposite sign component of the charge generated in the receiving electrode is reduced, the receiving sensitivity is increased, and the peak at the primary resonance frequency can be made sharp and high.

【0032】なお、励振電極と受信電極を入れ替え、1
08を受信電極、109を励振電極としても当然同様な
効果が得られる。
It should be noted that the excitation electrode and the reception electrode are replaced by 1
Even if 08 is a receiving electrode and 109 is an exciting electrode, the same effect can be obtained.

【0033】[0033]

【発明の効果】以上のように本発明は、第1に、振動体
の全長lと、前記励振用圧電素子の長さa及び前記受信
用圧電素子の長さbとの間に、 0.2 ≦ a/l < 0.5 又は 0.2 ≦ b/l < 0.5 の関係を有する構成にすることにより、高次モードの共
振のピークを低下あるいは消滅させ、振動体の低次モー
ドの共振周波数が明確にピークを示し、安定した共振モ
ードでの駆動が可能となる優れた力センサーを実現でき
るものである。
As described above, according to the present invention, firstly, between the total length l of the vibrating body and the length a of the piezoelectric element for excitation and the length b of the piezoelectric element for reception, 0. By using a structure having a relationship of 2 ≤ a / l <0.5 or 0.2 ≤ b / l <0.5, the resonance peak of the higher order mode is reduced or eliminated, and the lower order mode of the vibrating body is reduced. It is possible to realize an excellent force sensor in which the resonance frequency of (1) clearly shows a peak and driving in a stable resonance mode is possible.

【0034】また第2に、振動体の1次共振周波数が、
慣性体と支持梁の1次共振周波数の10倍以上とした構
成により、梁全体の共振周波数の影響を受けることな
く、振動体を安定して共振させることができる優れた力
センサーを実現できるものである。
Secondly, the primary resonance frequency of the vibrating body is
An excellent force sensor that can stably resonate a vibrating body without being affected by the resonance frequency of the entire beam by a structure in which the primary resonance frequency of the inertial body and the supporting beam is 10 times or more. Is.

【0035】さらに第3に、圧電素子の表面上に振動体
の長手方向と交差する方向で分割された一対の電極を設
けた構成により、振動体の1次共振周波数のみを生じさ
せることができるので、常に同一モードの1次共振にお
ける安定した駆動が可能であり、誤動作の少ない優れた
力センサーを実現できるものである。
Thirdly, by providing a pair of electrodes divided on the surface of the piezoelectric element in a direction intersecting the longitudinal direction of the vibrating body, only the primary resonance frequency of the vibrating body can be generated. Therefore, stable driving can always be performed in the primary resonance of the same mode, and an excellent force sensor with few malfunctions can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における力センサーの断
面図及び平面図
FIG. 1 is a sectional view and a plan view of a force sensor according to a first embodiment of the present invention.

【図2】本発明の第1の実施例における加速度の測定例
を示す、加速度−周波数特性図
FIG. 2 is an acceleration-frequency characteristic diagram showing an example of measurement of acceleration in the first embodiment of the present invention.

【図3】本発明の第1の実施例における振動体部の拡大
図と種々の振動モードを示す概略図
FIG. 3 is an enlarged view of a vibrating body portion according to the first embodiment of the present invention and a schematic view showing various vibration modes.

【図4】本発明の第1の実施例における周波数特性を示
すグラフ
FIG. 4 is a graph showing frequency characteristics in the first embodiment of the present invention.

【図5】本発明の第1の実施例に対する比較のための他
の構成の力センサーの構成図
FIG. 5 is a configuration diagram of a force sensor having another configuration for comparison with the first embodiment of the present invention.

【図6】本発明の第2の実施例における、周波数特性図FIG. 6 is a frequency characteristic diagram in the second embodiment of the present invention.

【図7】本発明の第3の実施例における、力センサーの
断面図及び平面図
FIG. 7 is a sectional view and a plan view of the force sensor according to the third embodiment of the present invention.

【図8】本発明の第3の実施例における、振動体部拡大
図、及び振動モードの概略図
FIG. 8 is an enlarged view of a vibrating body portion and a schematic view of a vibrating mode according to a third embodiment of the present invention.

【図9】従来の力センサーの斜視図FIG. 9 is a perspective view of a conventional force sensor.

【図10】従来の力センサーの斜視図FIG. 10 is a perspective view of a conventional force sensor.

【符号の説明】[Explanation of symbols]

100 慣性体 101 支持梁 102 振動体 103 励振部 104 伝搬部 105 受信部 107 圧電素子 108、109 電極 100 Inertial Body 101 Support Beam 102 Vibrating Body 103 Exciting Section 104 Propagating Section 105 Receiving Section 107 Piezoelectric Elements 108, 109 Electrodes

フロントページの続き (72)発明者 青木 新一郎 神奈川県川崎市多摩区東三田3丁目10番1 号 松下技研株式会社内 (72)発明者 佐藤 健夫 神奈川県川崎市多摩区東三田3丁目10番1 号 松下技研株式会社内Front page continuation (72) Inventor Shinichiro Aoki, 3-10-1, Higashisanda, Tama-ku, Kawasaki, Kanagawa Prefecture Matsushita Giken Co., Ltd. No. Matsushita Giken Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 力学量の作用により移動可能な慣性体
と、慣性体を支持する支持梁と、前記支持梁上に設けら
れて両端を前記支持梁に固定された振動体と、前記振動
体の一端部付近に接合されて前記振動体を励振する励振
用圧電素子と、前記振動体の他端部付近に接合されて前
記振動体の振動を受信する受信用圧電素子とを具備し、
前記振動体の全長lと、前記励振用圧電素子の長さa及
び前記受信用圧電素子の長さbとの間には、 0.2 ≦ a/l < 0.5 又は 0.2 ≦ b/l < 0.5 の関係があることを特徴とする力センサー。
1. An inertial body that is movable by the action of a mechanical quantity, a support beam that supports the inertial body, a vibrating body that is provided on the support beam and has both ends fixed to the supporting beam, and the vibrating body. An exciting piezoelectric element that is joined near one end of the vibrating body to excite the vibrating body, and a receiving piezoelectric element that is joined near the other end of the vibrating body to receive the vibration of the vibrating body,
Between the total length l of the vibrating body and the length a of the excitation piezoelectric element and the length b of the reception piezoelectric element, 0.2 ≦ a / l <0.5 or 0.2 ≦ b A force sensor having a relationship of /l<0.5.
【請求項2】 力学量の作用により移動可能な慣性体
と、慣性体を支持する支持梁と、前記支持梁上に設けら
れて両端を前記支持梁に固定された振動体とを具備し、
前記振動体の1次共振周波数が、前記慣性体と前記支持
梁の1次共振周波数の10倍以上であることを特徴とす
る力センサー。
2. An inertial body movable by the action of a mechanical quantity, a support beam supporting the inertial body, and a vibrating body provided on the support beam and having both ends fixed to the support beam,
The force sensor, wherein the primary resonance frequency of the vibrating body is 10 times or more the primary resonance frequency of the inertial body and the support beam.
【請求項3】 力学量の作用により移動可能な慣性体
と、慣性体を支持する支持梁と、前記支持梁上に設けら
れて両端を前記支持梁に固定された振動体と、前記振動
体上に接合された圧電素子と、前記圧電素子の表面上に
前記振動体の長手方向と交差する方向に分割された一対
の電極とを具備し、前記一対の電極の一方は振動体を励
振する励振用電極、他方は振動体の振動を受信する受信
用電極であることを特徴とする力センサー。
3. An inertial body movable by the action of a mechanical quantity, a support beam supporting the inertial body, a vibrating body provided on the support beam and having both ends fixed to the support beam, and the vibrating body. A piezoelectric element bonded to the upper side and a pair of electrodes divided in a direction intersecting the longitudinal direction of the vibrating body on the surface of the piezoelectric element are provided, and one of the pair of electrodes excites the vibrating body. A force sensor characterized in that it is an exciting electrode and the other is a receiving electrode that receives the vibration of the vibrating body.
【請求項4】 圧電素子上に分割して設けられた一対の
電極が、一方は振動体の中央部で広く固定端近傍で狭い
形状であり、他方は振動体の中央部で狭く固定端近傍で
広い形状であることを特徴とする請求項3記載の力セン
サー。
4. A pair of electrodes dividedly provided on the piezoelectric element, one of which is wide in the central portion of the vibrating body and narrow near the fixed end, and the other of which is narrow in the central portion of the vibrating body and near the fixed end. The force sensor according to claim 3, wherein the force sensor has a wide shape.
JP25343694A 1994-10-19 1994-10-19 Force sensor Expired - Fee Related JP3503213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25343694A JP3503213B2 (en) 1994-10-19 1994-10-19 Force sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25343694A JP3503213B2 (en) 1994-10-19 1994-10-19 Force sensor

Publications (2)

Publication Number Publication Date
JPH08122172A true JPH08122172A (en) 1996-05-17
JP3503213B2 JP3503213B2 (en) 2004-03-02

Family

ID=17251381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25343694A Expired - Fee Related JP3503213B2 (en) 1994-10-19 1994-10-19 Force sensor

Country Status (1)

Country Link
JP (1) JP3503213B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6895819B1 (en) 1998-09-18 2005-05-24 Fujitsu Limited Acceleration sensor
JP2006074878A (en) * 2004-08-31 2006-03-16 Ngk Insulators Ltd Inspection method of piezoelectric/electrostriction device set
JP2006518846A (en) * 2003-02-05 2006-08-17 ブルーネル ユニバーシティ Resonant sensor assembly
US7290449B2 (en) 2004-03-30 2007-11-06 Denso Corporation Physical quantity sensor having angular speed sensor and acceleration sensor
WO2010137303A1 (en) * 2009-05-27 2010-12-02 パナソニック株式会社 Physical quantity sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH713460A2 (en) * 2017-02-15 2018-08-15 Digi Sens Ag Swing string sensor and swinging string for a swinging string sensor.

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6895819B1 (en) 1998-09-18 2005-05-24 Fujitsu Limited Acceleration sensor
JP2006518846A (en) * 2003-02-05 2006-08-17 ブルーネル ユニバーシティ Resonant sensor assembly
US7290449B2 (en) 2004-03-30 2007-11-06 Denso Corporation Physical quantity sensor having angular speed sensor and acceleration sensor
JP2006074878A (en) * 2004-08-31 2006-03-16 Ngk Insulators Ltd Inspection method of piezoelectric/electrostriction device set
JP4532212B2 (en) * 2004-08-31 2010-08-25 日本碍子株式会社 Inspection method for piezoelectric / electrostrictive device set
WO2010137303A1 (en) * 2009-05-27 2010-12-02 パナソニック株式会社 Physical quantity sensor
US8770025B2 (en) 2009-05-27 2014-07-08 Panasonic Corporation Physical quantity sensor

Also Published As

Publication number Publication date
JP3503213B2 (en) 2004-03-02

Similar Documents

Publication Publication Date Title
US7191653B2 (en) Tuning fork vibratory MEMS gyroscope
US7802475B2 (en) Acceleration sensor
EP0427177B1 (en) Vibrator
JPH0599676A (en) Gyroscope
JP2008209388A (en) Acceleration sensor
JPH05288774A (en) Acceleration sensor
JPH08105912A (en) Acceleration sensor
JP3503213B2 (en) Force sensor
US5597954A (en) Bearing sensor and bearing-distance sensor
JP3166522B2 (en) Acceleration sensor
JP3139205B2 (en) Acceleration sensor
JP4867865B2 (en) Acceleration sensor element and acceleration sensor
JP3368723B2 (en) Vibrating gyro
JP2000292174A (en) Gyroscope
JP3139212B2 (en) Acceleration sensor
EP0684450B1 (en) Supporting structure of vibrator
JP3129116B2 (en) Acceleration sensor
JP3139204B2 (en) Acceleration sensor
JP3355739B2 (en) Accelerometer
JP3129118B2 (en) Acceleration sensor
JPH10160477A (en) Vibrator, its adjusting method, and vibrational gyroscope using it
JP3356013B2 (en) Vibrating gyro
JP3129022B2 (en) Acceleration sensor
JP3356012B2 (en) Vibrating gyro
JP3139211B2 (en) Acceleration sensor

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees