JPH08121916A - Suction pressure-estimating method - Google Patents

Suction pressure-estimating method

Info

Publication number
JPH08121916A
JPH08121916A JP25786394A JP25786394A JPH08121916A JP H08121916 A JPH08121916 A JP H08121916A JP 25786394 A JP25786394 A JP 25786394A JP 25786394 A JP25786394 A JP 25786394A JP H08121916 A JPH08121916 A JP H08121916A
Authority
JP
Japan
Prior art keywords
compressor
pressure
temperature sensor
suction pressure
estimated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25786394A
Other languages
Japanese (ja)
Inventor
Susumu Nakayama
進 中山
Yozo Hibino
陽三 日比野
Hiroshi Yasuda
弘 安田
Shinichiro Yamada
眞一朗 山田
Kenichi Nakamura
憲一 中村
Satoru Yoshida
悟 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25786394A priority Critical patent/JPH08121916A/en
Publication of JPH08121916A publication Critical patent/JPH08121916A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE: To reduce the cost of a suction pressure sensor by estimating the suction pressure of a compressor based on a saturation pressure at an installation part of a temperature sensor in a lower pressure side refrigerant flow passage and an estimated value of pressure loss. CONSTITUTION: The suction pressure during cooling operation is estimated with a controller 151 based on formulas I Pe=α1×Te+α2 in the case of Te<T0, II Pe=α3×Te+α4 in the case of Te>=T0, and III ΔP=α5×F<α6> where Pe stands for saturation pressure, Te for detected values of temperature sensors 113, 204 and 205, and their minimum values are adopted. ΔP stands for a pressure loss from the position of an adopted temperature sensor to the inlet of a compressor, F stands for a rotary speed of a compressor motor, and α1 to α6 stand for coefficients, and α5 varies with the mounting position of an adopted temperature sensor or a line of a gas pipeline 121. The suction pressure during heating operation is also estimated based on the formulas I, II and III, in this case, Te stands for a detected value of a temperature sensor 112, ΔP stands for a pressure loss from the position of the temperature sensor 112 to the inlet of the compressor. The rotary speed of the motor of the compressor is computed so that the estimated suction pressure may be within a set range, thereby a motor rotary speed controller 152 controls the compressor motor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は冷凍サイクルの吸入圧力
の検出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting the suction pressure of a refrigeration cycle.

【0002】[0002]

【従来の技術】従来の空気調和機は、特開昭60−14032
号公報に記載のように、圧縮機入口に吸入圧力センサを
設け、吸入圧力が設定値となるように圧縮機容量を制御
している。
2. Description of the Related Art A conventional air conditioner is disclosed in JP-A-60-14032.
As described in the publication, a suction pressure sensor is provided at the compressor inlet, and the compressor capacity is controlled so that the suction pressure reaches a set value.

【0003】[0003]

【発明が解決しようとする課題】従来技術は、高価な吸
入圧力センサを設けるために、製品のコストが上がると
いう問題があった。
The prior art has a problem that the cost of the product increases because an expensive suction pressure sensor is provided.

【0004】また、吸入圧力センサが故障すると圧縮機
容量が異常に低下したり、異常に増加したりして、冷却
能力不足や圧縮機の過負荷運転により電気入力が増大す
るという問題があった。
Further, if the suction pressure sensor fails, the capacity of the compressor will be abnormally reduced or abnormally increased, and the electric input will increase due to insufficient cooling capacity or overload operation of the compressor. .

【0005】本発明の目的は、製品のコスト低減,吸入
圧力センサの故障診断および吸入圧力センサの故障時の
バックアップをすることにある。
An object of the present invention is to reduce the cost of the product, diagnose the failure of the suction pressure sensor, and back up when the suction pressure sensor fails.

【0006】[0006]

【課題を解決するための手段】吸入圧力センサに比べ安
価な温度センサを冷凍サイクルの低圧側冷媒通路に設け
るとともに、温度センサ設置部から圧縮機入口部までの
圧力損失を推定する手段とを備える。
A temperature sensor, which is less expensive than a suction pressure sensor, is provided in a low pressure side refrigerant passage of a refrigeration cycle, and means for estimating a pressure loss from a temperature sensor installation portion to a compressor inlet portion is provided. .

【0007】[0007]

【作用】低圧側冷媒通路に設けた温度センサによって温
度センサ設置部の飽和圧力が算出でき、圧力損失推定手
段によって温度センサ設置部から圧縮機入口部までの圧
力損失が推定でき、飽和圧力算出値から圧力損失推定値
を減じることによって圧縮機吸入圧力が推定できる。
[Function] The saturation pressure of the temperature sensor installation portion can be calculated by the temperature sensor provided in the low pressure side refrigerant passage, and the pressure loss from the temperature sensor installation portion to the compressor inlet portion can be estimated by the pressure loss estimation means, and the saturation pressure calculated value The compressor suction pressure can be estimated by subtracting the estimated pressure loss value from.

【0008】また、吸入圧力推定値を使うことによっ
て、吸入圧力センサの故障を判定できる。
Further, it is possible to determine the failure of the suction pressure sensor by using the suction pressure estimated value.

【0009】さらに、吸入圧力センサが故障した場合、
吸入圧力推定値を使うことによって、圧縮機容量を正常
に制御することができる。
Furthermore, if the suction pressure sensor fails,
By using the estimated suction pressure, the compressor capacity can be controlled normally.

【0010】[0010]

【実施例】本発明の一実施例を図1に示す。FIG. 1 shows an embodiment of the present invention.

【0011】室外機100は、モータ回転数が可変でき
る圧縮機105,四方弁106,室外熱交換器101,
過冷却器111,室外ファン103,逆止弁110,キ
ャピラリチューブ109,アキュムレータ104,温度
センサ112,コントローラ151及びモータ回転数制
御器152で構成されている。室内機200は、室内熱
交換器201,膨張弁202,室内ファン203及び温
度センサ204,205で構成されている。室外機100
と室内機200とはガス配管121及び液配管122で
接続されている。温度センサ112,204,205の
信号はコントローラ151に入力されている。
The outdoor unit 100 includes a compressor 105 whose motor rotation speed is variable, a four-way valve 106, an outdoor heat exchanger 101,
It is composed of a subcooler 111, an outdoor fan 103, a check valve 110, a capillary tube 109, an accumulator 104, a temperature sensor 112, a controller 151 and a motor rotation speed controller 152. The indoor unit 200 includes an indoor heat exchanger 201, an expansion valve 202, an indoor fan 203, and temperature sensors 204 and 205. Outdoor unit 100
The indoor unit 200 and the indoor unit 200 are connected by a gas pipe 121 and a liquid pipe 122. The signals from the temperature sensors 112, 204, 205 are input to the controller 151.

【0012】次に、冷房運転時の動作を説明する。Next, the operation during the cooling operation will be described.

【0013】まず、冷媒の流れを説明する。図中の実線
矢印は冷媒流れ方向を示す。
First, the flow of the refrigerant will be described. The solid arrows in the figure indicate the direction of refrigerant flow.

【0014】圧縮機105から吐出された冷媒は四方弁
106を通って、室外熱交換器101へ入り、室外ファン
103によって送られる室外空気と熱交換されて凝縮す
る。その後、凝縮した冷媒は、逆止弁110によって流
れが阻止されるために逆止弁110は通らずに、過冷却
器111へ入り、室外ファン103によって送られる室
外空気と熱交換されて過冷却した液冷媒となる。過冷却
した液冷媒はキャピラリチューブ109で若干減圧さ
れ、液ガスの二相冷媒となって室外機100を出て、液
配管122へ入り、室内機200へ送られる。室内機2
00に入った二相冷媒は膨張弁202でさらに減圧さ
れ、室内熱交換器201へ入り、室内ファン203によ
って送られる室内空気と熱交換されて蒸発し、室内空気
は冷却される。その後、蒸発した冷媒は室内機200を
出て、ガス配管121へ入り、室外機100へ送られ
る。室外機1に入った冷媒は四方弁106,アキュムレ
ータ104を通って圧縮機105に吸入され、圧縮されて
再び吐出される。冷房時、吸入圧力の推定に使用する温
度センサは204,205,113の3つで、温度セン
サ204,205及び113の検出温度は運転条件によ
って図2に示す三つのパターンとなる。パターン1は温
度センサ113の位置まで飽和状態の冷媒がながれてい
ることを示している。パターン2は温度センサ205の
位置まで飽和状態の冷媒がながれており、それより下流
側で冷媒が過熱していることを示している。パターン3
は温度センサ204の位置まで飽和状態の冷媒がながれ
ており、それより下流側で冷媒が過熱していることを示
している。
The refrigerant discharged from the compressor 105 passes through the four-way valve 106 and enters the outdoor heat exchanger 101 where it is heat-exchanged with the outdoor air sent by the outdoor fan 103 and condensed. After that, the condensed refrigerant flows into the subcooler 111 without passing through the check valve 110 because the flow is blocked by the check valve 110, and is heat-exchanged with the outdoor air sent by the outdoor fan 103 to be supercooled. Becomes the liquid refrigerant. The supercooled liquid refrigerant is slightly decompressed by the capillary tube 109, becomes a two-phase refrigerant of liquid gas, exits the outdoor unit 100, enters the liquid pipe 122, and is sent to the indoor unit 200. Indoor unit 2
The two-phase refrigerant entering 00 is further decompressed by the expansion valve 202, enters the indoor heat exchanger 201, is heat-exchanged with the indoor air sent by the indoor fan 203 and is evaporated, and the indoor air is cooled. Then, the evaporated refrigerant exits the indoor unit 200, enters the gas pipe 121, and is sent to the outdoor unit 100. The refrigerant that has entered the outdoor unit 1 is sucked into the compressor 105 through the four-way valve 106 and the accumulator 104, compressed, and then discharged again. During cooling, three temperature sensors 204, 205 and 113 are used to estimate the suction pressure, and the temperatures detected by the temperature sensors 204, 205 and 113 have the three patterns shown in FIG. 2 depending on operating conditions. Pattern 1 indicates that the saturated refrigerant flows up to the position of the temperature sensor 113. Pattern 2 indicates that the saturated refrigerant has flowed to the position of the temperature sensor 205, and the refrigerant is overheated on the downstream side. Pattern 3
Indicates that the saturated refrigerant has flowed to the position of the temperature sensor 204, and the refrigerant is overheated on the downstream side.

【0015】次に、冷房時の吸入圧力の推定方法につい
て説明する。なお、推定はコントローラ151で行う。
Next, a method of estimating the suction pressure during cooling will be described. The estimation is performed by the controller 151.

【0016】吸入圧力の推定は数1,数2,数3を用い
て行う。
The suction pressure is estimated by using Equations 1, 2 and 3.

【0017】[0017]

【数1】 Te<T0のとき、Pe=α1×Te+α2 …(数1)When Te <T0, Pe = α1 × Te + α2 (Equation 1)

【0018】[0018]

【数2】 Te≧T0のとき、Pe=α3×Te+α4 …(数2)## EQU2 ## When Te ≧ T0, Pe = α3 × Te + α4 (Equation 2)

【0019】[0019]

【数3】 (Equation 3)

【0020】数式中のPeは飽和圧力,Teは温度セン
サの検出値で、三つの温度センサの最低値を採用する。
ΔPは採用する温度センサ位置から圧縮機入口までの圧
力損失,Fは圧縮機モータの回転数,α1〜α6は係数
で、α5は採用する温度センサの取付位置やガス配管1
21の長さによって変わる。
In the equation, Pe is the saturation pressure and Te is the detection value of the temperature sensor, and the lowest value of the three temperature sensors is adopted.
ΔP is the pressure loss from the temperature sensor position to the compressor inlet, F is the rotation speed of the compressor motor, α1 to α6 are coefficients, and α5 is the mounting position of the temperature sensor to be used and the gas pipe 1
It depends on the length of 21.

【0021】次に、暖房運転時の動作を説明する。Next, the operation during the heating operation will be described.

【0022】まず、冷媒の流れを説明する。図中の破線
矢印は冷媒流れ方向を示す。
First, the flow of the refrigerant will be described. The dashed arrow in the figure indicates the direction of refrigerant flow.

【0023】圧縮機105から吐出された冷媒は四方弁
106を通って、ガス配管121へ入り、室内機200
へ送られる。室内機200に入った冷媒は室内熱交換器
201へ入り、室内ファン203によって送られる室内空
気と熱交換されて凝縮し、室内空気は温められる。その
後、冷媒は膨張弁202で減圧され、液ガスの二相冷媒
となって液配管122へ入り、室外機100へ送られ
る。室外機100に入った冷媒は逆止弁110を通過し
て、室外熱交換器101へ入り、室外ファン103によっ
て送られる室外空気と熱交換されて蒸発する。蒸発した
冷媒は、四方弁106,アキュムレータ104を通って
圧縮機105に吸入され、圧縮されて再び吐出される。
暖房時、吸入圧力の推定に使用する温度センサは112
の温度センサである。
The refrigerant discharged from the compressor 105 passes through the four-way valve 106, enters the gas pipe 121, and enters the indoor unit 200.
Sent to. The refrigerant that has entered the indoor unit 200 is an indoor heat exchanger.
Entering 201, the heat is exchanged with the indoor air sent by the indoor fan 203 to condense, and the indoor air is warmed. After that, the refrigerant is decompressed by the expansion valve 202, becomes a two-phase refrigerant of liquid gas, enters the liquid pipe 122, and is sent to the outdoor unit 100. The refrigerant that has entered the outdoor unit 100 passes through the check valve 110, enters the outdoor heat exchanger 101, is heat-exchanged with the outdoor air sent by the outdoor fan 103, and evaporates. The evaporated refrigerant is sucked into the compressor 105 through the four-way valve 106 and the accumulator 104, compressed, and discharged again.
When heating, the temperature sensor used to estimate the suction pressure is 112
Temperature sensor.

【0024】次に、暖房時の吸入圧力の推定方法につい
て説明する。
Next, a method of estimating the suction pressure during heating will be described.

【0025】吸入圧力の推定は冷房と同様に、数1,数
2,数3を用いて行う。数式中のPeは飽和圧力,Te
は温度センサ112の検出値である。ΔPは温度センサ
112の位置から圧縮機入口までの圧力損失,Fは圧縮
機モータの回転数,α1〜α6は係数である。
The suction pressure is estimated by using Equations 1, 2 and 3 as in the case of cooling. Pe in the formula is saturation pressure, Te
Is a detection value of the temperature sensor 112. ΔP is the pressure loss from the position of the temperature sensor 112 to the compressor inlet, F is the rotation speed of the compressor motor, and α1 to α6 are coefficients.

【0026】ここで、数1,数2の飽和圧力Peの算出
方法について説明する。冷媒の飽和状態の温度と圧力の
関係は、図3の実線で示すような曲線になる。このよう
な飽和曲線を使って検出温度から飽和圧力を求めること
は難しい。そこで、破線のように折れ線で近似し、一次
式で求めることにした。T0は折れ線折れ曲がり点のの
温度を表す。
Here, a method of calculating the saturation pressure Pe of the equations 1 and 2 will be described. The relationship between the temperature and the pressure in the saturated state of the refrigerant is a curve as shown by the solid line in FIG. It is difficult to obtain the saturation pressure from the detected temperature using such a saturation curve. Therefore, it was decided to approximate it by a broken line like a broken line and to obtain it by a linear equation. T0 represents the temperature at the bent point of the broken line.

【0027】このように推定した吸入圧力が設定範囲に
なるように、圧縮機のモータ回転数が演算され、その信
号がモータ回転数制御器152に送られ、モータ回転数
制御器152が圧縮機モータを制御する。
The motor rotation speed of the compressor is calculated so that the suction pressure thus estimated falls within the set range, and the signal is sent to the motor rotation speed controller 152, and the motor rotation speed controller 152 causes the compressor to rotate. Control the motor.

【0028】本発明の他の実施例を図4に示す。Another embodiment of the present invention is shown in FIG.

【0029】図4は室外機100に2台の室内機20
0,300を並列に接続したものである。室外機100
は、モータ回転数が可変できる圧縮機105,四方弁1
06,室外熱交換器101,膨張弁102,室外ファン
103,レシーバ107,アキュムレータ104,温度
センサ113,圧力検出器108,コントローラ151
及びモータ回転数制御器152で構成されている。室内
機200は、室内熱交換器201,膨張弁202,室内
ファン203及び温度検出器204,205で構成され
ている。室内機300は、室内熱交換器301,膨張弁
302,室内ファン303及び温度検出器304,30
5で構成されている。室外機100と2台の室内機20
0,300とはガス配管121及び液配管122で接続
されている。温度センサ112,204,205,30
4,305の信号及び圧力検出器108の信号はコント
ローラ151に入力されている。
FIG. 4 shows an outdoor unit 100 and two indoor units 20.
0,300 are connected in parallel. Outdoor unit 100
Is a compressor 105 whose motor rotation speed is variable, a four-way valve 1
06, outdoor heat exchanger 101, expansion valve 102, outdoor fan 103, receiver 107, accumulator 104, temperature sensor 113, pressure detector 108, controller 151
And a motor rotation speed controller 152. The indoor unit 200 includes an indoor heat exchanger 201, an expansion valve 202, an indoor fan 203, and temperature detectors 204 and 205. The indoor unit 300 includes an indoor heat exchanger 301, an expansion valve 302, an indoor fan 303, and temperature detectors 304 and 30.
It is composed of 5. The outdoor unit 100 and the two indoor units 20
A gas pipe 121 and a liquid pipe 122 are connected to 0 and 300. Temperature sensor 112, 204, 205, 30
The signals of 4,305 and the signal of the pressure detector 108 are input to the controller 151.

【0030】次に、冷房運転時の動作を説明する。Next, the operation during the cooling operation will be described.

【0031】まず、冷媒の流れを説明する。図中の実線
矢印は冷媒流れ方向を示す。
First, the flow of the refrigerant will be described. The solid arrows in the figure indicate the direction of refrigerant flow.

【0032】圧縮機105から吐出された冷媒は四方弁
106を通って、室外熱交換器101へ入り、室外ファン
103によって送られる室外空気と熱交換されて凝縮す
る。その後、凝縮した冷媒は、膨張弁102及びレシー
バ107通過後、室外器100を出て、液配管122へ入
り、室内機2及び室内機3へ送られる。室内機2及び室
内機3に入ったそれぞれの冷媒は膨張弁202及び30
2で減圧され、室内熱交換器201及び301へ入り、
室内ファン203及び303によって送られる室内空気
と熱交換されて蒸発し、室内空気は冷却される。その
後、蒸発した冷媒は室内機2及び室内機3を出て、ガス
配管121へ入り、室外機1へ送られる。室外機1に入
った冷媒は四方弁106,アキュムレータ104を通っ
て圧縮機105に吸入され、圧縮されて再び吐出され
る。
The refrigerant discharged from the compressor 105 passes through the four-way valve 106 and enters the outdoor heat exchanger 101 where it is heat-exchanged with the outdoor air sent by the outdoor fan 103 and condensed. Then, the condensed refrigerant passes through the expansion valve 102 and the receiver 107, then exits the outdoor unit 100, enters the liquid pipe 122, and is sent to the indoor unit 2 and the indoor unit 3. The respective refrigerants having entered the indoor unit 2 and the indoor unit 3 are expanded valves 202 and 30.
It is decompressed at 2, enters the indoor heat exchangers 201 and 301,
The indoor air is cooled by heat exchange with the indoor air sent by the indoor fans 203 and 303 to evaporate. Then, the evaporated refrigerant exits the indoor unit 2 and the indoor unit 3, enters the gas pipe 121, and is sent to the outdoor unit 1. The refrigerant that has entered the outdoor unit 1 is drawn into the compressor 105 through the four-way valve 106 and the accumulator 104, is compressed, and is discharged again.

【0033】次に、冷房時の吸入圧力の推定方法につい
て説明する。
Next, a method of estimating the suction pressure during cooling will be described.

【0034】吸入圧力の推定は図1の冷房の実施例と同
様に、数1,数2,数3を用いて行う。なお、検出温度
Teは温度センサ113,204,205,304,3
05の中の最低温度を使う。
The suction pressure is estimated by using the equations (1), (2) and (3) as in the cooling embodiment of FIG. The detected temperature Te is the temperature sensor 113, 204, 205, 304, 3
Use the lowest temperature of 05.

【0035】次に、吸入圧力推定値の使用方法について
説明する。
Next, a method of using the estimated suction pressure value will be described.

【0036】コントローラ151内で温度センサから推
定した吸入圧力推定値と圧力検出器108で検出した吸
入圧力とを比較し、両者が所定範囲に入っていれば圧力
検出器108は正常であると判断し、所定範囲外であれ
ば圧力検出器108は故障していると判断し、表示す
る。さらに、圧力検出器108が故障と判断したとき
は、吸入圧力推定値を使って圧縮機を暫定的に制御す
る。
The suction pressure estimated value estimated from the temperature sensor in the controller 151 is compared with the suction pressure detected by the pressure detector 108, and if both are within a predetermined range, it is judged that the pressure detector 108 is normal. If it is outside the predetermined range, the pressure detector 108 is judged to be out of order and is displayed. Further, when it is determined that the pressure detector 108 is out of order, the suction pressure estimated value is used to provisionally control the compressor.

【0037】[0037]

【発明の効果】本発明によれば、吸入圧力センサがなく
ても吸入圧力が分かるので、吸入圧力センサの分、コス
ト低減ができる。
According to the present invention, since the suction pressure can be known even without the suction pressure sensor, the cost can be reduced by the suction pressure sensor.

【0038】また、吸入圧力センサが取り付けられてい
る場合は、吸入圧力センサの故障診断ができ、圧縮機等
の制御の信頼性が向上する。
Further, when the suction pressure sensor is attached, the failure diagnosis of the suction pressure sensor can be performed, and the reliability of control of the compressor and the like is improved.

【0039】さらに、吸入圧力センサが故障と判断され
た場合は、吸入圧力の推定値を吸入圧力センサの検出値
の代わりに使用することによって、装置を停止させなく
てもよい。
Further, when it is determined that the suction pressure sensor is out of order, the estimated value of the suction pressure may be used instead of the detection value of the suction pressure sensor to stop the apparatus.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す空気調和機の冷凍サイ
クルの系統図。
FIG. 1 is a system diagram of a refrigeration cycle of an air conditioner showing an embodiment of the present invention.

【図2】図1に示す一実施例の温度センサの検出パター
ンを表す説明図。
FIG. 2 is an explanatory diagram showing a detection pattern of the temperature sensor of the embodiment shown in FIG.

【図3】飽和圧力の算出方法の説明図。FIG. 3 is an explanatory diagram of a method for calculating a saturation pressure.

【図4】本発明の他の実施例を示す多室形空気調和機の
冷凍サイクルの系統図。
FIG. 4 is a system diagram of a refrigeration cycle of a multi-room air conditioner showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

100…室外機、101…室外熱交換器、105…圧縮
機、113,204,205…温度センサ、121…ガ
ス配管、122…液配管、151…コントローラ、15
2…モータ回転数制御器、200…室内機、201…室
内熱交換器、202…膨張弁。
100 ... Outdoor unit, 101 ... Outdoor heat exchanger, 105 ... Compressor, 113,204,205 ... Temperature sensor, 121 ... Gas pipe, 122 ... Liquid pipe, 151 ... Controller, 15
2 ... Motor rotation speed controller, 200 ... Indoor unit, 201 ... Indoor heat exchanger, 202 ... Expansion valve.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 眞一朗 東京都千代田区神田駿河台四丁目6番地 株式会社日立製作所内空調システム事業部 内 (72)発明者 中村 憲一 東京都千代田区神田駿河台四丁目6番地 株式会社日立製作所内空調システム事業部 内 (72)発明者 吉田 悟 東京都千代田区神田駿河台四丁目6番地 株式会社日立製作所内空調システム事業部 内 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Shinichiro Yamada 4-6 Kanda Surugadai, Chiyoda-ku, Tokyo Inside the Air-Conditioning Systems Division, Hitachi, Ltd. (72) Inventor Kenichi Nakamura 4-Sumita Kanda, Chiyoda-ku, Tokyo 6th Air Conditioning Systems Division, Hitachi Ltd. (72) Inventor Satoru Yoshida 4-6, Sugawadai Kanda, Chiyoda-ku, Tokyo Inside Air Conditioning Systems Division, Hitachi Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】冷凍サイクルの低圧側冷媒通路に温度セン
サを設け、前記温度センサの信号から温度センサ設置部
の飽和圧力を求める飽和圧力算出手段と、前記温度セン
サ設置部から圧縮機入口部までの圧力損失を推定する圧
力損失推定手段とを備え、飽和圧力算出値から圧力損失
推定値を減じて圧縮機吸入圧力を推定することを特徴と
する吸入圧力推定方法。
1. A saturation pressure calculating means for providing a temperature sensor in a low pressure side refrigerant passage of a refrigeration cycle to obtain a saturation pressure of a temperature sensor installation portion from a signal of the temperature sensor, and a temperature sensor installation portion to a compressor inlet portion. And a pressure loss estimating means for estimating the pressure loss of the compressor, and a suction pressure estimating method for estimating the compressor suction pressure by subtracting the pressure loss estimated value from the saturated pressure calculated value.
JP25786394A 1994-10-24 1994-10-24 Suction pressure-estimating method Pending JPH08121916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25786394A JPH08121916A (en) 1994-10-24 1994-10-24 Suction pressure-estimating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25786394A JPH08121916A (en) 1994-10-24 1994-10-24 Suction pressure-estimating method

Publications (1)

Publication Number Publication Date
JPH08121916A true JPH08121916A (en) 1996-05-17

Family

ID=17312224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25786394A Pending JPH08121916A (en) 1994-10-24 1994-10-24 Suction pressure-estimating method

Country Status (1)

Country Link
JP (1) JPH08121916A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1217316A2 (en) * 2000-12-22 2002-06-26 Carrier Corporation Method of controlling refrigerant cycle
JP2006266661A (en) * 2005-02-28 2006-10-05 Mitsubishi Heavy Ind Ltd Refrigerating device and its operating method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1217316A2 (en) * 2000-12-22 2002-06-26 Carrier Corporation Method of controlling refrigerant cycle
EP1217316A3 (en) * 2000-12-22 2002-09-11 Carrier Corporation Method of controlling refrigerant cycle
JP2006266661A (en) * 2005-02-28 2006-10-05 Mitsubishi Heavy Ind Ltd Refrigerating device and its operating method

Similar Documents

Publication Publication Date Title
JP4762797B2 (en) Multi-type air conditioning system
JP5446064B2 (en) Heat exchange system
KR101101946B1 (en) Refrigeration apparatus
US20030070441A1 (en) Control system of degree of superheat of air conditioner and control method thereof
JP7257782B2 (en) air conditioning system
JP5094801B2 (en) Refrigeration cycle apparatus and air conditioner
JP5430602B2 (en) Air conditioner
EP1805466A2 (en) Method for estimating inlet and outlet air conditions of an hvac system
JPS58120054A (en) Air conditioner
JP2014102050A (en) Refrigeration device
JP2557577B2 (en) Air conditioner
WO2017086343A1 (en) Refrigeration cycle for vehicular air-conditioning device, and vehicle equipped therewith
JP3985092B2 (en) Air conditioner
US11359845B2 (en) Method for defrosting an air conditioner unit
JPH08152204A (en) Air conditioner and operating method therefor
WO2018037496A1 (en) Air conditioning device
JPH08121916A (en) Suction pressure-estimating method
JP3384150B2 (en) Multi-room air conditioner and operation method thereof
JPH1038398A (en) Controller of electric expansion valve
JP3482845B2 (en) Air conditioner
JP2017120141A (en) Air conditioner and defrost auxiliary device
JP2005003250A (en) Air conditioner and its control method
JP2504997Y2 (en) Air conditioner
JP4179365B2 (en) Air conditioner
JP3097468B2 (en) Control device for air conditioner