JPH08120376A - Heater substrate made of nickel-base heat resistant alloy and heater member using the same - Google Patents

Heater substrate made of nickel-base heat resistant alloy and heater member using the same

Info

Publication number
JPH08120376A
JPH08120376A JP25638194A JP25638194A JPH08120376A JP H08120376 A JPH08120376 A JP H08120376A JP 25638194 A JP25638194 A JP 25638194A JP 25638194 A JP25638194 A JP 25638194A JP H08120376 A JPH08120376 A JP H08120376A
Authority
JP
Japan
Prior art keywords
weight
heater
resistant alloy
base
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP25638194A
Other languages
Japanese (ja)
Inventor
Kouki Maruna
香樹 丸七
Kazuichi Hamada
和一 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP25638194A priority Critical patent/JPH08120376A/en
Publication of JPH08120376A publication Critical patent/JPH08120376A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)

Abstract

PURPOSE: To improve the oxidation resistance and mechanical strength of a heater substrate, simultaneously to impart excellent cold workability thereto and to produce a heater substrate having a complicated shape by specifying the compsn. of an Ni-base heat resistant alloy. CONSTITUTION: This heater substrate has an alloy compsn. contg., by weight, 2 to 10% Al, 0.1 to 4% Si and 0.01 to 0.5% C, furthermore contg. one or >=two kinds selected from among 0.0001 to 0.5% Y, 0.0001 to 0.3% La and 0.0001 to 0.3% Ce, and the balance Ni with inevitable impurities. This compsn. is preferably further incorporated with one or >= two kinds selected from among 0.1 to 2% Mn, 0.5 to 20% Co and 0.5 to 40% Fe. Furthermore, <=15% in total of one or >= two kinds selected from among the groups of 0.1 to 5% Ti, 0.1 to 10% Mo, 0.1 to 10% W, 0.1 to 10% Ta, 0.1 to 10% Nb and 0.1 to 10% Hf are preferably added thereto.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特に、高温の酸化性雰
囲気中において好適に用いられるNi基耐熱合金製ヒー
タ基体およびそれを用いたヒータ部材に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heater base made of a Ni-base heat-resistant alloy, which is preferably used in a high temperature oxidizing atmosphere, and a heater member using the same.

【0002】[0002]

【従来の技術】図2は、高温の酸化性雰囲気中において
用いられる従来の管状のヒータ部材の一例を示す縦断面
図であり、図において、1はヒータ基体、2は該ヒータ
基体1の外面1aに形成された絶縁層、3は該絶縁層2
上に形成された発熱抵抗層である。ヒータ基体1は、例
えば、SUS304やSUS310S等のステンレス
鋼、インコネル600(Ni−16Cr−8Fe)等の
Ni基合金、等の耐熱合金が用いられている。これらの
耐熱合金は、耐酸化性および機械的強度を高めるため
に、Crを16〜25重量%含有しており、このCrが
酸化性雰囲気中において酸素と反応し、該耐熱合金の表
面にCr23からなる保護被膜を形成することにより耐
酸化性を得ている。また、Crには固溶強化効果がある
ことから、該耐熱合金の機械的強度も向上したものにな
っている。
2. Description of the Related Art FIG. 2 is a longitudinal sectional view showing an example of a conventional tubular heater member used in a high temperature oxidizing atmosphere. In the drawing, 1 is a heater base and 2 is an outer surface of the heater base 1. 1a is an insulating layer, 3 is the insulating layer 2
It is a heating resistance layer formed on the top. The heater base 1 is made of a heat-resistant alloy such as stainless steel such as SUS304 or SUS310S, a Ni-based alloy such as Inconel 600 (Ni-16Cr-8Fe), or the like. These heat-resistant alloys contain Cr in an amount of 16 to 25% by weight in order to enhance oxidation resistance and mechanical strength. This Cr reacts with oxygen in an oxidizing atmosphere, and the surface of the heat-resistant alloy contains Cr. Oxidation resistance is obtained by forming a protective film made of 2 O 3 . Further, since Cr has a solid solution strengthening effect, the mechanical strength of the heat resistant alloy is also improved.

【0003】絶縁層2は、例えば、Al23(アルミ
ナ)等の電気的絶縁性を有するセラミックスにより構成
されている。発熱抵抗層3は、例えば、SiC(炭化ケ
イ素)等の導電性を有するセラミックスにより構成され
ている。
The insulating layer 2 is made of an electrically insulating ceramic such as Al 2 O 3 (alumina). The heating resistance layer 3 is made of conductive ceramics such as SiC (silicon carbide).

【0004】[0004]

【発明が解決しようとする課題】ところで、従来のヒー
タ基体1に用いられる耐熱合金では、耐酸化性および機
械的強度を十分に高めるためにはCrを16重量%以上
含有させることが必要であるが、このように大量のCr
を含有させた合金は冷間加工性が劣るという欠点があ
る。例えば、複雑な形状の被加熱物の外形に合わせたヒ
ータ部材、あるいは複雑な形状のヒータ部材を作製しよ
うとする場合、その形状に合ったヒータ基体1を作製す
る必要があるが、冷間加工性が悪いために複雑な形状の
ヒータ基体1を製作することが非常に難しく、形状等に
よっては製作が不可能であるものもある等の問題点があ
った。
By the way, in the heat-resistant alloy used for the conventional heater substrate 1, it is necessary to contain Cr in an amount of 16% by weight or more in order to sufficiently improve the oxidation resistance and the mechanical strength. However, such a large amount of Cr
The alloy containing Al has the drawback of being inferior in cold workability. For example, when it is desired to manufacture a heater member having a complicated shape to match the outer shape of an object to be heated, or a heater member having a complicated shape, it is necessary to manufacture the heater base 1 that matches the shape. Since it is poor in properties, it is very difficult to manufacture the heater substrate 1 having a complicated shape, and there is a problem in that some heaters cannot be manufactured depending on the shape and the like.

【0005】また、従来のヒータ部材を600℃以上に
加熱した場合、拡散により酸素が前記ヒータ基体1と絶
縁層2との間に入り込み、これらヒータ基体1と絶縁層
2との間に酸化スケールが発生し成長することとなり、
繰り返し加熱を行った際、絶縁層2がヒータ基体1から
剥離し易くなるという問題点があった。したがって、ヒ
ータ部材としての性能が劣化し、場合によっては使用不
能になる等の不具合があった。
Further, when the conventional heater member is heated to 600 ° C. or higher, oxygen enters between the heater base 1 and the insulating layer 2 due to diffusion, and oxide scale is generated between the heater base 1 and the insulating layer 2. Will occur and grow,
There is a problem that the insulating layer 2 is easily separated from the heater substrate 1 when the heating is repeated. Therefore, there is a problem that the performance as a heater member is deteriorated and the heater member becomes unusable in some cases.

【0006】本発明は上記の事情に鑑みてなされたもの
であって、冷間加工性に優れ、したがって複雑な形状の
ヒータ部材を容易に作製することができ、さらに、該ヒ
ータ部材に絶縁層を形成した後に600℃以上に繰り返
し加熱した場合においても、該絶縁層がヒータ基体から
剥離するおそれがない、Ni基耐熱合金製ヒータ基体お
よびそれを用いたヒータ部材を提供することにある。
The present invention has been made in view of the above circumstances, is excellent in cold workability, and therefore a heater member having a complicated shape can be easily manufactured, and further, an insulating layer is formed on the heater member. It is an object of the present invention to provide a heater base made of a Ni-base heat-resistant alloy, and a heater member using the same, in which the insulating layer is not likely to be peeled off from the heater base even when repeatedly heated to 600 ° C. or higher after forming.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明は次の様なNi基耐熱合金製ヒータ基体およ
びそれを用いたヒータ部材を採用した。すなわち、請求
項1記載のNi基耐熱合金製ヒータ基体は、Al:2〜
10重量%、Si:0.1〜4重量%、C:0.01〜
0.5重量%含有するとともに、Y:0.0001〜
0.5重量%、La:0.0001〜0.3重量%、C
e:0.0001〜0.3重量%から選択された1種ま
たは2種以上を含有し、残部をNi及び不可避不純物と
したものである。
In order to solve the above problems, the present invention employs the following Ni-based heat-resistant alloy heater base and a heater member using the same. That is, the Ni-based heat-resistant alloy heater base according to claim 1 has an Al: 2 to
10% by weight, Si: 0.1 to 4% by weight, C: 0.01 to
0.5% by weight and Y: 0.0001-
0.5% by weight, La: 0.0001 to 0.3% by weight, C
e: One or two or more selected from 0.0001 to 0.3% by weight is contained, and the balance is Ni and inevitable impurities.

【0008】ここで、Al及びSiを上記のように限定
したのは、その含有量がそれぞれAl:2重量%、S
i:0.1重量%未満では耐酸化性が十分でなく、一
方、その含有量がそれぞれAl:10重量%、Si:4
重量%を越えると冷間加工性が低下するからである。ま
た、Cを上記のように限定したのは、その含有量が0.
01重量%未満では所望の機械的強度が得られず、一方
0.5重量%を越えると合金が脆化するからである。ま
た、Y、La及びCeを上記のように限定したのは、そ
の含有量がY、La及びCeともにそれぞれ0.000
1重量%未満では、表面に形成されるセラミックス膜と
の繰り返し加熱における密着性を向上させる効果が得ら
れず、一方、その含有量がそれぞれY:0.5重量%、
La:0.3重量%、Ce:0.3重量%を越えると前
記セラミックス膜との密着性及び冷間加工性が低下する
からである。
Here, Al and Si are limited as described above because their contents are Al: 2% by weight and S, respectively.
When i: less than 0.1% by weight, the oxidation resistance is insufficient, while the contents are Al: 10% by weight and Si: 4, respectively.
This is because the cold workability is deteriorated when the content exceeds the weight%. Further, C is limited as described above because the content is 0.
If it is less than 01% by weight, the desired mechanical strength cannot be obtained, while if it exceeds 0.5% by weight, the alloy becomes brittle. Further, Y, La, and Ce are limited as described above because the contents of Y, La, and Ce are 0.000 each.
If it is less than 1% by weight, the effect of improving the adhesion to the ceramic film formed on the surface by repeated heating cannot be obtained, while the content thereof is Y: 0.5% by weight, respectively.
This is because when La: 0.3 wt% and Ce: 0.3 wt% are exceeded, the adhesion to the ceramic film and the cold workability deteriorate.

【0009】請求項2記載のNi基耐熱合金製ヒータ基
体は、請求項1記載のNi基耐熱合金製ヒータ基体にお
いて、さらに、Mn:0.1〜2重量%、Co:0.5
〜20重量%、Fe:0.5〜40重量%から選択され
た1種または2種以上を含有することとしたものであ
る。
The Ni-based heat-resistant alloy heater base according to claim 2 is the same as the Ni-based heat-resistant alloy heater base according to claim 1, further comprising Mn: 0.1 to 2 wt% and Co: 0.5.
˜20% by weight, Fe: 0.5 to 40% by weight, and one or more selected from them.

【0010】ここで、Mnを上記のように限定したの
は、その含有量が0.1重量%未満では十分な脱酸を図
ることができず、一方、その含有量が2重量%を越える
と耐酸化性が低下するからである。また、Coを上記の
ように限定したのは、その含有量が0.5重量%未満で
は所望の機械的強度が得られず、一方、その含有量が2
0重量%を越えても一層の強度向上の効果が得られず不
経済である。また、Feを上記のように限定したのは、
その含有量が0.5重量%未満では所望の機械的強度が
得られず、一方、その含有量が40重量%を越えると耐
酸化性が低下するからである。
Here, the Mn is limited as described above, because if the content is less than 0.1% by weight, sufficient deoxidation cannot be achieved, while the content exceeds 2% by weight. And the oxidation resistance decreases. Further, Co is limited as described above because the desired mechanical strength cannot be obtained when the content thereof is less than 0.5% by weight, while the content thereof is 2
Even if it exceeds 0% by weight, the effect of further improving the strength cannot be obtained, which is uneconomical. Further, the reason why Fe is limited as described above is
This is because if the content is less than 0.5% by weight, the desired mechanical strength cannot be obtained, while if the content exceeds 40% by weight, the oxidation resistance decreases.

【0011】請求項3記載のNi基耐熱合金製ヒータ基
体は、請求項1記載のNi基耐熱合金製ヒータ基体にお
いて、さらに、Ti:0.1〜5重量%、Mo:0.1
〜10重量%、W:0.1〜10重量%、Ta:0.1
〜10重量%、Nb:0.1〜10重量%、Hf:0.
1〜10重量%から選択された1種または2種以上を合
計で15重量%以下含有することとしたものである。
The Ni-based heat-resistant alloy heater base according to claim 3 is the same as the Ni-based heat-resistant alloy heater base according to claim 1, further comprising Ti: 0.1 to 5% by weight and Mo: 0.1.
-10 wt%, W: 0.1-10 wt%, Ta: 0.1
-10 wt%, Nb: 0.1-10 wt%, Hf: 0.
One kind or two or more kinds selected from 1 to 10% by weight is contained in a total amount of 15% by weight or less.

【0012】Ti,Mo,W,Ta,Nb及びHfに
は、高温における機械的強度を向上させる作用があるの
で、必要に応じて含有させることができるが、その含有
量がいずれの成分においても0.1重量%未満では所望
の高温強度が得られず、一方、Tiにおいては5重量
%、Mo,W,Ta,Nb及びHfにおいてはそれぞれ
10重量%を越えると耐酸化性が低下するからである。
また、これらの成分を2種以上含有する場合、それぞれ
の含有量の合計が15重量%を越えると耐酸化性が低下
するので、含有量の合計を15重量%以下としなければ
ならない。
[0012] Ti, Mo, W, Ta, Nb and Hf have the action of improving the mechanical strength at high temperatures, so they can be contained if necessary, but the content of any of the components is If it is less than 0.1% by weight, the desired high temperature strength cannot be obtained, while if it exceeds 5% by weight for Ti and 10% by weight for each of Mo, W, Ta, Nb and Hf, the oxidation resistance decreases. Is.
When two or more of these components are contained, if the total content of the components exceeds 15% by weight, the oxidation resistance decreases, so the total content must be 15% by weight or less.

【0013】請求項4記載のNi基耐熱合金製ヒータ基
体は、請求項1記載のNi基耐熱合金製ヒータ基体にお
いて、さらに、Mn:0.1〜2重量%、Co:0.5
〜20重量%、Fe:0.5〜40重量%から選択され
た1種または2種以上を含有するとともに、Ti:0.
1〜5重量%、Mo:0.1〜10重量%、W:0.1
〜10重量%、Ta:0.1〜10重量%、Nb:0.
1〜10重量%、Hf:0.1〜10重量%から選択さ
れた1種または2種以上を合計で15重量%以下含有す
ることとしたものである。
The Ni-based heat-resistant alloy heater base according to claim 4 is the same as the Ni-based heat-resistant alloy heater base according to claim 1, further comprising Mn: 0.1 to 2 wt% and Co: 0.5.
.About.20 wt%, Fe: 0.5 to 40 wt%, and one or more selected from Ti: 0.
1 to 5% by weight, Mo: 0.1 to 10% by weight, W: 0.1
-10 wt%, Ta: 0.1-10 wt%, Nb: 0.
1 to 10% by weight, Hf: 0.1 to 10% by weight, and one or more kinds selected from the total of 15% by weight or less.

【0014】請求項5記載のヒータ部材は、請求項1な
いし4のいずれか1項記載のNi基耐熱合金製ヒータ基
体の一主面に、ZrO2(ジルコニア)を主成分とする
絶縁層、発熱抵抗層が順次積層され、前記絶縁層の熱膨
張係数の値を、前記ヒータ基体の熱膨張係数と発熱抵抗
層の熱膨張係数との間の値としたものである。
According to a fifth aspect of the present invention, there is provided a heater member, wherein an insulating layer containing ZrO 2 (zirconia) as a main component is provided on one main surface of the Ni-based heat-resistant alloy heater substrate according to any one of the first to fourth aspects. The heating resistance layers are sequentially laminated, and the value of the thermal expansion coefficient of the insulating layer is set to a value between the thermal expansion coefficient of the heater base and the thermal expansion coefficient of the heating resistance layer.

【0015】[0015]

【作用】本発明の請求項1記載のNi基耐熱合金製ヒー
タ基体では、Al:2〜10重量%、Si:0.1〜4
重量%、C:0.01〜0.5重量%含有するととも
に、Y:0.0001〜0.5重量%、La:0.00
01〜0.3重量%、Ce:0.0001〜0.3重量
%から選択された1種または2種以上を含有し、残部を
Ni及び不可避不純物としたことにより、Crを含まな
くとも耐酸化性および機械的強度が十分に高まり、しか
も冷間加工における加工性が向上し、複雑な形状のヒー
タ基体の作製が容易になる。また、該ヒータ基体を60
0℃以上に繰り返し加熱した場合、該ヒータ基体と絶縁
層との間に酸化スケールが発生せず、剥離が生じるおそ
れがなくなる。
In the heater base made of the Ni-base heat-resistant alloy according to claim 1 of the present invention, Al: 2 to 10% by weight, Si: 0.1 to 4
Wt%, C: 0.01 to 0.5 wt%, Y: 0.0001 to 0.5 wt%, La: 0.00
01 to 0.3% by weight, Ce: 0.0001 to 0.3% by weight, and one or two or more selected from the rest, and Ni and unavoidable impurities in the balance, so that even if Cr is not included, acid resistance can be improved. The chemical conversion property and the mechanical strength are sufficiently enhanced, the workability in the cold working is improved, and the heater substrate having a complicated shape is easily manufactured. In addition, the heater base is 60
When repeatedly heated to 0 ° C. or higher, oxide scale is not generated between the heater base and the insulating layer, and there is no possibility of peeling.

【0016】請求項2記載のNi基耐熱合金製ヒータ基
体では、請求項1記載のNi基耐熱合金製ヒータ基体
に、さらに、Mn:0.1〜2重量%、Co:0.5〜
20重量%、Fe:0.5〜40重量%から選択された
1種または2種以上を含有することにより、機械的強度
がさらに高まる。
According to the heater base made of the Ni-base heat-resistant alloy according to claim 2, the heater base made of the Ni-base heat-resistant alloy according to claim 1 is further provided with Mn: 0.1 to 2% by weight and Co: 0.5 to.
By containing one or more selected from 20% by weight and Fe: 0.5 to 40% by weight, the mechanical strength is further enhanced.

【0017】請求項3記載のNi基耐熱合金製ヒータ基
体では、請求項1記載のNi基耐熱合金製ヒータ基体
に、さらに、Ti:0.1〜5重量%、Mo:0.1〜
10重量%、W:0.1〜10重量%、Ta:0.1〜
10重量%、Nb:0.1〜10重量%、Hf:0.1
〜10重量%から選択された1種または2種以上を合計
で15重量%以下含有することにより、高温における機
械的強度が向上する。
In the heater base made of the Ni-base heat-resistant alloy according to claim 3, the Ni-base heat-resistant alloy heater base according to claim 1 is further provided with Ti: 0.1 to 5% by weight and Mo: 0.1 to 0.1% by weight.
10% by weight, W: 0.1 to 10% by weight, Ta: 0.1
10% by weight, Nb: 0.1 to 10% by weight, Hf: 0.1
By containing one kind or two or more kinds selected from 10% by weight to 15% by weight or less in total, the mechanical strength at high temperature is improved.

【0018】請求項4記載のNi基耐熱合金製ヒータ基
体では、請求項1記載のNi基耐熱合金製ヒータ基体
に、さらに、Mn:0.1〜2重量%、Co:0.5〜
20重量%、Fe:0.5〜40重量%から選択された
1種または2種以上を含有するとともに、Ti:0.1
〜5重量%、Mo:0.1〜10重量%、W:0.1〜
10重量%、Ta:0.1〜10重量%、Nb:0.1
〜10重量%、Hf:0.1〜10重量%から選択され
た1種または2種以上を合計で15重量%以下含有する
ことにより、機械的強度がさらに高まり、高温における
機械的強度が向上する。
In the heater base made of the Ni-base heat-resistant alloy according to claim 4, the heater base made of the Ni-base heat-resistant alloy according to claim 1 is further provided with Mn: 0.1 to 2% by weight and Co: 0.5 to.
20% by weight, Fe: 0.5-40% by weight, and one or more selected from Ti: 0.1
~ 5 wt%, Mo: 0.1-10 wt%, W: 0.1
10% by weight, Ta: 0.1 to 10% by weight, Nb: 0.1
-10 wt%, Hf: 0.1-10 wt% selected from 1 or 2 or more in total, by containing 15 wt% or less in total, the mechanical strength is further increased, the mechanical strength at high temperature is improved. To do.

【0019】請求項5記載のヒータ部材は、請求項1な
いし4のいずれか1項記載のNi基耐熱合金製ヒータ基
体の一主面に、ZrO2を主成分とする絶縁層、発熱抵
抗層が順次積層され、前記絶縁層の熱膨張係数の値を、
前記ヒータ基体の熱膨張係数と発熱抵抗層の熱膨張係数
との間の値としたことにより、該ヒータ部材を600℃
以上に繰り返し加熱した場合においても、前記ヒータ基
体と絶縁層との間に酸化スケールが生じるおそれがなく
なり、これらの間の密着性が高まる。したがって、該絶
縁層がヒータ基体から剥離するおそれがなくなる。これ
により、ヒータ部材としての性能が保持され、長寿命化
が可能になる。
A heater member according to a fifth aspect of the present invention is a heater base made of a Ni-base heat-resistant alloy according to any one of the first to fourth aspects, wherein an insulating layer containing ZrO 2 as a main component and a heating resistance layer are provided on one main surface. Are sequentially laminated, and the value of the thermal expansion coefficient of the insulating layer is
By setting the value between the coefficient of thermal expansion of the heater base and the coefficient of thermal expansion of the heating resistance layer, the heater member is heated to 600 ° C.
Even when the heating is repeatedly performed as described above, there is no possibility that oxide scale is generated between the heater base and the insulating layer, and the adhesion between them is improved. Therefore, there is no risk of the insulating layer peeling off from the heater substrate. As a result, the performance as a heater member is maintained and the life can be extended.

【0020】[0020]

【実施例】図1は本発明の一実施例の管状のヒータ部材
を示す縦断面図であり、図において、11はヒータ基
体、12は該ヒータ基体11の外面(一主面)11aに
形成されたZrO2を主成分とする絶縁層、13は該絶
縁層12上に形成された発熱抵抗層である。前記絶縁層
12の熱膨張係数の値は、前記ヒータ基体11の熱膨張
係数と発熱抵抗層13の熱膨張係数との間の値をとるよ
うに設定されている。
1 is a longitudinal sectional view showing a tubular heater member according to an embodiment of the present invention. In the drawing, 11 is a heater base, and 12 is an outer surface (one main surface) 11a of the heater base 11. The insulating layer 13 containing ZrO 2 as a main component is a heating resistor layer formed on the insulating layer 12. The value of the coefficient of thermal expansion of the insulating layer 12 is set so as to take a value between the coefficient of thermal expansion of the heater base 11 and the coefficient of thermal expansion of the heating resistance layer 13.

【0021】ヒータ基体11は、Al:2〜10重量
%、Si:0.1〜4重量%、C:0.01〜0.5重
量%含有するとともに、Y:0.0001〜0.5重量
%、La:0.0001〜0.3重量%、Ce:0.0
001〜0.3重量%から選択された1種または2種以
上を含有し、残部がNi及び不可避不純物とされ、その
熱膨張係数は12〜18×10-6deg-1である。
The heater substrate 11 contains Al: 2 to 10% by weight, Si: 0.1 to 4% by weight, C: 0.01 to 0.5% by weight, and Y: 0.0001 to 0.5. % By weight, La: 0.0001 to 0.3% by weight, Ce: 0.0
One or two or more selected from 001 to 0.3% by weight is contained, and the balance is Ni and inevitable impurities, and the coefficient of thermal expansion thereof is 12 to 18 × 10 −6 deg −1 .

【0022】絶縁層12は、ヒータ基体11との密着性
がよく、かつ該ヒータ基体11との間に酸化スケールが
生じ難いもので、例えば、単斜晶等のZrO2、また
は、ZrO2−6〜10mol%Y23、ZrO2−11
〜15mol%CaO、ZrO2−7〜15mol%M
gO等、ZrO2にY23(イットリア)、MgO(マ
グネシア)、CaO(カルシア)等の2価または3価の
金属酸化物を3〜15mol%程度固溶させた安定化ま
たは部分安定化ジルコニア等が好適に用いられる。前記
ZrO2の熱膨張係数は7〜10×10-6deg-1、ま
た前記安定化ジルコニアの熱膨張係数は、例えば、イッ
トリア添加安定化ジルコニア(ZrO2−8mol%Y2
3)の場合では8.10×10-6deg-1程度であ
る。
The insulating layer 12 has good adhesion to the heater base 11, and is unlikely to generate oxide scale with the heater base 11. For example, ZrO 2 such as monoclinic crystal, or ZrO 2 −. 6~10mol% Y 2 O 3, ZrO 2 -11
~15mol% CaO, ZrO 2 -7~15mol% M
Stabilization or partial stabilization of divalent or trivalent metal oxide such as gO or ZrO 2 such as Y 2 O 3 (yttria), MgO (magnesia) or CaO (calcia) in a solid solution of about 3 to 15 mol%. Zirconia or the like is preferably used. The thermal expansion coefficient of ZrO 2 is 7 to 10 × 10 −6 deg −1 , and the thermal expansion coefficient of the stabilized zirconia is, for example, yttria-added stabilized zirconia (ZrO 2 -8 mol% Y 2
In the case of O 3 ), it is about 8.10 × 10 -6 deg -1 .

【0023】発熱抵抗層13は、絶縁層12との密着性
がよいもので、例えば、SiC等の導電性を有するセラ
ミックスにより構成されている。SiCの熱膨張係数は
5.12〜5.8×10-6deg-1である。
The heating resistance layer 13 has good adhesion to the insulating layer 12, and is made of, for example, a conductive ceramic such as SiC. The coefficient of thermal expansion of SiC is 5.12 to 5.8 × 10 −6 deg −1 .

【0024】前記ヒータ基体11の組成は、上記組成
に、さらに、Mn:0.1〜2重量%、Co:0.5〜
20重量%、Fe:0.5〜40重量%から選択された
1種または2種以上を含有し、および/または、Ti:
0.1〜5重量%、Mo:0.1〜10重量%、W:
0.1〜10重量%、Ta:0.1〜10重量%、N
b:0.1〜10重量%、Hf:0.1〜10重量%か
ら選択された1種または2種以上を合計で15重量%以
下含有したものとしてもよい。
The composition of the heater substrate 11 is the same as the above composition except that Mn: 0.1 to 2% by weight and Co: 0.5 to.
20% by weight, Fe: 1 to 2 or more selected from 0.5 to 40% by weight, and / or Ti:
0.1 to 5% by weight, Mo: 0.1 to 10% by weight, W:
0.1 to 10% by weight, Ta: 0.1 to 10% by weight, N
b: 0.1 to 10% by weight, Hf: 0.1 to 10% by weight, and one or more kinds selected from the total may be contained in an amount of 15% by weight or less.

【0025】表1及び表2は、ヒータ基体11の成分組
成を様々に変えた場合のそれぞれの冷間加工性、繰り返
し加熱による耐剥離性の各試験結果を示したものであ
る。ここでは、ヒータ基体11の成分組成が本発明の範
囲内のものを実施例(No.1〜No.25)、成分組
成が本発明の範囲より外れたものを比較例(No.26
〜No.36)とした。また、表3は、従来例(No.
37〜No.39)について同様の試験を行なった結果
を示してある。
Tables 1 and 2 show the respective test results of the cold workability and the peeling resistance by repeated heating when the composition of the heater substrate 11 is variously changed. Here, the heater substrate 11 having a component composition within the range of the present invention is an example (No. 1 to No. 25), and the one having a component composition outside the range of the present invention is a comparative example (No. 26).
-No. 36). Table 3 shows a conventional example (No.
37-No. 39) shows the results of similar tests.

【0026】冷間加工性試験は、表1ないし表3に示す
成分組成の板材各々より、幅20mm×長さ100mm
×厚み2mmの大きさの試験片を作成し、各々の試験片
の表面を#800エメリー研磨紙で研磨した後、室温に
おいて曲げ試験(曲げ半径0mm、180゜曲げ)を行
ない、各試験片の割れの有無を調べた。繰り返し加熱に
よる耐剥離性試験は、表1ないし表3に示す成分組成の
板材各々より、幅20mm×長さ100mm×厚み0.
2mmの大きさの試験片を作成し、各々の試験片の表面
に光輝焼鈍を施して光沢面とし、この光沢面上に厚み5
0μmのZrO2絶縁層を形成した。次いで、これら各
試験片を、大気中900℃にて30分間加熱しその後空
冷するという熱サイクルを20回繰り返し、その後、Z
rO2絶縁層を凸側とし、室温において曲げ試験(曲げ
半径4mm、180゜曲げ)を行ない、各試験片のZr
2絶縁層の亀裂、剥離、うき上がりの有無を調べた。
In the cold workability test, widths of 20 mm and lengths of 100 mm were obtained from each of the plate materials having the component compositions shown in Tables 1 to 3.
A test piece having a thickness of 2 mm was prepared, the surface of each test piece was polished with # 800 emery polishing paper, and then a bending test (bending radius 0 mm, 180 ° bending) was performed at room temperature. The presence or absence of cracks was examined. In the peeling resistance test by repeated heating, from each of the plate materials having the component compositions shown in Tables 1 to 3, width 20 mm x length 100 mm x thickness 0.
A test piece having a size of 2 mm is prepared, and the surface of each test piece is subjected to bright annealing to form a glossy surface.
A 0 μm ZrO 2 insulating layer was formed. Then, each of these test pieces is heated at 900 ° C. for 30 minutes in the atmosphere for 30 minutes and then air-cooled, which is repeated 20 times, and then Z
Bending test (bending radius 4 mm, 180 ° bending) was performed at room temperature with the rO 2 insulating layer as the convex side, and Zr of each test piece was measured.
The presence or absence of cracking, peeling, and rising of the O 2 insulating layer was examined.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【表3】 [Table 3]

【0030】表1ないし表3から明かなように、本実施
例(No.1〜No.25)においては、冷間加工性、
繰り返し加熱による耐剥離性ともに良好であるのに対
し、比較例(No.26〜No.36)においては冷間
加工性、繰り返し加熱による耐剥離性のいずれかが悪く
双方共良好なものが無い。また、従来例(No.37〜
No.39)においても、比較例と同様に双方共良好な
ものが無い。したがって、本実施例の有効性が明かとな
った。
As is clear from Tables 1 to 3, in the present examples (No. 1 to No. 25), cold workability,
While the peel resistance by repeated heating is good, in Comparative Examples (No. 26 to No. 36), cold workability or peel resistance by repeated heating is poor, and there is no good both. . Moreover, the conventional example (No. 37-
No. Also in 39), neither of them is good as in the comparative example. Therefore, the effectiveness of this example was clarified.

【0031】以上説明した様に、上記実施例のヒータ基
体によれば、耐酸化性および機械的強度を十分に高める
ことができ、冷間加工における加工性を向上させること
ができ、複雑な形状のヒータ基体を容易に作製すること
ができる。また、該ヒータ基体を600℃以上に繰り返
し加熱した場合においても、該ヒータ基体と絶縁層との
間に酸化スケールが発生せず、剥離が生じるおそれがな
くなる。
As described above, according to the heater substrate of the above embodiment, the oxidation resistance and the mechanical strength can be sufficiently enhanced, the workability in cold working can be improved, and the complicated shape can be obtained. The heater base can be easily manufactured. Further, even when the heater base is repeatedly heated to 600 ° C. or higher, oxide scale does not occur between the heater base and the insulating layer, and there is no possibility of peeling.

【0032】また、前記ヒータ基体の一主面に、ZrO
2を主成分とする絶縁層、発熱抵抗層を順次積層し、前
記絶縁層の熱膨張係数の値を、前記ヒータ基体の熱膨張
係数と発熱抵抗層の熱膨張係数との間の値としたので、
該ヒータ部材を600℃以上に繰り返し加熱した場合に
おいても、前記ヒータ基体と絶縁層との間に酸化スケー
ルが生じるのを防止することができ、これらの間の密着
性を高めることができ、該絶縁層がヒータ基体から剥離
するのを防止することができる。したがって、ヒータ部
材としての性能を長期に亙って保持することができ、ヒ
ータ部材の長寿命化を図ることができる。
Further, ZrO is formed on one main surface of the heater base.
An insulating layer containing 2 as a main component and a heating resistance layer are sequentially laminated, and the value of the thermal expansion coefficient of the insulating layer is set to a value between the thermal expansion coefficient of the heater base and the thermal expansion coefficient of the heating resistance layer. So
Even when the heater member is repeatedly heated to 600 ° C. or higher, it is possible to prevent oxide scale from being generated between the heater base and the insulating layer, and to improve the adhesion between them. It is possible to prevent the insulating layer from peeling off from the heater substrate. Therefore, the performance of the heater member can be maintained for a long period of time, and the life of the heater member can be extended.

【0033】なお、前記発熱抵抗層13は、絶縁層12
との密着性が良好で剥離しないものであればよく、例え
ば、MoSi2(二ケイ化モリブデン)等の導電性を有
するセラミックス、Ni基合金またはFe基合金等の発
熱体用耐熱合金等を用いてもよい。
The heating resistance layer 13 is the insulating layer 12
Any material that has good adhesion with and does not peel off, such as ceramics having conductivity such as MoSi 2 (molybdenum disilicide), heat-resistant alloys for heating elements such as Ni-based alloys or Fe-based alloys, and the like are used. May be.

【0034】また、上記実施例においては、管状のヒー
タ基体11の外面11aに絶縁層12、発熱抵抗層13
を順次積層した構成としたが、この構成はヒータ基体1
1の一主面に絶縁層12、発熱抵抗層13を順次積層し
た構成であればよく、例えば、前記ヒータ基体11の内
面11bに絶縁層12、発熱抵抗層13を順次積層した
構成、あるいは平板状のヒータ基体の表面に、絶縁層、
発熱抵抗体層を順次積層した構成等、用途に合わせて様
々な形状に変更可能である。
In the above embodiment, the insulating layer 12 and the heating resistance layer 13 are formed on the outer surface 11a of the tubular heater substrate 11.
The heater base 1 has a structure in which
It suffices that the insulating layer 12 and the heating resistance layer 13 are sequentially laminated on one main surface of the first substrate 1. For example, the insulating layer 12 and the heating resistance layer 13 are sequentially laminated on the inner surface 11b of the heater base 11, or a flat plate. An insulating layer on the surface of the heater body
It is possible to change into various shapes according to the application, such as a structure in which heating resistor layers are sequentially laminated.

【0035】[0035]

【発明の効果】以上説明した様に、本発明の請求項1記
載のNi基耐熱合金製ヒータ基体によれば、Al:2〜
10重量%、Si:0.1〜4重量%、C:0.01〜
0.5重量%含有するとともに、Y:0.0001〜
0.5重量%、La:0.0001〜0.3重量%、C
e:0.0001〜0.3重量%から選択された1種ま
たは2種以上を含有し、残部をNi及び不可避不純物と
したので、Crを含まなくとも耐酸化性および機械的強
度を十分に高めることができ、冷間加工における加工性
を向上させることができ、複雑な形状のヒータ基体を容
易に作製することができる。また、該ヒータ基体を60
0℃以上に繰り返し加熱した場合においても、該ヒータ
基体の表面に酸化スケールが生じるおそれがなく、該ヒ
ータ基体の一主面に絶縁層を形成した場合に、この絶縁
層の剥離を防止することができる。
As described above, according to the heater base made of the Ni-base heat-resistant alloy according to claim 1 of the present invention, Al: 2 to
10% by weight, Si: 0.1 to 4% by weight, C: 0.01 to
0.5% by weight and Y: 0.0001-
0.5% by weight, La: 0.0001 to 0.3% by weight, C
e: One or two or more selected from 0.0001 to 0.3% by weight is contained, and the balance is Ni and unavoidable impurities. Therefore, sufficient oxidation resistance and mechanical strength can be obtained without Cr. Therefore, the workability in cold working can be improved, and a heater substrate having a complicated shape can be easily manufactured. In addition, the heater base is 60
Even if it is repeatedly heated to 0 ° C. or more, there is no possibility that oxide scale will occur on the surface of the heater substrate, and when the insulating layer is formed on one main surface of the heater substrate, prevention of peeling of this insulating layer You can

【0036】請求項2記載のNi基耐熱合金製ヒータ基
体によれば、さらに、Mn:0.1〜2重量%、Co:
0.5〜20重量%、Fe:0.5〜40重量%から選
択された1種または2種以上を含有することとしたの
で、機械的強度をさらに高めることができる。
According to the heater base made of the Ni-base heat-resistant alloy according to claim 2, Mn: 0.1 to 2% by weight, Co:
Since one or more selected from 0.5 to 20% by weight and Fe: 0.5 to 40% by weight is contained, the mechanical strength can be further increased.

【0037】請求項3記載のNi基耐熱合金製ヒータ基
体によれば、さらに、Ti:0.1〜5重量%、Mo:
0.1〜10重量%、W:0.1〜10重量%、Ta:
0.1〜10重量%、Nb:0.1〜10重量%、H
f:0.1〜10重量%から選択された1種または2種
以上を合計で15重量%以下含有することとしたので、
高温における機械的強度を向上させることができる。
According to the heater base made of the Ni-base heat-resistant alloy according to claim 3, further, Ti: 0.1 to 5% by weight and Mo:
0.1 to 10% by weight, W: 0.1 to 10% by weight, Ta:
0.1-10% by weight, Nb: 0.1-10% by weight, H
f: One or two or more selected from 0.1 to 10% by weight is contained in total of 15% by weight or less,
The mechanical strength at high temperature can be improved.

【0038】請求項4記載のNi基耐熱合金製ヒータ基
体によれば、さらに、Mn:0.1〜2重量%、Co:
0.5〜20重量%、Fe:0.5〜40重量%から選
択された1種または2種以上を含有するとともに、T
i:0.1〜5重量%、Mo:0.1〜10重量%、
W:0.1〜10重量%、Ta:0.1〜10重量%、
Nb:0.1〜10重量%、Hf:0.1〜10重量%
から選択された1種または2種以上を合計で15重量%
以下含有することとしたので、機械的強度をさらに高め
ることができ、高温における機械的強度を向上させるこ
とができる。
According to the heater base made of the Ni-base heat-resistant alloy according to claim 4, Mn: 0.1 to 2% by weight, Co:
0.5 to 20% by weight, Fe: 0.5 to 40% by weight, and one or more selected from
i: 0.1 to 5% by weight, Mo: 0.1 to 10% by weight,
W: 0.1 to 10% by weight, Ta: 0.1 to 10% by weight,
Nb: 0.1 to 10% by weight, Hf: 0.1 to 10% by weight
15% by weight in total of one or more selected from
Since it is contained below, the mechanical strength can be further increased and the mechanical strength at high temperature can be improved.

【0039】請求項5記載のヒータ部材によれば、請求
項1ないし4のいずれか1項記載のNi基耐熱合金製ヒ
ータ基体の一主面に、ZrO2を主成分とする絶縁層、
発熱抵抗層を順次積層し、前記絶縁層の熱膨張係数の値
を、前記ヒータ基体の熱膨張係数と発熱抵抗層の熱膨張
係数との間の値としたので、該ヒータ部材を600℃以
上に繰り返し加熱した場合においても、前記ヒータ基体
と絶縁層との間に酸化スケールが生じるのを防止するこ
とができ、これらの間の密着性を高めることができ、該
絶縁層がヒータ基体から剥離するのを防止することがで
きる。したがって、ヒータ部材としての性能を長期に亙
って保持することができ、ヒータ部材の長寿命化を図る
ことができる。
According to the heater member of claim 5, an insulating layer containing ZrO 2 as a main component is provided on one main surface of the heater base made of the Ni-base heat-resistant alloy according to any one of claims 1 to 4.
Since the heating resistance layers are sequentially laminated and the value of the thermal expansion coefficient of the insulating layer is set to a value between the thermal expansion coefficient of the heater base and the thermal expansion coefficient of the heating resistance layer, the heater member is kept at 600 ° C. or higher. Even when it is repeatedly heated, the oxide scale can be prevented from being generated between the heater base and the insulating layer, the adhesion between them can be enhanced, and the insulating layer is separated from the heater base. Can be prevented. Therefore, the performance of the heater member can be maintained for a long period of time, and the life of the heater member can be extended.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のヒータ部材を示す縦断面図
である。
FIG. 1 is a vertical sectional view showing a heater member according to an embodiment of the present invention.

【図2】従来のヒータ部材を示す縦断面図である。FIG. 2 is a vertical sectional view showing a conventional heater member.

【符号の説明】[Explanation of symbols]

11 ヒータ基体 12 絶縁層 13 発熱抵抗層 11 Heater Base 12 Insulating Layer 13 Heating Resistance Layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Al:2〜10重量%、Si:0.1〜
4重量%、C:0.01〜0.5重量%含有するととも
に、Y:0.0001〜0.5重量%、La:0.00
01〜0.3重量%、Ce:0.0001〜0.3重量
%から選択された1種または2種以上を含有し、残部が
Ni及び不可避不純物からなることを特徴とするNi基
耐熱合金製ヒータ基体。
1. Al: 2 to 10% by weight, Si: 0.1
4% by weight, C: 0.01 to 0.5% by weight, Y: 0.0001 to 0.5% by weight, La: 0.00
Ni-based heat-resistant alloys containing one or two or more selected from 01 to 0.3% by weight and Ce: 0.0001 to 0.3% by weight, and the balance consisting of Ni and inevitable impurities. Made heater base.
【請求項2】 さらに、Mn:0.1〜2重量%、C
o:0.5〜20重量%、Fe:0.5〜40重量%か
ら選択された1種または2種以上を含有することを特徴
とする請求項1記載のNi基耐熱合金製ヒータ基体。
2. Mn: 0.1 to 2% by weight, C
The heater base made of a Ni-base heat-resistant alloy according to claim 1, further comprising one or more selected from o: 0.5 to 20% by weight and Fe: 0.5 to 40% by weight.
【請求項3】 さらに、Ti:0.1〜5重量%、M
o:0.1〜10重量%、W:0.1〜10重量%、T
a:0.1〜10重量%、Nb:0.1〜10重量%、
Hf:0.1〜10重量%から選択された1種または2
種以上を合計で15重量%以下含有することを特徴とす
る請求項1記載のNi基耐熱合金製ヒータ基体。
3. Further, Ti: 0.1 to 5% by weight, M
o: 0.1 to 10% by weight, W: 0.1 to 10% by weight, T
a: 0.1 to 10% by weight, Nb: 0.1 to 10% by weight,
Hf: 1 or 2 selected from 0.1 to 10% by weight
The heater base made of a Ni-base heat-resistant alloy according to claim 1, characterized in that a total of 15% by weight or more of at least one kind is contained.
【請求項4】 さらに、Mn:0.1〜2重量%、C
o:0.5〜20重量%、Fe:0.5〜40重量%か
ら選択された1種または2種以上を含有するとともに、
Ti:0.1〜5重量%、Mo:0.1〜10重量%、
W:0.1〜10重量%、Ta:0.1〜10重量%、
Nb:0.1〜10重量%、Hf:0.1〜10重量%
から選択された1種または2種以上を合計で15重量%
以下含有することを特徴とする請求項1記載のNi基耐
熱合金製ヒータ基体。
4. Mn: 0.1 to 2% by weight, C
o: 0.5 to 20% by weight, Fe: 0.5 to 40% by weight, and one or more selected from
Ti: 0.1 to 5% by weight, Mo: 0.1 to 10% by weight,
W: 0.1 to 10% by weight, Ta: 0.1 to 10% by weight,
Nb: 0.1 to 10% by weight, Hf: 0.1 to 10% by weight
15% by weight in total of one or more selected from
The heater base made of a Ni-base heat-resistant alloy according to claim 1, characterized by containing the following:
【請求項5】 請求項1ないし4のいずれか1項記載の
Ni基耐熱合金製ヒータ基体の一主面に、ZrO2を主
成分とする絶縁層、発熱抵抗層が順次積層され、前記絶
縁層の熱膨張係数の値を、前記ヒータ基体の熱膨張係数
と発熱抵抗層の熱膨張係数との間の値としたことを特徴
とするヒータ部材。
5. An insulation layer containing ZrO 2 as a main component and a heating resistance layer are sequentially laminated on one main surface of the heater base made of the Ni-base heat-resistant alloy according to claim 1, and the insulation is formed. A heater member, wherein the value of the coefficient of thermal expansion of the layer is a value between the coefficient of thermal expansion of the heater base and the coefficient of thermal expansion of the heating resistance layer.
JP25638194A 1994-10-21 1994-10-21 Heater substrate made of nickel-base heat resistant alloy and heater member using the same Withdrawn JPH08120376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25638194A JPH08120376A (en) 1994-10-21 1994-10-21 Heater substrate made of nickel-base heat resistant alloy and heater member using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25638194A JPH08120376A (en) 1994-10-21 1994-10-21 Heater substrate made of nickel-base heat resistant alloy and heater member using the same

Publications (1)

Publication Number Publication Date
JPH08120376A true JPH08120376A (en) 1996-05-14

Family

ID=17291894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25638194A Withdrawn JPH08120376A (en) 1994-10-21 1994-10-21 Heater substrate made of nickel-base heat resistant alloy and heater member using the same

Country Status (1)

Country Link
JP (1) JPH08120376A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008018956A2 (en) * 2006-07-05 2008-02-14 Momentive Performance Materials, Inc. Coating composition, article, and associated method
WO2008076319A1 (en) * 2006-12-13 2008-06-26 Momentive Performance Materials Heater apparatus and associated method
EP2343389A1 (en) * 2006-05-16 2011-07-13 BorgWarner BERU Systems GmbH Alloy based on nickel and its application for spark plug electrodes

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2343389A1 (en) * 2006-05-16 2011-07-13 BorgWarner BERU Systems GmbH Alloy based on nickel and its application for spark plug electrodes
WO2008018956A2 (en) * 2006-07-05 2008-02-14 Momentive Performance Materials, Inc. Coating composition, article, and associated method
WO2008018956A3 (en) * 2006-07-05 2008-04-10 Momentive Performance Mat Inc Coating composition, article, and associated method
WO2008076319A1 (en) * 2006-12-13 2008-06-26 Momentive Performance Materials Heater apparatus and associated method

Similar Documents

Publication Publication Date Title
Yanagihara et al. Effect of third elements on the pesting suppression of Mo-Si-X intermetallics (X= Al, Ta, Ti, Zr and Y)
JP4116677B2 (en) Aluminum-containing iron-based alloys useful as electrical resistance heating elements
JPH0258340B2 (en)
JPH01279781A (en) Ceramic coated heat resistant member
CN113322418A (en) Fe-Cr alloy, method for producing same, and resistance heating element
JP2002121605A (en) Method for forming coating on refractory structural member and use of the coating
JPH08120376A (en) Heater substrate made of nickel-base heat resistant alloy and heater member using the same
CN111869317B (en) Heating element comprising chromium alloyed molybdenum disilicide and use thereof
JP3817173B2 (en) Iron-chromium-aluminum alloy for heating wire
US6903313B2 (en) Resistance heating element for extreme temperatures
JPH08232082A (en) Metallic member for high temperature operation
JPS6396235A (en) Heat resistant ni alloy
JP3411823B2 (en) High temperature member and method of manufacturing the same
JPH05283149A (en) Heater material with excellent surface insulation property and its manufacture
JPH09512129A (en) Manufacturing method of electric resistance heating means
JP2828583B2 (en) Surface-coated silicon nitride heat-resistant member
SU870365A1 (en) Glass
JP2990719B2 (en) Thermal head
JP2537606B2 (en) Ceramic Heater
JPS6028194A (en) Ceramic heater
JPH076038B2 (en) Oxidation resistance Fe-Cr-Al alloy
JPH0790619A (en) High temperature heat resistant member
RU2030479C1 (en) Heat-resistant alloy for electric heating cells
JP2536547B2 (en) Ni-based heat-resistant alloy
JP2016152395A (en) Ceramic/metal joint

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020115