JPH08121209A - Intake control device for engine - Google Patents

Intake control device for engine

Info

Publication number
JPH08121209A
JPH08121209A JP6262454A JP26245494A JPH08121209A JP H08121209 A JPH08121209 A JP H08121209A JP 6262454 A JP6262454 A JP 6262454A JP 26245494 A JP26245494 A JP 26245494A JP H08121209 A JPH08121209 A JP H08121209A
Authority
JP
Japan
Prior art keywords
intake
valve
opening
control valve
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6262454A
Other languages
Japanese (ja)
Inventor
Yoichi Saito
陽一 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP6262454A priority Critical patent/JPH08121209A/en
Publication of JPH08121209A publication Critical patent/JPH08121209A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/48Tumble motion in gas movement in cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE: To prevent deterioration of operability and exhaust gas in a system where an intake control valve is varied in its opening based on a valve opening map set according to an engine operation condition by properly correcting a fuel injection rate irrespective of changeover speed, and suppressing fluctuation of an air-fuel ratio. CONSTITUTION: A tumble control valve 24 is arranged in an intake system of each cylinder of an engine main body 1, which valve is closed according to an engine operation condition for generating tumble flow, or opened for performing full open intake. An injector 26 is arranged on a downstream side of the tumble control valve 24 for injecting fuel to each cylinder. A valve opening is determined with reference to a map according to an engine operation condition. An opening/closing control means C1 controls the tumble control valve 24 based on the valve opening. A correction rate calculation means C2 calculates a primary delay correction rate at the time of opening/closing the valve with a value prepared by subracting a primary delay value from the valve opening of the tumble control valve 24. A fuel control means C3 corrects a fuel injection rate of the injector 26 based on the primary delay correction rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、車両用エンジンの吸気
通路中に設けられる吸気制御弁(スワール制御弁、タン
ブル制御弁)を開閉する吸気制御装置に関し、詳しく
は、吸気制御弁の開閉時における空燃比の変動を抑制す
る対策に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intake control device for opening and closing an intake control valve (swirl control valve, tumble control valve) provided in an intake passage of a vehicle engine. For suppressing fluctuations in the air-fuel ratio in Japan.

【0002】[0002]

【従来の技術】車両用エンジンの燃焼等の改善対策とし
て、以下の方法が知られている。即ち、スロットル弁の
下流の吸気通路中に気筒毎にスワール制御弁やタンブル
制御弁の吸気制御弁を設ける。そしてエンジン運転状態
の低中負荷領域では、吸気制御弁を閉じて吸気の流れ状
態を変化させ、シリンダ内の円周方向に旋回するスワー
ル流、またはシリンダ内の軸方向に旋回するタンブル流
を発生する。これにより燃料と空気との混合を促進し
て、燃焼を改善し燃費等を向上する。また高負荷領域で
は、吸気制御弁を開いて多量の空気を吸入するように全
開吸気し、エンジン出力を向上するものである。
2. Description of the Related Art The following methods are known as measures for improving the combustion of a vehicle engine. That is, an intake control valve such as a swirl control valve or a tumble control valve is provided for each cylinder in the intake passage downstream of the throttle valve. In the low-to-medium load region of the engine operating condition, the intake control valve is closed to change the intake flow state to generate a swirl flow swirling in the cylinder in the circumferential direction or a tumble flow swirling in the cylinder in the axial direction. To do. This promotes the mixing of fuel and air to improve combustion and improve fuel efficiency. Further, in the high load region, the intake control valve is opened and the intake air is fully opened so that a large amount of air is taken in to improve the engine output.

【0003】従って、この種のエンジンでは、エンジン
運転状態が低中負荷領域から高負荷領域に変化する場合
に、吸気制御弁が閉から開に制御され、逆に高負荷領域
から低中負荷領域に変化する場合に、吸気制御弁が開か
ら閉に制御される。ところで吸気制御弁の開閉制御にお
いて瞬時に開閉すると、吸入空気量、空燃比が急激に増
減変化して、運転性や排気ガスの悪化を招く。このため
吸気制御弁の開閉時には、空燃比の変動を抑えるように
考慮する必要がある。
Therefore, in this type of engine, when the engine operating state changes from the low to medium load region to the high load region, the intake control valve is controlled from closed to open, and conversely from the high load region to the low to medium load region. The intake control valve is controlled from open to closed when it changes to. By the way, if the intake control valve is opened / closed instantaneously, the intake air amount and the air-fuel ratio are suddenly increased / decreased to deteriorate the operability and the exhaust gas. Therefore, when opening and closing the intake control valve, it is necessary to consider so as to suppress fluctuations in the air-fuel ratio.

【0004】吸気制御弁の開閉時の空燃比の変動を抑え
る方法として、吸気制御弁の全閉、全開の間に中間開度
を設定して、弁開度を3段階以上に可変制御することが
提案されている。この方法によると、吸気制御弁が小刻
みに開度変化して変動幅が小さくなり得るが、エアフロ
ーメータによる吸入空気量の計測、燃料噴射量の演算の
回数が増す。またこの場合も、運転、走行状態により吸
気制御弁が急に開度変化したり、またはゆっくり開度変
化して切換わる場合がある。特に、切換速度が速い場合
は、エアフローメータによる吸入空気量の計測に遅れを
生じて燃料噴射量の演算が間に合わず、この結果空燃比
が変動することがある。従って、吸気制御弁を小刻みに
開度変化する方法では、同時に切換速度による吸入空気
量の計測の遅れを加味して、燃料噴射量を適正に補正す
ることが要求される。
As a method of suppressing the variation of the air-fuel ratio when the intake control valve is opened / closed, an intermediate opening is set between full closing and full opening of the intake control valve to variably control the valve opening in three or more stages. Is proposed. According to this method, the opening degree of the intake control valve changes little by little and the fluctuation range can be reduced, but the number of times the intake air amount is measured by the air flow meter and the fuel injection amount is calculated increases. Also in this case, the opening of the intake control valve may be changed suddenly or slowly depending on the driving and running conditions. In particular, when the switching speed is high, the measurement of the intake air amount by the air flow meter may be delayed and the calculation of the fuel injection amount may not be in time, resulting in a change in the air-fuel ratio. Therefore, in the method of changing the opening degree of the intake control valve in small increments, it is required that the fuel injection amount be appropriately corrected in consideration of the delay in the measurement of the intake air amount due to the switching speed.

【0005】従来、上記スワール制御弁等の吸気制御弁
の開閉制御に関しては、例えば特開平6−101484
号公報の第1の先行技術があり、機関負荷と機関回転数
で予め設定される開閉制御マップに基づいて、スワール
制御弁を全閉、中間開度及び全開の開度に制御すること
が示されている。また特開平4−112932号公報の
第2の先行技術では、スワール制御弁の作動位置により
吸気状態が変わるのに伴い燃料の壁面付着量が変化し、
スワール制御弁の開閉の作動に遅れがある点を考慮し、
スワール制御弁の作動開始から所定時間経過後に、燃料
の付着状態に応じた過渡補正量を用いて燃料噴射量を補
正することが示されている。更に、特開平4−1214
8号公報の第3の先行技術では、燃料噴射量を演算する
場合の空気量算出時に所定の遅れ時間を設定し、スロッ
トル開度とエンジン回転数に対して遅れ時間先の予測値
を定め、これら予測値によりシリンダ流入空気量を算出
することが示されている。
Conventionally, regarding the opening / closing control of the intake control valve such as the swirl control valve, for example, Japanese Patent Laid-Open No. 6-101484.
There is a first prior art of Japanese Patent Publication, and it is shown that the swirl control valve is controlled to a fully closed, intermediate opening and fully open opening based on an opening / closing control map preset by an engine load and an engine speed. Has been done. Further, in the second prior art of Japanese Patent Laid-Open No. 4-112932, the amount of fuel adhering to the wall surface changes as the intake state changes depending on the operating position of the swirl control valve,
Considering that there is a delay in the opening and closing of the swirl control valve,
It is shown that the fuel injection amount is corrected using a transient correction amount according to the state of adhesion of fuel after a lapse of a predetermined time from the start of operation of the swirl control valve. Furthermore, JP-A-4-1214
In the third prior art of Japanese Patent Publication No. 8 publication, a predetermined delay time is set when calculating the air amount when calculating the fuel injection amount, and the predicted value of the delay time ahead is set with respect to the throttle opening and the engine speed. It is shown that the cylinder inflow air amount is calculated based on these predicted values.

【0006】[0006]

【発明が解決しようとする課題】ところで、上記第1の
先行技術にあっては、スワール制御弁を全閉、全開及び
中間開度の3段階に開度変化するだけであるから、特に
切換速度が速い場合は、吸入空気量の計測や燃料噴射量
の演算の遅れにより、空燃比の変動を抑えることができ
ない。第2の先行技術にあっては、スワール制御弁を全
閉と全開に作動することを前提とするので、空燃比の変
動を抑制することが難しい。またスワール制御弁の作動
遅れに対して燃料噴射量の演算を遅延する方法であるか
ら、切換速度が速い場合の吸入空気量の計測の遅れに対
処することはできない。第3の先行技術にあっては、吸
気制御弁の開閉制御とは直接関係無い。また空気量算出
時に一定の遅れ時間を設定するため、切換速度が変化し
て吸入空気量の計測の遅れが種々変化する場合に対応で
きない。
By the way, in the first prior art described above, since the swirl control valve is only changed in three stages of full closing, full opening and intermediate opening, the switching speed is particularly high. When is fast, the variation of the air-fuel ratio cannot be suppressed due to the delay of the measurement of the intake air amount and the calculation of the fuel injection amount. In the second prior art, since it is premised that the swirl control valve is fully closed and fully opened, it is difficult to suppress the fluctuation of the air-fuel ratio. Further, since it is a method of delaying the calculation of the fuel injection amount with respect to the operation delay of the swirl control valve, it is not possible to cope with the delay in the measurement of the intake air amount when the switching speed is fast. The third prior art is not directly related to the opening / closing control of the intake control valve. Further, since a constant delay time is set when calculating the air amount, it is not possible to deal with a case where the switching speed changes and various delays in the measurement of the intake air amount change.

【0007】本発明は、このような点に鑑み、吸気制御
弁がエンジン運転状態に応じ設定される弁開度マップに
基づき開度変化する方式において、切換速度の緩急に関
わらず燃料噴射量を適正に補正して空燃比の変動を抑
え、運転性や排気ガスの悪化を防止することを目的とす
る。
In view of the above points, the present invention is a system in which the intake control valve changes its opening based on a valve opening map set according to the engine operating state. The purpose of this is to properly correct and suppress fluctuations in the air-fuel ratio and prevent deterioration of drivability and exhaust gas.

【0008】[0008]

【課題を解決するための手段】この目的を達成するた
め、本発明の請求項1に係るエンジンの吸気制御装置
は、図1に示すように、エンジン本体1の吸気系に設け
られ、エンジン運転状態により閉じてスワール流やタン
ブル流を発生し、または開いて全開吸気する吸気制御弁
24と、吸気制御弁24の下流に燃料噴射するインジェ
クタ26とが配置されるエンジンにおいて、エンジン運
転状態に応じて吸気制御弁24の弁開度を定め、前記弁
開度により吸気制御弁24を開閉制御する開閉制御手段
C1と、吸気制御弁24の弁開度から吸入空気の一次遅
れ値を減算した値で弁開閉時の一次遅れ補正量を算出す
る補正量算出手段C2と、インジェクタ26の燃料噴射
量を上記一次遅れ補正量に基づいて補正制御する燃料制
御手段C3とを備えることを特徴とする。
In order to achieve this object, an engine intake control device according to claim 1 of the present invention is provided in an intake system of an engine body 1 as shown in FIG. In an engine in which an intake control valve 24 that closes depending on the state to generate a swirl flow or a tumble flow, or opens and opens for full intake, and an injector 26 that injects fuel downstream of the intake control valve 24 are arranged according to the engine operating state. The opening degree of the intake control valve 24 is determined by the opening / closing control means C1 for controlling the opening / closing of the intake control valve 24 based on the valve opening degree, and the value obtained by subtracting the primary delay value of the intake air from the opening degree of the intake control valve 24. Correction amount calculation means C2 for calculating the primary delay correction amount when the valve is opened and closed, and fuel control means C3 for correcting and controlling the fuel injection amount of the injector 26 based on the primary delay correction amount. And wherein the door.

【0009】[0009]

【作用】従って、本発明の請求項1にあっては、エンジ
ン運転状態により吸気制御弁24が開閉することで吸気
状態が変化するが、このときインジェクタ26により燃
料噴射される。そして例えば低負荷領域で吸気制御弁2
4が閉じると、吸気流によりシリンダ内にスワール流等
を発生し、このため燃料と空気の混合が促進して燃焼が
改善される。また高負荷領域で吸気制御弁24が開く
と、全開吸気してエンジン出力を向上する。
Therefore, according to the first aspect of the present invention, the intake state is changed by opening and closing the intake control valve 24 depending on the engine operating state. At this time, fuel is injected by the injector 26. Then, for example, in the low load region, the intake control valve 2
When 4 is closed, a swirl flow or the like is generated in the cylinder by the intake air flow, which promotes the mixing of fuel and air and improves combustion. When the intake control valve 24 opens in the high load region, the intake air is fully opened to improve the engine output.

【0010】一方、例えばエンジン負荷が低負荷から高
負荷に増大する場合は、開閉制御手段C1により吸気制
御弁24が弁開度を増すように制御される。このとき吸
気制御弁24が急激に開いて、吸入空気量の計測の一次
遅れが大きくなると、補正量算出手段C2で吸気制御弁
24の弁開度から吸入空気の一次遅れ値を減算した値で
弁開閉時の一次遅れ補正量が、正の値であって一次遅れ
と逆の関係で算出され、燃料制御手段C3でインジェク
タ26の燃料噴射量が増量補正される。そこで吸入空気
量の計測の遅れ分が燃料噴射量の増量で補われ、このた
め空燃比の変動が有効に抑制される。エンジン負荷が減
少する場合も、吸気制御弁24が急激に閉じると、弁開
閉時の一次遅れ補正量が負の値になって燃料噴射量が減
量補正される。そこでこの場合も、吸入空気量の計測の
遅れ分が燃料噴射量の減量で補われ、このため空燃比の
変動が有効に抑制される。
On the other hand, for example, when the engine load increases from a low load to a high load, the opening / closing control means C1 controls the intake control valve 24 to increase the valve opening degree. At this time, when the intake control valve 24 suddenly opens and the primary delay of the intake air amount measurement becomes large, the correction amount calculation means C2 subtracts the primary delay value of the intake air from the valve opening of the intake control valve 24. The first-order lag correction amount at the time of opening / closing the valve is a positive value and calculated in an inverse relationship to the first-order lag, and the fuel control amount C3 increases and corrects the fuel injection amount of the injector 26. Therefore, the delay of the measurement of the intake air amount is compensated by the increase of the fuel injection amount, so that the fluctuation of the air-fuel ratio is effectively suppressed. Even when the engine load decreases, when the intake control valve 24 is closed abruptly, the primary delay correction amount at the time of opening / closing the valve becomes a negative value, and the fuel injection amount is reduced and corrected. Therefore, also in this case, the delay amount of the measurement of the intake air amount is compensated by the reduction of the fuel injection amount, and thus the fluctuation of the air-fuel ratio is effectively suppressed.

【0011】[0011]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図2において、タンブル制御するエンジンの全体
の構成について説明する。符号1はエンジン本体であ
り、シリンダ2にピストン3が移動可能に挿入され、燃
焼室4には吸気弁5を有する吸気ポート6、排気弁7を
有する排気ポート8が設けられる。排気ポート8は排気
管9に連通して、この排気管9に排気ガスを浄化する触
媒10が設けられる。
Embodiments of the present invention will be described below with reference to the drawings. In FIG. 2, the overall configuration of the engine for tumble control will be described. Reference numeral 1 denotes an engine body, a piston 3 is movably inserted into a cylinder 2, and an intake port 6 having an intake valve 5 and an exhaust port 8 having an exhaust valve 7 are provided in the combustion chamber 4. The exhaust port 8 communicates with an exhaust pipe 9, and the exhaust pipe 9 is provided with a catalyst 10 for purifying exhaust gas.

【0012】吸気系において、エアクリーナ15がスロ
ットル弁16を介してサージタンク17に連通され、サ
ージタンク17が吸気管18を介して吸気ポート6に連
通する。またスロットル弁16には、アイドル制御弁1
1を有する通路12がバイパスして連通され、吸気管1
8と吸気ポート6にタンブル発生手段20が設けられ
る。
In the intake system, the air cleaner 15 is connected to the surge tank 17 via the throttle valve 16, and the surge tank 17 is connected to the intake port 6 via the intake pipe 18. Further, the throttle valve 16 includes an idle control valve 1
1, the passage 12 having a bypass passage 1 is communicated with the intake pipe 1
The tumble generating means 20 is provided in the intake port 6 and the intake port 6.

【0013】タンブル発生手段20は、吸気管18から
吸気ポート6の吸気弁5近傍に及ぶ領域の内部に隔壁2
1が設けられる。隔壁21は、ポート内部をシリンダ中
心の軸方向に向かう吸気流の上方通路22と、下方通路
23とに区画するように設置される。そして下方通路2
3にタンブル制御弁24が電磁式アクチュエータ25を
備えて開閉するように設けられ、閉じて上方通路22か
らのみ吸気することで、その吸気流によりシリンダ内の
軸方向に旋回するタンブル流を発生し、開いて多量の吸
気を行うことが可能になっている。また隔壁21の存在
により、吸気管18において常に連通する上方通路22
の側にインジェクタ26が、吸気ポート6に燃料噴射す
るように設置される。
The tumble generating means 20 has a partition wall 2 inside the region extending from the intake pipe 18 to the vicinity of the intake valve 5 of the intake port 6.
1 is provided. The partition wall 21 is installed so as to divide the inside of the port into an upper passage 22 and a lower passage 23 for intake air flowing in the axial direction of the cylinder center. And the lower passage 2
3, a tumble control valve 24 is provided with an electromagnetic actuator 25 so as to be opened and closed, and by closing and sucking only from the upper passage 22, a tumble flow swirling in the axial direction in the cylinder is generated by the intake flow. , It is possible to open and take a large amount of air. Further, due to the presence of the partition wall 21, the upper passage 22 which is always in communication with the intake pipe 18
An injector 26 is installed on the side of the so as to inject fuel into the intake port 6.

【0014】電子制御系として、エンジン回転数N等を
検出するクランク角センサ30、吸入空気量Qを検出す
るエアフローメータ31、スロットル開度θを検出する
スロットル開度センサ32、空燃比の状態を検出するO
2センサ33等を有する。これらセンサ信号は制御ユニ
ット40に入力して処理され、開閉信号をアクチュエー
タ25に出力し、噴射信号をインジェクタ26に出力す
る。
The electronic control system includes a crank angle sensor 30 for detecting the engine speed N, an air flow meter 31 for detecting the intake air amount Q, a throttle opening sensor 32 for detecting the throttle opening θ, and an air-fuel ratio state. O to detect
It has two sensors 33 and the like. These sensor signals are input to the control unit 40 and processed, and an opening / closing signal is output to the actuator 25 and an injection signal is output to the injector 26.

【0015】図3において、制御ユニット40の機能ブ
ロック図について説明する。タンブル制御弁開閉制御系
41について説明すると、エンジン回転数Nとスロット
ル開度θが入力する運転領域検出手段42を有し、両者
の関係により運転領域を判断するのであり、この運転領
域の信号がマツプ設定手段44を介して開閉制御手段4
3に入力する。開閉制御手段43は、マップ設定手段4
4の弁開度マップを補間計算付で参照して、運転領域に
応じた弁開度を設定する。そして弁開度信号は駆動手段
45によりアクチュエータ25に出力して、タンブル制
御弁24を開閉制御する。
A functional block diagram of the control unit 40 will be described with reference to FIG. The tumble control valve opening / closing control system 41 will be described. The tumble control valve opening / closing control system 41 has an operating region detecting means 42 for inputting the engine speed N and the throttle opening θ, and determines the operating region based on the relationship between the two. Opening / closing control means 4 via map setting means 44
Enter in 3. The opening / closing control means 43 is the map setting means 4
By referring to the valve opening map of No. 4 with interpolation calculation, the valve opening according to the operating region is set. Then, the valve opening signal is output to the actuator 25 by the driving means 45 to control the opening and closing of the tumble control valve 24.

【0016】弁開度マップは、図4に示すようにスロッ
トル開度θの小さい低負荷領域が弁開度0%の全閉であ
ってタンブルモードが、スロットル開度θの大きい高負
荷領域が弁開度100%の全開であって全開吸気モード
が設定される。そしてエンジン回転数Nの低速側ではタ
ンブルモードが広く、高速側では全開吸気モードが広く
なっている。また中負荷領域が中間の弁開度でタンブル
モードと全開吸気モードの中間状態である併合モードが
設定され、この場合に複数の弁開度がスロットル開度θ
とエンジン回転数Nに対して増大関数的に設定される。
これにより運転、走行状態によりスロットル開度θとエ
ンジン回転数Nが増減する際に、開度変化して併合モー
ド中であっても吸気の流れの状態を変化させることが可
能になっている。
In the valve opening map, as shown in FIG. 4, the low load area in which the throttle opening θ is small is fully closed with the valve opening of 0% and the tumble mode is in the high load area in which the throttle opening θ is large. The fully open intake mode is set with the valve opening being 100%. The tumble mode is wide on the low speed side of the engine speed N, and the full open intake mode is wide on the high speed side. In addition, a merged mode, which is an intermediate state between the tumble mode and the fully open intake mode, is set in the middle load range with an intermediate valve opening.
And an increasing function with respect to the engine speed N.
As a result, when the throttle opening θ and the engine speed N increase / decrease depending on the driving and running conditions, it is possible to change the state of the intake air flow even when the opening changes and the merge mode is in effect.

【0017】またタンブル制御弁24の開度変化でモー
ド切換する場合であっても、切換速度により空燃比が変
動することを抑制するため、空燃比補正制御系46が設
けられる。ここで燃料噴射量Tiは、エアフローメータ
31により計測される吸入空気量Qとエンジン回転数N
等により演算されるが、エアーフローメータ31とタン
ブル制御弁24が離れているため吸入空気量Qが一次遅
れ状態で計測され、切換速度が速い場合は、吸入空気量
Qの計測と共に燃料噴射量Tiの演算が間に合わなくな
る。そこで弁開度が変化する場合に、吸入空気量Qの計
測の一次遅れを補うような空燃比変動モデルを作成し、
この空燃比変動モデルに基づいて燃料噴射量Tiを補正
すれば良い。
An air-fuel ratio correction control system 46 is provided in order to prevent the air-fuel ratio from changing due to the switching speed even when the mode is switched by changing the opening of the tumble control valve 24. Here, the fuel injection amount Ti is the intake air amount Q and the engine speed N measured by the air flow meter 31.
Although the air flow meter 31 and the tumble control valve 24 are apart from each other, the intake air amount Q is measured in a first-order lag state, and when the switching speed is fast, the intake air amount Q is measured and the fuel injection amount is calculated. The calculation of Ti will not be in time. Therefore, when the valve opening changes, an air-fuel ratio fluctuation model is created to compensate for the primary delay of the measurement of the intake air amount Q,
The fuel injection amount Ti may be corrected based on this air-fuel ratio variation model.

【0018】そこで空燃比補正制御系46は、運転領域
に応じたマップによる弁開度が入力する空燃比変動モデ
ル作成手段47を有する。そして弁開度VS、一次遅れ
の前回の値VSNo、ナマシ定数aにより弁開度の一次
遅れ値VSNを、以下のように算出する。 VSN=|(a−1)・VSNo+VS|/a ここで一次遅れを補う空燃比変動モデルHvは、弁開度
VSから一次遅れ値VSNを減算すれば良いので、以下
のように算出する。 Hv=VS−VSN
Therefore, the air-fuel ratio correction control system 46 has an air-fuel ratio variation model creating means 47 for inputting the valve opening according to a map according to the operating region. Then, the first-order lag value VSN of the valve opening is calculated as follows from the valve-opening degree VS, the previous value VSNo of the first-order lag, and the idle constant a. VSN = | (a-1) .VSNo + VS | / a Here, the air-fuel ratio variation model Hv that compensates for the first-order lag may be calculated as follows because the first-order lag value VSN may be subtracted from the valve opening degree VS. Hv = VS-VSN

【0019】また運転領域の信号は補正係数設定手段4
8に入力して、運転領域に応じた補正係数Kvをマップ
参照して定め、この補正係数Kvと空燃比変動モデルH
vが補正量算出手段49に入力して、弁開閉時の補正量
HTCVを以下のように算出する。 HTCV=Kv・Hv (−1.0<HTCV<1.
0) これによりタンブル→全開吸気切換時に弁が速く開いて
吸入空気量Qの計測の一次遅れが大きいほど、補正量H
TCVが正の大きい値となる。逆に全開吸気→タンブル
切換時に弁が速く閉じて同様に遅れが大きいほど、補正
量HTCVが負の大きい値となる。
The signal in the operating region is used as the correction coefficient setting means 4
8 to determine the correction coefficient Kv according to the operating region by referring to the map, and the correction coefficient Kv and the air-fuel ratio variation model H
v is input to the correction amount calculation means 49, and the correction amount HTCV when the valve is opened and closed is calculated as follows. HTCV = Kv · Hv (-1.0 <HTCV <1.
0) As a result, as the valve opens faster at the time of switching from tumble to full-open intake air and the primary delay in measuring the intake air amount Q increases, the correction amount H increases.
TCV has a large positive value. On the contrary, the correction amount HTCV becomes a larger negative value as the valve closes faster at the time of full open intake → tumble switching and the delay similarly increases.

【0020】燃料噴射制御系50について説明すると、
エアフローメータ31により計測される吸入空気量Qと
エンジン回転数Nが基本噴射量算出手段51に入力し
て、基本噴射量Tp(K・Q/N)を算出する。O2セ
ンサ33の信号がフィードバック係数設定手段52に入
力して空燃比の状態を検出し、リーンまたはリッチに応
じたフィードバック係数LAMBDAを設定する。スロ
ットル開度センサ32の信号が燃料補正係数設定手段5
3に入力して、加速、減速等の場合の補正係数COEF
を設定する。これら基本噴射量Tp、係数LAMBD
A,COEF、及び弁開閉時の補正量HTCVは燃料噴
射量演算手段54に入力して、燃料噴射量Tiを以下の
ように演算する。 Ti=Tp(1+HTCV)・COEF・LAMBDA
Explaining the fuel injection control system 50,
The intake air amount Q and the engine speed N measured by the air flow meter 31 are input to the basic injection amount calculation means 51 to calculate the basic injection amount Tp (K · Q / N). The signal from the O2 sensor 33 is input to the feedback coefficient setting means 52 to detect the state of the air-fuel ratio and set the feedback coefficient LAMBDA according to lean or rich. The signal from the throttle opening sensor 32 is the fuel correction coefficient setting means 5
Input to 3 and correct coefficient COEF for acceleration, deceleration, etc.
Set. These basic injection amount Tp, coefficient LAMBD
A, COEF, and the correction amount HTCV at the time of opening and closing the valve are input to the fuel injection amount calculation means 54, and the fuel injection amount Ti is calculated as follows. Ti = Tp (1 + HTCV) / COEF / LAMBDA

【0021】これにより上述のタンブル→全開吸気切換
時に弁が速く開いて吸入空気量Qの計測の一次遅れが大
きいほど、正の大きい値の補正量HTCVの項で燃料噴
射量Tiが増量補正される。逆に全開吸気→タンブル切
換時に弁が速く閉じて同様に遅れが大きいほど、負の大
きい値の補正量HTCVの項で燃料噴射量Tiが減量補
正される。そして燃料噴射量Tiの噴射信号が駆動手段
55によりインジェクタ26に出力するように構成され
る。
As a result, as the valve opens faster and the primary delay in measuring the intake air amount Q increases during the above-described tumble → fully open intake switching, the fuel injection amount Ti is increased and corrected by the term of the correction amount HTCV having a larger positive value. It On the contrary, as the valve closes faster at the time of full-open intake-> tumble switching and the delay similarly increases, the fuel injection amount Ti is reduced and corrected by the term of the correction amount HTCV having a larger negative value. Then, the injection signal of the fuel injection amount Ti is configured to be output to the injector 26 by the drive unit 55.

【0022】次に、この実施例の作用について説明す
る。先ず、エンジン運転時にスロットル弁16の開度に
応じた空気がエアクリーナ15からサージタンク17に
流入する。またインジェクタ26により吸気ポート6の
常に連通する上方通路22を介して燃料が噴射され、こ
れら空気と燃料とが吸気行程で吸気弁5が開く際にエン
ジン本体1のシリンダ2に供給される。そして空気と燃
料との混合気が爆発行程で燃焼し、この燃焼ガスが排気
行程で排気弁7が開く際に排気ポート8を介して排気管
9に排出され、その排気ガスが触媒10を通過して有害
成分が除去され浄化される。
Next, the operation of this embodiment will be described. First, air corresponding to the opening of the throttle valve 16 flows into the surge tank 17 from the air cleaner 15 when the engine is operating. Further, fuel is injected by the injector 26 through the upper passage 22 which is always in communication with the intake port 6, and the air and the fuel are supplied to the cylinder 2 of the engine body 1 when the intake valve 5 is opened in the intake stroke. Then, the air-fuel mixture burns in the explosion stroke, and this combustion gas is discharged to the exhaust pipe 9 via the exhaust port 8 when the exhaust valve 7 opens in the exhaust stroke, and the exhaust gas passes through the catalyst 10. Then, harmful components are removed and purified.

【0023】このエンジン運転時に、制御ユニット40
の運転領域検出手段42でスロットル開度θとエンジン
回転数Nにより運転領域が判断され、開閉制御手段43
で図4の弁開度マップを参照して弁開度が選択される。
そこで低負荷のタンブルモードでは、弁開度0%の全閉
信号がアクチュエータ25に出力してタンブル制御弁2
4を閉じ、隔壁21の下方通路23を遮断する。このた
め上方通路22のみからシリンダ中心の軸方向に吸気さ
れ、この吸気流によりシリンダ内の軸方向に旋回するタ
ンブル流を発生する。そしてタンブル流により空気と燃
料の混合が促進し、良好に燃焼して運転性、燃費等が向
上する。
During this engine operation, the control unit 40
The operating range detection means 42 determines the operating range based on the throttle opening θ and the engine speed N, and the opening / closing control means 43.
Then, the valve opening is selected with reference to the valve opening map of FIG.
Therefore, in the low load tumble mode, a fully closed signal with a valve opening of 0% is output to the actuator 25 and the tumble control valve 2
4 is closed and the lower passage 23 of the partition wall 21 is shut off. Therefore, air is sucked from only the upper passage 22 in the axial direction of the cylinder center, and a tumble flow swirling in the axial direction in the cylinder is generated by this intake flow. Then, the tumble flow promotes the mixing of air and fuel, and burns well to improve drivability, fuel efficiency, and the like.

【0024】このタンブルモードでは、タンブル制御弁
24が全閉したままで、吸入空気量Qが緩やかに変化し
てその計測の遅れがほとんど無い。そこでVS=VSN
で、HTCV=0であるとしても差しつかえない。この
ため制御ユニット40の燃料噴射量演算手段54で燃料
噴射量Tiが、吸入空気量Qとエンジン回転数Nによる
基本噴射量Tp、O2センサ33の空燃比によるフィー
ドバック係数LAMBDA、スロットル開度θ等による
補正係数COEFにより、運転状態等に応じて演算され
る。また混合気の空燃比が理論空燃比付近にフィードバ
ック制御され、このため触媒10により有効に排気ガス
が浄化される。
In this tumble mode, the tumble control valve 24 remains fully closed, and the intake air amount Q changes gently so that there is almost no delay in its measurement. So VS = VSN
Therefore, even if HTCV = 0, it does not matter. Therefore, the fuel injection amount Ti calculated by the fuel injection amount calculation means 54 of the control unit 40 is the basic injection amount Tp based on the intake air amount Q and the engine speed N, the feedback coefficient LAMBDA based on the air-fuel ratio of the O2 sensor 33, the throttle opening θ, etc. The correction coefficient COEF is calculated according to the operating state and the like. Further, the air-fuel ratio of the air-fuel mixture is feedback-controlled to near the stoichiometric air-fuel ratio, so that the catalyst 10 effectively purifies the exhaust gas.

【0025】中負荷の併合モードでは、図4の弁開度マ
ップでスロットル開度θとエンジン回転数Nによる運転
領域に応じた弁開度が設定され、この開度信号がアクチ
ュエータ25に出力してタンブル制御弁24が所定の開
度で開く。このため吸気ポート6の下方通路23からも
適宜吸気して所定の吸入空気量Qが確実にシリンダ2に
導入され、且つ上方通路22による吸気流でタンブル流
を発生する。このため運転性とエンジン出力が共に向上
する。この場合にエンジン回転数Nが変化すると、弁開
度マップによりタンブル制御弁24の弁開度も変化する
が、緩やかに変化するため、弁開度VSと一次遅れ値V
SNの差は小さく、したがって空燃比変動モデルHVも
小さくなり補正量HTCVも0に近づく。このため燃料
噴射量Tiは少し補正されるだけで空燃比に及ぼす影響
もごく僅かであり、排気ガスの浄化も良い。
In the medium load merging mode, the valve opening degree map is set in the valve opening degree map shown in FIG. 4 according to the operating range by the throttle opening degree θ and the engine speed N, and this opening degree signal is output to the actuator 25. The tumble control valve 24 opens at a predetermined opening. Therefore, a predetermined intake air amount Q is surely introduced into the cylinder 2 by appropriately intake from the lower passage 23 of the intake port 6, and a tumble flow is generated by the intake flow from the upper passage 22. Therefore, both drivability and engine output are improved. In this case, when the engine speed N changes, the valve opening of the tumble control valve 24 also changes according to the valve opening map, but since it changes gently, the valve opening VS and the primary delay value V
Since the difference in SN is small, the air-fuel ratio fluctuation model HV also becomes small and the correction amount HTCV also approaches 0. For this reason, the fuel injection amount Ti is slightly corrected, but the influence on the air-fuel ratio is negligible, and the exhaust gas can be purified well.

【0026】高負荷の全開吸気モードでは、弁開度10
0%の全開信号がアクチュエータ25に出力してタンブ
ル制御弁24を開く。そこで吸気ポート6に多量の空気
が吸気され、吸気空入量に応じた燃料が空気利用率の高
い状態で良好に燃焼して、エンジン出力等を向上する。
この全開吸気モードの場合も、弁開度の変化がなくHT
CV=0であるため、タンブルモードと同様に燃料噴射
量Tiが演算され、且つ排気ガスの浄化も良い。
In the high load full-open intake mode, the valve opening 10
A 0% full open signal is output to the actuator 25 to open the tumble control valve 24. Therefore, a large amount of air is taken into the intake port 6, and the fuel corresponding to the intake air intake amount is burned well in a state where the air utilization rate is high, and the engine output and the like are improved.
Even in this fully open intake mode, there is no change in the valve opening and the HT
Since CV = 0, the fuel injection amount Ti is calculated as in the tumble mode, and the exhaust gas can be purified.

【0027】次いで、モード切換時の制御を、図5のフ
ローチャートと図6および図7のタイムチャートを用い
て説明する。先ず、フローチャートのステップS1でス
ロットル開度θとエンジン回転数Nを読込み、ステップ
S2で図4の弁開度マップを参照してタンブル制御弁2
4の弁開度VSを定める。そこでスロットル開度θが増
大するタンブル→全開吸気切換時には、弁開度VSが増
大関数的に設定される。
Next, the control at the time of mode switching will be described with reference to the flowchart of FIG. 5 and the time charts of FIGS. 6 and 7. First, the throttle opening θ and the engine speed N are read in step S1 of the flowchart, and the tumble control valve 2 is read in step S2 with reference to the valve opening map of FIG.
The valve opening VS of 4 is determined. Therefore, the valve opening VS is set in an increasing function when the tumble → full-open intake air switching is performed in which the throttle opening θ increases.

【0028】この場合にタイムチャートの時点t1でス
ロットル開度θが急開して吸入空気量Qも急増すると、
弁開度VSが急激に大きくなり、タンブル制御弁24が
直ちに開いて速い切換速度で全開吸気モード側に切換わ
る。一方、このときエアフローメータ31で計測される
吸入空気量Qは、図6(a)の破線のように一次遅れで
増大する。
In this case, when the throttle opening θ suddenly opens and the intake air amount Q also rapidly increases at time t1 in the time chart,
The valve opening VS rapidly increases and the tumble control valve 24 immediately opens to switch to the full-open intake mode side at a high switching speed. On the other hand, the intake air amount Q measured by the air flow meter 31 at this time increases with a first-order delay as indicated by the broken line in FIG.

【0029】その後ステップS3で一次遅れ値VSN
を、弁開度VS、一次遅れ値の前回の値VSNo、ナマ
シ定数aの関数で算出することで、図6(b)のように
吸入空気量計測状態に対応した一次遅れ値VSNが設定
される。そしてステップS4で空燃比変動モデルHv
を、弁開度VSから一次遅れ値VSNを減算して算出
し、ステップS5で弁開閉時の補正量HTCVを、補正
係数Kvと空燃比変動モデルHvを乗算して算出する。
そこで補正量HTCVが、図6(c)のように正の値で
あって一次遅れ値VSNと逆の関係で、最初大きくてそ
の後徐々に減少したものになる。その後ステップS6で
この補正量HTCVを用いて燃料噴射量Tiを演算する
ことで、この燃料噴射量Tiが増量補正される。
After that, in step S3, the primary delay value VSN is
Is calculated by a function of the valve opening degree VS, the previous value VSNo of the first-order lag value, and the lean constant a, the first-order lag value VSN corresponding to the intake air amount measurement state is set as shown in FIG. 6B. It Then, in step S4, the air-fuel ratio variation model Hv
Is calculated by subtracting the first-order lag value VSN from the valve opening degree VS, and in step S5, the correction amount HTCV at the time of opening / closing the valve is calculated by multiplying the correction coefficient Kv and the air-fuel ratio variation model Hv.
Therefore, as shown in FIG. 6C, the correction amount HTCV has a positive value and is inversely related to the first-order lag value VSN, and becomes large at first and then gradually decreases. Thereafter, in step S6, the fuel injection amount Ti is calculated using the correction amount HTCV, and the fuel injection amount Ti is increased and corrected.

【0030】このため図6(a)の破線のように計測さ
れる吸入空気量Qの一次遅れ分が、燃料噴射量Tiの図
6(c)の補正量HTCVによる増量で補われ、この結
果燃料噴射量Tiが図6(d)のように実際の吸入空気
量Qに対応してステップ状に増大する。そこで空燃比
は、図6(e)の一点鎖線のようにリーン側に変動する
ことが抑制され、実線のようにほぼ一定化して燃焼や排
気ガスの浄化が良好になる。
Therefore, the first-order lag amount of the intake air amount Q measured as shown by the broken line in FIG. 6 (a) is compensated by the increase in the fuel injection amount Ti by the correction amount HTCV in FIG. 6 (c). The fuel injection amount Ti increases stepwise corresponding to the actual intake air amount Q as shown in FIG. 6 (d). Therefore, the air-fuel ratio is suppressed from changing to the lean side as indicated by the alternate long and short dash line in FIG. 6 (e), and is almost constant as indicated by the solid line, and combustion and exhaust gas purification are improved.

【0031】切換速度が遅い場合は、タンブル制御弁2
4が図7のタイムチャートのようにマップ弁開度VSに
基づいて徐々に開く。このため吸入空気量Qの変動幅が
小さくなって、トルクショックの少ない状態でスムース
に切換わる。このとき吸入空気量Qの計測の遅れは少な
く、これに対応して弁開閉時の補正量HTCVも非常に
小さくなって、燃料噴射量Tiは少し補正するだけで空
燃比の変動が抑制される。
When the switching speed is slow, the tumble control valve 2
4 gradually opens based on the map valve opening degree VS as shown in the time chart of FIG. 7. Therefore, the fluctuation range of the intake air amount Q becomes small, and the smooth switching is performed in the state where the torque shock is small. At this time, there is little delay in the measurement of the intake air amount Q, and the correction amount HTCV at the time of valve opening and closing becomes correspondingly small, and the fluctuation of the air-fuel ratio is suppressed by slightly correcting the fuel injection amount Ti. .

【0032】次いで、スロットル開度θが減少する全開
吸気→タンブル切換時について説明する。この場合に図
6のタイムチャートの時点t2でスロットル開度θが急
閉すると、弁開度VSが急激に小さくなり、タンブル制
御弁24が直ちに閉じて速い切換速度でタンブルモード
側に切換わる。このときもエアフローメータ31で計測
される吸入空気量Qは、図6(a)の破線のように一次
遅れで減少する。そして一次遅れ値VSNが図6(b)
のように吸入空気量計測状態に対応して算出され、弁開
閉時の補正量HTCVが図6(c)のように負の値であ
って一次遅れ値VSNと逆の関係で算出され、この補正
量HTCVを用いて燃料噴射量Tiが減量補正される。
Next, a description will be given of the case where the full-open intake air → tumble is changed when the throttle opening θ decreases. In this case, when the throttle opening θ is suddenly closed at time t2 in the time chart of FIG. 6, the valve opening VS is rapidly reduced, the tumble control valve 24 is immediately closed, and the tumble mode side is switched at a high switching speed. Also at this time, the intake air amount Q measured by the air flow meter 31 decreases with a first-order lag as shown by the broken line in FIG. The first-order lag value VSN is shown in FIG.
As shown in FIG. 6C, the correction amount HTCV at the time of opening / closing the valve is a negative value and is calculated in the inverse relationship with the primary delay value VSN. The fuel injection amount Ti is reduced and corrected using the correction amount HTCV.

【0033】このため図6(a)の破線のように計測さ
れる吸入空気量Qの一次遅れ分が、燃料噴射量Tiの図
6(c)の補正量HTCVによる減量で同様に補われ、
この結果燃料噴射量Tiが図6(d)のように実際の吸
入空気量Qに対応してステップ状に減少する。そこで空
燃比は、図6(e)の一点鎖線のようにリッチ側に変動
することが抑制され、燃焼や排気ガスの浄化が良好にな
る。
Therefore, the primary delay amount of the intake air amount Q measured as shown by the broken line in FIG. 6 (a) is similarly compensated by the reduction of the fuel injection amount Ti by the correction amount HTCV in FIG. 6 (c),
As a result, the fuel injection amount Ti decreases stepwise corresponding to the actual intake air amount Q as shown in FIG. Therefore, the air-fuel ratio is suppressed from fluctuating toward the rich side as indicated by the alternate long and short dash line in FIG. 6 (e), and combustion and exhaust gas purification are improved.

【0034】この場合も切換速度が遅いと、タンブル制
御弁24が図7のタイムチャートのようにマップ弁開度
VSに基づき徐々に閉じてスムースに切換わる。このと
き吸入空気量Qの計測の遅れは少なく、これに対応して
弁開閉時の補正量HTCVも非常に小さくなって、燃料
噴射量Tiは少し補正するだけで空燃比の変動が抑制さ
れる。
Also in this case, when the switching speed is slow, the tumble control valve 24 is gradually closed and smoothly switched based on the map valve opening VS as shown in the time chart of FIG. At this time, there is little delay in the measurement of the intake air amount Q, and the correction amount HTCV at the time of valve opening and closing becomes correspondingly small, and the fluctuation of the air-fuel ratio is suppressed by slightly correcting the fuel injection amount Ti. .

【0035】以上、本発明の実施例について説明した
が、吸気制御弁としてスワール流を発生するスワール制
御弁の場合にも同様に適応できる。吸気制御弁を備え、
エアフローメータにより吸入空気量を計測して燃料噴射
するものであれば、いずれのエンジンにも適応できる。
Although the embodiment of the present invention has been described above, the invention can be similarly applied to the case of a swirl control valve that generates a swirl flow as an intake control valve. Equipped with intake control valve,
Any engine can be applied as long as it measures the amount of intake air with an air flow meter and injects fuel.

【0036】実施例では、吸気制御弁をエンジン運転状
態応じて設定される弁開度マップに基づきに開閉する場
合について説明したが、吸気制御弁を切換ラインにより
全閉、全開制御する場合にも適応できる。弁開閉時の補
正量は、直接空燃比変動モデルにより定めることもでき
る。
In the embodiment, the case where the intake control valve is opened / closed on the basis of the valve opening map set according to the engine operating state has been described, but the intake control valve is also fully closed / opened by the switching line. Can be adapted. The correction amount at the time of opening / closing the valve can be directly determined by the air-fuel ratio fluctuation model.

【0037】[0037]

【発明の効果】以上に説明したように、本発明の請求項
1に係るエンジンの吸気制御装置では、吸気制御弁を開
閉してスワール流やタンブル流を発生し、または全開吸
気する方式において、エンジン運転状態により吸気制御
弁の弁開度マップ参照して弁開度を定め、この弁開度に
より吸気制御弁を開閉制御する開閉制御手段と、吸気制
御弁の弁開度から吸気空気の一次遅れ値を減算した値で
弁開閉時の一次遅れ補正量を算出する補正量算出手段
と、インジェクタの燃料噴射量を一次遅れ補正量に基づ
いて補正制御する燃料制御手段とを備える構成であるか
ら、吸気制御弁の弁開度からその一次遅れ値を減算した
値で、空燃比変動モデルに対応した弁開閉時の一次遅れ
補正量を算出して燃料噴射量を補正するので、エンジン
負荷の急激な増減で吸気制御弁が急に開閉する場合の吸
入空気量の計測の遅れに伴う空燃比の変動を、有効に抑
制することができる。このため運転性や排気ガスの浄化
を良好に確保することができる。
As described above, in the engine intake control device according to claim 1 of the present invention, in the system in which the intake control valve is opened / closed to generate a swirl flow, a tumble flow, or a fully open intake, The opening degree of the intake air is determined by referring to the valve opening map of the intake control valve according to the engine operating state, and the opening and closing control means for controlling the opening and closing of the intake control valve by this valve opening degree and the primary opening of the intake air from the opening degree of the intake control valve. Since the configuration is provided with the correction amount calculation means for calculating the primary delay correction amount at the time of opening / closing the valve with the value obtained by subtracting the delay value, and the fuel control means for correcting and controlling the fuel injection amount of the injector based on the primary delay correction amount. , The value obtained by subtracting the first-order lag value from the valve opening of the intake control valve is used to calculate the first-order lag correction amount at the time of valve opening / closing corresponding to the air-fuel ratio fluctuation model to correct the fuel injection amount. Change The variation of the air-fuel ratio due to the delay in the measurement of the intake air amount when the air control valve is suddenly opened and closed, can be effectively suppressed. Therefore, it is possible to ensure good drivability and purification of exhaust gas.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るエンジンの吸気制御装置の構成を
示すブロック図である。
FIG. 1 is a block diagram showing a configuration of an engine intake control device according to the present invention.

【図2】本発明の実施例としてタンブル制御するエンジ
ンの全体の構成を示す説明図である。
FIG. 2 is an explanatory diagram showing an overall configuration of an engine that performs tumble control as an embodiment of the present invention.

【図3】電子制御系の機能ブロック図である。FIG. 3 is a functional block diagram of an electronic control system.

【図4】タンブル制御弁の弁開度マップを示す図であ
る。
FIG. 4 is a diagram showing a valve opening map of a tumble control valve.

【図5】モード切換時の制御を示すフローチャートであ
る。
FIG. 5 is a flowchart showing control at the time of mode switching.

【図6】タンブル制御弁の急開閉時の作動状態を示すタ
イムチャートである。
FIG. 6 is a time chart showing an operating state when the tumble control valve is opened and closed rapidly.

【図7】タンブル制御弁の緩やかな開閉時の作動状態を
示すタイムチャートである。
FIG. 7 is a time chart showing an operating state when the tumble control valve is gently opened and closed.

【符号の説明】[Explanation of symbols]

1 エンジン本体 24 タンブル制御弁(吸気制御弁) 26 インジェクタ C1 開閉制御手段 C2 補正量算出手段 C3 燃料制御手段 1 Engine Main Body 24 Tumble Control Valve (Intake Control Valve) 26 Injector C1 Open / Close Control Means C2 Correction Amount Calculation Means C3 Fuel Control Means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 エンジン本体の吸気系に設けられ、エン
ジン運転状態により閉じてスワール流やタンブル流を発
生し、または開いて全開吸気する吸気制御弁と、吸気制
御弁の下流に燃料噴射するインジェクタとが配置される
エンジンにおいて、 エンジン運転状態に応じて吸気制御弁の弁開度を定め、
前記弁開度により吸気制御弁を開閉制御する開閉制御手
段と、 吸気制御弁の弁開度から吸入吸気の一次遅れ値を減算し
た値で弁開閉時の一次遅れ補正量を算出する補正量算出
手段と、 インジェクタの燃料噴射量を上記一次遅れ補正量に基づ
いて補正制御する燃料制御手段とを備えることを特徴と
するエンジンの吸気制御装置。
1. An intake control valve, which is provided in an intake system of an engine body, is closed to generate a swirl flow or a tumble flow, or is opened to fully open the intake air, and an injector for injecting fuel downstream of the intake control valve. In the engine where and are arranged, the valve opening degree of the intake control valve is determined according to the engine operating state,
An opening / closing control means for controlling the opening / closing of the intake control valve according to the valve opening degree, and a correction amount calculation for calculating the primary delay correction amount during valve opening / closing with a value obtained by subtracting the primary delay value of the intake air intake from the valve opening degree of the intake control valve. An intake control device for an engine, comprising: a fuel injection amount control means for controlling the fuel injection amount of the injector based on the first-order delay correction amount.
JP6262454A 1994-10-26 1994-10-26 Intake control device for engine Pending JPH08121209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6262454A JPH08121209A (en) 1994-10-26 1994-10-26 Intake control device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6262454A JPH08121209A (en) 1994-10-26 1994-10-26 Intake control device for engine

Publications (1)

Publication Number Publication Date
JPH08121209A true JPH08121209A (en) 1996-05-14

Family

ID=17376017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6262454A Pending JPH08121209A (en) 1994-10-26 1994-10-26 Intake control device for engine

Country Status (1)

Country Link
JP (1) JPH08121209A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005061268A (en) * 2003-08-08 2005-03-10 Hitachi Ltd Combustion control device and method of cylinder injection type engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005061268A (en) * 2003-08-08 2005-03-10 Hitachi Ltd Combustion control device and method of cylinder injection type engine

Similar Documents

Publication Publication Date Title
JP5967064B2 (en) Control device for internal combustion engine
JPH02305335A (en) Combustion controller of engine
US8033097B2 (en) Exhaust control device for an internal combustion engine
JP3768780B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0331545A (en) Air-fuel ratio controller for internal combustion engine
JPH08121209A (en) Intake control device for engine
JP2006017003A (en) Control device for hydrogen-added internal combustion engine
JP2002188522A (en) Egr control device for engine with turbocharger
JP2001003804A (en) Engine intake condition detecting device
JP3767063B2 (en) Air-fuel ratio control device for internal combustion engine
JPS62342B2 (en)
JP5093007B2 (en) Control device for internal combustion engine
JPH08121180A (en) Intake control device for engine
JPS5872631A (en) Air-fuel ratio control method of engine
JP5206221B2 (en) Method and system for controlling the fuel supply of an internal combustion engine
JP3691078B2 (en) Air-fuel ratio switching control device for internal combustion engine
JPS6189936A (en) Control apparatus of engine
JPH08135484A (en) Air intake control device for engine
JPS645058Y2 (en)
JPH0330601Y2 (en)
JP4839267B2 (en) Fuel injection control device for diesel engine
JPS645059Y2 (en)
JPH059621B2 (en)
JPH02259217A (en) Exhaust device of engine
JPS61101634A (en) Air-fuel ratio controlling method for internal-combustion engine