JPH0812077A - Magnetic levitation conveying device for vacuum device - Google Patents

Magnetic levitation conveying device for vacuum device

Info

Publication number
JPH0812077A
JPH0812077A JP15384494A JP15384494A JPH0812077A JP H0812077 A JPH0812077 A JP H0812077A JP 15384494 A JP15384494 A JP 15384494A JP 15384494 A JP15384494 A JP 15384494A JP H0812077 A JPH0812077 A JP H0812077A
Authority
JP
Japan
Prior art keywords
levitation
chamber
robot
magnetic
hand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15384494A
Other languages
Japanese (ja)
Inventor
Toshio Koike
土志夫 小池
Muneyoshi Nishitsuji
宗芳 西辻
Hisatoshi Ueda
尚俊 上田
Tadashi Takematsu
忠 武松
Ken Maehira
謙 前平
Osamu Fujiki
収 藤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP15384494A priority Critical patent/JPH0812077A/en
Publication of JPH0812077A publication Critical patent/JPH0812077A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make not only straight motions but also a rotational motion in the magnetically levitated condition and provide possibility of service in an ultrahigh vacuum atmosphere by partitioning a guide of a conveying device by a vacuum bulkhead into a robot chamber and a conveying chamber, and furnishing a magnetic levitating means both on a robot hand and a moving element. CONSTITUTION:When a robot 7 hand 13 furnished with a magnetic levitating means is put in straight motions within a robot chamber 8, a moving element 9 furnished with magnetic levitating means in a conveying chamber 10 partitioned by a vacuum bulkhead 6 complies with these robot hand motions, is levitated magnetically, and makes also straight motions. When the hand 13 makes a rotational motion, the moving element 9 also makes rotational motion while levitated magnetically and can be moved to a work conveying position contactlessly by turning the hand 13. Because the internal space 5 of the conveying device 1 is partitioned by the vacuum bulkhead 6 into the robot chamber 8 and conveying chamber 10, only the element 9 exists in the internal space even through the conveying chamber 10 is put in an ultrahigh vacuum atmosphere, and there is no risk of impairing the atmosphere with ultrahigh vacuum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体製造工程に使用
されるスパッタリング装置やエッチング装置等の真空処
理装置の室内に於いて基板その他のワークの搬送に適用
される直線作動と回転作動を行なう真空装置用磁気浮上
搬送装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention performs a linear operation and a rotary operation applied to the transfer of substrates and other workpieces in a chamber of a vacuum processing apparatus such as a sputtering apparatus or an etching apparatus used in a semiconductor manufacturing process. The present invention relates to a magnetic levitation transport device for vacuum devices.

【0002】[0002]

【従来の技術】従来、例えば半導体製造工程に於いて、
シリコンウエハのワークに繰り返しスパッタリングやエ
ッチングをする場合、ワークを1基の搬送装置で幾つか
のスパッタリング室やエッチング室へ搬送することが行
なわれている。通常は、搬送装置として多関節ロボット
を使用し、搬送装置の周囲に配置したスパッタリング室
等へゲートバルブを介して処理すべきワークを送り込
み、処理済みのワークを次の室へ搬送している。
2. Description of the Related Art Conventionally, for example, in a semiconductor manufacturing process,
When a silicon wafer workpiece is repeatedly sputtered or etched, the workpiece is transported to several sputtering chambers or etching chambers by a single transport device. Normally, an articulated robot is used as a transfer device, and a work to be processed is sent to a sputtering chamber or the like arranged around the transfer device via a gate valve, and the processed work is transferred to the next chamber.

【0003】また、搬送装置として、磁気浮上搬送装置
として磁気固定子により磁気浮上移動子を無接触で移動
させ、これによりワークを直線的に搬送することも行な
われている。
Further, as a transfer device, a magnetic levitation transfer device is used as a magnetic levitation transfer device to move a magnetic levitation mover in a non-contact manner, thereby linearly transferring a work.

【0004】[0004]

【発明が解決しようとする課題】上記のように多関節ロ
ボットを使用すれば、ロボットのハンドが直線作動と回
転作動(R−θ作動)を行なえるので、ワークを比較的
自由に所望の箇所へ搬送することが出来るが、アームの
回転半径を小さくするためと作動に自由度を持たせるた
めにリンク間の関接部にベアリング等を用いてアームを
折り畳むようになっている。例えば、多関節ロボットの
アームを、第1アームと第2アーム及びワークを保持す
るハンド部に分け、各部を互いにリンクで結合し、リン
ク部間の関接部にベアリングを設けて各部間の角度を自
由に変えられるようにしているが、ベアリングからは摺
動による摩耗とこれに起因するダストが発生するので、
クリーンな環境は維持できない不都合がある。また、近
時は、成膜品質を上げる目的で成膜室のバックグランド
圧力を超高真空にすることが要望されており、そのため
には搬送装置も超高真空雰囲気に置くことが必要である
が、多関節ロボットでは、作動部分の構造の複雑さのた
めに放出ガスが多く、動作することにより圧力変動が生
じ、超高真空で使用するには適していない。磁気浮上搬
送装置は、摺動部がないのでダスト発生の問題はない
が、これの磁気浮上移動子の作動は直線作動等の単純な
ものに制限され、直線作動と回転作動を同時に行なうR
−θ型の作動は行なえず、多くの室を備えた真空装置の
搬送装置としては利用できない。
When the articulated robot is used as described above, since the robot hand can perform linear operation and rotational operation (R-θ operation), the work can be relatively freely moved to a desired place. However, in order to reduce the radius of gyration of the arm and to give flexibility to the operation, the arm is folded using a bearing or the like at the joint between the links. For example, an arm of an articulated robot is divided into a first arm, a second arm, and a hand part that holds a work, the parts are connected to each other by a link, and a bearing is provided at a joint part between the link parts to form an angle between the parts. Although it is possible to freely change, the bearing causes wear due to sliding and dust due to this, so
There is a disadvantage that a clean environment cannot be maintained. Further, recently, it is required to make the background pressure of the film forming chamber an ultrahigh vacuum for the purpose of improving the film forming quality. For that purpose, it is necessary to place the transfer device in an ultrahigh vacuum atmosphere. However, in an articulated robot, a large amount of gas is released due to the complexity of the structure of the operating portion, and pressure fluctuation occurs due to operation, which is not suitable for use in ultra-high vacuum. Since the magnetic levitation transfer device has no sliding part, it does not have a problem of dust generation, but the operation of the magnetic levitation mover is limited to a simple one such as a linear operation, and the linear operation and the rotary operation are simultaneously performed.
The -θ type operation cannot be performed and cannot be used as a transfer device of a vacuum device having many chambers.

【0005】本発明は、磁気浮上状態で直線作動のみな
らず回転作動を行なえ、超高真空の雰囲気での使用に適
した真空装置用磁気浮上搬送装置を提供することを目的
とするものである。
It is an object of the present invention to provide a magnetic levitation transfer device for a vacuum device which can perform not only linear operation but also rotational operation in a magnetically levitated state and is suitable for use in an ultrahigh vacuum atmosphere. .

【0006】[0006]

【課題を解決するための手段】本発明では、搬送装置の
室内を、真空隔壁を介して駆動用のロボットを収容した
気密のロボット室とワーク搬送用の移動子を収容した搬
送室とに区画分離し、該ロボットのハンドと該移動子の
夫々に該移動子を磁気浮上させて移動させる磁気浮上装
置を設けることにより、上記の目的を達成するようにし
た。上記の目的は、該移動子を長手に形成してその先端
部にワークを保持する静電チャック等の保持装置を設
け、上記磁気浮上手段を、該移動子の中間部に設けた浮
上用磁性体と、該浮上用磁性体と対向させて上記ハンド
に設けた浮上制御用電磁石とで構成して該移動子を片持
支持状態で磁気浮上させ、該保持装置への給電を該ハン
ドに設けた1次トランスと該移動子にケースに収容して
設けた2次トランスの分離型トランスを介して行ない、
該2次トランスを、該保持装置のワーク保持時に於ける
該移動子の重心移動を該磁気浮上手段の範囲内とする位
置に設置することにより、より適切に達成できる。該ロ
ボット室を該搬送室よりも高い圧力に制御すると共に両
室の差圧は一定値以下に制御し、更には該磁気浮上装置
を、該移動子の左右に対称に複数個ずつ設けた浮上用磁
性体と、該ハンドの各浮上用磁性体と対応する位置に夫
々設けた浮上制御用電磁石とで構成することも可能であ
る。
According to the present invention, the chamber of the transfer device is divided into an airtight robot chamber containing a driving robot and a transfer chamber containing a moving element for transferring a work through a vacuum partition. The above-mentioned object is achieved by providing a magnetic levitation device that separates the robot and each of the mover to move the mover magnetically. For the above-mentioned purpose, a holding device such as an electrostatic chuck for holding the work is provided at the tip of the moving element formed in the longitudinal direction, and the magnetic levitation means is provided in the middle part of the moving element for levitation. Body and a levitation control electromagnet provided on the hand facing the levitation magnetic body to magnetically levitate the mover in a cantilevered state, and to supply power to the holding device to the hand And a secondary transformer separated from the primary transformer and a secondary transformer housed in the case in the mover.
This can be achieved more appropriately by installing the secondary transformer at a position where the movement of the center of gravity of the moving element when holding the work of the holding device is within the range of the magnetic levitation means. The robot chamber is controlled to a pressure higher than that of the transfer chamber, the differential pressure between the two chambers is controlled to be a certain value or less, and further, a plurality of the magnetic levitation devices are provided symmetrically on the left and right of the mover. It is also possible to configure the magnetic material for use with a floating control electromagnet provided at a position corresponding to each magnetic material for floating of the hand.

【0007】[0007]

【作用】ロボット室内でロボットの磁気浮上手段を設け
たハンドが直線運動すると、これに追従して真空隔壁を
隔てた搬送室内の磁気浮上手段を取付けた移動子が磁気
浮上して直線運動し、該ハンドが回転運動するときは移
動子も磁気浮上のまま回転することになり、該ハンドを
操作して該移動子を必要なワーク搬送位置に無接触で移
動させることができる。搬送装置の室内は、ロボットを
収容した気密のロボット室と、移動子を収容した搬送室
とに真空隔壁を介して区画分離されているので、該搬送
室を超高真空雰囲気としても、その室内には移動子のみ
が配置されているにすぎず、複雑な構成で表面積が大き
くガス放出の多いロボットは隔離されているから、超高
真空の雰囲気は損なわれることがない。また、ロボット
室内は気密であり、その室内を搬送室の圧力よりも高い
数百Pa程度に真空排気しておくことによりロボットの
作動に差支えないように真空隔壁の撓みを防止でき、数
百Pa程度の真空中ではロボットの摺動部の潤滑に通常
の潤滑油を使用できるため保守が安価になり、摺動部に
ベアリングを使用して耐久性を向上させてもダストや放
出ガスが搬送室へ侵入することがなく、搬送室につなが
る空間をクリーンな雰囲気に維持できる。従って、ロボ
ットとして折り畳み機構や多段梯子機構等の多関節を備
えた複雑な構造のものを使用でき、ハンドを小さな回転
半径で動作させることができると共にロボットを小さく
構成できる。
When the hand provided with the magnetic levitation means of the robot moves linearly in the robot chamber, the mover attached with the magnetic levitation means in the transfer chamber, which follows the movement of the robot, magnetically levitates and linearly moves, When the hand makes a rotational movement, the mover also rotates while being magnetically levitated, and the hand can be operated to move the mover to a required work transfer position without contact. Since the chamber of the transfer device is divided into an airtight robot chamber containing a robot and a transfer chamber containing a moving element through a vacuum partition, even if the transfer chamber has an ultrahigh vacuum atmosphere, Since only the moving element is disposed in the robot, the robot having a complicated structure and a large surface area and a large amount of gas is isolated, so that the atmosphere of the ultra-high vacuum is not damaged. Further, the robot chamber is airtight, and by evacuating the chamber to a pressure of several hundred Pa, which is higher than the pressure in the transfer chamber, it is possible to prevent the vacuum partition wall from bending so as not to interfere with the operation of the robot. Normal lubrication oil can be used to lubricate the sliding parts of the robot in a moderate vacuum, so maintenance is cheaper, and even if bearings are used in the sliding parts to improve durability, dust and released gas will remain in the transfer chamber. It is possible to maintain a clean atmosphere in the space connected to the transfer chamber without invading. Therefore, a robot having a complicated structure with multiple joints such as a folding mechanism and a multi-stage ladder mechanism can be used, and the hand can be operated with a small radius of rotation and the robot can be made small.

【0008】また、移動子は、これに設けた浮上用永久
磁石等の磁性体と該ハンドに設けた浮上制御用電磁石と
で片持支持状態で磁気浮上されており、該移動子が例え
ば長手に形成されていると静電チャック等の保持装置が
ワークを保持したとき該移動子の重心移動が発生する
が、該移動子の重心を浮上用磁性体の存在領域の範囲内
に常時存在させるために該保持装置へ給電する分離型ト
ランスの2次トランスを該移動子に設け、該2次トラン
スにカウンターウエイトとしての機能を営ませることに
より重心の移動範囲を限定してワークの有無やワーク重
量変化により該移動子の前後のバランスの崩れを防ぐこ
とができる。2次トランスにこのような機能を持たせる
ことで、移動子全体の重量の増加も防げる。該移動子の
浮上距離、ピッチング、ローリング、案内方向、ヨーイ
ングの制御は、該磁気浮上手段を、移動子の左右に対称
に複数個ずつ設けた浮上用磁性体と、該ハンドの各浮上
用磁性体と対応する位置に夫々設けた浮上制御用電磁石
とで構成し、該浮上制御用電磁石の電流を制御して行な
える。
Further, the mover is magnetically levitated in a cantilevered state by a magnetic body such as a levitation permanent magnet provided on the mover and a levitation control electromagnet provided on the hand. When the holding device such as the electrostatic chuck holds the work, the center of gravity of the moving element is moved. However, the center of gravity of the moving element is always present within the existence region of the levitation magnetic body. For this purpose, a secondary transformer of a separation type transformer that feeds power to the holding device is provided in the moving element, and the secondary transformer functions as a counterweight to limit the range of movement of the center of gravity to determine whether or not there is a workpiece. The change in weight can prevent the front and rear of the moving element from being out of balance. By providing the secondary transformer with such a function, it is possible to prevent the weight of the entire moving element from increasing. The levitation distance, pitching, rolling, guiding direction, and yawing of the mover are controlled by a levitation magnetic body provided with a plurality of magnetic levitation means symmetrically on the left and right of the mover and each levitation magnetic body of the hand. The levitation control electromagnets are provided at positions corresponding to the body, and the current of the levitation control electromagnet can be controlled.

【0009】[0009]

【実施例】本発明の実施例を別紙図面に基づき説明する
と、図1は本発明搬送装置の概要であってシリコンウエ
ハのワークaに成膜やエッチングの処理を施し半導体を
製造する真空装置に適用した場合の実施例を示し、搬送
装置1の周囲にスパッタリング室2、エッチング室3や
ローディング室、アンローディング室等の必要な真空装
置を配置し、これら真空装置の室内を適当な排気手段に
より超高真空に排気してワークaに成膜やエッチングの
処理を施す。搬送装置1は製造工程に従ってこれらの室
にワークaを順次出し入れし、該ワークaに半導体回路
等が形成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the present invention will be described with reference to the attached drawings. FIG. 1 shows an outline of a transfer device of the present invention, which is a vacuum device for manufacturing a semiconductor by subjecting a work a of a silicon wafer to film formation and etching. An example of application is shown. Necessary vacuum devices such as a sputtering chamber 2, an etching chamber 3, a loading chamber, and an unloading chamber are arranged around the transfer device 1, and the interior of these vacuum devices is provided by an appropriate exhaust means. The work a is evacuated to an ultrahigh vacuum, and the work a is subjected to film formation and etching. The carrier 1 sequentially puts the work a in and out of these chambers in accordance with the manufacturing process, and semiconductor circuits and the like are formed in the work a.

【0010】該搬送装置1は、図2に示すように、カバ
ー4で気密に覆われており、該カバーで囲まれた室内5
を、アルミ合金等の金属製の真空隔壁6により上下の2
室に区画し、上方の室を駆動用の多関節のロボット7を
収容したロボット室8とすると共に下方の室をワーク搬
送用の移動子9を収容した搬送室10とした。該搬送室
10に超高真空用ポンプ11を接続してその室内を周囲
のスパッタリング室2等の圧力に合せた超高真空の雰囲
気が得られるようにし、該搬送室10の周囲には、スパ
ッタリング室2等の真空装置の内部へ連通するゲートバ
ルブ40を備えた通路41が必要な数だけ接続される。
また、ロボット室8内も該搬送室10よりも圧力が高く
しかも該搬送室10と一定の範囲内の差圧になるように
真空排気される。該ロボット7は直線作動と回転作動
(R−θ作動)を行なえるリンク機構のアーム12を持
ち、その先端のハンド13に取付板14を設けてこれに
磁気浮上手段15を構成する浮上制御用電磁石16を取
付けるようにした。該磁気浮上手段15は、図6の場
合、該浮上制御用電磁石16と移動子9の非磁性体の取
付板17に設けた永久磁石から成る浮上用磁性体18と
で構成したが、該浮上用磁性体18としては鉄片等の磁
性体を使用してもよい。
As shown in FIG. 2, the transfer device 1 is airtightly covered with a cover 4, and a room 5 surrounded by the cover is provided.
By a vacuum partition 6 made of metal such as aluminum alloy.
The chamber is divided into chambers, and the upper chamber is a robot chamber 8 accommodating the driving multi-joint robot 7, and the lower chamber is a transport chamber 10 accommodating a mover 9 for transporting the work. An ultra-high vacuum pump 11 is connected to the transfer chamber 10 so that an ultra-high vacuum atmosphere matching the pressure of the surrounding sputtering chamber 2 can be obtained inside the transfer chamber 10, and sputtering is performed around the transfer chamber 10. A required number of passages 41 having a gate valve 40 communicating with the inside of the vacuum device such as the chamber 2 are connected.
The inside of the robot chamber 8 is also evacuated so that the pressure is higher than that of the transfer chamber 10 and the pressure difference between the transfer chamber 10 and the transfer chamber 10 is within a certain range. The robot 7 has an arm 12 of a link mechanism capable of performing a linear operation and a rotational operation (R-θ operation), and a mounting plate 14 is provided on a hand 13 at the tip of the arm 12 for levitation control which constitutes magnetic levitation means 15. The electromagnet 16 is attached. In the case of FIG. 6, the magnetic levitation means 15 is composed of the levitation control electromagnet 16 and the levitation magnetic body 18 composed of a permanent magnet provided on the non-magnetic attachment plate 17 of the moving element 9. As the magnetic material 18, a magnetic material such as an iron piece may be used.

【0011】該移動子9の磁気浮上制御は、移動子9の
取付板17に前後及び左右に対称に複数個ずつ設けた浮
上用磁性体18と、ロボットハンド13の取付板14の
各浮上用磁性体18と対応する位置に夫々設けた浮上制
御用電磁石16との間のギャップが等しくなるよう各浮
上制御用電磁石16に流す電流を制御して行うもので、
具体的には浮上制御用電磁石16の近傍に設けたセン
サ、すなわち移動子9に設けた浮上用磁性体18または
センサ用ターゲット永久磁石23からの磁束を検出する
例えばホール素子とか磁束密度の大きさによりインダク
タンスが変化するインダクタ型のセンサにより、移動子
9の重量変化やピッチング、ローリングによる各浮上用
磁性体18と浮上制御用電磁石16の間の浮上距離(重
力方向のギャップ)の変化、または移動子9の移動に伴
う各浮上用磁性体18と浮上制御用電磁石16の進行方
向、案内方向、ヨーイング方向の位置ずれ(水平方向の
ギャップ)を検知し、両者が近づいたとき浮上制御用電
磁石の電流を少なくするか、または両者間を離すように
反発する極を生じさせるような電流を流して、いつも両
者間のギャップが等しくなるよう各浮上制御用電磁石1
6に流す電流を制御する。
The magnetic levitation control of the mover 9 is performed by using a levitation magnetic body 18 provided on the mounting plate 17 of the mover 9 symmetrically in the front and rear and right and left, and each levitation of the mounting plate 14 of the robot hand 13. It is performed by controlling the current flowing through each of the levitation control electromagnets 16 so that the gaps between the magnetic bodies 18 and the levitation control electromagnets 16 provided at the corresponding positions are equal.
Specifically, the magnetic flux from the sensor provided near the levitation control electromagnet 16, that is, the levitation magnetic body 18 or the sensor target permanent magnet 23 provided on the mover 9, for example, a Hall element or the magnitude of the magnetic flux density is detected. The inductor type sensor whose inductance changes due to the change in the levitation distance (gap in the gravity direction) between each levitation magnetic body 18 and the levitation control electromagnet 16 due to weight change, pitching, or rolling of the mover 9, or movement. Positional deviations (horizontal gaps) in the advancing direction, guide direction, and yawing direction of each levitation magnetic body 18 and levitation control electromagnet 16 due to movement of the child 9 are detected, and when the two approach each other, the levitation control electromagnet Make sure that the gap between the two is always equal, either by reducing the current or by passing a current that creates a repulsive pole that separates the two. Kunar so each levitation control electromagnet 1
The current flowing through 6 is controlled.

【0012】該移動子9の詳細は図4、図5に示す如く
であり、2本の非磁性体のフレーム19と後方の該取付
板17と前方の横杆20とで囲枠状に形成され、該横杆
20には前方へ延びる静電チャックの保持装置21を設
けてこれにワークaを吸着保持するようにした。該取付
板17には、12個の永久磁石が移動子9に対して左右
対称になるように設けられており、浮上距離、ピッチン
グおよびローリングを制御する浮上用磁性体18a、1
8b、18c、18dを対称に配置すると共に永久磁石
等の進行方向、案内方向およびヨーイング方向を制御す
る案内・ヨーイング用磁性体22a、22b、22c、
22dを対称に配置し、更にセンサ用ターゲット永久磁
石23a、23b、23c、23dを対称に配置した。
ハンド13の取付板14には、浮上用磁性体18と対向
した位置に浮上制御用電磁石15を取付け、案内・ヨー
イング用磁性体22と対向した位置に案内・ヨーイング
制御用電磁石(図示してない)を取付け、また、センサ
用ターゲット永久磁石23と対向した位置に磁気センサ
(図示してない)を取付け、該磁気センサで検出される
磁力を解析して移動子9の浮上距離、傾斜状態を修正す
るように各制御用電磁石の電流が制御される。保持装置
21としては電気で作動する機械的チャックであっても
よく、該案内・ヨーイング用磁性体22として鉄等の磁
性体を使用してもよい。また、進行方向の制御用に、取
付板17の中央に永久磁石を1つ設け、取付板14に進
行方向制御用電磁石を設けて制御するようにしてもよ
い。
The details of the mover 9 are as shown in FIGS. 4 and 5, and are formed in a frame shape by two non-magnetic frames 19, the rear mounting plate 17 and the front horizontal rod 20. The horizontal rod 20 is provided with a holding device 21 for an electrostatic chuck that extends forward and holds the work a by suction. Twelve permanent magnets are provided on the mounting plate 17 so as to be bilaterally symmetric with respect to the moving element 9, and the levitation magnetic bodies 18a, 1a for controlling levitation distance, pitching and rolling are provided.
8b, 18c and 18d are arranged symmetrically and guide / yaw magnetic members 22a, 22b and 22c, which control the traveling direction, guide direction and yawing direction of the permanent magnets and the like.
22d are arranged symmetrically, and the sensor target permanent magnets 23a, 23b, 23c and 23d are also arranged symmetrically.
A levitation control electromagnet 15 is attached to a mounting plate 14 of the hand 13 at a position opposed to the levitation magnetic body 18, and a guide / yaw control electromagnet (not shown) is provided at a position opposed to the guidance / yaw magnetic body 22. ) Is attached, and a magnetic sensor (not shown) is attached at a position facing the sensor target permanent magnet 23, and the magnetic force detected by the magnetic sensor is analyzed to determine the flying distance and tilted state of the moving element 9. The current of each control electromagnet is controlled so as to correct it. The holding device 21 may be a mechanical chuck that operates electrically, and a magnetic substance such as iron may be used as the guide / yawing magnetic substance 22. Further, for controlling the traveling direction, one permanent magnet may be provided in the center of the mounting plate 17 and an electromagnet for controlling the traveling direction may be provided on the mounting plate 14 for control.

【0013】更に、該静電チャック等の保持装置21へ
真空隔壁6を介して給電するために、交流発振器24に
接続した1次トランス25と、該交流発振器24の交流
を整流して直流に変換する整流回路26及び気密のフィ
ードスルー27を介して保持装置21へ接続した2次ト
ランス28とで構成された分離型トランス29が設けら
れる。該1次トランス25はハンド13の取付板14に
固定され、2次トランス28は該1次トランス25と対
向させて移動子9に固定される。磁気浮上状態にある移
動子9は、その中間部を磁気浮上手段15により片持梁
状態で支持されており、その先端部の該保持装置21に
ワークaを保持しているか否かの負荷変動により重心が
移動するが、その移動の範囲が磁気浮上手段15の有効
な磁気作用の範囲を越えることは好ましくなく、その移
動の範囲を磁気浮上手段15の浮上用磁性体18a又は
18bと18c又は18dの間の範囲Lに限定するため
に、該2次トランス28を該移動子9の取付板17の後
方にカウンターウエイトとして取付け、これにより該移
動子9に重量増加を生じることなく該移動子9の前後の
バランスを負荷変動に係わらず保持できる。30は2次
トランス28からのアウトガスを封止する密封ケースで
ある。
Further, in order to supply power to the holding device 21 such as the electrostatic chuck through the vacuum partition 6, the primary transformer 25 connected to the AC oscillator 24 and the AC of the AC oscillator 24 are rectified to DC. A separation type transformer 29 is provided which is composed of a rectifying circuit 26 for conversion and a secondary transformer 28 connected to the holding device 21 via an airtight feedthrough 27. The primary transformer 25 is fixed to the mounting plate 14 of the hand 13, and the secondary transformer 28 is fixed to the mover 9 so as to face the primary transformer 25. The moving element 9 in the magnetically levitated state has its intermediate portion supported by the magnetically levitating means 15 in a cantilevered state, and the load fluctuation depending on whether or not the workpiece a is held by the holding device 21 at the tip thereof. The center of gravity moves due to the movement, but it is not preferable that the range of movement exceeds the range of effective magnetic action of the magnetic levitation means 15, and the range of movement is limited to the levitation magnetic bodies 18a or 18b and 18c of the magnetic levitation means 15. In order to limit the range L between 18d, the secondary transformer 28 is mounted as a counterweight behind the mounting plate 17 of the moving element 9 so that the moving element 9 does not increase in weight. The balance before and after 9 can be maintained regardless of load fluctuations. Reference numeral 30 is a sealed case that seals out gas from the secondary transformer 28.

【0014】前記ロボット室8と搬送室10の差圧を略
一定の範囲に維持するための排気回路構成の1例は図7
に示す如くであり、ロボット室8内をバルブV1 を介し
てロータリーポンプ31に接続すると共にベントバルブ
3 を備えたベント回路32を接続し、該搬送室10内
をバルブV2 、V5 を介してロータリーポンプ33とバ
ルブV6 を介してターボ分子ポンプ34とに接続すると
共にベントバルブV4を備えたベント回路35を接続し
て構成した。また、該ロボット室8と搬送室10に両室
の差圧(P1 −P2 )を測定する差圧計36を接続し、
これの電気信号を差圧ΔPの設定値が入力するヒステリ
シスコンパレータ37と38に於いて比較すると共に排
気又はベント信号が入力する論理回路39を介して得ら
れる信号により各バルブの開閉を制御して両室8、10
の差圧を排気時のみならずベント時も略一定の範囲に維
持するようにした。各バルブの制御例は図8に示す如く
であり、排気時はバルブV1 、V2 を開閉制御して超高
真空に搬送室10内を排気すると共にこれと所定の差圧
にロボット室8内の圧力を制御し、ベント時にはバルブ
3 、V4 を開閉制御して差圧を維持した状態で室内の
圧力を上げるように制御される。該搬送室10が超高真
空であってもロボット室8の圧力を数百Pa程度に制御
すれば、真空隔壁6の撓みが少なくなって隔壁面に接近
させてハンド13を移動させることができ、この程度の
ロボット室8内の圧力ではロボット7の潤滑に通常の安
価な潤滑油を使用でき、ロボット7の摩擦摺動部が高温
化することもなく、ロボット室8内で発生したダストが
搬送室10に進出することもない。
An example of an exhaust circuit configuration for maintaining the differential pressure between the robot chamber 8 and the transfer chamber 10 within a substantially constant range is shown in FIG.
To be as listed, to connect the vent circuit 32 provided with a vent valve V 3 with connecting the robot chamber 8 to the rotary pump 31 via a valve V 1, valve V 2 the transfer chamber 10, V 5 And a turbo molecular pump 34 via a valve V 6 and a vent circuit 35 equipped with a vent valve V 4 . Further, a differential pressure gauge 36 for measuring a differential pressure (P 1 -P 2 ) between the robot room 8 and the transfer room 10 is connected,
This electric signal is compared in the hysteresis comparators 37 and 38 to which the set value of the differential pressure ΔP is input, and the opening / closing of each valve is controlled by the signal obtained through the logic circuit 39 to which the exhaust or vent signal is input. Both rooms 8, 10
The differential pressure was maintained within a substantially constant range not only during exhaust but also during venting. An example of control of each valve is as shown in FIG. 8. During evacuation, the valves V 1 and V 2 are controlled to be opened / closed to evacuate the inside of the transfer chamber 10 to an ultra-high vacuum and the robot chamber 8 to a predetermined differential pressure. The internal pressure is controlled, and at the time of venting, the valves V 3 and V 4 are controlled to be opened and closed to increase the pressure inside the chamber while maintaining the differential pressure. Even if the transfer chamber 10 is in an ultra-high vacuum, if the pressure in the robot chamber 8 is controlled to about several hundred Pa, the vacuum partition 6 is less flexed and the hand 13 can be moved closer to the partition surface. With such a pressure in the robot chamber 8, the usual inexpensive lubricating oil can be used for lubricating the robot 7, the friction sliding portion of the robot 7 does not rise in temperature, and dust generated in the robot chamber 8 is It does not advance to the transfer chamber 10.

【0015】図示実施例の作動の1例を説明すると次の
通りである。まず、ロボット室8及び搬送室10内を両
室間に差圧を存して真空排気し、ロボット7のハンド1
3の浮上制御用電磁石16を励磁して移動子9を片持状
態で浮上させ、該搬送室10内が超高真空に排気された
らゲートバルブ40を開いて例えば超高真空のローディ
ング室へ通路41を介して該搬送室を連通させる。そし
て、該ハンド13を直線的に移動させて移動子9をワー
クaが用意されたローディング室内へ進出させ、該室内
でワークaを分離トランス29から通電された保持装置
21で受取り、搬送室10内へ後退してゲートバルブ4
0を閉じ、該ハンド13を回転させて移動子9の向きを
ワークaの次の搬送先の例えばエッチング室3に向け、
該室3への通路のゲートバルブ40を開いてワークaを
保持した移動子9をハンド13のリードにより該室3内
へ進出させ、そこでワークaを該室3内へ収めたのち搬
送室10内へ後退し、ゲートバルブ40を閉じる。移動
子9はロボット7のR−θ作動に従って無接触で搬送室
10内でR−θ作動を行ない、ロボット7から発生する
ダストやガスは、ロボット室8が真空隔壁6により搬送
室10と区画されているので、搬送室10内まで侵入す
ることがなく、従って該搬送室10につながるスパッタ
リング室等はクリーンで超高真空の状態が維持でき、真
空隔壁6の撓みが少ないのでこれに接近させてハンド1
3を移動させることが可能になり、移動子9の浮上制御
が容易になる。また、ワークaを保持することによる移
動子9の重心移動は、カウンターウエイトとして設けた
2次トランス28のために磁気浮上手段15の存在領域
の範囲内に制限することができ、特別なカウンターウエ
イトを設ける必要がないので移動子9の重量増を防ぐこ
とができる。該浮上用磁性体18は移動子9に設けた取
付板17に前後左右に複数個ずつ分散して取付けたの
で、該移動子9の前後左右の傾きに抗して浮上させるこ
とができ、その傾きや浮上距離はセンサ用ターゲット永
久磁石23と磁気センサにより検出して浮上制御用電磁
石15や案内・ヨーイング制御用電磁石の電流を制御す
ることにより所定値に修正される。
An example of the operation of the illustrated embodiment will be described below. First, the robot chamber 8 and the transfer chamber 10 are evacuated while maintaining a differential pressure between the chambers, and the hand 1 of the robot 7 is evacuated.
3, the floating control electromagnet 16 is excited to levitate the mover 9 in a cantilever state, and when the inside of the transfer chamber 10 is evacuated to an ultrahigh vacuum, the gate valve 40 is opened and a passage to, for example, an ultrahigh vacuum loading chamber is established. The transfer chamber is communicated via 41. Then, the hand 13 is linearly moved to advance the mover 9 into the loading chamber in which the work a is prepared, and the work a is received from the separation transformer 29 by the energized holding device 21 in the chamber, and the transfer chamber 10 is transferred. Go back in and gate valve 4
0 is closed, and the hand 13 is rotated to direct the moving element 9 to the next conveyance destination of the work a, for example, the etching chamber 3,
The gate valve 40 of the passage to the chamber 3 is opened, and the mover 9 holding the work a is advanced into the chamber 3 by the lead of the hand 13, where the work a is stored in the chamber 3 and then the transfer chamber 10 is held. Then, the gate valve 40 is closed. The mover 9 performs R-θ operation in the transfer chamber 10 without contact in accordance with the R-θ operation of the robot 7, and dust and gas generated from the robot 7 are separated from the transfer chamber 10 by the vacuum partition 6 in the robot chamber 8. Since it does not enter the transfer chamber 10, the sputtering chamber and the like connected to the transfer chamber 10 can be maintained in a clean and ultra-high vacuum state, and the vacuum partition 6 is not bent so much that it should be approached. Hand 1
3 can be moved, and the floating control of the mover 9 becomes easy. Further, the movement of the center of gravity of the mover 9 by holding the work a can be restricted within the range of the existence region of the magnetic levitation means 15 due to the secondary transformer 28 provided as a counterweight, and the special counterweight. Since it is not necessary to provide the above, it is possible to prevent the weight of the moving element 9 from increasing. Since a plurality of the levitation magnetic bodies 18 are attached to the mounting plate 17 provided on the moving element 9 in a front-rear and left-right distribution, the levitation magnetic elements 18 can be levitated against the front-rear, left-right inclination of the moving element 9. The inclination and the levitation distance are detected by the sensor target permanent magnet 23 and the magnetic sensor and are corrected to predetermined values by controlling the currents of the levitation control electromagnet 15 and the guide / yaw control electromagnet.

【0016】[0016]

【発明の効果】以上のように本発明によるときは、搬送
装置の室内を、真空隔壁を介してロボット室と搬送室に
区画分離し、該ロボット室に設けたロボットのハンドと
搬送室に設けた移動子の夫々に該移動子を磁気浮上させ
て移動させる磁気浮上手段を設けたので、真空隔壁に大
きな撓みを生じさせることなく搬送室内を超高真空とす
ることができ、該ハンドを真空隔壁に接近させて直線・
回転作動させることが可能で磁気浮上の移動子の制御性
が向上し、磁気浮上状態で直線作動のみならず回転作動
を行なえ、ロボットから発生するダストが搬送室へ侵入
しないから高真空の雰囲気での使用に好都合で、ロボッ
トの構造や潤滑に制限がなくなるから保守も容易にな
り、また、ワークの保持装置へ給電するトランスを分離
型としてその2次トランスを移動子の重心移動の制限に
利用したので、移動子の重量を増加することなくその重
心移動を制限でき、移動子の作動性が向上する等の効果
がある。
As described above, according to the present invention, the chamber of the transfer device is divided into a robot chamber and a transfer chamber through a vacuum partition, and the robot hand and the transfer chamber are provided in the robot chamber. Since each moving element is provided with a magnetic levitation means for moving the moving element by magnetically levitating the moving element, it is possible to create an ultrahigh vacuum in the transfer chamber without causing a large bending of the vacuum partition, and the hand is vacuumed. A straight line
It is possible to rotate and improve the controllability of the magnetically levitated mover, not only linear operation but also rotational operation in the magnetically levitated state, and dust generated from the robot does not enter the transfer chamber, so it can be operated in a high vacuum atmosphere. It is convenient to use the robot, and there is no restriction on the structure or lubrication of the robot, which facilitates maintenance. Also, the transformer that feeds power to the work holding device is a separate type, and the secondary transformer is used to limit the movement of the center of gravity of the mover. Therefore, the movement of the center of gravity of the moving element can be limited without increasing the weight of the moving element, and the operability of the moving element is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の截断平面図FIG. 1 is a cutaway plan view of an embodiment of the present invention.

【図2】図1の2−2線部分の拡大断面図FIG. 2 is an enlarged cross-sectional view taken along line 2-2 of FIG.

【図3】図1のロボットの要部の平面図FIG. 3 is a plan view of a main part of the robot shown in FIG.

【図4】移動子の拡大平面図FIG. 4 is an enlarged plan view of a mover.

【図5】図4の側面図FIG. 5 is a side view of FIG. 4;

【図6】図2の要部の拡大図6 is an enlarged view of the main part of FIG.

【図7】排気回路の1例の線図FIG. 7 is a diagram of an example of an exhaust circuit.

【図8】図7の排気回路の作動の説明図8 is an explanatory diagram of the operation of the exhaust circuit of FIG.

【符号の説明】[Explanation of symbols]

a ワーク 1 搬送装置 4
カバー 5 室内 6 真空隔壁 7
ロボット 8 ロボット室 9 移動子 10
搬送室 12 アーム 13 ハンド 1
5 磁気浮上手段 16 浮上制御用電磁石 18 浮上用 2
1 保持装置 22 案内・ヨーイング用磁性体 23 センサ用
ターゲット永久磁石 25 1次トランス 28 2次トランス 2
9 分離型トランス
a Work 1 Transport device 4
Cover 5 Indoor 6 Vacuum partition 7
Robot 8 Robot room 9 Mover 10
Transport room 12 Arm 13 Hand 1
5 magnetic levitation means 16 electromagnet for levitation control 18 levitation 2
1 Holding Device 22 Guide / Yawing Magnetic Material 23 Target Permanent Magnet for Sensor 25 Primary Transformer 28 Secondary Transformer 2
9 Separate type transformer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // H01L 21/203 S 9545−4M 21/3065 (72)発明者 武松 忠 神奈川県茅ヶ崎市萩園2500番地 日本真空 技術株式会社内 (72)発明者 前平 謙 神奈川県茅ヶ崎市萩園2500番地 日本真空 技術株式会社内 (72)発明者 藤木 収 神奈川県茅ヶ崎市萩園2500番地 日本真空 技術株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical display location // H01L 21/203 S 9545-4M 21/3065 (72) Inventor Tadashi Takematsu Hagien, Chigasaki City, Kanagawa Prefecture 2500 In Japan Vacuum Technology Co., Ltd. (72) Inventor Ken Maehira 2500 Hagizono, Chigasaki City, Kanagawa Prefecture Japan Vacuum Technology Co., Ltd. (72) Inventor Shu Fujiki 2500 Hagien, Chigasaki City, Kanagawa Japan Vacuum Technology Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】搬送装置の室内を、真空隔壁を介して駆動
用のロボットを収容した気密のロボット室とワーク搬送
用の移動子を収容した搬送室とに区画分離し、該ロボッ
トのハンドと該移動子の夫々に該移動子を磁気浮上させ
て移動させる磁気浮上手段を設けたことを特徴とする真
空装置用磁気浮上搬送装置。
1. A chamber of a transfer device is divided into an airtight robot chamber containing a driving robot and a transfer chamber containing a moving element for transferring a work through a vacuum partition, and a hand of the robot is provided. A magnetic levitation transfer device for a vacuum device, characterized in that each of the moving elements is provided with a magnetic levitation means for magnetically levitating and moving the moving element.
【請求項2】上記移動子を長手に形成してその先端部に
ワークを保持する保持装置を設け、上記磁気浮上手段
を、該移動子の中間部に設けた浮上用磁性体と、該浮上
用磁性体と対向させて上記ハンドに設けた浮上制御用電
磁石とで構成して該移動子を片持支持状態で磁気浮上さ
せ、該保持装置への給電を該ハンドに設けた1次トラン
スと該移動子にケースに収容して設けた2次トランスの
分離型トランスを介して行ない、該2次トランスを、該
保持装置のワーク保持時に於ける該移動子の重心移動を
該磁気浮上手段の範囲内とする位置に設置したことを特
徴とする請求項1に記載の真空装置用磁気浮上搬送装
置。
2. A levitation magnetic body provided with the magnetic levitation means at an intermediate portion of the moving element, and a levitation device, wherein the moving element is provided in a longitudinal direction and a holding device for holding a work is provided at a tip portion thereof. And a primary transformer provided with the hand for feeding the holding device by magnetically levitating the moving element in a cantilevered support state, which comprises a levitation control electromagnet provided on the hand facing the magnetic material for use in the hand. The movement is performed through a separation type transformer of a secondary transformer housed in the case, and the movement of the center of gravity of the movement of the secondary transformer when holding the work of the holding device is performed by the magnetic levitation means. The magnetic levitation transfer device for a vacuum device according to claim 1, wherein the magnetic levitation transfer device is installed at a position within the range.
【請求項3】上記ロボット室は上記搬送室よりも高い圧
力に制御すると共に両室の差圧は一定値以下に制御する
ことを特徴とする請求項1又は2に記載の真空装置用磁
気浮上搬送装置。
3. The magnetic levitation for a vacuum device according to claim 1, wherein the robot chamber is controlled to have a pressure higher than that of the transfer chamber, and the differential pressure between the two chambers is controlled to a certain value or less. Transport device.
【請求項4】上記磁気浮上手段は、上記移動子の左右に
対称に複数個ずつ設けた永久磁石等の浮上用磁性体と、
上記ハンドの各浮上用磁性体と対応する位置に夫々設け
た浮上制御用電磁石とで構成したことを特徴とする請求
項1乃至3のいずれかに記載の真空装置用磁気浮上搬送
装置。
4. The magnetic levitation means comprises a levitation magnetic body such as permanent magnets provided symmetrically on the left and right of the moving element.
4. The magnetic levitation transfer apparatus for a vacuum device according to claim 1, wherein the levitation control electromagnet is provided at a position corresponding to each levitation magnetic body of the hand, respectively.
JP15384494A 1994-07-05 1994-07-05 Magnetic levitation conveying device for vacuum device Pending JPH0812077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15384494A JPH0812077A (en) 1994-07-05 1994-07-05 Magnetic levitation conveying device for vacuum device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15384494A JPH0812077A (en) 1994-07-05 1994-07-05 Magnetic levitation conveying device for vacuum device

Publications (1)

Publication Number Publication Date
JPH0812077A true JPH0812077A (en) 1996-01-16

Family

ID=15571340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15384494A Pending JPH0812077A (en) 1994-07-05 1994-07-05 Magnetic levitation conveying device for vacuum device

Country Status (1)

Country Link
JP (1) JPH0812077A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10054045A1 (en) * 2000-10-31 2002-05-16 Asys Gmbh & Co Kg Work table e.g. for ultra-high vacuum device, has table plate provided as film material covering separating drive from working environment
CN102361775A (en) * 2009-03-03 2012-02-22 刘忠臣 Wheeltrack magnetic suspension train by permanent magnetism driving in low pressure oxygen-enriched pipeline
KR20180113057A (en) * 2017-04-05 2018-10-15 코스텍시스템(주) Transferring apparatus of wafer
US11565402B2 (en) 2020-03-09 2023-01-31 Applied Materials, Inc. Substrate transfer devices, systems and methods of use thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10054045A1 (en) * 2000-10-31 2002-05-16 Asys Gmbh & Co Kg Work table e.g. for ultra-high vacuum device, has table plate provided as film material covering separating drive from working environment
CN102361775A (en) * 2009-03-03 2012-02-22 刘忠臣 Wheeltrack magnetic suspension train by permanent magnetism driving in low pressure oxygen-enriched pipeline
KR20180113057A (en) * 2017-04-05 2018-10-15 코스텍시스템(주) Transferring apparatus of wafer
US11565402B2 (en) 2020-03-09 2023-01-31 Applied Materials, Inc. Substrate transfer devices, systems and methods of use thereof

Similar Documents

Publication Publication Date Title
EP0648698B1 (en) Magnetically levitated carrying apparatus
KR100652976B1 (en) Processed body carrying device, and processing system with carrying device
US20080101892A1 (en) Universal modular wafer transport system
KR20220143105A (en) substrate processing equipment
KR20220100957A (en) Substrate transfer apparatus and substrate processing system
KR102193613B1 (en) Apparatus for vacuum processing of substrates, system for manufacture of devices with organic materials, and method for sealing an opening connecting two pressure zones
JPH0812077A (en) Magnetic levitation conveying device for vacuum device
JPH0446781A (en) Magnetic levitation type carrying robot in vacuum
JPH06100164A (en) Magnetically coupled carrying device
GB2156582A (en) Small part transport system
JPH06179524A (en) Magnetic levitation vacuum conveyance device
JPH07172578A (en) Tunnel carrying device
KR100675559B1 (en) Magnetic levitation transfer apparatus
US5485910A (en) Conveyor
JPH0623687A (en) Robot
JPH07176593A (en) Conveyer
JP3625127B2 (en) Substrate transfer device and vacuum device
JPH03223021A (en) Carrier device used in special environment
JP3414449B2 (en) Transfer device
JPH0465853A (en) Conveying robot in vacuum
JPS6392205A (en) Carrier equipment for magnetic levitation for vacuum apparatus
JP3364294B2 (en) Transfer device and transfer method
JPH0815181B2 (en) Gate valve of magnetic levitation transportation device
JP3599782B2 (en) Work detection method and device in magnetic levitation transfer device
JPH06181249A (en) Substrate conveying equipment