JPH08119945A - New nucleotide analog - Google Patents

New nucleotide analog

Info

Publication number
JPH08119945A
JPH08119945A JP7222886A JP22288695A JPH08119945A JP H08119945 A JPH08119945 A JP H08119945A JP 7222886 A JP7222886 A JP 7222886A JP 22288695 A JP22288695 A JP 22288695A JP H08119945 A JPH08119945 A JP H08119945A
Authority
JP
Japan
Prior art keywords
compound
synthesis
mmol
added
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7222886A
Other languages
Japanese (ja)
Inventor
Takeshi Imanishi
武 今西
Satoshi Obika
聡 小比賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP7222886A priority Critical patent/JPH08119945A/en
Publication of JPH08119945A publication Critical patent/JPH08119945A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain the subject compound, represented by a specific formula, hardly undergoing the hydrolysis with an enzyme in the living body, readily synthesized, suitable for anti-sense molecules and useful as medicines capable of inhibiting the function of a gene and treating diseases such as an antitumor agent. CONSTITUTION: This compound is expressed by formula I [B1 is pyrimidine, a purine nucleic aid base or its derivative; X and Y are each O or S; R is H, an alkyl or an acyl; W is H, an alkyl or an acyl or may be a (oligo) nucleotide or a polynucleotide through a phosphoric ester bond when X is O; (n) is 1-50]. Furthermore, the compound is preferably obtained by selecting, e.g. an optically active (S)-glycidol of formula II as a raw material, initially reacting the selected optically active (S)-glycidol with aqueous ammonia, subsequently adding triethylamine and di-t-butyl carbonate thereto, stirring the prepared mixture, further adding and reacting t-butyldiphenylsilyl chloride and 4-dimehylaminopyridine with the mixture and passing the reactional product through the resultant monomer unit intermediate, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は新規なヌクレオチド類縁
体に関し、更に詳細にはアンチセンス分子に適したヌク
レオチド類縁体に関するものである。
FIELD OF THE INVENTION The present invention relates to novel nucleotide analogs, and more particularly to nucleotide analogs suitable for antisense molecules.

【0002】[0002]

【従来の技術】1978年アンチセンス分子がインフル
エンザウィルスの感染を阻害したとの報告が初めてなさ
れた。以後、ガン遺伝子発現やAIDS感染を阻害した
との報告もなされている。アンチセンスオリゴヌクレオ
チドが望ましくない遺伝子の発現を特異的に制御するこ
とから、医薬品として近年、最も期待されている分野の
うちの一つである。
2. Description of the Related Art The first report was made in 1978 that an antisense molecule inhibited the infection of influenza virus. Since then, it has been reported that it inhibited oncogene expression and AIDS infection. Since antisense oligonucleotides specifically control the expression of undesired genes, it is one of the most promising fields for pharmaceuticals in recent years.

【0003】アンチセンス法とは、DNA→RNA→タ
ンパク質という、いわゆるセントラルドグマの一連の流
れをアンチセンスオリゴヌクレオチドを用いて制御しよ
うという概念に基づいている。
The antisense method is based on the concept of controlling a series of so-called central dogma flow of DNA → RNA → protein using an antisense oligonucleotide.

【0004】しかしながら、天然型オリゴヌクレオチド
をアンチセンス分子としてこの方法に適用した場合、生
体内の酵素により加水分解を受けたり、細胞膜透過性が
高くないなどの問題が生じた。そしてこれらを解消する
ために核酸誘導体が数多く合成され、研究が重ねられて
きた。例えば、リン原子上の酸素原子をイオウ原子に置
換したホスホロチオエート、メチル基に置換したメチル
ホスホネート、また最近になっては、リン原子も炭素原
子で置換したものやリボースを非環式骨格にした分子も
合成されている(F. Eckstein et al., Biochem., 18,
592(1979), P.S.Miller et al., Nucleic Acids Res.,
11, 5189 (1983), P.Herdewijn et al.,J. Chem. Soc.
Perkin Trans. 1, 1567 (1993), P.E. Nielsen et al.,
Science, 254, 1497 (1991))。
However, when a natural type oligonucleotide was applied to this method as an antisense molecule, there were problems that it was hydrolyzed by an enzyme in the living body and cell membrane permeability was not high. In order to solve these problems, many nucleic acid derivatives have been synthesized and researched. For example, phosphorothioate in which oxygen atom on phosphorus atom is replaced by sulfur atom, methylphosphonate in which methyl group is substituted, and more recently, phosphorus atom is also replaced by carbon atom, or molecule in which ribose is acyclic skeleton. Have also been synthesized (F. Eckstein et al., Biochem., 18,
592 (1979), PSMiller et al., Nucleic Acids Res.,
11, 5189 (1983), P. Herdewijn et al., J. Chem. Soc.
Perkin Trans. 1, 1567 (1993), PE Nielsen et al.,
Science, 254, 1497 (1991)).

【0005】しかし、いずれの場合も、生体内での安定
性またはオリゴヌクレオチドの合成の容易さ等の点で満
足のいく誘導体が得られていない。
However, in any case, a derivative which is satisfactory in terms of stability in vivo or easiness of oligonucleotide synthesis has not been obtained.

【0006】[0006]

【発明が解決しようとする課題】生体内で酵素の加水分
解を受けにくく、合成が容易であるアンチセンス分子用
のヌクレオチド類縁体が提供されることが望まれてい
る。
It is desired to provide a nucleotide analog for an antisense molecule which is less susceptible to enzymatic hydrolysis in vivo and is easy to synthesize.

【0007】[0007]

【課題を解決するための手段】本発明の発明者等は、ア
ンチセンス法において有用であろう核酸誘導体を設計
し、合成してその有用性を確認した。以下に本発明を説
明する。
The inventors of the present invention designed and synthesized a nucleic acid derivative that would be useful in the antisense method, and confirmed its usefulness. The present invention will be described below.

【0008】アンチセンス法を指向した核酸誘導体の設
計は次の三点を念頭において行った。1.生体内の酵素
により加水分解を受けるリン酸ジエステル結合をカルバ
メートまたはチオカルバメート結合に置換すること。
The nucleic acid derivative directed to the antisense method was designed with the following three points in mind. 1. Substituting carbamate or thiocarbamate bonds for phosphodiester bonds that are hydrolyzed by enzymes in the body.

【0009】2.そのカルバメートまたはチオカルバメ
ート結合により生じる、二重鎖形成時の構造のひずみを
解消するために、リボースを非環式骨格にして分子に自
由度を持たせること。
2. In order to eliminate the structural distortion caused by the carbamate or thiocarbamate bond at the time of double chain formation, make ribose an acyclic skeleton so that the molecule has flexibility.

【0010】3.体内において分解、代謝を受けた際
に、毒性の発現を抑えるために生体構成成分に近いグリ
セリン誘導体を基本骨格とすること。
3. The basic skeleton should be a glycerin derivative that is close to the biological constituents in order to suppress the development of toxicity when it is decomposed and metabolized in the body.

【0011】以上の点から、下記の一般式で表されるア
ンチセンスDNAアナログを設計し、合成した。
From the above points, an antisense DNA analog represented by the following general formula was designed and synthesized.

【0012】本発明のヌクレオチド類縁体は下記の一般
式で表すことができる。
The nucleotide analog of the present invention can be represented by the following general formula.

【0013】[0013]

【化3】 [上記式中、B1は同一または異なり、ピリミジンもし
くはプリン核酸塩基またはそれらの誘導体であり、Xお
よびYは独立して酸素または硫黄であり、Rは水素、ア
ルキル基、またはアシル基であり、Wは水素、アルキル
基、アシル基、またはXが酸素の場合、リン酸エステル
結合を介したヌクレオチド、オリゴヌクレオチドもしく
はポリヌクレオチドでもよい。nは1〜50の整数であ
る。ただし、nが2以上の場合にはB1は同一の塩基に
限定されない。]
Embedded image [Wherein B 1 is the same or different and is a pyrimidine or purine nucleobase or a derivative thereof, X and Y are independently oxygen or sulfur, R is hydrogen, an alkyl group, or an acyl group, W may be hydrogen, an alkyl group, an acyl group, or when X is oxygen, a nucleotide, an oligonucleotide or a polynucleotide via a phosphate bond. n is an integer of 1 to 50. However, when n is 2 or more, B 1 is not limited to the same base. ]

【化4】 [上記式中、B1およびB2はそれぞれ同一または異な
り、ピリミジンもしくはプリン核酸塩基またはそれらの
誘導体であり、XおよびYは独立して酸素または硫黄で
あり、Wは同一または異なり、水素、アルキル基、アシ
ル基、またはリン酸エステル結合を介したヌクレオチ
ド、オリゴヌクレオチドもしくはポリヌクレオチドでも
よい。mは1〜25の整数である。ただし、mが2以上
の場合にはB1およびB2は同一の塩基に限定されな
い。] 本発明における、ピリミジン又はプリン核酸塩基とは、
チミン、ウラシル、シトシン、アデニン、グアニン及び
それらの誘導体である。
[Chemical 4] [Wherein B 1 and B 2 are the same or different, each is a pyrimidine or purine nucleobase or a derivative thereof, X and Y are independently oxygen or sulfur, W is the same or different, and hydrogen, alkyl It may be a nucleotide, oligonucleotide or polynucleotide through a group, an acyl group, or a phosphate bond. m is an integer of 1 to 25. However, when m is 2 or more, B 1 and B 2 are not limited to the same base. ] In the present invention, the pyrimidine or purine nucleobase is
Thymine, uracil, cytosine, adenine, guanine and their derivatives.

【0014】本発明のヌクレオチド類縁体は次のように
合成できる。説明を簡明にするため、まず、上記の式中
X,Yが共に酸素である化合物を例にとって説明する。
The nucleotide analog of the present invention can be synthesized as follows. To simplify the explanation, first, a compound in which X and Y in the above formula are both oxygen will be described as an example.

【0015】(1)モノマーユニットの合成(1) Synthesis of monomer unit

【化5】 まずはグリセリンを基本骨格とするため、原料として光
学活性(S)−グリシドール(化合物1)を選択し、こ
れをアンモニア水と反応させ化合物2とする。続いてt
ert−ブトキシカルボニル(Boc)基でアミノ基を
保護し、無色油状物質として化合物3を得る。引き続き
一級水酸基をtert−ブチルジフェニルシリル(TB
DPS)基で選択的に保護し、無色結晶として化合物
(シリル体)4を得る。
Embedded image First, since glycerin has a basic skeleton, optically active (S) -glycidol (Compound 1) is selected as a raw material, and this is reacted with aqueous ammonia to obtain Compound 2. Then t
The amino group was protected with an ert-butoxycarbonyl (Boc) group to give compound 3 as a colorless oily substance. Subsequently, the primary hydroxyl group was converted to tert-butyldiphenylsilyl (TB
The compound (silyl compound) 4 is obtained as colorless crystals by selective protection with a DPS group.

【0016】[0016]

【化6】 続いて、ジメチルスルホキシド、無水酢酸、酢酸で二級
水酸基をメチルチオメチル化して化合物5を得る。さら
に、トリメチルシリル(TMS)基で活性化した核酸塩
基(B1)、例えばチミン・2TMSと反応させて、モ
ノマーユニット(R体)6を得る。
[Chemical 6] Then, the secondary hydroxyl group is methylthiomethylated with dimethyl sulfoxide, acetic anhydride, and acetic acid to obtain compound 5. Further, the monomer unit (R-form) 6 is obtained by reacting with a nucleobase (B 1 ) activated with a trimethylsilyl (TMS) group, for example, thymine · 2TMS.

【0017】引き続き、天然型ヌクレオシド(例えばチ
ミジン等)と縮合させるためまたはモノマーユニットを
重合させるため、TBDPS基を脱保護して脱シリル体
7およびBoc基を脱保護して脱Boc体8とする。
Subsequently, in order to condense with a natural nucleoside (for example, thymidine or the like) or to polymerize the monomer unit, the TBDPS group is deprotected to remove the desilylated product 7 and the Boc group to obtain the deBoc product 8. .

【0018】[0018]

【化7】 なお、出発物質を(R)−グリシドール(化合物9)に
すれば、同様の方法によりS体のモノマーユニット10
が得られ、同様に脱保護して脱シリル体11および脱B
oc体12が得られる。
[Chemical 7] If the starting material is (R) -glycidol (compound 9), the S-form monomer unit 10 can be prepared by the same method.
Is obtained in the same manner, and deprotection is performed in the same manner to remove the desilylated product 11 and the B
The oc body 12 is obtained.

【0019】(2)ホモオリゴマーの合成(2) Synthesis of homo-oligomer

【化8】 上記で合成したモノマーユニット(R体)6の脱シリル
体7と脱Boc体8とをN,N’−カルボニルジイミダ
ゾールを用いて縮合してホモダイマー13を得る。これ
をさらに脱保護して脱シリル体14および脱Boc体1
5を得る。
Embedded image The desilylated product 7 of the monomer unit (R-form) 6 synthesized above and the de-Boc product 8 are condensed with N, N′-carbonyldiimidazole to obtain the homodimer 13. This is further deprotected to give the desilylated body 14 and the de-Boc body 1
Get 5.

【0020】次いで、ホモダイマーの脱シリル体14と
脱Boc体15を同様に縮合してホモテトラマー16を
得る。また、モノマーユニットの脱シリル体7とホモダ
イマーの脱Boc体15を同様に縮合して、またはモノ
マーユニットの脱Boc体8とホモダイマーの脱シリル
体14を縮合すればホモトリマー17を合成できる。
Then, the homosilylated desilylated product 14 and the homodimer-free Boc product 15 are similarly condensed to obtain a homotetramer 16. Further, the homotrimer 17 can be synthesized by condensing the desilylated body 7 of the monomer unit and the deBoc body 15 of the homodimer in the same manner, or by condensing the deBoc body 8 of the monomer unit and the desilylated body 14 of the homodimer.

【0021】このように同様な方法により縮合させるこ
とによりホモオリゴマー([化3])を得ることができ
る。なお、モノマーユニット(S体)10を用いること
によりS体のホモオリゴマーも合成可能である。
A homo-oligomer ([Chemical Formula 3]) can be obtained by condensing in the same manner as described above. By using the monomer unit (S-form) 10, an S-form homooligomer can also be synthesized.

【0022】(3)I型オリゴヌクレオチド類縁体(ヘ
テロオリゴマー)の合成
(3) Synthesis of type I oligonucleotide analogue (hetero-oligomer)

【化9】 そして5’側水酸基をジメトキシトリチル(DMTr)
基で保護したヌクレオシド18(例えばチミジン体等)
をN,N'−カルボニルジイミダゾールと反応させ、前に
得られた脱Boc体(R体)8と縮合しダイマーユニッ
ト19を得る。TBDPS基を脱保護して化合物20と
したのちアミダイト体21に導く。
[Chemical 9] And the 5'-side hydroxyl group is dimethoxytrityl (DMTr)
Group-protected nucleoside 18 (eg thymidine form)
Is reacted with N, N′-carbonyldiimidazole and condensed with the previously obtained de-Boc body (R body) 8 to obtain a dimer unit 19. The TBDPS group is deprotected to give compound 20, which is then led to amidite body 21.

【0023】化合物21よりDNAシンセサイザーを用
いて種々の配列のアンチセンスオリゴマー類縁体を合成
し、次いでC18逆相カラムを用いて精製し、精製物の
純度を逆相C18HPLCで分析することにより、精製
オリゴヌクレオチド類縁体(I型R体)の生成を確認で
きる。なお、脱Boc体(R体)8の代わりに脱Boc
体(S体)12を用いれば、S体のオリゴヌクレオチド
類縁体が得られる。
Purification was performed by synthesizing antisense oligomer analogs of various sequences from Compound 21 using a DNA synthesizer and then purifying using a C18 reverse phase column, and analyzing the purity of the purified product by reverse phase C18 HPLC. It can be confirmed that the oligonucleotide analogue (type I R-isomer) is produced. In addition, instead of the de-Boc body (R body) 8, the de-Boc body is removed.
If the body (S body) 12 is used, an S-oligonucleotide analog can be obtained.

【0024】(4)II型オリゴヌクレオチド類縁体(ヘ
テロオリゴマー)の合成
(4) Synthesis of type II oligonucleotide analogue (hetero-oligomer)

【化10】 上記で合成したS体モノマーユニット10のBoc基を
脱保護して得た脱Boc体(S体)12と3’−O−ア
セチルヌクレオシド22(例えば、3’−O−アセチル
チミジン等)のような天然型ヌクレオシドとを縮合して
II型ダイマーのシリル体23を得る。次いで脱シリルし
たダイマー24の水酸基をDMTr基で保護して化合物
25とし、脱アセチル化により26とした後、アミダイ
ト体27を得る。このアミダイト体を市販の天然型ヌク
レオシドのアミダイト体と共に用いて、DNAシンセサ
イザーにより本発明のII型オリゴヌクレオチド類縁体を
得ることができる。なお、脱Boc体(S体)12の代
わりに脱Boc体(R体)8を用いればR体の(II型)
オリゴヌクレオチド類縁体が得られる。精製及び同定は
上記(3)の通りである。
[Chemical 10] Like the de-Boc form (S form) 12 obtained by deprotecting the Boc group of the S form monomer unit 10 synthesized above and the 3'-O-acetyl nucleoside 22 (for example, 3'-O-acetyl thymidine, etc.) By condensing with natural nucleosides
The silyl compound 23 of the type II dimer is obtained. Then, the hydroxyl group of the desilylated dimer 24 is protected with a DMTr group to give a compound 25, which is deacetylated to 26, and then an amidite body 27 is obtained. Using this amidite with a commercially available natural nucleoside amidite, the type II oligonucleotide analog of the present invention can be obtained by a DNA synthesizer. If the Boc-free body (R body) 8 is used instead of the Boc-free body (S body) 12, the R body (II type) is obtained.
An oligonucleotide analog is obtained. Purification and identification are as described in (3) above.

【0025】本発明のオリゴヌクレオチド類縁体の合成
方法を説明したが、上記の式(化3および化4)で表さ
れる化合物のうち、式中のXおよび/またはYが硫黄で
あるチオ誘導体は、天然型ヌクレオシドに代えて3'−
チオヌクレオシドもしくは5'−チオヌクレオシドある
いはそれらの類縁体を用いるか、またはN,N'−カルボ
ニルジイミダゾールに代えてN,N'−チオカルボニルジ
イミダゾールを用いることにより、XまたはYが硫黄で
あるチオ誘導体を合成することができる。また、両方を
同時に行うことで、X,Yの両者が共に硫黄である誘導
体を得ることができる。例えば、I型及びII型ヘテロダ
イマーチオ誘導体は次の合成方法により製造できる。
The method for synthesizing the oligonucleotide analog of the present invention has been described. Among the compounds represented by the above formulas (formula 3 and formula 4), a thio derivative in which X and / or Y in the formula is sulfur. Is 3′-instead of the natural nucleoside
X or Y is sulfur by using a thionucleoside or a 5'-thionucleoside or an analog thereof, or by using N, N'-thiocarbonyldiimidazole instead of N, N'-carbonyldiimidazole. Thio derivatives can be synthesized. Further, by performing both simultaneously, a derivative in which both X and Y are sulfur can be obtained. For example, the type I and type II heterodimer thio derivatives can be produced by the following synthetic method.

【0026】(I型)文献既知である5'−モノメトキシ
トリチルー3'−デオキシー3'−チオチミジン(R. Cro
sstick, J.S. Vyle, J.Chem.Soc.,Chem.Commun.,993 (1
988))を出発原料とし、市販のN,N'−チオカルボニル
ジイミダゾール(W.Walter, K.D.Bode, Angew.Chem., 7
9, 285(1967))またはN,N'−カルボニルジイミダゾー
ルを用い、モノマーユニットの脱Boc体と縮合を行う
ことにより、目的のI型ヘテロダイマーチオ誘導体を得
ることができる。
(Type I) Known 5'-monomethoxytrityl-3'-deoxy-3'-thiothymidine (R. Cro)
sstick, JS Vyle, J.Chem.Soc., Chem.Commun., 993 (1
988)) as a starting material and commercially available N, N′-thiocarbonyldiimidazole (W.Walter, KDBode, Angew.Chem., 7
9,285 (1967)) or N, N′-carbonyldiimidazole is used to condense with the de-Boc derivative of the monomer unit to obtain the desired type I heterodimer thio derivative.

【0027】(II型)文献既知である3'−O−ter
t−ブチルジメチルシリルー5'−デオキシー5'−チオ
チミジン(S.H. Kawai, D.Wang, G.Just, Can.J.Chem.,
70, 285 (1967))を出発原料とし、市販のN,N’−
チオカルボニルジイミダゾール(前掲)またはN,N’
−カルボニルジイミダゾールを用い、モノマーユニット
の脱Boc体と縮合を行うことにより、目的のII型ヘテ
ロダイマーチオ誘導体を得ることができる。
(Type II) Literature known 3'-O-ter
t-Butyldimethylsilyl-5'-deoxy-5'-thiothymidine (SH Kawai, D. Wang, G. Just, Can. J. Chem.,
70, 285 (1967)) as a starting material, and commercially available N, N'-
Thiocarbonyldiimidazole (supra) or N, N '
The desired type II heterodimer thio derivative can be obtained by condensing the de-Boc derivative of the monomer unit using -carbonyldiimidazole.

【0028】本発明により、本発明のヌクレオチド類縁
体を必要な位置に必要な数(長さ)で導入したアンチセ
ンス分子を合成することができる。ヌクレオチド類縁体
全体の長さとしてヌクレオシド単位が10〜30個とな
ることが好ましい。このようなアンチセンス分子は、エ
キソヌクレアーゼに対してばかりでなく、エンドヌクレ
アーゼに対しても分解されにくく、生体への投与後、長
く生体内に存在することができる。そして、例えば、セ
ンス鎖RNAと二重鎖を形成して病因となる生体内成分
(タンパク質)の形成(翻訳)を阻害したり、二重鎖D
NAとの間で三重鎖を形成してmRNAへの転写を阻害
する。また、感染したウィルスの増殖を阻害すると考え
られる。
According to the present invention, it is possible to synthesize an antisense molecule in which the nucleotide analog of the present invention is introduced at a required position in a required number (length). The length of the entire nucleotide analog is preferably 10 to 30 nucleoside units. Such an antisense molecule is hardly decomposed not only by exonuclease but also by endonuclease, and can remain in vivo for a long time after being administered to a living body. Then, for example, it forms a double strand with a sense strand RNA to inhibit the formation (translation) of an in vivo component (protein) that is a causative factor, or double strand D
It forms a triple chain with NA to inhibit transcription into mRNA. It is also considered to inhibit the growth of infected virus.

【0029】これらの事から、本発明のヌクレオチド類
縁体を用いたアンチセンス分子は、抗腫瘍剤、抗ウィル
ス剤をはじめとした遺伝子の働きを阻害して疾病を治療
する医薬品としての有用性が期待されている。
From these facts, the antisense molecule using the nucleotide analog of the present invention is useful as a drug for treating diseases by inhibiting the action of genes such as antitumor agents and antiviral agents. Is expected.

【0030】本発明のヌクレオチド類縁体を用いたアン
チセンス分子は、例えば緩衝剤および/または安定剤等
の慣用の助剤を配合して非経口投与用製剤とすることが
できる。また、局所用の製剤としては、慣用の医薬用担
体を配合して軟膏、クリーム、液剤、または膏薬等に調
剤できる。
The antisense molecule using the nucleotide analog of the present invention can be made into a preparation for parenteral administration by incorporating a conventional auxiliary agent such as a buffer and / or a stabilizer. Further, as a topical preparation, a conventional pharmaceutical carrier can be blended to prepare an ointment, cream, liquid, salve or the like.

【0031】[0031]

【実施例】本発明のヌクレオチド類縁体の合成を実施例
及び製造例により、さらに詳しく説明する。
EXAMPLES The synthesis of the nucleotide analogs of the present invention will be described in more detail with reference to Examples and Production Examples.

【0032】実施例1:モノマーユニット中間体(R
体)の合成 1−a:シリル体4の合成
Example 1: Monomer unit intermediate (R
Body) 1-a: Synthesis of silyl body 4

【化11】 文献既知の方法1)により、(S)−glycidol
(化合物1)(5.0g,68mmol)に、濃アンモ
ニア水(440ml)を加え、氷冷下17時間撹拌し
た。低温でアンモニア水を留去した後、無水エタノール
(120ml)で希釈して無水炭酸カルシウムで乾燥
し、溶媒を留去した。得られた残渣のDMF溶液(10
0ml)に、トリエチルアミン(9.4ml,1e
q.)とジ−t−ブチルジカーボネート(15.5m
l,1eq.)を加え室温で一晩撹拌した。DMFを留
去して得られた残渣のCH2Cl2溶液(60ml)に、
t−ブチルジフェニルシリルクロリド(17.6ml,
1eq.)、4−ジメチルアミノピリジン(0.83
g,0.1eq.)、トリエチルアミン(9.4ml,
1eq.)を加え30時間撹拌した。溶媒を留去した
後、シリカゲルカラム(AcOEt:n−Hexane
=1:2)にて精製し、白色粉末4(21.3g,50
mmol,73%)を得た。
[Chemical 11] By the method 1) known in the literature, (S) -glycidol
Concentrated aqueous ammonia (440 ml) was added to (Compound 1) (5.0 g, 68 mmol), and the mixture was stirred under ice cooling for 17 hours. After distilling off the aqueous ammonia at a low temperature, it was diluted with absolute ethanol (120 ml) and dried over anhydrous calcium carbonate, and the solvent was distilled off. DMF solution of the obtained residue (10
0 ml) with triethylamine (9.4 ml, 1e)
q. ) And di-t-butyl dicarbonate (15.5 m
1, 1 eq. ) Was added and the mixture was stirred overnight at room temperature. The residue obtained by distilling off DMF was added to a CH 2 Cl 2 solution (60 ml),
t-Butyldiphenylsilyl chloride (17.6 ml,
1 eq. ), 4-dimethylaminopyridine (0.83
g, 0.1 eq. ), Triethylamine (9.4 ml,
1 eq. ) Was added and stirred for 30 hours. After distilling off the solvent, a silica gel column (AcOEt: n-Hexane) was used.
= 1: 2), white powder 4 (21.3 g, 50
mmol, 73%) was obtained.

【0033】mp37−39℃1 H−NMR(CDCl3)δ:1.06(9H,s),
1.40(9H,s),2.88(1H,m),3.0
6−3.19(1H,m),3.32−3.40(1
H,m),3.55−3.68(2H,m),3.70
−3.83(1H,m),4.82(1H,br),
7.28−7.42(6H,m),7.60−7.71
(4H,m)1−b:メチルチオメチル(MTM)体5の合成
Mp 37-39 ° C. 1 H-NMR (CDCl 3 ) δ: 1.06 (9 H, s),
1.40 (9H, s), 2.88 (1H, m), 3.0
6-3.19 (1H, m), 3.32-3.40 (1
H, m), 3.55-3.68 (2H, m), 3.70.
-3.83 (1H, m), 4.82 (1H, br),
7.28-7.42 (6H, m), 7.60-7.71
(4H, m) 1-b: Synthesis of methylthiomethyl (MTM) body 5

【化12】 4(10.0g,23.3mmol)のDMSO(60
ml,35eq.)溶液に、無水酢酸(44ml,20
eq.)と酢酸(88ml,60eq.)の混合物を滴
下し、室温で90時間撹拌した。飽和重曹水にて中和
し、水相を酢酸エチルで抽出した。有機相を水、飽和食
塩水で洗浄し、無水硫酸マグネシウムにて乾燥した。シ
リカゲルカラム(AcOEt:n−Hexane=1:
6)により精製し、無色油状物質5(8.4g,17.
1mmol,73%)を得た。
[Chemical 12] 4 (10.0 g, 23.3 mmol) DMSO (60
ml, 35 eq. ) Solution, acetic anhydride (44 ml, 20
eq. ) And acetic acid (88 ml, 60 eq.) Were added dropwise, and the mixture was stirred at room temperature for 90 hours. The mixture was neutralized with saturated aqueous sodium hydrogen carbonate, and the aqueous phase was extracted with ethyl acetate. The organic phase was washed with water and saturated saline, and dried over anhydrous magnesium sulfate. Silica gel column (AcOEt: n-Hexane = 1: 1)
6) and colorless oily substance 5 (8.4 g, 17.
1 mmol, 73%) was obtained.

【0034】1H−NMR(CDCl3)δ:1.05
(9H,s),1.43(9H,s),2.12(3
H,s),3.21−3.23(1H,m),3.38
−3.42(1H,m),3.69(2H,d,J=
4),3.83(1H,m),4.59(1H,d,J
=10),4.69(1H,d,J=10),4.91
(1H,br),7.38−7.45(6H,m),
7.65−7.67(4H,m)実施例2:モノマーユニット(R体)の合成
1 H-NMR (CDCl 3 ) δ: 1.05
(9H, s), 1.43 (9H, s), 2.12 (3
H, s), 3.21-3.23 (1H, m), 3.38.
-3.42 (1H, m), 3.69 (2H, d, J =
4), 3.83 (1H, m), 4.59 (1H, d, J
= 10), 4.69 (1H, d, J = 10), 4.91.
(1H, br), 7.38-7.45 (6H, m),
7.65-7.67 (4H, m) Example 2: Synthesis of monomer unit (R form)

【化13】 2−a:モノマーユニット6aの合成 窒素気流下、メチルチオメチル(MTM)体5(2.7
g,5.6mmol)のCH2Cl2溶液にモレキュラー
シーブス(4Å)(1g)を加えて室温で10分撹拌し
た。O,O’−ビストリメチルシリルチミン2)(3.0
g,2eq.)を加えてさらに10分撹拌し、その後N
−ブロモスクシンイミド(1.1g,1.1eq.)を
加え60分撹拌した。飽和重曹水を加え、水相をCH2
Cl2で抽出した。有機相を水、飽和食塩水で洗浄し、
無水硫酸マグネシウムで乾燥した。シリカゲルカラムク
ロマトグラフィー(CH2Cl2:MeOH=30:1)
にて精製し、無色結晶の化合物6a(3.0g,5.3
mmol,94%)を得た。
[Chemical 13] 2-a: Methylthiomethyl (MTM) body 5 (2.7 in a synthetic nitrogen stream of the monomer unit 6a )
Molecular sieves (4 Å) (1 g) was added to a CH 2 Cl 2 solution of g, 5.6 mmol) and the mixture was stirred at room temperature for 10 minutes. O, O'-bistrimethylsilylthymine 2) (3.0
g, 2 eq. ) Is added and the mixture is stirred for another 10 minutes, then N 2
-Bromosuccinimide (1.1 g, 1.1 eq.) Was added and stirred for 60 minutes. Saturated sodium bicarbonate water was added, and the aqueous phase was CH 2
Extracted with Cl 2 . The organic phase was washed with water and saturated saline,
It was dried over anhydrous magnesium sulfate. Silica gel column chromatography (CH 2 Cl 2 : MeOH = 30: 1)
In a colorless crystal, compound 6a (3.0 g, 5.3).
mmol, 94%) was obtained.

【0035】mp56−57℃1 H−NMR(CDCl3)δ:1.05(9H,s),
1.39(9H,s),1.87(3H,s),3.1
2(1H,dt,J=14,6),3.39(1H,
m),3.67(2H,d,J=4),3.76(1
H,m),4.78(1H,br),5.10(1H,
d,J=10),5.22(1H,d,J=10),
7.06(1H,s),7.40(6H,m),7.6
3(4H,m),8.11(1H,br) [α]D 26+18゜(c=1.0,acetone) Anal.Calcd for C304136Si・
1/4H2O:C,62.97;H,4.70;N,
7.34.Found:C,62.86;H,7.2
6;N,7.48. MS(EI)568(M+2−b:モノマーユニット6bの合成 O,O’−ビストリメチルシリルチミンの代わりに9−
トリメチルシリル−6−(N−トリメチルシリル)ベン
ズアミドプリン3)を用い、上記2−aと同様の方法およ
び条件により化合物6bを得た。
Mp 56-57 ° C. 1 H-NMR (CDCl 3 ) δ: 1.05 (9 H, s),
1.39 (9H, s), 1.87 (3H, s), 3.1
2 (1H, dt, J = 14, 6), 3.39 (1H,
m), 3.67 (2H, d, J = 4), 3.76 (1
H, m), 4.78 (1H, br), 5.10 (1H,
d, J = 10), 5.22 (1H, d, J = 10),
7.06 (1H, s), 7.40 (6H, m), 7.6
3 (4H, m), 8.11 (1H, br) [α] D 26 + 18 ° (c = 1.0, acetone) Anal. Calcd for C 30 H 41 N 3 O 6 Si
1 / 4H 2 O: C, 62.97; H, 4.70; N,
7.34. Found: C, 62.86; H, 7.2.
6; N, 7.48. MS (EI) 568 (M + ) 2-b: Synthesis of monomer unit 6b 9-in place of O, O'-bistrimethylsilylthymine
Compound 6b was obtained using trimethylsilyl-6- (N-trimethylsilyl) benzamidopurine 3) by the same method and conditions as in 2-a above.

【0036】収率 19% mp52−54℃1 H−NMR(CDCl3)δ:1.06(9H,s),
1.38(9H,s),3.10(1H,m),3.4
1(1H,m),3.71(2H,d,J=6),3.
87(1H,m),5.18(1H,br),5.74
(2H,dd,J=9,10),7.38−7.66
(13H,m),8.03(3H,m),8.79(1
H,s),9.34(1H,s) [α]D 25+19゜(c=1.1,acetone) MS(EI)681(M+2−c:モノマーユニット6cの合成 O,O’−ビストリメチルシリルチミンの代わりに4−
(N−トリメチルシリル)ベンズアミド−2−(トリメ
チルシリルオキシ)ピリミジン4)を用い、上記2−aと
同様の方法および条件により化合物6cを得た。
Yield 19% mp 52-54 ° C. 1 H-NMR (CDCl 3 ) δ: 1.06 (9H, s),
1.38 (9H, s), 3.10 (1H, m), 3.4
1 (1H, m), 3.71 (2H, d, J = 6), 3.
87 (1H, m), 5.18 (1H, br), 5.74
(2H, dd, J = 9, 10), 7.38-7.66
(13H, m), 8.03 (3H, m), 8.79 (1
H, s), 9.34 (1H, s) [α] D 25 + 19 ° (c = 1.1, acetone) MS (EI) 681 (M + ) 2-c: Synthesis of monomer unit 6c O, O '-Bistrimethylsilyl thymine instead of 4-
Compound (6c) was obtained using (N-trimethylsilyl) benzamido-2- (trimethylsilyloxy) pyrimidine 4) by the same method and conditions as in 2-a above.

【0037】収率 46% mp57−60℃1 H−NMR(CDCl3)δ:1.07(9H,s),
1.40(9H,s),3.21(1H,m),3.4
0(1H,m),3.73(2H,d,J=5),3.
87(1H,m),4.86(1H,br),5.26
(1H,d,J=10),5.38(1H,d,J=1
0),7.36−7.65(16H,m),7.92
(2H,m) [α]D 25+12゜(c=0.98,acetone) MS(CI)657(M++1)実施例3: モノマーユニット(R体)の重合によるホ
モオリゴマーの合成
Yield 46% mp 57-60 ° C. 1 H-NMR (CDCl 3 ) δ: 1.07 (9 H, s),
1.40 (9H, s), 3.21 (1H, m), 3.4
0 (1H, m), 3.73 (2H, d, J = 5), 3.
87 (1H, m), 4.86 (1H, br), 5.26
(1H, d, J = 10), 5.38 (1H, d, J = 1
0), 7.36-7.65 (16H, m), 7.92
(2H, m) [α] D 25 + 12 ° (c = 0.98, acetone) MS (CI) 657 (M + +1) Example 3: Polymerization of monomer unit (R form)
Synthesis of moligomers

【化14】 3−a:脱シリル体7aの合成 モノマーユニット(R体)6a(500mg,0.88
mmol)を無水THF(14ml)の溶液とし、1.
0Mテトラブチルアンモニウムフルオリド/THF
(0.88ml,1.0eq.)を加え室温で20分撹
拌した後、溶媒留去した。シリカゲルカラムクロマトグ
ラフィー(クロロホルム:メタノール=20:1)で精
製し、白色粉末の脱シリル体(R体)7a(211m
g,0.64mmol,73%)を得た。
Embedded image 3-a: Synthetic monomer unit (R form) 6a (500 mg, 0.88) of desilylated product 7a
(mmol) to a solution of anhydrous THF (14 ml).
0M tetrabutylammonium fluoride / THF
(0.88 ml, 1.0 eq.) Was added and the mixture was stirred at room temperature for 20 minutes, and the solvent was evaporated. Purified by silica gel column chromatography (chloroform: methanol = 20: 1), white powder desilylated product (R product) 7a (211m)
g, 0.64 mmol, 73%) was obtained.

【0038】1H−NMR(CDCl3)δ:1.43
(9H,s),1.93(3H,s),2.72(1
H,br),3.35(1H,m),3.48(1H,
m),3.61(2H,m),3.71(1H,m),
5.10(1H,br),5.22(2H,m),7.
19(1H,s),9.38(1H,s) [α]D 25+9゜(acetone.c=1.0)3−b:ホモダイマー13aの合成 モノマーユニット(R体)6a(372mg,0.65
mmol,1.1eq.)の塩化メチレン溶液(5.5
ml)にトリフルオロ酢酸(0.5ml)を氷冷下滴下
し室温で120分撹拌後、溶媒を留去して得られた脱B
oc体8aを未精製のまま縮合に用いた。脱シリル体7
a(200mg,0.61mmol,1.0eq.)を
無水ピリジンと3回共沸して脱水し、無水ピリジン溶液
(5.5ml)とした。N,N’−カルボニルジイミダ
ゾール(198mg,2.0eq.)を加え、窒素気流
下、室温で150分撹拌した。水(0.13ml,12
eq.)を加え30分撹拌する事により過剰のN,N’
−カルボニルジイミダゾールを分解した後、溶媒を留去
した。無水ピリジンと3回共沸して脱水し、無水ピリジ
ン溶液(5.5ml)とした。これに8aの無水ピリジ
ン溶液(5.5ml)および4−ジメチルアミノピリジ
ン(DMAP)(7mg,0.06mmol,1.0e
q.)を加え、窒素気流下、2日間室温で撹拌した。溶
媒を留去した後、酢酸エチルで希釈し、水で4回、飽和
食塩水で2回洗浄し、有機層を無水硫酸ナトリウムで乾
燥後、溶媒を留去した。シリカゲルカラムクロマトグラ
フィー(クロロホルム:メタノール=30:1)で精製
後、白色粉末のホモダイマー(R体)13a(320m
g,0.39mmol,64%)を得た。
1 H-NMR (CDCl 3 ) δ: 1.43
(9H, s), 1.93 (3H, s), 2.72 (1
H, br), 3.35 (1H, m), 3.48 (1H,
m), 3.61 (2H, m), 3.71 (1H, m),
5.10 (1H, br), 5.22 (2H, m), 7.
19 (1H, s), 9.38 (1H, s) [α] D 25 + 9 ° (acetone.c = 1.0) 3-b: Synthetic monomer unit (R form) 6a (372 mg, 0) of homodimer 13a .65
mmol, 1.1 eq. ) In methylene chloride (5.5
(ml), trifluoroacetic acid (0.5 ml) was added dropwise under ice cooling, the mixture was stirred at room temperature for 120 minutes, and the solvent was distilled off to obtain B-free
The oc body 8a was used for condensation without purification. Desilylated body 7
a (200 mg, 0.61 mmol, 1.0 eq.) was azeotropically distilled with anhydrous pyridine three times to dehydrate it to give an anhydrous pyridine solution (5.5 ml). N, N'-Carbonyldiimidazole (198 mg, 2.0 eq.) Was added, and the mixture was stirred at room temperature for 150 minutes under a nitrogen stream. Water (0.13 ml, 12
eq. ) Is added and the mixture is stirred for 30 minutes to obtain an excess of N, N '.
After decomposing carbonyldiimidazole, the solvent was distilled off. It was dehydrated by azeotropic distillation with anhydrous pyridine three times to give an anhydrous pyridine solution (5.5 ml). To this was added a solution of 8a in anhydrous pyridine (5.5 ml) and 4-dimethylaminopyridine (DMAP) (7 mg, 0.06 mmol, 1.0e).
q. ) Was added, and the mixture was stirred under a nitrogen stream for 2 days at room temperature. After distilling off the solvent, the mixture was diluted with ethyl acetate, washed 4 times with water and 2 times with saturated saline, and the organic layer was dried over anhydrous sodium sulfate, and then the solvent was distilled off. After purification by silica gel column chromatography (chloroform: methanol = 30: 1), white powder of homodimer (R form) 13a (320 m)
g, 0.39 mmol, 64%) was obtained.

【0039】mp80−83℃1 H−NMR(CDCl3)δ:1.06(9H,s),
1.43(9H,s),1.87(3H,s),1.9
1(3H,s),3.00(1H,m),3.17(1
H,m),3.32(1H,m),3.38(1H,
m),3.67(2H,m),3.84−3.95(3
H,m),4.14(1H,m),5.08−5.26
(5H,m),5.55(1H,br),6.98(1
H,s),7.20(1H,s),7.40(6H,
s),7.65(4H,m),9.55(1H,s),
9.96(1H,s) [α]D 28+25゜(c=1.0,acetone)3−c:ホモテトラマー(R体)16aの合成 ホモダイマー(R体)13a(119mg,0.145
mmol,1.1eq.)の塩化メチレン溶液(1.0
ml)にトリフルオロ酢酸(0.11ml)を氷冷下滴
下し室温で120分撹拌後、溶媒を留去して得られたホ
モダイマーの脱Boc体15aを未精製のまま縮合に用
いた。
Mp 80-83 ° C. 1 H-NMR (CDCl 3 ) δ: 1.06 (9 H, s),
1.43 (9H, s), 1.87 (3H, s), 1.9
1 (3H, s), 3.00 (1H, m), 3.17 (1
H, m), 3.32 (1H, m), 3.38 (1H,
m), 3.67 (2H, m), 3.84-3.95 (3
H, m), 4.14 (1H, m), 5.08-5.26.
(5H, m), 5.55 (1H, br), 6.98 (1
H, s), 7.20 (1H, s), 7.40 (6H,
s), 7.65 (4H, m), 9.55 (1H, s),
9.96 (1H, s) [α] D 28 + 25 ° (c = 1.0, acetone) 3-c: Synthesis of homotetramer (R isomer) 16a Homodimer (R isomer) 13a (119 mg, 0.145)
mmol, 1.1 eq. ) Methylene chloride solution (1.0
(ml) was added dropwise with trifluoroacetic acid (0.11 ml) under ice-cooling and stirred at room temperature for 120 minutes, and then the solvent was distilled off to obtain homo-dimer de-Boc derivative 15a which was used for condensation as it was without purification.

【0040】ホモダイマー13a(111mg,0.1
35mmol,1.0eq.)を無水THF(3.0m
l)の溶液とし、1.0Mテトラブチルアンモニウムフ
ルオリド/THF(0.14ml,1.0eq.)を加
え室温で120分撹拌した。溶媒留去後シリカゲルカラ
ムクロマトグラフィー(クロロホルム:メタノール=3
0:1)で精製し、得られたホモダイマーの脱シリル体
14aを無水ピリジンと3回共沸して脱水し、無水ピリ
ジン溶液(0.6ml)とした。N,N’−カルボニル
ジイミダゾール(44mg,2.0eq.)を加え、窒
素気流下、室温で150分撹拌した。水(30μl,1
2eq.)を加え30分撹拌する事により過剰のN,
N’−カルボニルジイミダゾールを分解した後、溶媒を
留去した。無水ピリジンと3回共沸して脱水し、無水ピ
リジン溶液(0.6ml)とした。これに15aの無水
ピリジン溶液(0.6ml)および4−DMAP(7m
g,0.06mmol,1.0eq.)を加え、窒素気
流下、2日間室温で撹拌した。溶媒を留去した後、塩化
メチレンで希釈し、水で2回、飽和食塩水で1回洗浄
し、有機層を無水硫酸ナトリウムで乾燥後、溶媒を留去
した。メタノール/水で再沈殿し、白色粉末のホモテト
ラマー(R体)16a(95mg,0.071mmo
l,53%)を得た。
Homodimer 13a (111 mg, 0.1
35 mmol, 1.0 eq. ) To anhydrous THF (3.0 m
1), 1.0 M tetrabutylammonium fluoride / THF (0.14 ml, 1.0 eq.) was added, and the mixture was stirred at room temperature for 120 minutes. After distilling off the solvent, silica gel column chromatography (chloroform: methanol = 3)
The resulting homodimeric desilylated product 14a was azeotroped with anhydrous pyridine three times to dehydrate it to obtain an anhydrous pyridine solution (0.6 ml). N, N'-Carbonyldiimidazole (44 mg, 2.0 eq.) Was added, and the mixture was stirred at room temperature for 150 minutes under a nitrogen stream. Water (30 μl, 1
2 eq. ) Is added and the mixture is stirred for 30 minutes, whereby excess N,
After decomposing N'-carbonyldiimidazole, the solvent was distilled off. It was dehydrated by azeotropic distillation with anhydrous pyridine three times to obtain an anhydrous pyridine solution (0.6 ml). To this was added a solution of 15a in anhydrous pyridine (0.6 ml) and 4-DMAP (7 m
g, 0.06 mmol, 1.0 eq. ) Was added, and the mixture was stirred under a nitrogen stream for 2 days at room temperature. After the solvent was distilled off, it was diluted with methylene chloride, washed twice with water and once with saturated saline, and the organic layer was dried over anhydrous sodium sulfate, and then the solvent was distilled off. Reprecipitation with methanol / water gave a white powder of homotetramer (R form) 16a (95 mg, 0.071 mmo).
1, 53%).

【0041】mp84−86℃実施例4: I−R型ヘテロダイマーユニットの合成
(I)
Mp84-86 ° C Example 4: Synthesis of IR heterodimer unit
(I)

【化15】 4−a: ヘテロダイマーユニット・シリル体19a
の合成 5’−O−(4,4’−ジメトキシトリチル)チミジン
18a(440mg,0.81mmol)のピリジン溶
液(5ml)にN,N’−カルボニルジイミダゾール
(260mg,2eq.)を加え、4時間撹拌した。反
応を水(15μl,1eq.)により止め、ピリジン共
沸により脱水し、無水ピリジン(5ml)の溶液とし
た。これに、化合物6a(500mg,0.87mmo
l,1.1eq.)のCH2Cl2溶液(7ml)にトリ
フルオロ酢酸(TFA)(1ml)を加え室温で3時間
撹拌後、溶媒を留去し得られた脱Boc体7a(410
mg,0.87mmol)のピリジン溶液(3ml)及
び、4−ジメチルアミノピリジン(110mg,1.1
eq.)、トリエチルアミン(120μl,1.1e
q.)を加えた。100時間室温で撹拌した後、ピリジ
ンを留去した。ベンゼン共沸によりピリジンを除き、残
渣を酢酸エチルで希釈し、水と飽和食塩水にて洗浄し
た。有機相を無水酢酸ナトリウムで乾燥し、溶媒留去後
シリカゲルカラムクロマトグラフィー(AcOEt:n
−hexane=5:1)により精製し、白色粉末のI
−R型シリル体19a(660mg,0.64mmo
l,79%)を得た。
[Chemical 15] 4-a: Heterodimer unit / silyl body 19a
Synthesis of 5'-O- (4,4'-dimethoxytrityl) thymidine 18a (440 mg, 0.81 mmol) in pyridine (5 ml) was added with N, N'-carbonyldiimidazole (260 mg, 2 eq.). Stir for hours. The reaction was stopped with water (15 μl, 1 eq.) And dehydrated by azeotropic distillation with pyridine to give a solution of anhydrous pyridine (5 ml). To this, compound 6a (500 mg, 0.87 mmo
1, 1.1 eq. ) To a CH 2 Cl 2 solution (7 ml), trifluoroacetic acid (TFA) (1 ml) was added, the mixture was stirred at room temperature for 3 hours, and then the solvent was distilled off to obtain the de-Boc body 7 a (410
mg, 0.87 mmol) in pyridine (3 ml) and 4-dimethylaminopyridine (110 mg, 1.1).
eq. ), Triethylamine (120 μl, 1.1e
q. ) Was added. After stirring for 100 hours at room temperature, pyridine was distilled off. Pyridine was removed by azeotropic distillation with benzene, the residue was diluted with ethyl acetate, and washed with water and saturated brine. The organic phase was dried over anhydrous sodium acetate, and the solvent was distilled off, followed by silica gel column chromatography (AcOEt: n).
-Hexane = 5: 1) and purified as a white powder I
-R-type silyl compound 19a (660 mg, 0.64 mmo
1, 79%).

【0042】mp112−116℃1 H−NMR(CDCl3)δ:1.06(9H,s),
1.34(3H,s),1.86(3H,s),2.4
0(2H,m),3.13(1H,m),3.42(1
H,m),3.46(2H,dd,J=9,17),
3.67(2H,d,J=6),3.79(1H,
m),3.79(6H,s),4.18(1H,m),
5.04(1H,d,J=10),5.16(1H,
d,J=10),5.28(1H,t,J=5),5.
32(1H,m),6.44(1H,t,J=7),
6.83(4H,AB,J=9),6.97(1H,
s),7.23−7.64(19H,m),8.47
(1H,s),8.85(1H,s),10.3(1
H,br) MS(FAB)1036.5(M+ ヘテロダイマーユニット・シリル体19b〜19f
の合成 上記に記載した方法及び条件により、下記のヘテロダ
イマーユニットを合成した。
Mp112-116 ° C. 1 H-NMR (CDCl 3 ) δ: 1.06 (9 H, s),
1.34 (3H, s), 1.86 (3H, s), 2.4
0 (2H, m), 3.13 (1H, m), 3.42 (1
H, m), 3.46 (2H, dd, J = 9, 17),
3.67 (2H, d, J = 6), 3.79 (1H,
m), 3.79 (6H, s), 4.18 (1H, m),
5.04 (1H, d, J = 10), 5.16 (1H,
d, J = 10), 5.28 (1H, t, J = 5), 5.
32 (1H, m), 6.44 (1H, t, J = 7),
6.83 (4H, AB, J = 9), 6.97 (1H,
s), 7.23-7.64 (19H, m), 8.47.
(1H, s), 8.85 (1H, s), 10.3 (1
H, br) MS (FAB) 1036.5 (M + ) heterodimer unit / silyl compound 19b to 19f
The following heterodimer unit was synthesized by the method and conditions described above.

【0043】なお、合成されたヘテロダイマーユニット
・シリル体19b〜19fに結合する塩基は次の通りで
ある。
The bases bonded to the synthesized heterodimer unit / silyl compounds 19b to 19f are as follows.

【0044】12 19b チミン(T) アミノ基がベンゾイルで保護され たアデニン(ABZ 19c 〃 アミノ基がベンゾイルで保護され たシトシン(CBZ 19d 〃 アミノ基がイソブチリルで保護さ れたグアニンGiBu 19e ベンゾイル化アデニン(ABZ) チミン(T) 19f ベンゾイル化シトシン(CBZ) 〃 化合物19b 収率 84% mp96−99℃1 H−NMR(CDCl3)δ:1.07(9H,s),
1.90(3H,s),2.61(1H,m),3.0
4(2H,m),3.46(3H,m),3.67(2
H,m),3.76(6H,s),3.87(1H,
m),4.45(1H,m),5.01(1H,d,J
=11),5.25(2H,m),5.39(1H,
m),6.61(1H,t,J=5),6.79(4
H,AB,J=7),6.98(1H,s),7.17
−7.72(22H,m),8.04(2H,d,J=
7),8.25(1H,s),8.84(1H,s),
9.18(1H,s),9.52(1H,br)化合物19c 収率 92% mp116−118℃1 H−NMR(CDCl3)δ:1.06(9H,s),
1.85(3H,s),2.29(1H,m),2.7
9(1H,m),3.16(1H,m),3.44(3
H,m),3.68(2H,d,J=6),3.77
(3H,s),3.78(3H,s),3.81(1
H,m),4.33(1H,br),5.06(1H,
d,J=10),5.20(1H,d,J=10),
5.31(2H,m),6.32(1H,t,J=
7),6.85(4H,m),7.16−7.72(2
5H,m),7.90(2H,d,J=7),8.10
(1H,d,J=7),9.00(1H,br)化合物19d 収率 95% mp124−126℃1 H−NMR(acetone−d6)δ:1.06(9
H,s),1.21(6H,d,J=6),1.83
(3H,s)2.55(1H,m)2.85(1H,
m),2.98(1H,m),3.25(1H,m),
3.31(1H,m),3.43(1H,m),3.5
0(1H,m),3.78(6H,s),3.78(2
H,m),3.96(1H,m),4.30(1H,
m),5.26(3H,m),6.27(1H,dd,
J=5,5),6.46(1H,m),6.82(4
H,m),7.17−7.33(7H,m),7.45
(8H,m),7.73(4H,m),7.95(1
H,s),10.17(1H,br),10.68(1
H,br)12.10(1H,br)化合物19e 収率 50% mp102−105℃1 H−NMR(CDCl3)δ:1.09(9H,s),
1.30(3H,s),2.34(2H,m),3.0
6(1H,m),3.41(2H,m),3.42(1
H,m),3.72(2H,m),3.75(6H,
s),3.87(1H,m),3.94(1H,s),
5.24(1H,m),5.52(1H,br),5.
73(2H,dd,J=11,15),6.32(1
H,t,J=8),6.80(4H,d,J=9),
7.20−7.69(23H,m),8.03(2H,
d,J=7),8.10(1H,s),8.84(1
H,s),10.11(1H,br),10.42(1
H,s)化合物19f 収率 70% mp115−118℃1 H−NMR(CDCl3)δ:1.07(9H,s),
1.27(3H,s),2.34(2H,m),3.0
7(1H,m),3.44(1H,m),3.46(2
H,m),3.69(2H,d,J=5),3.77
(6H,s),4.02(1H,m),4.21(1
H,s),5.19(1H,d,J=10),5.33
(1H,d,J=5),5.42(1H,d,J=1
0),5.65(1H,br),6.42(1H,t,
J=7),6.82(4H,d,J=9),7.22−
7.67(25H,m),7.90(2H,d,J=
7),8.76(1H,s),9.55(1H,br)4−b:ヘテロダイマーユニット・脱シリル体20a
の合成
[0044] B 1 B 2 19b thymine (T) adenine which the amino group is protected with benzoyl (A BZ) 19c 〃 cytosine amino group is protected by a benzoyl (C BZ) 19d 〃 amino group is protected with an isobutyryl guanine G iBu 19e benzoylated adenine (A BZ) thymine (T) 19f benzoyl cytosine (C BZ) compound 19b yield 84% mp96-99 ℃ 1 H-NMR (CDCl 3) δ: 1.07 (9H , S),
1.90 (3H, s), 2.61 (1H, m), 3.0
4 (2H, m), 3.46 (3H, m), 3.67 (2
H, m), 3.76 (6H, s), 3.87 (1H,
m), 4.45 (1H, m), 5.01 (1H, d, J
= 11), 5.25 (2H, m), 5.39 (1H,
m), 6.61 (1H, t, J = 5), 6.79 (4
H, AB, J = 7), 6.98 (1H, s), 7.17
-7.72 (22H, m), 8.04 (2H, d, J =
7), 8.25 (1H, s), 8.84 (1H, s),
9.18 (1H, s), 9.52 (1H, br) Compound 19c Yield 92% mp116-118 ° C 1 H-NMR (CDCl 3 ) δ: 1.06 (9H, s),
1.85 (3H, s), 2.29 (1H, m), 2.7
9 (1H, m), 3.16 (1H, m), 3.44 (3
H, m), 3.68 (2H, d, J = 6), 3.77.
(3H, s), 3.78 (3H, s), 3.81 (1
H, m), 4.33 (1H, br), 5.06 (1H,
d, J = 10), 5.20 (1H, d, J = 10),
5.31 (2H, m), 6.32 (1H, t, J =
7), 6.85 (4H, m), 7.16-7.72 (2
5H, m), 7.90 (2H, d, J = 7), 8.10
(1H, d, J = 7), 9.00 (1H, br) Compound 19d Yield 95% mp124-126 ° C 1 H-NMR (acetone-d 6 ) δ: 1.06 (9
H, s), 1.21 (6H, d, J = 6), 1.83
(3H, s) 2.55 (1H, m) 2.85 (1H,
m), 2.98 (1H, m), 3.25 (1H, m),
3.31 (1H, m), 3.43 (1H, m), 3.5
0 (1H, m), 3.78 (6H, s), 3.78 (2
H, m), 3.96 (1H, m), 4.30 (1H,
m), 5.26 (3H, m), 6.27 (1H, dd,
J = 5, 5), 6.46 (1H, m), 6.82 (4
H, m), 7.17-7.33 (7H, m), 7.45
(8H, m), 7.73 (4H, m), 7.95 (1
H, s), 10.17 (1H, br), 10.68 (1
H, br) 12.10 (1H, br) compound 19e Yield 50% mp 102-105 ° C 1 H-NMR (CDCl 3 ) δ: 1.09 (9H, s),
1.30 (3H, s), 2.34 (2H, m), 3.0
6 (1H, m), 3.41 (2H, m), 3.42 (1
H, m), 3.72 (2H, m), 3.75 (6H,
s), 3.87 (1H, m), 3.94 (1H, s),
5.24 (1H, m), 5.52 (1H, br), 5.
73 (2H, dd, J = 11, 15), 6.32 (1
H, t, J = 8), 6.80 (4H, d, J = 9),
7.20-7.69 (23H, m), 8.03 (2H,
d, J = 7), 8.10 (1H, s), 8.84 (1
H, s), 10.11 (1H, br), 10.42 (1
H, s) Compound 19f yield 70% mp 115-118 ° C 1 H-NMR (CDCl 3 ) δ: 1.07 (9H, s),
1.27 (3H, s), 2.34 (2H, m), 3.0
7 (1H, m), 3.44 (1H, m), 3.46 (2
H, m), 3.69 (2H, d, J = 5), 3.77.
(6H, s), 4.02 (1H, m), 4.21 (1
H, s), 5.19 (1H, d, J = 10), 5.33.
(1H, d, J = 5), 5.42 (1H, d, J = 1
0), 5.65 (1H, br), 6.42 (1H, t,
J = 7), 6.82 (4H, d, J = 9), 7.22-
7.67 (25H, m), 7.90 (2H, d, J =
7), 8.76 (1H, s), 9.55 (1H, br) 4-b: heterodimer unit / desilylated product 20a
Synthesis of

【化16】 I−R型シリル体19a(180mg,0.17mmo
l)のテトラハイドロフラン(THF)溶液(1ml)
に1.0Mテトラブチルアンモニウムフルオリド/TH
F(25μl,1.3eq.)を滴下し、室温で1時間
撹拌した。溶媒を留去しシリカゲルカラムクロマトグラ
フィー(CHCl3:MeOH=20:1)にて精製し
白色粉末のI−R型脱シリル体20a(130mg,9
5%)を得た。
Embedded image IR type silyl compound 19a (180 mg, 0.17 mmo
1) Tetrahydrofuran (THF) solution (1 ml)
1.0M tetrabutylammonium fluoride / TH
F (25 μl, 1.3 eq.) Was added dropwise, and the mixture was stirred at room temperature for 1 hour. The solvent was distilled off, and the product was purified by silica gel column chromatography (CHCl 3 : MeOH = 20: 1) to give a white powder of IR desilylated product 20a (130 mg, 9).
5%).

【0045】mp95−98℃ ,1H−NMR(CDCl3)δ:1.34(3H,
s),1.72(1H,br),1.89(3H,
s),2.43(2H,m),3.32(1H,m),
3.39(1H,m),3.44(2H,m),3.6
2(2H,m),3.75(1H,m),3.78(6
H,s),4.15(1H,m),5.18(1H,
d,J=10),5.23(1H,d,J=10),
5.35(1H,m),6.04(1H,t,J=
6),6.38(1H,t,J=6),6.82(4
H,d,J=8),7.18(1H,s),7.22−
7.30(8H,m),7.36(2H,d,J=
7),9.7(1H,br),10.3(1H,br) [α]D 21+7゜(c=1.0,acetone)ヘテロダイマーユニット・脱シリル体20b〜20f
の合成 上記に記載した方法及び条件により、下記のI−R型
脱シリル体20b〜20fを合成した。
Mp95-98 ° C., 1 H-NMR (CDCl 3 ) δ: 1.34 (3H,
s), 1.72 (1H, br), 1.89 (3H,
s), 2.43 (2H, m), 3.32 (1H, m),
3.39 (1H, m), 3.44 (2H, m), 3.6
2 (2H, m), 3.75 (1H, m), 3.78 (6
H, s), 4.15 (1H, m), 5.18 (1H,
d, J = 10), 5.23 (1H, d, J = 10),
5.35 (1H, m), 6.04 (1H, t, J =
6), 6.38 (1H, t, J = 6), 6.82 (4
H, d, J = 8), 7.18 (1H, s), 7.22-
7.30 (8H, m), 7.36 (2H, d, J =
7), 9.7 (1H, br), 10.3 (1H, br) [α] D 21 + 7 ° (c = 1.0, acetone) heterodimer unit / desilylated form 20b to 20f
The following IR desilylated products 20b to 20f were synthesized by the method and conditions described above.

【0046】化合物20b 収率 58% mp123−126℃1 H−NMR(CDCl3)δ:1.85(3H,s),
2.00(1H,br),2.63(1H,m),2.
97(1H,m),3.27(1H,m),3.43
(3H,m),3.59(1H,m),3.66(1
H,m),3.75(6H,s),3.78(1H,
m),4.33(1H,s),5.19(1H,d,J
=10),5.23(1H,d,J=10),5.42
(1H,m),5.76(1H,br),6.50(1
H,t,J=7),6.77(4H,d,J=7),
7.11(1H,s),7.15−7.37(9H,
m),7.49(2H,m),7.57(1H,m),
8.04(2H,d,J=8),8.23(1H,
s),8.75(1H,s),9.47(1H,br) [α]D 27−2゜(c=0.53,acetone)化合物20c 収率 88% mp126−128℃1 H−NMR(CDCl3)δ:1.87(3H,s),
2.27(1H,m),2.79(1H,m),3.4
0(4H,m),3.66(2H,m),3.78(6
H,s),3.90(1H,m),4.30(1H,
s),5.22(2H,m),5.33(1H,m),
6.04(1H,br),6.28(1H,t,J=
6),6.82(4H,m),7.16−7.64(1
5H,m),7.92(2H,m),8.09(1H,
d,J=8),9.56(1H,br)化合物20d 収率 65% mp128−131℃1 H−NMR(acetone−d6)δ:1.22(6
H,d,J=6),1.86(3H,s),2.59
(1H,m),2.83(1H,m),2.96(1
H,m),3.21(1H,m),3.33(2H,
m),3.48(1H,m),3.57(1H,m),
3.65(1H,m),3.78(6H,s),4.0
0(1H,s),4.29(1H,m),5.26(3
H,m),6.27(1H,dd,J=5,5),6.
47(1H,m),6.82(4H,d,J=7),
7.18−7.32(7H,m),7.44(2H,
d,J=7),7.54(1H,s),7.95(1
H,s),10.19(1H,br),10.72(1
H,br),12.10(1H,br) [α]D 27+9゜(c=0.98,acetone)化合物20e 収率 54% mp100−102℃1 H−NMR(CDCl3)δ:1.31(3H,s),
2.36(2H,m),2.76(1H,br),3.
22(1H,m),3.34(1H,m),3.42
(2H,s),3.65(2H,m),3.76(6
H,s),3.83(1H,m),4.04(1H,
s),5.30(1H,m),5.80(2H,m),
5.99(1H,br),6.34(1H,t,J=
9),6.81(4H,d,J=9),7.20−7.
56(14H,m),8.01(2H,d,J=7),
8.24(1H,s),8.76(1H,s),9.7
9(1H,br)化合物20f 収率 32% mp143−145℃1 H−NMR(CDCl3)δ:1.28(3H,s),
2.38(2H,m),3.27(1H,m),3.4
2(2H,m),3.63(1H,m),3.69(2
H,m),3.76(6H,s),3.88(1H,
m),4.13(1H,s),5.33(2H,m),
5.42(1H,s),6.19(1H,br),6.
35(1H,t,J=10),6.81(4H,d,J
=9),7.17−7.78(18H,m),9.55
(1H,br)4−c:ヘテロダイマーユニット・アミダイト体21a
の合成
Compound 20b Yield 58% mp 123-126 ° C. 1 H-NMR (CDCl 3 ) δ: 1.85 (3H, s),
2.00 (1H, br), 2.63 (1H, m), 2.
97 (1H, m), 3.27 (1H, m), 3.43
(3H, m), 3.59 (1H, m), 3.66 (1
H, m), 3.75 (6H, s), 3.78 (1H,
m), 4.33 (1H, s), 5.19 (1H, d, J
= 10), 5.23 (1H, d, J = 10), 5.42
(1H, m), 5.76 (1H, br), 6.50 (1
H, t, J = 7), 6.77 (4H, d, J = 7),
7.11 (1H, s), 7.15-7.37 (9H,
m), 7.49 (2H, m), 7.57 (1H, m),
8.04 (2H, d, J = 8), 8.23 (1H,
s), 8.75 (1H, s), 9.47 (1H, br) [α] D 27 -2 ° (c = 0.53, acetone) Compound 20c Yield 88% mp 126-128 ° C 1 H- NMR (CDCl 3 ) δ: 1.87 (3H, s),
2.27 (1H, m), 2.79 (1H, m), 3.4
0 (4H, m), 3.66 (2H, m), 3.78 (6
H, s), 3.90 (1H, m), 4.30 (1H,
s), 5.22 (2H, m), 5.33 (1H, m),
6.04 (1H, br), 6.28 (1H, t, J =
6), 6.82 (4H, m), 7.16-7.64 (1
5H, m), 7.92 (2H, m), 8.09 (1H,
d, J = 8), 9.56 (1H, br) compound 20d Yield 65% mp128-131 ° C 1 H-NMR (acetone-d 6 ) δ: 1.22 (6
H, d, J = 6), 1.86 (3H, s), 2.59
(1H, m), 2.83 (1H, m), 2.96 (1
H, m), 3.21 (1H, m), 3.33 (2H,
m), 3.48 (1H, m), 3.57 (1H, m),
3.65 (1H, m), 3.78 (6H, s), 4.0
0 (1H, s), 4.29 (1H, m), 5.26 (3
H, m), 6.27 (1H, dd, J = 5, 5), 6.
47 (1H, m), 6.82 (4H, d, J = 7),
7.18-7.32 (7H, m), 7.44 (2H,
d, J = 7), 7.54 (1H, s), 7.95 (1
H, s), 10.19 (1H, br), 10.72 (1
H, br), 12.10 (1H, br) [α] D 27 + 9 ° (c = 0.98, acetone) Compound 20e Yield 54% mp 100-102 ° C. 1 H-NMR (CDCl 3 ) δ: 1 .31 (3H, s),
2.36 (2H, m), 2.76 (1H, br), 3.
22 (1H, m), 3.34 (1H, m), 3.42
(2H, s), 3.65 (2H, m), 3.76 (6
H, s), 3.83 (1H, m), 4.04 (1H,
s), 5.30 (1H, m), 5.80 (2H, m),
5.99 (1H, br), 6.34 (1H, t, J =
9), 6.81 (4H, d, J = 9), 7.20-7.
56 (14H, m), 8.01 (2H, d, J = 7),
8.24 (1H, s), 8.76 (1H, s), 9.7
9 (1H, br) compound 20f Yield 32% mp143-145 ° C. 1 H-NMR (CDCl 3 ) δ: 1.28 (3H, s),
2.38 (2H, m), 3.27 (1H, m), 3.4
2 (2H, m), 3.63 (1H, m), 3.69 (2
H, m), 3.76 (6H, s), 3.88 (1H,
m), 4.13 (1H, s), 5.33 (2H, m),
5.42 (1H, s), 6.19 (1H, br), 6.
35 (1H, t, J = 10), 6.81 (4H, d, J
= 9), 7.17-7.78 (18H, m), 9.55
(1H, br) 4-c: heterodimer unit / amidite body 21a
Synthesis of

【化17】 I−R型脱シリル体20a(400mg,0.50mm
ol)とジイソプロピルアンモニウムテトラゾリド(6
5mg,0.75eq.)の混合物をピリジン共沸し、
さらにベンゼン共沸を行ない脱水した。この混合物のC
3CN/THF=3/1(v/v)溶液(4ml)に
2−シアノエチル−N,N,N’,N’−テトライソプ
ロピルホスホロジアミダイト(210μl,1.3e
q.)を室温で滴下し、1時間撹拌した。溶媒を留去し
てCH2Cl2で希釈し、飽和重曹水、水、飽和食塩水で
洗浄した。その後無水硫酸マグネシウムで乾燥し、溶媒
を留去、シリカゲルカラムクロマトグラフィー(AcO
Et:Et3N=100:1)にて精製した。白色粉末
I−R型アミダイト体21a(304mg,0.30m
mol,61%)を得た。
[Chemical 17] IR type desilylated product 20a (400 mg, 0.50 mm
ol) and diisopropylammonium tetrazolide (6
5 mg, 0.75 eq. ) Azeotroping the mixture of
Further, benzene was azeotropically distilled for dehydration. C of this mixture
2-cyanoethyl-N, N, N ′, N′-tetraisopropylphosphorodiamidite (210 μl, 1.3e) was added to a H 3 CN / THF = 3/1 (v / v) solution (4 ml).
q. ) Was added dropwise at room temperature and stirred for 1 hour. The solvent was evaporated, diluted with CH 2 Cl 2 and washed with saturated aqueous sodium hydrogen carbonate, water and saturated brine. After that, it was dried over anhydrous magnesium sulfate, the solvent was distilled off, and silica gel column chromatography (AcO) was performed.
It was purified by Et: Et 3 N = 100: 1). White powder IR type amidite body 21a (304 mg, 0.30 m
mol, 61%) was obtained.

【0047】実施例5:I−R型ヘテロダイマーの合成
(II)
Example 5: Synthesis of IR heterodimer
(II)

【化18】 5−a:p−ニトロフェニル 5'−O−(4,4'−ジメ
トキシトリチル)−N−ベンゾイル−2'−デオキシシ
チジン−3'−カーボネートの合成 ビス(4−ニトロフェニル)カーボネート(380m
g,1.3mmol)の無水DMF溶液(2ml)に、
トリエチルアミン(0.10ml,0.69mmol)及
び5'−O−(4,4'−ジメトキシトリチル)−N−ベ
ンゾイルー2'−デオキシシチジン(400mg,0.
63mmol)(化合物18c)の無水DMF溶液(2
ml)を室温で滴下し、5時間撹拌した。溶媒を留去
後、残渣を塩化メチレンに希釈し、0.01N水酸化ナ
トリウム水溶液で2回、水で2回、飽和食塩水で1回洗
浄した。有機相を無水硫酸ナトリウムで乾燥し、溶媒を
留去した後、シリカゲルカラムクロマトグラフィー(C
HCl3:MeOH=99:1〜97:3)にて精製し
た。溶媒を留去後、残渣をトルエン/n−ヘキサン
(1:3)より再沈殿し、白色粉末の化合物28(43
0mg,0.54mmol,86%)を得た。
Embedded image 5-a: p-nitrophenyl 5'-O- (4,4'-dime
Toxitrityl) -N-benzoyl-2'-deoxyoxy
Synthesis of Tidine-3'-carbonate Bis (4-nitrophenyl) carbonate (380 m
g, 1.3 mmol) in anhydrous DMF solution (2 ml),
Triethylamine (0.10 ml, 0.69 mmol) and 5'-O- (4,4'-dimethoxytrityl) -N-benzoyl-2'-deoxycytidine (400 mg, 0.
63 mmol) (compound 18c) in anhydrous DMF (2
(ml) was added dropwise at room temperature, and the mixture was stirred for 5 hours. After the solvent was distilled off, the residue was diluted with methylene chloride and washed twice with a 0.01N aqueous sodium hydroxide solution, twice with water and once with a saturated saline solution. The organic phase was dried over anhydrous sodium sulfate and the solvent was distilled off, followed by silica gel column chromatography (C
It was purified with HCl 3 : MeOH = 99: 1 to 97: 3). After distilling off the solvent, the residue was reprecipitated from toluene / n-hexane (1: 3) to obtain white powder of compound 28 (43).
0 mg, 0.54 mmol, 86%) was obtained.

【0048】mp196−199℃ IRν(KBr):1768,1663,1484,1
252,408cm-1 [α]D 26 +44゜(c=1.0,acetone)1 H−NMR(CDCl3)δ:2.42(1H,m),
3.04(1H,m),3.55(2H,m),3.7
9(6H,s),4.45(1H,m),5.40(1
H,m),6.36(1H,t,J=7),6.86
(4H,d,J=8),7.20−7.42(12H,
m),7.53(2H,m),7.63(1H,t,J
=7),7.90(2H,d,J=8),8.15(1
H,d,J=7),8.31(2H,d,J=9),
8.70(1H,br)5−b:ヘテロダイマーユニット・シリル体19gの合
窒素気流下、上記化合物28(50mg,0.063m
mol)のDMF溶液(0.5ml)に、化合物7c
(42mg,0.076mmol)のDMF溶液(0.
5ml)を室温で滴下した。続いて、トリエチルアミン
(11μl,0.076mmol)を滴下し、室温で1
9時間撹拌し、DMFを留去後、残渣を塩化メチレンで
希釈し、飽和重曹水で1回、水で3回、飽和食塩水で1
回洗浄した。有機相を無水硫酸マグネシウムで乾燥し、
溶媒を留去した後、シリカゲルカラムクロマトグラフィ
ー(CHCl3:MeOH=97:3)により精製し白
色粉末のI−R型シリル体19g(58mg,0.04
9mmol,77%)を得た。mp113−115℃ IRν(KBr):3247,3070,2932,1
697,1656,1559,1487,1254,1
112,703cm-1 [α]D 27 +44゜(c=1.0,acetone)1 H−NMR(CDCl3)δ:1.07(9H,s),
2.25(1H,m),2.75(1H,m),3.1
5(1H,m),3.41−3.50(3H,m),
3.71(2H,d,J=10),3.77(3H,
s),3.78(3H,s),3.96(1H,m),
4.32(1H,m),5.19(1H,d,J=1
0),5.33(1H,m),5.41(1H,d,J
=10),5.52(1H,br), 6.34(1
H,t,J=7),6.82−8.04(37H,m) MS(FAB)1216(M++1)5−c:ヘテロダイマーユニット・脱シリル体20gの
合成 窒素気流下、上記化合物19g(140mg,0.12
mmol)の無水THF溶液(3ml)に1.0Mテト
ラブチルアンモニウムフルオリド/THF溶液(0.1
3ml,0.13mmol)を室温で滴下した。室温で
7.5時間撹拌後、溶媒を留去し、残渣を、シリカゲル
カラムクロマトグラフィー(CHCl3:MeOH=1
0:1)により精製し、白色粉末のI−R型脱シリル体
20g(98mg,0.10mmol,84%)を得
た。
Mp196-199 ° C. IRν (KBr): 1768,1663,1484,1
252,408 cm -1 [α] D 26 + 44 ° (c = 1.0, acetone) 1 H-NMR (CDCl 3 ) δ: 2.42 (1H, m),
3.04 (1H, m), 3.55 (2H, m), 3.7
9 (6H, s), 4.45 (1H, m), 5.40 (1
H, m), 6.36 (1H, t, J = 7), 6.86
(4H, d, J = 8), 7.20-7.42 (12H,
m), 7.53 (2H, m), 7.63 (1H, t, J
= 7), 7.90 (2H, d, J = 8), 8.15 (1
H, d, J = 7), 8.31 (2H, d, J = 9),
8.70 (1H, br) 5-b: Heterodimer unit / silyl compound 19g
Under formation of nitrogen stream, the compound 28 (50 mg, 0.063
mol) in DMF solution (0.5 ml), compound 7c
(42 mg, 0.076 mmol) in DMF (0.
5 ml) was added dropwise at room temperature. Subsequently, triethylamine (11 μl, 0.076 mmol) was added dropwise, and the mixture was stirred at room temperature for 1 hour.
After stirring for 9 hours and distilling off DMF, the residue was diluted with methylene chloride, and saturated aqueous sodium hydrogen carbonate solution was added once, water was added three times, and saturated brine was added once.
Washed twice. The organic phase is dried over anhydrous magnesium sulfate,
After distilling off the solvent, the residue was purified by silica gel column chromatography (CHCl 3 : MeOH = 97: 3) to obtain 19 g (58 mg, 0.04 mg) of IR silyl compound as a white powder.
9 mmol, 77%) was obtained. mp113-115 ° C. IRν (KBr): 3247, 3070, 2932, 1
697, 1656, 1559, 1487, 1254, 1
112,703 cm -1 [α] D 27 + 44 ° (c = 1.0, acetone) 1 H-NMR (CDCl 3 ) δ: 1.07 (9H, s),
2.25 (1H, m), 2.75 (1H, m), 3.1
5 (1H, m), 3.41-3.50 (3H, m),
3.71 (2H, d, J = 10), 3.77 (3H,
s), 3.78 (3H, s), 3.96 (1H, m),
4.32 (1H, m), 5.19 (1H, d, J = 1
0), 5.33 (1H, m), 5.41 (1H, d, J
= 10), 5.52 (1H, br), 6.34 (1
H, t, J = 7), 6.82-8.04 (37H, m) MS (FAB) 1216 (M + +1) 5-c: 20 g of heterodimer unit / desilylated product
19 g of the above compound (140 mg, 0.12) under a synthetic nitrogen stream.
1.0 M tetrabutylammonium fluoride / THF solution (0.1 ml) in anhydrous THF solution (3 ml).
3 ml, 0.13 mmol) was added dropwise at room temperature. After stirring at room temperature for 7.5 hours, the solvent was evaporated, and the residue was subjected to silica gel column chromatography (CHCl 3 : MeOH = 1).
0: 1) to obtain 20 g (98 mg, 0.10 mmol, 84%) of IR desilylated product as a white powder.

【0049】mp136−140℃ IRν(KBr):3314,1700,1654,1
559,1486,1314,1253,1072,7
91,705cm-1 [α]D 27 +49゜(c=1.0,acetone)1 H−NMR(DMSO−d6)δ:2.30(1H,
m),2.54(1H,m),3.00(1H,m),
3.17−3.46(5H,m),3.62(1H,
m),3.73(3H,s),3.74(3H,s),
4.15(1H,m),4.78(1H,t,J=
6),5.16(1H,br),5.27(1H,d,
J=10),5.35(1H,d,J=10),6.1
4(1H,t,J=6),6.88(4H,d,J=
7),7.12−7.65(17H,m),7.95
(2H,d,J=8),8.01(2H,d,J=
8),8.15(1H,m),11.22(2H,b
r) MS(FAB)978(M++1)5−d:ヘテロダイマーユニット・アミダイト体の合成
Mp136-140 ° C. IRν (KBr): 3314,1700,1654,1
559, 1486, 1314, 1253, 1072, 7
91,705 cm -1 [α] D 27 + 49 ° (c = 1.0, acetone) 1 H-NMR (DMSO-d6) δ: 2.30 (1H,
m), 2.54 (1H, m), 3.00 (1H, m),
3.17-3.46 (5H, m), 3.62 (1H,
m), 3.73 (3H, s), 3.74 (3H, s),
4.15 (1H, m), 4.78 (1H, t, J =
6), 5.16 (1H, br), 5.27 (1H, d,
J = 10), 5.35 (1H, d, J = 10), 6.1
4 (1H, t, J = 6), 6.88 (4H, d, J =
7), 7.12-7.65 (17H, m), 7.95.
(2H, d, J = 8), 8.01 (2H, d, J =
8), 8.15 (1H, m), 11.22 (2H, b
r) MS (FAB) 978 (M ++ 1) 5-d: Synthesis of heterodimer unit / amidite body

【化19】 I−R型脱シリル体20g(0.12g,0.12mm
ol)とジイソプロピルアンモニウムテトラゾリド(2
1mg,0.12mmol)のCH3CN/THF(1/
1)溶液(4ml)に、2−シアノエチル−N,N,
N',N'−テトライソプロピルホスホロジアミダイト
(90μl,0.14mmol)を室温で加えた。室温
にて4時間撹拌した後、溶媒を留去し、残渣を酢酸エチ
ルに希釈した。これを飽和重曹水で1回、水で1回、飽
和食塩水で1回洗浄し、無水硫酸マグネシウムにより乾
燥した。溶媒を留去した後、残渣をシリカゲルカラムク
ロマトグラフィー(酢酸エチル:トリエチルアミン=9
9:1)にて精製した。これを塩化メチレン/n−ヘキ
サンから再沈殿し、白色粉末のI−R型アミダイト体2
1b(0.13g,0.11mmol,88%)を得
た。
[Chemical 19] 20 g of IR type desilylated product (0.12 g, 0.12 mm
ol) and diisopropylammonium tetrazolide (2
1 mg, 0.12 mmol) of CH 3 CN / THF (1 /
1) To the solution (4 ml), 2-cyanoethyl-N, N,
N ′, N′-Tetraisopropylphosphorodiamidite (90 μl, 0.14 mmol) was added at room temperature. After stirring at room temperature for 4 hours, the solvent was evaporated and the residue was diluted with ethyl acetate. This was washed once with saturated aqueous sodium hydrogen carbonate, once with water, and once with saturated brine, and dried over anhydrous magnesium sulfate. After evaporating the solvent, the residue was subjected to silica gel column chromatography (ethyl acetate: triethylamine = 9).
9: 1). This was re-precipitated from methylene chloride / n-hexane to give a white powder of IR type amidite body 2
1b (0.13 g, 0.11 mmol, 88%) was obtained.

【0050】mp75−78℃ MS(FAB)1179(M++1)実施例6:I−R型ヘテロオリゴマーの合成 6−a:I−R型オリゴマー: 5'-GCGTTTT-Tt-GCT-3'
(T4X−IR)の合成 3’−水酸基が支持体に結合した5’−ジメトキシトリ
チルチミジン(0.2μmol)のジメトキシトリチル
基をトリクロロ酢酸によって脱保護し、その5’−水酸
基に5’−ジメトキシトリチル−2'−デオキシシチジ
ン β−シアノエチルホスホアミダイト誘導体をテトラ
ゾールにより縮合し、未反応の5’−水酸基を無水酢酸
と4−ジメチルアミノピリジン、2,4,6−コリジン
でアセチル化した後、ヨウ素と2,4,6−コリジン、
水によりリンを酸化する。
Mp75-78 ° C MS (FAB) 1179 (M + +1) Example 6: Synthesis of IR hetero-oligomer 6-a: IR oligomer: 5'-GCGTTTT-Tt-GCT-3 '
Synthesis of (T4X-IR) Deprotection of the dimethoxytrityl group of 5'-dimethoxytritylthymidine (0.2 μmol) having the 3'-hydroxyl group bound to the support by trichloroacetic acid, and 5'-dimethoxy group Trityl-2'-deoxycytidine β-cyanoethylphosphoamidite derivative was condensed with tetrazole, and the unreacted 5'-hydroxyl group was acetylated with acetic anhydride, 4-dimethylaminopyridine and 2,4,6-collidine, and then iodine. And 2,4,6-collidine,
Oxidize phosphorus with water.

【0051】同様に脱保護、縮合、アセチル化、酸化を
繰り返す。(ヘテロダイマーのアミダイト誘導体も他の
アミダイト誘導体と同様に用いることができた。)最後
の5’−ジメトキシトリチル−2'−デオキシグアノシ
ン β−シアノエチルホスホアミダイト誘導体を縮合
し、酸化して得られた12−merのオリゴマー(ここ
までの工程はPharmacia社製DNA合成装置
Gene Assembler Plusにより行なっ
た。)を濃アンモニア水1mlによって支持体から切り
出すとともに、リンからシアノエチル基をはずし、さら
にアデニン、グアニン、シトシンに付いている保護基を
はずす。
Similarly, deprotection, condensation, acetylation and oxidation are repeated. (The amidite derivative of the heterodimer could be used similarly to other amidite derivatives.) Obtained by condensing and oxidizing the final 5'-dimethoxytrityl-2'-deoxyguanosine β-cyanoethylphosphoamidite derivative. 12-mer oligomer (The process up to here is a DNA synthesizer manufactured by Pharmacia.
It was performed by Gene Assembler Plus. ) Is cleaved from the support with 1 ml of concentrated aqueous ammonia, the cyanoethyl group is removed from phosphorus, and the protective groups attached to adenine, guanine, and cytosine are removed.

【0052】得られた5’−ジメトキシトリチルオリゴ
ヌクレオチドは、逆相カラム(Millipore,O
ligo−PakTMSP)上でトリフルオロ酢酸5ml
により5’−ジメトキシトリチル基をはずし、引き続き
精製を行なう。得られたオリゴヌクレオチドを必要があ
れば高速液体クロマトグラフィーで精製し、目的の5'-G
CGTTTT-Tt-GCT-3'(0.11μmol)を得た。
The obtained 5'-dimethoxytrityl oligonucleotide was applied to a reverse phase column (Millipore, O).
5 ml of trifluoroacetic acid on Ligo-Pak SP)
The 5'-dimethoxytrityl group is removed by and the purification is continued. If necessary, the resulting oligonucleotide is purified by high performance liquid chromatography to obtain the desired 5'-G
CGTTTT- Tt- GCT-3 '(0.11 μmol) was obtained.

【0053】なお、本明細書では便宜上天然型ヌクレオ
シドをT,C,A,Gのように大文字で表記し、本発明
における類縁体をそれぞれt,c,a,gのように小文
字で表記する。下線はダイマーユニットを示す。
In the present specification, natural nucleosides are represented by capital letters such as T, C, A and G, and analogs of the present invention are represented by lower case letters such as t, c, a and g, for convenience. . The underline indicates the dimer unit.

【0054】6−b:その他のI−R型オリゴマーの合
・ 5'-GCG-Tt-TTTTGCT-3'(XT4-IR)の合成 同様にして、目的の5'-GCG-Tt-TTTTGCT-3'(0.06μmo
l)を得た。
6-b: Combination of other IR type oligomers
Adult · 5'-GCG- Tt -TTTTGCT-3 ' synthesized Similarly the (XT4-IR), the desired 5'-GCG- Tt -TTTTGCT-3' (0.06μmo
l) was obtained.

【0055】・ 5'-GCGTT-Tt-TTGCT-3'(T2XT2-IR)の合
成 同様にして、目的の5'-GCGTT-Tt-TTGCT-3' (0.07μm
ol)を得た。
Synthesis of 5'-GCGTT- Tt -TTGCT-3 '(T2XT2-IR) Similarly, the desired 5'-GCGTT- Tt -TTGCT-3' (0.07 μm
ol) was obtained.

【0056】・ 5'-GCGTT-Tt-Tt-GCT-3' (T2X2-IR)の合
成 同様にして、目的の5'-GCGTT-Tt-Tt-GCT-3' (0.15μm
ol)を得た。
Synthesis of 5'-GCGTT- Tt - Tt- GCT-3 '(T2X2-IR) Similarly, the desired 5'-GCGTT- Tt - Tt- GCT-3' (0.15 μm
ol) was obtained.

【0057】・ 5'-GCG-Tt-Tt-Tt-GCT-3' (X3-IR)の合
成 同様にして、目的の5'-GCG-Tt-Tt-Tt-GCT-3' (0.19μm
ol)を得た。
Synthesis of 5'-GCG- Tt - Tt - Tt- GCT-3 '(X3-IR) Similarly, the desired 5'-GCG- Tt - Tt - Tt- GCT-3' (0.19 μm
ol) was obtained.

【0058】・ 5'-CTTTTTTTTT-Tt-G-3' (T9X-IR)の合
成 同様にして、目的の5'-CTTTTTTTTT-Tt-G-3' (0.18μm
ol)を得た。
Synthesis of 5'-CTTTTTTTTT- Tt- G-3 '(T9X-IR) Similarly, the desired 5'-CTTTTTTTTT- Tt- G-3' (0.18 μm
ol) was obtained.

【0059】・ 5'-CTTTT-Tt-TTTTTG-3' (T4XT5-IR)の
合成 同様にして、目的の5'-CTTTT-Tt-TTTTTG-3' (0.16μm
ol)を得た。
Synthesis of 5'-CTTTT- Tt -TTTTTG-3 '(T4XT5-IR) Similarly, the desired 5'-CTTTT- Tt -TTTTTG-3' (0.16 μm
ol) was obtained.

【0060】・ 5'-C-Tt-Tt-Tt-Tt-Tt-TG-3' (X5-IR)の
合成 同様にして、目的の5'-C-Tt-Tt-Tt-Tt-Tt-TG-3' (0.20
μmol)を得た。
[0060] · 5'-C- Tt - Tt - Tt - Tt - Tt -TG-3 ' synthesis In the same manner of (X5-IR), 5'- C- Tt of purpose - Tt - Tt - Tt - Tt -TG-3 '(0.20
μmol) was obtained.

【0061】6−c:I−R型Ccヘテロダイマーを用
いたIL−6レセプターアンチセンスオリゴマーの合成 ・ 5'-GCAGCCTCCTTCCCATG-Cc-A-3' (IL-6RAS1-IR)の合
成 実施例5で得られたアミダイト体21bを用い、上記6
−aと同様にして目的の 5'-GCAGCCTCCTTCCCATG-Cc-A-
3' (11.3nmol)を得た。
6-c: using IR type Cc heterodimer
Synthesis of IL-6 receptor antisense oligomer • Synthesis of 5′-GCAGCCTCCTTCCCATG-Cc-A-3 ′ (IL-6RAS1-IR) Using the amidite body 21b obtained in Example 5,
5'-GCAGCCTCCTTCCCATG-Cc-A-
3 '(11.3 nmol) was obtained.

【0062】・ 5'-GCAG-Cc-TCCTTCCCATG-Cc-A-3' (IL-
6RAS2-IR)の合成 同様にして目的の5'-GCAG-Cc-TCCTTCCCATG-Cc-A-3'
(8.2nmol)を得た。
5'-GCAG-Cc-TCCTTCCCATG-Cc-A-3 '(IL-
6RAS2-IR) Synthesis of 5'-GCAG-Cc-TCCTTCCCATG-Cc-A-3 '
(8.2 nmol) was obtained.

【0063】・ 5'-CT-Cc-TTCCCATGCCAGC-Cc-A-3' (IL-
6RAS3-IR)の合成 同様にして目的の5'-CT-Cc-TTCCCATGCCAGC-Cc-A-3'(1
2nmol)を得た。
5'-CT-Cc-TTCCCATGCCAGC-Cc-A-3 '(IL-
6RAS3-IR) Synthesis of 5'-CT-Cc-TTCCCATGCCAGC-Cc-A-3 '(1
2 nmol) was obtained.

【0064】・ 5'-AGCCTCCTTCCCATG-Cc-AGC-3'(IL-6RA
S4-IR)の合成 同様にして目的の5'-AGCCTCCTTCCCATG-Cc-AGC-3'(2
4.8nmol)を得た。
5'-AGCCTCCTTCCCATG-Cc-AGC-3 '(IL-6RA
S4-IR) Synthesis of 5'-AGCCTCCTTCCCATG-Cc-AGC-3 '(2
4.8 nmol) was obtained.

【0065】実施例7:II−S型ヘテロダイマーユニッ
トの合成
Example 7: II-S type heterodimer unit
Synthesis

【化20】 7−a:ヘテロダイマーユニットシリル体23aの合成 (R)−グリシドール(化合物9)を出発物質として実
施例1および2と同様の方法によって得られたモノマー
ユニット(S体)10a(2.02g,3.56mmo
l,1.1eq.)の塩化メチレン溶液(30ml)に
TFA(2.8ml)を氷冷下滴下し室温で120分撹
拌後、溶媒を留去して得られた脱Boc体12aを未精
製のまま縮合に用いた。文献既知の3’−O−アセチル
チミジン22a(0.91g,3.20mmol,1.
0eq)5)を無水ピリジンと3回共沸して脱水し、無水
ピリジン溶液(15ml)とした。N,N'−カルボニ
ルジイミダゾール(1.04g,2.0eq.)を加
え、窒素気流下、室温で150分撹拌した。水(0.7
0ml,12eq.)を加え30分撹拌する事により過
剰のN,N'−カルボニルジイミダゾールを分解した
後、溶媒を留去した。無水ピリジンと3回共沸して脱水
し、無水ピリジン溶液(15ml)とした。これに12
aの無水ピリジン溶液(15ml)および4−ジメチル
アミノピリジン(4−DMAP)(0.39g,0.1
8mmol,0.5eq.)を加え、窒素気流下、2日
間室温で撹拌した。溶媒を留去した後、酢酸エチルで希
釈し、水で4回、飽和食塩水で2回洗浄し、有機層を無
水硫酸ナトリウムで乾燥後、溶媒を留去した。シリカゲ
ルカラムクロマトグラフィー(酢酸エチル:n−ヘキサ
ン=7:1)で精製後、塩化メチレン/n−ヘキサンよ
り再沈殿し、白色粉末のII−S型シリル体23a(2.
10g,2.70mmol,84%)を得た。
Embedded image 7-a: Synthesis of heterodimer unit silyl compound 23a Monomer unit (S compound) 10a (2.02 g, obtained by the same method as in Examples 1 and 2 using (R) -glycidol (Compound 9) as a starting material 3.56 mmo
1, 1.1 eq. ) To a methylene chloride solution (30 ml) of TFA (2.8 ml) was added dropwise under ice cooling and the mixture was stirred at room temperature for 120 minutes, and then the solvent was distilled off to obtain the de-Boc body 12a which was used for condensation without purification. . Known 3'-O-acetylthymidine 22a (0.91 g, 3.20 mmol, 1.
0 eq) 5) was dehydrated by azeotropic distillation with anhydrous pyridine three times to give an anhydrous pyridine solution (15 ml). N, N'-Carbonyldiimidazole (1.04 g, 2.0 eq.) Was added, and the mixture was stirred at room temperature for 150 minutes under a nitrogen stream. Water (0.7
0 ml, 12 eq. ) Was added and the mixture was stirred for 30 minutes to decompose excess N, N′-carbonyldiimidazole, and then the solvent was distilled off. It was dehydrated by azeotropic distillation with anhydrous pyridine three times to obtain an anhydrous pyridine solution (15 ml). 12 to this
a in anhydrous pyridine (15 ml) and 4-dimethylaminopyridine (4-DMAP) (0.39 g, 0.1
8 mmol, 0.5 eq. ) Was added, and the mixture was stirred under a nitrogen stream for 2 days at room temperature. After distilling off the solvent, the mixture was diluted with ethyl acetate, washed 4 times with water and 2 times with saturated saline, and the organic layer was dried over anhydrous sodium sulfate, and then the solvent was distilled off. After purification by silica gel column chromatography (ethyl acetate: n-hexane = 7: 1), reprecipitation was performed from methylene chloride / n-hexane, and white powder of II-S type silyl compound 23a (2.
10 g, 2.70 mmol, 84%) was obtained.

【0066】mp96−98℃1 H−NMR(CDCl3)δ:1.07(9H,s),
1.87(3H,s),1.89(3H,s),2.1
2(3H,s),2.47(1H,m),2.60(1
H,m),3.08(1H,m),3.46(1H,
m),3.67(2H,d,J=6),3.74(1
H,m),4.24(1H,dd,J=3,11),
4.28(1H,m),4.33(1H,dd,J=
3,11),4.97(1H,d,J=9),5.12
(1H,d,J=9),5.27(1H,d,J=
5),6.02(1H,m),6.20(1H,t,J
=7),6.89(1H,s),7.36(1H,
s),7.38−7.66(10H,m),9.29
(1H,br),9.56(1H,br) [α]D 25−18゜(c=1.0,acetone) MS(FAB)778.4(M++1)7−b:ヘテロダイマーユニット・脱シリル体24aの
合成 II−S型シリル体23a(716mg,0.92mmo
l)を無水THF(14ml)の溶液とし、1.0Mテ
トラブチルアンモニウムフルオリド/THF(0.95
ml,1.0eq.)を加え室温で20分撹拌した後、
溶媒留去した。逆相中圧カラム(30%CH3CN i
n H2O)で精製し、白色粉末のII−S型脱シリル体
24a(350mg,0.65mmol,71%)を得
た。
Mp 96-98 ° C. 1 H-NMR (CDCl 3 ) δ: 1.07 (9 H, s),
1.87 (3H, s), 1.89 (3H, s), 2.1
2 (3H, s), 2.47 (1H, m), 2.60 (1
H, m), 3.08 (1H, m), 3.46 (1H,
m), 3.67 (2H, d, J = 6), 3.74 (1
H, m), 4.24 (1H, dd, J = 3, 11),
4.28 (1H, m), 4.33 (1H, dd, J =
3, 11), 4.97 (1H, d, J = 9), 5.12.
(1H, d, J = 9), 5.27 (1H, d, J =
5), 6.02 (1H, m), 6.20 (1H, t, J
= 7), 6.89 (1H, s), 7.36 (1H,
s), 7.38-7.66 (10H, m), 9.29.
(1H, br), 9.56 (1H, br) [α] D 25 -18 ° (c = 1.0, acetone) MS (FAB) 778.4 (M + +1) 7-b: heterodimer unit .Of desilylated product 24a
Synthetic II-S type silyl compound 23a (716 mg, 0.92 mmo
l) as a solution of anhydrous THF (14 ml), and 1.0 M tetrabutylammonium fluoride / THF (0.95
ml, 1.0 eq. ) Was added and stirred at room temperature for 20 minutes,
The solvent was distilled off. Reverse-phase medium pressure column (30% CH 3 CN i
n H 2 O) to obtain a white powder of II-S type desilylated product 24a (350 mg, 0.65 mmol, 71%).

【0067】mp163−166℃1 H−NMR(C55N)δ:1.89(3H,s),
1.97(3H,s),1.99(3H,s),2.4
9(2H,m),3.69(1H,m),3.82(1
H,m),4.01(1H,dd,J=6,12),
4.07(1H,dd,J=5,12),4.30(1
H,m),4.44(1H,m),4.60(1H,d
d,J=6,12),4.69(1H,dd,J=4,
12),5.49(1H,m),5.49(1H,d,
J=10),5.58(1H,d,J=10),6.7
0(1H,t,J=6),7.39(1H,s),7.
62(1H,s),8.42(1H,br),13.2
3(2H,s) [α]D 21−11゜(c=1.0,acetone) Anal. Calcd for C2229511・H2
O:C,47.40;H,5.60;N,12.56.
Found:C,47.47;H,5.48;N,1
2.59 MS(FAB)540.5(M++1)7−c:ヘテロダイマーユニット・トリチル体25aの
合成 II−S型脱シリル体24a(0.97g,1.80mm
ol)を無水ピリジンと3回共沸し、無水ピリジン(1
0ml)の溶液とした。DMTrCl(1.00g,
1.5eq.)を加え、室温で90分撹拌した。溶媒留
去後、クロロホルムにて希釈、水で2回、飽和食塩水で
2回洗浄し、有機層を無水硫酸ナトリウムにて乾燥し
た。溶媒留去後、塩化メチレン/n−ヘキサンより再沈
殿し、白色粉末のII−S型トリチル体25a(1.27
g,1.51mmol,84%)を得た。6) mp125−129℃1 H−NMR(CDCl3)δ:1.89(6H,s),
2.12(3H,s),2.43(1H,m),2.5
8(1H,m),3.09(1H,m),3.18(2
H,m),3.41(1H,m),3.79(1H,
m),3.79(6H,s),4.23(1H,dd,
J=4,12),4.26(1H,m),4.33(1
H,dd,J=2,12),5.08(1H,d,J=
10),5.17(1H,d,J=10),5.27
(1H,d,J=6),5.88(1H,m),6.2
1(1H,t,J=6),6.83(4H,d,J=
8),7.03(1H,s),7.25−7.41(1
0H,m),9.13(1H,s),9.41(1H,
s) [α]D 21−17゜(c=1.0,acetone) Anal.Calcd for C4347513:C,
61.35;H,5.63;N,8.32.Foun
d:C,61.29;H,5.69;N,7.94MS
(FAB)842.2(M++1)7−d:ヘテロダイマーユニット・脱アセチル体26a
の合成 II−S型トリチル体25a(392mg,0.466m
mol)をEtOH(1.2ml)、無水ピリジン
(0.6ml)の溶液とし、室温にてNaOH in 5
0%EtOH(2NのNaOH水溶液に同体積のEtO
Hを加えた。)1.2mlを加えて、10分間室温で撹
拌した。2%塩酸で中和した後、塩化メチレンで希釈、
水で2回、飽和食塩水で2回洗浄し、有機層を無水硫酸
ナトリウムにて乾燥した。溶媒留去後、塩化メチレン/
n−ヘキサンより再沈殿し、白色粉末のII−S型脱アセ
チル体26a(372mg,0.465mmol,10
0%)を得た。
Mp163-166 ° C. 1 H-NMR (C 5 D 5 N) δ: 1.89 (3 H, s),
1.97 (3H, s), 1.99 (3H, s), 2.4
9 (2H, m), 3.69 (1H, m), 3.82 (1
H, m), 4.01 (1H, dd, J = 6, 12),
4.07 (1H, dd, J = 5, 12), 4.30 (1
H, m), 4.44 (1H, m), 4.60 (1H, d
d, J = 6, 12), 4.69 (1H, dd, J = 4)
12), 5.49 (1H, m), 5.49 (1H, d,
J = 10), 5.58 (1H, d, J = 10), 6.7.
0 (1H, t, J = 6), 7.39 (1H, s), 7.
62 (1H, s), 8.42 (1H, br), 13.2
3 (2H, s) [α] D 21 -11 ° (c = 1.0, acetone) Anal. Calcd for C 22 H 29 N 5 O 11・ H 2
O: C, 47.40; H, 5.60; N, 12.56.
Found: C, 47.47; H, 5.48; N, 1
2.59 MS (FAB) 540.5 (M + +1) 7-c: of the heterodimer unit trityl body 25a
Synthetic II-S type desilylated product 24a (0.97 g, 1.80 mm
ol) was azeotroped with anhydrous pyridine three times to give anhydrous pyridine (1
0 ml) solution. DMTrCl (1.00 g,
1.5 eq. ) Was added and the mixture was stirred at room temperature for 90 minutes. After the solvent was distilled off, the residue was diluted with chloroform, washed twice with water and twice with saturated saline, and the organic layer was dried over anhydrous sodium sulfate. After distilling off the solvent, re-precipitation was performed from methylene chloride / n-hexane to obtain a white powder of II-S type trityl compound 25a (1.27).
g, 1.51 mmol, 84%) was obtained. 6) mp125-129 ° C 1 H-NMR (CDCl 3 ) δ: 1.89 (6H, s),
2.12 (3H, s), 2.43 (1H, m), 2.5
8 (1H, m), 3.09 (1H, m), 3.18 (2
H, m), 3.41 (1H, m), 3.79 (1H,
m), 3.79 (6H, s), 4.23 (1H, dd,
J = 4, 12), 4.26 (1H, m), 4.33 (1
H, dd, J = 2,12), 5.08 (1H, d, J =
10), 5.17 (1H, d, J = 10), 5.27.
(1H, d, J = 6), 5.88 (1H, m), 6.2
1 (1H, t, J = 6), 6.83 (4H, d, J =
8), 7.03 (1H, s), 7.25-7.41 (1
0H, m), 9.13 (1H, s), 9.41 (1H,
s) [α] D 21 -17 ° (c = 1.0, acetone) Anal. Calcd for C 43 H 47 N 5 O 13 : C,
61.35; H, 5.63; N, 8.32. Foun
d: C, 61.29; H, 5.69; N, 7.94MS
(FAB) 842.2 (M + +1) 7-d: heterodimer unit / deacetylated product 26a
Synthesis of II-S type trityl compound 25a (392 mg, 0.466 m)
mol) as a solution of EtOH (1.2 ml) and anhydrous pyridine (0.6 ml), and NaOH in 5 at room temperature
0% EtOH (equal volume of EtO in 2N NaOH aqueous solution)
H was added. ) 1.2 ml was added and stirred for 10 minutes at room temperature. After neutralizing with 2% hydrochloric acid, dilute with methylene chloride,
It was washed twice with water and twice with saturated saline, and the organic layer was dried over anhydrous sodium sulfate. After distilling off the solvent, methylene chloride /
Re-precipitation from n-hexane was performed to obtain a white powder of II-S type deacetylated product 26a (372 mg, 0.465 mmol, 10).
0%).

【0068】mp135−139℃1 H−NMR(CDCl3)δ:1.88(6H,s),
2.31(1H,m),2.51(1H,m),3.0
6(1H,m),3.16(2H,m),3.35(1
H,m),3.79(6H,s),3.85(1H,
m),4.10(1H,dd,J=4,12),4.1
4(1H,m),4.28(1H,dd,J=4,1
1),4.42(1H,m),5.08(1H,d,J
=10),5.26(1H,d,J=10),5.97
(1H,br),6.23(1H,t,J=6),6.
82(4H,AB,J=9),7.05(1H,s),
7.25−7.30(8H,m),7.39(2H,
d,J=7),9.8(1H,br),10.3(1
H,br) [α]D 21−11゜(c=1.0,acetone) MS(FAB)800.2(M++1)7−e:ヘテロダイマーユニット・アミダイト体27a
の合成 II−S型脱アセチル体26a(200mg,0.250
mmol)をCH3CN 2.5ml、THF2.5m
lの溶液とし、2−シアノエチル−N,N,N’,N’
−テトライソプロピルホスホロジアミダイト(90m
l,1.1eq.)及び、ジイソプロピルアンモニウム
テトラゾリド(21mg,0.5eq.)を加え、室温
で4時間撹拌した。濃縮後、酢酸エチルで希釈し、水、
5%重曹水で2回、水、飽和食塩水で2回の順に洗浄し
た。有機層を無水硫酸ナトリウムで乾燥後、溶媒を留去
した。シリカゲルフラッシュカラム(3%Et3N/A
cOEt)で精製後、塩化メチレン/n−ヘキサンより
再沈殿し、白色粉末のII−S型アミダイト体27a(1
52mg,0.155mmol,62%)を得た。7) mp95−98℃ MS(FAB)1000.4(M++1)実施例8:II−S型ヘテロオリゴマーの合成 8−a:II−S型オリゴマーの合成 II−S型アミダイト体27a(300mg,0.30m
mol)をアセトニトリル溶液(2.5ml)とし、市
販の天然型ヌクレオシドのアミダイトと共に用いて、D
NAシンセサイザーによりII−S型オリゴマーをそれぞ
れ0.2μmolスケールで合成した(5’−DMT
r:ON)。70℃で3時間アンモニア処理し、切り出
し液を簡易逆相カラム(Millipore,Olig
o−PakTMSP)で精製し、さらに逆相HPLCによ
り精製した。(カラム:TOSOH,TSKgelOD
S−120T(3.2mmI.D.x1.5cm(ガー
ド)+7.8mmI.D.x30cm)、溶離液:A;
0.1M TEAA緩衝液(pH7.0),B;CH3
CN,A/B(v/v)90/10 to 80/20
リニアグラジエント(30min)、流速;2.0ml
/min、温度:21−23℃、検出:UV(254n
m)8−b:II−S型オリゴマーの合成 II−S型オリゴマー: 5'-GCGTTTT-tT-GCT-3' (T4X-II
S)の合成 上記方法により次のオリゴマーを合成し、精製単離して
目的の5'-GCGTTTT-tT-GCT-3'(0.02μmol)を得た。
Mp135-139 ° C1 H-NMR (CDCl3) Δ: 1.88 (6H, s),
2.31 (1H, m), 2.51 (1H, m), 3.0
6 (1H, m), 3.16 (2H, m), 3.35 (1
H, m), 3.79 (6H, s), 3.85 (1H,
m), 4.10 (1H, dd, J = 4, 12), 4.1
4 (1H, m), 4.28 (1H, dd, J = 4, 1
1), 4.42 (1H, m), 5.08 (1H, d, J
= 10), 5.26 (1H, d, J = 10), 5.97.
(1H, br), 6.23 (1H, t, J = 6), 6.
82 (4H, AB, J = 9), 7.05 (1H, s),
7.25-7.30 (8H, m), 7.39 (2H,
d, J = 7), 9.8 (1H, br), 10.3 (1
H, br) [α]D twenty one-11 ° (c = 1.0, acetone) MS (FAB) 800.2 (M++1)7-e: Heterodimer unit / amidite body 27a
Synthesis of II-S type deacetylated product 26a (200 mg, 0.250
mmol) to CH32.5 ml CN, 2.5 m THF
l-cyanoethyl-N, N, N ', N'
-Tetraisopropyl phosphorodiamidite (90m
1, 1.1 eq. ) And diisopropylammonium
Tetrazolid (21 mg, 0.5 eq.) Was added, and room temperature
And stirred for 4 hours. After concentration, dilute with ethyl acetate, water,
Wash with 5% sodium bicarbonate solution twice, water, and saturated saline solution twice, in this order.
Was. The organic layer was dried over anhydrous sodium sulfate and the solvent was distilled off.
did. Silica gel flash column (3% Et3N / A
After purification with cOEt), from methylene chloride / n-hexane
The white powder was re-precipitated and was a II-S type amidite 27a (1
52 mg, 0.155 mmol, 62%) was obtained.7)  mp95-98 ° C MS (FAB) 1000.4 (M++1)Example 8: Synthesis of II-S type hetero-oligomer 8-a: Synthesis of II-S type oligomer II-S type amidite body 27a (300 mg, 0.30 m
(mol) in acetonitrile solution (2.5 ml)
Used with a natural nucleoside amidite on the market, D
II-S type oligomers are individually produced by NA synthesizer.
Was synthesized on a 0.2 μmol scale (5′-DMT
r: ON). Ammonia treatment at 70 ℃ for 3 hours, cut out
The liquid is a simple reverse-phase column (Millipore, Olig
o-PakTMSP) and further by reverse phase HPLC.
Refined. (Column: TOSOH, TSKgelOD
S-120T (3.2 mm ID x 1.5 cm (gar
De) +7.8 mmI. D.x30 cm), eluent: A;
0.1 M TEAA buffer (pH 7.0), B; CH3
CN, A / B (v / v) 90/10 to 80/20
Linear gradient (30 min), flow rate; 2.0 ml
/ Min, temperature: 21-23 ° C., detection: UV (254n
m)8-b: Synthesis of II-S type oligomer II-S type oligomer: 5'-GCGTTTT-tT-GCT-3 '(T4X-II
S) Synthesis The following oligomer was synthesized by the above method, purified and isolated.
Objective 5'-GCGTTTT-tT-GCT-3 '(0.02 μmol) was obtained.

【0069】5'-GCG-tT-TTTTGCT-3'(XT4-IIS)の合成 同様にして、目的の5'-GCG-tT-TTTTGCT-3'(0.03μmo
l)を得た。
Synthesis of 5'-GCG- tT -TTTTGCT-3 '(XT4-IIS) In the same manner, the desired 5'-GCG- tT -TTTTGCT-3' (0.03 μmo
l) was obtained.

【0070】5'-GCGTT-tT-TTGCT-3'(T2XT2-IIS)の合成 同様にして、目的の5'-GCGTT-tT-TTGCT-3'(0.07μmo
l)を得た。
Synthesis of 5'-GCGTT- tT- TTGCT-3 '(T2XT2-IIS) In the same manner, the desired 5'-GCGTT- tT- TTGCT-3' (0.07 μmo
l) was obtained.

【0071】5'-GCGTT-tT-tT-GCT-3'(T2X2-IIS)の合成 同様にして、目的の5'-GCGTT-tT-tT-GCT-3'(0.01μmo
l)を得た。
Synthesis of 5'-GCGTT- tT - tT- GCT-3 '(T2X2-IIS) Similarly, the desired 5'-GCGTT- tT - tT- GCT-3' (0.01 μmo
l) was obtained.

【0072】5'-GCG-tT-tT-tT-GCT-3'(X3-IIS)の合成 同様にして、目的の5'-GCG-tT-tT-tT-GCT-3'(0.02μm
ol)を得た。
Synthesis of 5'-GCG- tT - tT - tT- GCT-3 '(X3-IIS) Similarly, the desired 5'-GCG- tT - tT - tT- GCT-3' (0.02 μm
ol) was obtained.

【0073】実施例9:II−S型ヘテロダイマーユニッ
トのモル吸光係数εの測定 II−S型脱アセチル体26a(150mg,0.188
mmol)の塩化メチレン(5ml)溶液に、トリフル
オロ酢酸(0.1m1.7eq.)を加えて室温で2分
間撹拌後、濃縮し、水を加えて濾過、濾液を濃縮し、逆
相中圧カラムクロマトグラフィー(CH3CN:H2O=
2:8)にて精製後、CH3CNから再結晶して白色粉
末のジオール体(46mg,0.092mmol,49
%)を得た。そして、10mMリン酸ナトリウム緩衝液
(pH7.2)中、90℃での260nmにおける紫外
部吸収を測定してII−S型ヘテロダイマーユニットのモ
ル吸光係数εを計算した。なお天然型ヌクレオシドのモ
ル吸光係数は文献8)の値を用いた。
Example 9: II-S type heterodimer unit
Measurement of the molar extinction coefficient of preparative epsilon II-S type deacetylated body 26a (150 mg, 0.188
Trifluoroacetic acid (0.1 m1.7 eq.) was added to a methylene chloride (5 ml) solution of (mmol) and stirred at room temperature for 2 minutes, and then concentrated. Water was added, the mixture was filtered, and the filtrate was concentrated. column chromatography (CH 3 CN: H 2 O =
2: 8) and then recrystallized from CH 3 CN to give a white powder diol (46 mg, 0.092 mmol, 49).
%) Was obtained. Then, ultraviolet absorption at 260 nm at 90 ° C. was measured in a 10 mM sodium phosphate buffer (pH 7.2) to calculate the molar extinction coefficient ε of the II-S type heterodimer unit. The value of the literature 8) was used as the molar extinction coefficient of the natural nucleoside.

【0074】ε:A,15000;G,12500;
C,7500;T,8500,tT,14900実施例10:I−S型Ttヘテロダイマーの合成
Ε: A, 15000; G, 12500;
C, 7500; T, 8500, tT, 14900 Example 10: Synthesis of IS type Tt heterodimer

【化21】 10−a:ヘテロダイマーユニット・シリル体29の合
5'−O−(4,4'−ジメトキシトリチル)−チミジン
(910mg,1.60mmol)(化合物18c)の
無水ピリジン溶液(6ml)に、1,1'−カルボニルジ
イミダゾール(487mg,3.20mmol)を加
え、窒素気流下、室温で150分撹拌した。水(0.2
2ml、12eq.)を加え、30分撹拌し過剰の1,
1'−カルボニルジイミダゾールを分解した後、溶媒を
留去した。無水ピリジンと3回共沸して脱水し、無水ピ
リジン溶液(6ml)とした。これに化合物12a(3
67mg,1.65mmol)の無水ピリジン溶液(6
ml)および4−ジメチルアミノピリジン(91mg,
0.5eq.)を加え、窒素気流下、4日間室温で撹拌
した。溶媒を留去後、酢酸エチルで希釈し、水で4回、
飽和食塩水で2回洗浄し、有機相を無水硫酸ナトリウム
で乾燥後、溶媒を留去した。シリカゲルカラムクロマト
グラフィー(CHCl3:MeOH=20:1)で精製
した。塩化メチレン/n−ヘキサンより再沈殿し、白色
粉末のI−S型シリル体29(900mg,0.87m
mol,58%)を得た。
[Chemical 21] 10-a: combination of heterodimer unit / silyl compound 29
Forming 5'-O-(4,4'-dimethoxytrityl) - thymidine (910 mg, 1.60 mmol) (Compound 18c) in anhydrous pyridine solution (6 ml), 1,1'-carbonyldiimidazole (487 mg, 3. 20 mmol) was added, and the mixture was stirred at room temperature for 150 minutes under a nitrogen stream. Water (0.2
2 ml, 12 eq. ) Is added, and the mixture is stirred for 30 minutes, and excess 1,
After decomposing 1'-carbonyldiimidazole, the solvent was distilled off. It was dehydrated by azeotropic distillation with anhydrous pyridine three times to obtain an anhydrous pyridine solution (6 ml). Compound 12a (3
67 mg, 1.65 mmol) of anhydrous pyridine (6
ml) and 4-dimethylaminopyridine (91 mg,
0.5 eq. ) Was added and the mixture was stirred under a nitrogen stream for 4 days at room temperature. After distilling off the solvent, it was diluted with ethyl acetate and washed 4 times with water.
The organic phase was washed twice with saturated saline and dried over anhydrous sodium sulfate, and then the solvent was distilled off. It was purified by silica gel column chromatography (CHCl 3 : MeOH = 20: 1). Reprecipitation from methylene chloride / n-hexane gave a white powder of the IS silyl compound 29 (900 mg, 0.87 m).
mol, 58%) was obtained.

【0075】mp115−119℃ IRν(KBr):3069,2931,1685,1
509,1253,1112cm-1 [α]D 28 −13゜(c=0.64,acetone)1 H−NMR(CDCl3)δ:0.99(9H,s),
1.27(3H,S)1.79(3H,s),2.32
(1H,m),2.46(1H,m),2.92(1
H,m),3.32(1H,m),3.38(2H,
m),3.60(2H,m),3.71(6H,m),
3.82(1H,s),4.03(1H,m),4.9
6(1H,d,J=10),5.15(1H,d,J=
11),5.28(2H,m),6.36(1H,
m),6.76(4H,d,J=8),6.91(1
H,s),7.14−7.59(20H,m),8.5
4(1H,br),9.29(1H,br) Anal.Calcd for C5763512Si
・1/3H2O:C,65.56;H,6.15;N,
6.71.Found:C,65.60;H,6.4
1;N,6.59 MS(FAB)1038(M++1)10−b:ヘテロダイマーユニット・脱シリル体30の
合成 上記化合物29(700mg,0.67mmol)の無
水THF溶液(10ml)に1.0Mテトラブチルアン
モニウムフルオリド/THF溶液(0.68ml,0.
68mmol)を加え室温で20分撹拌した後、溶媒を
留去した。残渣を、シリカゲルカラムクロマトグラフィ
ー(CHCl3:MeOH=20:1)で精製した。塩
化メチレン/n−ヘキサンより再沈殿し、白色粉末のI
−S型脱シリル体30(487mg,0.61mmo
l,90%)を得た。
Mp115-119 ° C. IRν (KBr): 3069, 2931, 1685, 1
509, 1253, 1112 cm -1 [α] D 28 -13 ° (c = 0.64, acetone) 1 H-NMR (CDCl 3 ) δ: 0.99 (9H, s),
1.27 (3H, S) 1.79 (3H, s), 2.32
(1H, m), 2.46 (1H, m), 2.92 (1
H, m), 3.32 (1H, m), 3.38 (2H,
m), 3.60 (2H, m), 3.71 (6H, m),
3.82 (1H, s), 4.03 (1H, m), 4.9
6 (1H, d, J = 10), 5.15 (1H, d, J =
11), 5.28 (2H, m), 6.36 (1H,
m), 6.76 (4H, d, J = 8), 6.91 (1
H, s), 7.14-7.59 (20H, m), 8.5.
4 (1H, br), 9.29 (1H, br) Anal. Calcd for C 57 H 63 N 5 O 12 Si
· 1 / 3H 2 O: C , 65.56; H, 6.15; N,
6.71. Found: C, 65.60; H, 6.4.
1; N, 6.59 MS (FAB) 1038 (M + +1) 10-b: heterodimer unit / desilylation product 30
Synthesis 1.0M tetrabutylammonium fluoride / THF solution (0.68 ml, 0.10 mL) in anhydrous THF solution (10 ml) of compound 29 (700 mg, 0.67 mmol).
68 mmol) was added and the mixture was stirred at room temperature for 20 minutes, and then the solvent was evaporated. The residue was purified by silica gel column chromatography (CHCl 3 : MeOH = 20: 1). Reprecipitation from methylene chloride / n-hexane gave a white powder I
-S-type desilylated product 30 (487 mg, 0.61 mmo
1, 90%).

【0076】mp115−120℃ IRν(KBr):3479,3064,2930,2
837,1695,1510,1465,1253,1
177,1103,668,412cm-1 1 H−NMR(CDCl3)δ:1.36(3H,s),
1.92(3H,s),2.41(1H,m),2.5
1(1H,m),2.70(1H,m),3.23(1
H,m),3.44(2H,m),3.64(2H,
m),3.79(7H,s),4.14(1H,m),
5.12(1H,d,J=10),5.17(1H,
d,J=11),5.38(1H,m),5.54(1
H,m),6.41(1H,m),6.83(4H,
d,J=9),7.13(1H,s),7.24−7.
61(10H,m),8.72(1H,br)9.18
(1H,br) Anal.Calcd for C4145512・H2
O:C,60.21;H,5.79;N,8.56.F
ound:C,60.29;H,5.80;N,8.4
3 MS(FAB)800(M++1)10−c:ヘテロダイマーユニット・アミダイト体の合
Mp115-120 ° C. IRν (KBr): 3479, 3064, 2930, 2
837, 1695, 1510, 1465, 1253, 1
177,1103,668,412cm -1 1 H-NMR (CDCl 3) δ: 1.36 (3H, s),
1.92 (3H, s), 2.41 (1H, m), 2.5
1 (1H, m), 2.70 (1H, m), 3.23 (1
H, m), 3.44 (2H, m), 3.64 (2H,
m), 3.79 (7H, s), 4.14 (1H, m),
5.12 (1H, d, J = 10), 5.17 (1H,
d, J = 11), 5.38 (1H, m), 5.54 (1
H, m), 6.41 (1H, m), 6.83 (4H,
d, J = 9), 7.13 (1H, s), 7.24-7.
61 (10H, m), 8.72 (1H, br) 9.18
(1H, br) Anal. Calcd for C 41 H 45 N 5 O 12 · H 2
O: C, 60.21; H, 5.79; N, 8.56. F
found: C, 60.29; H, 5.80; N, 8.4
3 MS (FAB) 800 (M + +1) 10-c: Combination of heterodimer unit and amidite form
Success

【化22】 I−S型脱シリル体30より、実施例5−bと同様にし
てI−S型アミダイト体31を得た。(収率58%) mp104−107℃(CH2Cl2/n−ヘキサン)31 P−NMR(CDCl3)δ:149.48 Anal.Calcd for C5062713P:
C,60.05;H,6.25;N,9.80.Fou
nd:C,59.48,H,6.52,N,9.65 MS(FAB)1000(M++1)実験例1:融解温度(Tm)の測定 実施例6及び8で合成した種々のアンチセンス分子であ
るオリゴマー鎖(アンチセンス鎖)とセンス鎖とをアニ
ーリング処理したもののTmを測定することにより、ア
ンチセンス鎖のハイブリッド形成能を調べた。
[Chemical formula 22] An IS type amidite body 31 was obtained from the IS type desilylated body 30 in the same manner as in Example 5-b. (Yield 58%) mp 104-107 ° C. (CH 2 Cl 2 / n-hexane) 31 P-NMR (CDCl 3 ) δ: 149.48 Anal. Calcd for C 50 H 62 N 7 O 13 P:
C, 60.05; H, 6.25; N, 9.80. Fou
nd: C, 59.48, H, 6.52, N, 9.65 MS (FAB) 1000 (M + +1) Experimental Example 1: Measurement of melting temperature (Tm) Various kinds synthesized in Examples 6 and 8 The hybridizing ability of the antisense strand was examined by measuring the Tm of an annealed oligomer strand (antisense strand) which is an antisense molecule and a sense strand.

【0077】終濃度をNaCl 100mM、リン酸ナ
トリウム緩衝液(pH7.2)10mM、アンチセンス
鎖4μM,センス鎖4μMとしたサンプル溶液を沸騰水
中に浴し、10時間かけて室温まで冷却した。紫外部分
光光度計のセル室内に結露防止のために窒素気流を通
し、サンプル溶液を0℃までゆっくり冷却し、さらに3
0分間0℃に保った。毎分0.2℃ずつ上昇させ、0.
5℃間隔で260nmにおける紫外部吸収を測定し、シ
グモイド曲線の変曲点の温度をTm値とした。なお温度
上昇による蒸発で濃度が変化するのを防ぐため、セルは
蓋付きのものを用い、サンプル溶液表面には鉱油を1滴
たらした。測定に用いたアンチセンス鎖、及びセンス鎖
の配列を次に示す。
A sample solution having a final concentration of 100 mM NaCl, 10 mM sodium phosphate buffer (pH 7.2), 4 μM antisense strand and 4 μM sense strand was bathed in boiling water and cooled to room temperature over 10 hours. A nitrogen stream was passed through the cell chamber of the ultraviolet spectrophotometer to prevent condensation, and the sample solution was slowly cooled to 0 ° C.
Hold at 0 ° C for 0 minutes. The temperature is increased by 0.2 ° C./min to reach 0.
Ultraviolet absorption at 260 nm was measured at 5 ° C. intervals, and the temperature at the inflection point of the sigmoid curve was taken as the Tm value. In order to prevent the concentration from changing due to evaporation due to temperature rise, a cell with a lid was used, and one drop of mineral oil was placed on the surface of the sample solution. The sequences of the antisense strand and the sense strand used for the measurement are shown below.

【0078】なお、本明細書では便宜上天然型ヌクレオ
シドをT,C,A,Gのように大文字で表記し、本発明
における類縁体をそれぞれt,c,a,g,のように小
文字で表記する。
In the present specification, natural nucleosides are represented by capital letters such as T, C, A and G, and analogs of the present invention are represented by lower case letters such as t, c, a and g, for convenience. To do.

【0079】[0079]

【化23】 なお、測定の結果を次の表に示した。[Chemical formula 23] The measurement results are shown in the following table.

【0080】[0080]

【表1】 I−R型ヘテロオリゴマーでは、ヘテロダイマーユニッ
ト(Tt)のアナログ(t)に対するミスマッチの影響
を測定しているが、この値は、II−S型ヘテロダイマー
ユニットII−S(tT)の天然型ヌクレオシド(T)に
対するミスマッチの影響を示しているため、直接の比較
はできないが参考データとして示した。実験例2:酵素耐性の測定(1) 天然型及び非天然型の下記のオリゴヌクレオチドについ
て、オリゴヌクレオチドを3’側から分解するエキソヌ
クレアーゼに対する耐性を調べた。
[Table 1] In the case of the IR hetero-oligomer, the influence of the mismatch of the heterodimer unit ( Tt ) on the analog (t) was measured, and this value is the same as that of the II-S heterodimer unit II-S ( tT ). Since the influence of the mismatch on the nucleoside (T) is shown, direct comparison is not possible, but it is shown as reference data. Experimental Example 2: Measurement of enzyme resistance (1) With respect to the following natural type and non-natural type oligonucleotides, the resistance to exonuclease that decomposes the oligonucleotide from the 3'side was examined.

【0081】オリゴヌクレオチド溶液に蛇毒ホスホジエ
ステラーゼを加えて、オリゴマーの分解による紫外部吸
収の増加を37℃、260nmにおいて経時的に測定し
た。(サンプル液終濃度:オリゴマー5μM,Tris
HCl(pH8.6)0.1M,NaCl 0.1
M,MgCl2 14mM、蛇毒ホスホジエステラーゼ
0.006U) 測定に用いたオリゴヌクレオチドの配列を以下に示し
た。
A snake venom phosphodiesterase was added to the oligonucleotide solution, and the increase in ultraviolet absorption due to the decomposition of the oligomer was measured with time at 37 ° C. and 260 nm. (Sample solution final concentration: oligomer 5 μM, Tris
HCl (pH 8.6) 0.1M, NaCl 0.1
M, MgCl 2 14 mM, snake venom phosphodiesterase 0.006 U) The sequence of the oligonucleotide used for the measurement is shown below.

【0082】[0082]

【化24】 260nmにおける相対吸光度の経時変化を図1に示し
た。
[Chemical formula 24] The time course of the relative absorbance at 260 nm is shown in FIG.

【0083】非天然型のオリゴマーは、天然型のもの
(T11)と比較して吸光度変化が途中で止っているこ
とから、酵素による分解が途中で停止するものと考えら
れる。このことから、オリゴヌクレオチドに導入したヘ
テロダイマーは酵素分解に対して耐性を有し、本発明の
オリゴマーがアンチセンス分子に要求される特性を満た
している。
Since the non-natural oligomer has a change in absorbance halfway as compared with the natural one (T11), it is considered that the enzymatic degradation stops halfway. From this, the heterodimer introduced into the oligonucleotide is resistant to enzymatic degradation, and the oligomer of the present invention satisfies the properties required for the antisense molecule.

【0084】実験例3:酵素耐性の測定(2) 天然型及び非天然型の下記のオリゴヌクレオチドについ
て、オリゴヌクレオチドを3’側から分解するエキソヌ
クレアーゼに対する耐性を調べた。
Experimental Example 3: Measurement of enzyme resistance (2) The following oligonucleotides of natural type and non-natural type were examined for resistance to exonuclease that decomposes the oligonucleotide from the 3'side.

【0085】オリゴヌクレオチド溶液に蛇毒ホスホジエ
ステラーゼを加え、37℃でインキュベーションする
(サンプル液終濃度:オリゴマー(下記の通り),Tr
isHCl(pH8.0)0.1M、NaCl 0.1
M、MgCl2 14mM、蛇毒ホスホジエステラーゼ
0.00135U)。経時的に沸騰水中で反応を停止
し、20%ポリアクリルアミド(7M Urea)電気
泳動後、StainsAllで染色した。
Snake venom phosphodiesterase was added to the oligonucleotide solution and incubated at 37 ° C. (final concentration of sample solution: oligomer (as described below), Tr
isHCl (pH 8.0) 0.1M, NaCl 0.1
M, MgCl 2 14 mM, snake venom phosphodiesterase 0.00135 U). The reaction was stopped in boiling water over time, 20% polyacrylamide (7M Urea) was electrophoresed, and then stained with StainsAll.

【0086】T11 (85.4μM) 5'-CTTTTTTTTTTTG-3' T9X-IR(84.3μM)5'-CTTTTTTTTTTtG-3' T4XT5-IR(85.8μM)5'-CTTTTTtTTTTTG-3' 結果を図2に示した。T11 (85.4 μM) 5'-CTTTTTTTTTTTG-3 'T9X-IR (84.3 μM) 5'-CTTTTTTTTT Tt G-3' T4XT5-IR (85.8 μM) 5'-CTTTT Tt TTTTTG-3 ' Shown in 2.

【0087】非天然型のオリゴマーは、天然型のもの
(T11)に比べ、酵素による分解が導入したヘテロダ
イマーの部分で停止したものと考えられる。このことか
ら、オリゴヌクレオチドに導入したヘテロダイマーは酵
素分解に対して耐性を有し、本発明のオリゴマーがアン
チセンス分子に要求される特性を満たしている。
It is considered that the non-natural type oligomer is terminated at the portion of the introduced heterodimer by the enzymatic degradation, as compared with the natural type (T11). From this, the heterodimer introduced into the oligonucleotide is resistant to enzymatic degradation, and the oligomer of the present invention satisfies the properties required for the antisense molecule.

【0088】実験例4:ヒト可溶性IL−6R(sIL
−6R)の発現抑制効果 (1)CHO.SR344細胞の作製 pBSF2R.236(Science, 241、 825-828(198
8))をSphIで切断し、1205bpのIL−6Rc
DNA断片をmp18(Amersham社製)に挿入
した。sIL−6RcDNAは5'−ATATTCTAGAGAGCTTCT
−3'の合成オリゴマーを作製し、in vitro mutagenesis
system (Amersham社製)を用いて調製した。
その結果、停止コドンはアミノ酸配列の345番目とな
った。
Experimental Example 4: Human soluble IL-6R (sIL
-6R) expression suppressing effect (1) CHO. Preparation of SR344 cells pBSF2R. 236 (Science, 241, 825-828 (198
8)) was cleaved with SphI to give 1205 bp of IL-6Rc.
The DNA fragment was inserted into mp18 (manufactured by Amersham). sIL-6R cDNA is 5'-ATATTCTAGAGAGCTTCT
In vitro mutagenesis
It was prepared using a system (manufactured by Amersham).
As a result, the stop codon was at position 345 in the amino acid sequence.

【0089】dhfr−cDNAはプラスミドpECE (C
ell, 45, 721-735(1986))のPvuIIサイトに挿入し、
プラスミドpECEdhfrを作製した。sIL−6RのHin
dIII−SalI断片をプラスミドpECEdhfrに挿入し、
可溶性IL−6R発現ベクタープラスミドpECEdhfr34
4を作製した。
The dhfr-cDNA is the plasmid pECE (C
ell, 45, 721-735 (1986)) and inserted into the PvuII site,
The plasmid pECEdhfr was created. Hin of sIL-6R
The dIII-SalI fragment was inserted into the plasmid pECEdhfr,
Soluble IL-6R expression vector plasmid pECEdhfr34
4 was produced.

【0090】pECEdhfr344をdhfr−CHO細胞D
XB−11(Pro. Natl. Acad. Sci.U.S.A., 77, 4216-4
220 (1980))にリン酸カルシウム法により導入し、MT
Xにて増幅した。最終的に200nMMTX耐性sIL
−6R産生CHO細胞(CHO.SR344)を作製し
た(J. Biochem., 108, 673-676(1990))。細胞の通常
の培養は5%FCS(Xavier Investments社製)および
200nMMTXを含むIMDM培地(Gibco社
製)で行った。
PECEdhfr344 was dhfr-CHO cell D
XB-11 (Pro. Natl. Acad. Sci. USA, 77, 4216-4
220 (1980)) by the calcium phosphate method and MT
It was amplified at X. Finally 200nMMTX resistant sIL
-6R-producing CHO cells (CHO.SR344) were prepared (J. Biochem., 108, 673-676 (1990)). Normal culturing of cells was performed in IMDM medium (manufactured by Gibco) containing 5% FCS (manufactured by Xavier Investments) and 200 nMMTX.

【0091】(2)CHO.SR344細胞のsIL−
6R産生に対するIL−6Rアンチセンスオリゴマーの
効果 CHO.SR344細胞はトリプシン−EDTA(Gi
bco社製)で培養皿から剥がし、培養液で洗浄後、更
に無血清培地ノンセラム(日本全薬工業製)で洗浄し、
200nMMTXを含む無血清培地ノンセラムに懸濁し
た。96穴の培養プレートにCHO.SR344細胞懸
濁液100μl(5x104個/ml)に2μMのIL−
6Rアンチセンスオリゴマー100μlを加え、37
℃、5%CO2下でインキュベーターで培養した。
(2) CHO. SIL-of SR344 cells
IL-6R antisense oligomers for 6R production
Effect CHO. SR344 cells were trypsin-EDTA (Gi
bco) to remove from the culture dish, wash with culture solution, and further wash with serum-free medium non-serum (Nippon Zenyaku Kogyo),
The cells were suspended in serum-free medium non-serum containing 200 nMMTX. Add CHO. 2 μM IL-in 100 μl of SR344 cell suspension (5 × 10 4 cells / ml)
Add 100 μl of 6R antisense oligomer, and add 37
The cells were cultured in an incubator at 5 ° C and 5% CO 2 .

【0092】24時間培養後、その培養上清の可溶性I
L−6R量をマウス抗IL−6Rモノクロナール抗体
(MT18)(特開平2−288898)及びウサギ抗
IL−6Rポリクロナール抗体を用いたサンドイッチE
LISA法によって測定した。
After culturing for 24 hours, the soluble I of the culture supernatant was
Sandwich E using a mouse anti-IL-6R monoclonal antibody (MT18) (JP-A-2-288898) and a rabbit anti-IL-6R polyclonal antibody as the amount of L-6R
It was measured by the LISA method.

【0093】なお、対照(コントロール)としては、ア
ンチセンスオリゴマーIL−6RAS4−IRにたいす
るセンスオリゴマー誘導体 5'−GCTGGCATGGGAAGGAGGCT−
3’(IL−6RSE1)を用いて測定した。なお、セ
ンスオリゴマー(IL−6RSE1)の合成は実施例6
でCcヘテロダイマーを用いずに同様の方法で得ること
ができる。
As a control, the sense oligomer derivative 5'-GCTGGGCATGGGAAGGAGGCT- with respect to the antisense oligomer IL-6RAS4-IR was used.
It measured using 3 '(IL-6RSE1). The synthesis of the sense oligomer (IL-6RSE1) was performed in Example 6
Can be obtained by a similar method without using Cc heterodimer.

【0094】本発明のI−R型Ccヘテロダイマーを用
いたヒトIL−6Rの発現抑制効果を示した(図3)。
The inhibitory effect on human IL-6R expression using the IR type Cc heterodimer of the present invention was shown (FIG. 3).

【0095】(参考文献) 1) J.C.Sowden et al.,J.Am.Chem.Soc.,64,1291(194
2). 2) C.H.Tann et al.,J.Org.Chem.,50,3684(1985). 3) H.Vorbruggen et al.,Chem.Ber.,114,1234(1981). 4) L.B.Townsend and R.S.Tipson,Nucleic Acid Chemi
stry part 3,78. 5) A.M.Michelson et al.,J.Chem.Soc.,951(1953). 6) T.Neilson et al.,Can.J.Chem.,49,493(1971). 7) M.Mag et al.,Nucleic Acids Res.,16,3527(1988). 8) G.A.Marel et al.,J.Mol.Biol.,213,833(1990).
(References) 1) JCSowden et al., J. Am. Chem. Soc., 64 , 1291 (194
2). 2) CHTann et al., J. Org. Chem., 50 , 3684 (1985). 3) H. Vorbruggen et al., Chem. Ber., 114 , 1234 (1981). 4) LBTownsend and RSTipson , Nucleic Acid Chemi
stry part 3,78. 5) AMMichelson et al., J. Chem. Soc., 951 (1953). 6) T. Neilson et al., Can. J. Chem., 49 , 493 (1971). 7) M.Mag et al., Nucleic Acids Res., 16 , 3527 (1988). 8) GAMarel et al., J. Mol. Biol., 213 , 833 (1990).

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の種々のオリゴヌクレオチドをエキソ
ヌクレアーゼで分解した時の紫外部吸収(260nm)
の経時変化を示す。
1] Ultraviolet absorption (260 nm) when various oligonucleotides of the present invention were digested with exonuclease
Shows the change with time.

【図2】 本発明のオリゴヌクレオチドと天然型オリゴ
ヌクレオチドとをエキソヌクレアーゼで分解したときの
経時的変化を示す電気泳動図である。
FIG. 2 is an electrophoretogram showing changes with time when the oligonucleotide of the present invention and a natural type oligonucleotide are decomposed with exonuclease.

【図3】 実施例6における本発明のアンチセンスオリ
ゴヌクレオチド(IL−6RAS1〜4−IR)が可溶
性IL−6Rの発現を抑制することを示すグラフであ
る。
FIG. 3 is a graph showing that the antisense oligonucleotides of the present invention (IL-6RAS1-4-IR) in Example 6 suppress the expression of soluble IL-6R.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C07D 473/34 321 C07H 19/073 19/173 21/00 // C07H 21/04 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C07D 473/34 321 C07H 19/073 19/173 21/00 // C07H 21/04 A

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一般式: 【化1】 [式中、B1は同一または異なり、ピリミジンもしくはプ
リン核酸塩基またはそれらの誘導体であり、XおよびY
は独立して酸素または硫黄であり、Rは水素、アルキル
基、またはアシル基であり、Wは水素、アルキル基、ア
シル基、またはXが酸素の場合、リン酸エステル結合を
介したヌクレオチド、オリゴヌクレオチドもしくはポリ
ヌクレオチドでもよく、nは1〜50の整数である。た
だし、nが2以上の場合にはB1は同一の塩基に限定さ
れない。]で表されるヌクレオチド類縁体。
1. A compound of the general formula: [Wherein B 1 is the same or different and is a pyrimidine or purine nucleobase or a derivative thereof, and X and Y
Are independently oxygen or sulfur, R is hydrogen, an alkyl group, or an acyl group, W is hydrogen, an alkyl group, an acyl group, or, when X is oxygen, a nucleotide, an oligo, or a phosphate ester bond. It may be a nucleotide or a polynucleotide, and n is an integer of 1 to 50. However, when n is 2 or more, B 1 is not limited to the same base. ] The nucleotide analog represented by this.
【請求項2】 一般式: 【化2】 [式中、B1およびB2はそれぞれ同一または異なり、ピ
リミジンもしくはプリン核酸塩基またはそれらの誘導体
であり、XおよびYは独立して酸素または硫黄であり、
Wは同一または異なり、水素、アルキル基、アシル基、
またはリン酸エステル結合を介したヌクレオチド、オリ
ゴヌクレオチドもしくはポリヌクレオチドでもよく、m
は1〜25の整数である。ただし、mが2以上の場合に
はB1およびB2は同一の塩基に限定されない。]で表さ
れるヌクレオチド類縁体。
2. A general formula: [Wherein B 1 and B 2 are the same or different and each is a pyrimidine or purine nucleobase or a derivative thereof, and X and Y are independently oxygen or sulfur,
W is the same or different and is hydrogen, an alkyl group, an acyl group,
Alternatively, it may be a nucleotide, an oligonucleotide or a polynucleotide via a phosphate bond, m
Is an integer of 1 to 25. However, when m is 2 or more, B 1 and B 2 are not limited to the same base. ] The nucleotide analog represented by this.
JP7222886A 1994-08-31 1995-08-31 New nucleotide analog Pending JPH08119945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7222886A JPH08119945A (en) 1994-08-31 1995-08-31 New nucleotide analog

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-207343 1994-08-31
JP20734394 1994-08-31
JP7222886A JPH08119945A (en) 1994-08-31 1995-08-31 New nucleotide analog

Publications (1)

Publication Number Publication Date
JPH08119945A true JPH08119945A (en) 1996-05-14

Family

ID=26516193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7222886A Pending JPH08119945A (en) 1994-08-31 1995-08-31 New nucleotide analog

Country Status (1)

Country Link
JP (1) JPH08119945A (en)

Similar Documents

Publication Publication Date Title
AU720472B2 (en) Novel bicyclonucleoside and oligonucleotide analogue
US6043060A (en) Nucleotide analogues
US6770748B2 (en) Bicyclonucleoside and oligonucleotide analogue
USRE44779E1 (en) Bicyclonucleoside and oligonucleotide analogues
US7053199B2 (en) Nucleoside analogs and oligonucleotide derivatives containing these analogs
US6083482A (en) Conformationally locked nucleosides and oligonucleotides
US5856465A (en) Compositions and methods for the synthesis of chirally pure organophosphorus nucleoside derivatives
EP0710667A2 (en) Modified oligonucleotides, their preparation and their use
CA2080640A1 (en) Bicyclic nucleosides, oligonucleotides, process for their preparation and intermediates
JP3781879B2 (en) Novel nucleotide analogues
US5807837A (en) Composition and method for the treatment or prophylaxis of viral infections using modified oligodeoxyribonucleotides
AU8224691A (en) Oligodeoxyribonucleotides
JPH08119945A (en) New nucleotide analog
US6444798B1 (en) Chimeras of sulfur-linked oligonucleotide analogs and DNA and RNA
WO1996006833A1 (en) Novel nucleotide analogs
AU742476B2 (en) Novel bicyclonucleoside and oligonucleotide analogue
CA2233460A1 (en) Compositions and methods for the synthesis of organophosphorus derivatives
JP3911703B2 (en) Antisense nucleic acid congeners

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051122