JP3911703B2 - Antisense nucleic acid congeners - Google Patents

Antisense nucleic acid congeners Download PDF

Info

Publication number
JP3911703B2
JP3911703B2 JP51860896A JP51860896A JP3911703B2 JP 3911703 B2 JP3911703 B2 JP 3911703B2 JP 51860896 A JP51860896 A JP 51860896A JP 51860896 A JP51860896 A JP 51860896A JP 3911703 B2 JP3911703 B2 JP 3911703B2
Authority
JP
Japan
Prior art keywords
bond
nucleoside
dna
formula
antisense
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP51860896A
Other languages
Japanese (ja)
Inventor
忠明 大木
幸一 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shinyaku Co Ltd
Original Assignee
Nippon Shinyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shinyaku Co Ltd filed Critical Nippon Shinyaku Co Ltd
Application granted granted Critical
Publication of JP3911703B2 publication Critical patent/JP3911703B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/3212'-O-R Modification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/3222'-R Modification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/352Nature of the modification linked to the nucleic acid via a carbon atom
    • C12N2310/3527Other alkyl chain
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/353Nature of the modification linked to the nucleic acid via an atom other than carbon
    • C12N2310/3531Hydrogen
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/353Nature of the modification linked to the nucleic acid via an atom other than carbon
    • C12N2310/3533Halogen

Description

技術分野
本発明は、医薬品として有用な、アンチセンス核酸同族体に関する。更に詳しくは、DNA又はRNAに特異的に結合し、複合体を形成することにより、当該DNA又はRNAが担っていた遺伝子情報の伝達を選択的に不活性化、活性化又は制御する機能を有するアンチセンス分子に関する。
背景技術
遺伝子は通常、相補的な塩基配列からなる二本鎖DNAの形態を有し、一方の鎖上にアミノ酸配列情報としての意味を持つ暗号配列(センス配列)がコードされている。この配列に相補的なオリゴヌクレオチドは、センス配列に特異的に結合することができ、この結合が強固な場合には目的とする一定領域に蓋をする形で遺伝子機能を選択的に不活性化、活性化又は制御することができる。このような機能を持った化合物をアンチセンス分子という。
アンチセンス分子は、このようにDNAに対して結合して、メッセンジャーRNAが生成する過程を阻害することができる。また、RNAに対しても結合し、メッセンジャーRNAから蛋白質が翻訳される過程を選択的に阻害することができる(Harold M. Weintraub、Scientific American、34-40 1990)。
以上の原理に基づき、アンチセンス分子は、生体機能の鮮明や制御に役立てることができることから、式〔101〕〜〔108〕、〔111〕〜〔112〕で示す(式中、Bは核酸塩基、R、R’は水素、アルキル基又はその他の置換基を表す)核酸同族体が合成されている(村上ら、有機合成化学、第48巻第3号、180〜193 1990; 村上章、細胞工学、第13巻第4号、259〜266 1994)。
(A)DNA型オリゴヌクレオチド誘導体(部分構造を式〔101〕に示す)
(B)RNA型オリゴヌクレオチド誘導体(部分構造を式〔102〕に示す)
(C)リン酸トリエステル型オリゴヌクレオチド誘導体(部分構造を式〔103〕に示す)
(D)メチルホスホネート型オリゴヌクレオチド誘導体(部分構造を式〔104〕に示す)
(E)ホスホロアミデート型オリゴヌクレオチド誘導体(部分構造を式〔105〕に示す)
(F)ホスホロチオエート型オリゴヌクレオチド誘導体(部分構造を式〔106〕に示す)
(G)ホスホロジチオエート型オリゴヌクレオチド誘導体(部分構造を式〔107〕に示す)
(H)カルバメート型オリゴヌクレオチド誘導体(部分構造を式〔108〕に示す)
(I)チオカルバメート型オリゴヌクレオチド誘導体(構造を式〔109〕に示す)
(J)チオカルバメートホスホジエステル型オリゴヌクレオチド誘導体(構造を式〔110〕に示す)
(K)α-アノマー型オリゴヌクレオチド誘導体(部分構造を式〔111〕に示す)
(L)エナンチオ型オリゴヌクレオチド誘導体(部分構造を式〔112〕に示す)
(M)その他非リン酸結合型オリゴヌクレオチド誘導体(部分構造を式〔113〕〜〔116〕に示す)
いずれも天然の核酸構造(部分構造式〔1〕)を改造することで、生体内で機能するアンチセンス分子を提供することを目指したものである。

Figure 0003911703
Figure 0003911703
Figure 0003911703
次に構造式〔109〕を表す。式中Bは、核酸塩基を表し、R1、R2は水素、無機酸残基、有機酸残基、アルキル基、又はアシル基を表す。nは、自然数を表す。
Figure 0003911703
次に構造式〔110〕を表す。式中Bは、核酸塩基を表し、X、Yは同一又は異なって、硫黄又は酸素を表す。nは自然数を表す。
Figure 0003911703
次に、式〔111〕及び式〔112〕を表す。
Figure 0003911703
次に式〔113〕、式〔114〕、式〔115〕、式〔116〕を示す。式中Bは核酸塩基を表す。Rはアルキル基又は、フェニル基を表す。
Figure 0003911703
この他にも核酸同族体について報告されているが(John A. Montgomery and Kathleen Hewson., J. Heterocycl. Chem., 7 Apr. 443-445 1970; Antonium Holy., Collection Czechoslov. Chem. Commun., 35 81-88 1970; Michael W. Winkley., Carbohyd. Res., 31 245-254 1973.)、これらは、いずれもアンチセンスへの適用は開示されていない。
また、上記の化合物を含め他にも多くの核酸同族体が合成されているが(例えば、米国特許第5,034,506号記載の核酸同族体など)、必ずしも満足すべき効果は得られておらず、次の1)〜8)の条件を充分に備えた実用性の高いアンチセンス分子の開発には至っていない。
1)DNA又は、RNAへの結合安定性(複合体形成能)
2)核酸分解酵素に対する抵抗性
3)酸、アルカリ、温度、湿度に対する物理的化学的安定性
4)低細胞毒性
5)認識配列への結合特異性
6)合成の簡便性
7)水又は緩衝液に対する溶解性
8)不斉リンの発生が伴わない調製、即ち、従来の調整法の欠点である、リン酸エステル部分の修飾に伴う、不斉リンジアステレオマーの発生により、核酸が長くなるにつれて多くの異性体(nマーに対して2n-1個の異性体;ここでnは自然数を示す)が生じることによる、有用な分子の含量の相対的な減少を解消すること
発明の開示
本発明者らは、前記1)〜8)の条件を充分に備えた実用性の高いアンチセンス分子の開発を目的として鋭意検討を行った結果、次の部分構造式〔1〕
Figure 0003911703
(式中、Bは、アデニン-9-イル、グアニン-9-イル、ヒポキサンチン-9-イル、チミン-1-イル、ウラシル-1-イル又はシトシン-1-イルを表す。X、Yは、同一又は異なって水素、ヒドロキシ、ハロゲン又はアルコキシを表す)で表されるヌクレオシド同族体を、DNA、RNA又はリン酸ジエステル結合が修飾若しくは置換された核酸同族体の同一鎖中に、少なくとも一つ以上含むアンチセンス分子が、上記目的を解決し優れたアンチセンス分子としての性質を有することを見出し、本発明を完成するに至った。
部分構造式〔1〕で表されるヌクレオシドに含まれるハロゲンとしては、塩素、臭素又はフッ素が挙げられる。低級アルコキシとしては、直鎖状又は分枝鎖状の炭素数1から8のものが挙げられる。具体的には、メトキシ、エトキシ、n-プロポキシ、イソプロポキシ、n-ブトキシ、iso-ブトキシ、sec-ブトキシ又はt-ブトキシが挙げられる。
本発明のアンチセンス分子は、部分構造式〔1〕で表される部分構造を有するヌクレオシドを含むことにより、各種の核酸分解酵素に対し抵抗性を示すことができる。特に5'末端若しくは3'末端又は両末端に該ヌクレオシドを有する分子は、エキソヌクレアーゼに対し顕著な抵抗性を示す。更に、両末端付近に連続的に又は断続的に複数個、例えばそれぞれ2〜9残基の該ヌクレオシド同族体を含むものは、より強い抵抗性を示すことが期待できる。
本発明に含まれるヌクレオシドは、特に従来のアンチセンス分子の構成要素(例えば、カルバメート型オリゴヌクレオチド誘導体(式〔108〕)を構成するカルバメート型ヌクレオシド)に比べて、水等に対する溶解性が極めて高い。従って、該ヌクレオシドをDNA、RNA又はリン酸ジエステル結合が修飾若しくは置換された核酸同族体に、一残基以上無制限に含んでも水等に対する溶解性は顕著には低下しない。
天然のDNA又はRNA中に該ヌクレオシドが適当数含まれる方が、立体構造の自由度が制限されることは少なくなり、会合が安定となりアンチセンス分子としての機能を発揮し易く好ましい。
該ヌクレオシドの含量は1アンチセンス核酸同族体中に、1残基以上、分子を構成する全ての残基の80%以下が適当である。好ましいのは5'、3'の両末端にそれぞれ1残基以上ほぼ同数の該ヌクレオシドを連続して有し、その構成比が、含まれる分子の全てのヌクレオシド残基の60%以下である。
また、該ヌクレオシドの糖の部分の構造は、含まれるアンチセンス核酸同族体を構成している他の核酸(例えばリボース又はデオキシリボース)と同一である方が、側鎖の立体ラセン構造の均一性が保たれ、特に認識配列への結合特異性に優れることが期待される。一方、分解酵素に対する抵抗性は、糖部分の構造が天然型と異なる方が大きいと考えられ、必要性に応じて適宜選択するのがよい。
本発明のアンチセンス分子は、従来のアンチセンス分子と比較し、前述の1)の条件を保ちながら2),3),4),5),6),7)の条件において、極めて優れた特性を有する。
本発明のアンチセンス分子は、特に従来のアンチセンス分子(例えば、カルバメート型オリゴヌクレオチド誘導体(式〔108〕)に比べて、その水等に対する溶解性が極めて高い。従って、本発明のアンチセンス分子は、水溶性の高いDNA又はRNAと結合する割合が高くなるので、医療分野において高い有用性を期待することができる。
本発明のアンチセンス核酸同族体は、生体内に投与する際、特にカチオニックリポソームと複合体を形成することにより、細胞内への移行がしやすくなり、天然のDNA等と核酸と同等以上のアンチセンス効果を発揮する。
分解酵素に対してより強力な抵抗性が要求される場合においては、例えば〔101〕〜〔106で示された〕リン酸ジエステル結合部分の修飾又は置換と組み合わせることも可能である。リン酸エステル結合の修飾体又は置換体としては、ホスホロチオエート結合、アルキルホスホロチオエート結合、N-アルキルホスホアミデート結合、ホスホロジチオエート結合又はアルキルホスホネート結合等が挙げられるが、短鎖のアルキル又はシクロアルキル構造も有用である。勿論必要に応じ、他の結合も選択することができる。
アンチセンス分子は、一般に塩基の数が多くなる程、活性及び選択性が高くなる。本発明のアンチセンス核酸同族体1分子に含まれる塩基の数は1〜50が好ましく、4〜30が更に好ましい。
本発明アンチセンス核酸同族体の塩基配列は、不活性化、活性化又は制御されるべきDNA又はRNAの塩基配列と相補的なものが選ばれる。
本発明のアンチセンス分子はRNase Hの基質になることが判っている。この性質は生体内に投与したとき、遺伝子の不活性化のみならず、ハイブリッドを形成したmRNAを積極的に分解することに関与することを示し、高い有用性を有している。
後述するように、本発明アンチセンス分子は、HER-2発現細胞における膜受容体蛋白質の合成抑制作用等の薬理作用を有するので、例えば抗癌剤等として極めて有用である。
本発明に係るアンチセンス分子の用途としては、本発明アンチセンス分子がその相補的な遺伝子情報を不活性化することから、生体に侵入した異物、例えば、ヘルペスウイルス、インフルエンザウイルス、ヒト免疫不全症ウイルス(HIV、エイズウイルス等)等の感染や癌遺伝子の働きを抑える医薬としての利用が可能である。また、積極的に動物や植物の遺伝子を制御して、品種改良等の技術に応用され得る。更に、遺伝子機能の解析や、遺伝性疾患、細菌及びウイルスの感染チェック等のDNAプローブとしての可能性も有しており、また上記記載以外にも多くの有用性が考えられる。
本発明アンチセンス核酸同族体の主構成要素である該ヌクレオシドは、天然のヌクレオシドと同等に細胞毒性が低く、従って、DNA又はRNAに該ヌクレオシドが含まれたアンチセンス分子の毒性も天然の核酸と同等に、極めて低い。
本発明アンチセンス分子を医薬として用いる場合、本発明の化合物をそのまま、又は医薬的に許容される無毒性かつ不活性の単位中に包含させて投与する。
担体としては、液状、固形、又は半固形の希釈剤、充填剤、及びその他の処方用の助剤が一種以上用いられる。医薬組成物は、投与担体形態で投与することが望ましい。本発明アンチセンス分子は、経口投与、組織内投与、局所投与又は経直腸的に投与することができる。
これらの投与方法に適した剤型、例えば、各種の経口剤、注射剤、吸入剤、点眼剤、軟膏剤、坐剤等、で投与されるのはもちろんである。特に、組織内投与、局所投与が好ましい。
用量としては、疾病の種類、症状、年齢、体重等によって異なるが、例えばヘルペスの治療に用いる場合、成人に対し1日1回、アンチセンス分子として1mg〜1gの局所投与が適している。また、エイズの治療に際しては、成人に対し1日1回、アンチセンス分子として1mg〜10gの点滴静注するのが一般的である。
投与方法や投与量は、治療目的や用いる本発明アンチセンス分子の種類により、適宜変化させるのがよい。
(合成方法)
次に、本発明アンチセンス核酸同族体の一般的な合成方法を記述する。
次の式中Bは、アデニン-9-イル、グアニン-9-イル又はシトシン-1-イルを、Bpは保護されたアデニン-9-イル、グアニン-9-イル若しくはシトシン-1-イルを又は保護処理を受けないヒポキサンチン-9-イル、チミン-1-イル若しくはウラシル-1-イルを表す。
(ヌクレオシド誘導体)
Figure 0003911703
(アミダイト試薬)
Figure 0003911703
(コントロールドポアグラス担体の調製)
Figure 0003911703
(フォスファタイド法による固相合成)
Figure 0003911703
操作1 大木らの方法(WO95/15964)で調製したホモタイプヌクレオシド〔11〕を、Bがアデニン-9-イル又はシトシン-1-の場合には、例えばピリジン溶液中で塩化ベンゾイルと、Bがグアニン-9-イルの場合は例えば塩化イソブチリルと反応させた後、水酸化ナトリウム溶液による加水分解、次いで中和の過程を経て、塩基部を保護されたヌクレオシド誘導体〔12〕を得ることができる。Bがヒポキサンチン-9-イル、チミン-1-イル又はウラシル-1-イルの場合、大木らの方法で調製したホモタイプヌクレオシドをそのままBpとして用いることができる。
操作2 操作1で得た〔12〕を例えばピリジン溶液中、4、4'-ジメトキシトリチルクロライドと反応させることにより、5'-水酸基が保護されたジメトキシトリチル体〔13〕を得ることができる。
操作3 固相法のうち、いわゆるアミダイト法による自動合成用の試薬にするために、例えば化合物〔13〕をリン酸化剤とケスター等の方法(H.Koester等、Nucleic Acids Res.,12 4539-4557 1984)で反応し、アミダイト試薬〔14〕を得ることができる。
操作4 操作2で得たジメトキシトリチル体〔13〕を例えば塩化メチレン中で無水コハク酸と反応させ、コハク酸誘導体〔15〕を得ることができる。
操作5 操作4で得た化合物〔15〕を例えばN,N-ジメチルホルムアミド中でペンタクロロフェノール及びジシクロヘキシルカルボジイミド(以下DCCと略す)と反応させ、活性化体〔16〕を得ることができる。
操作6 活性化体〔16〕を例えばコントロールドポアグラス担体(以下CPG担体と略す)と、N,N-ジメチルホルムアミド中で、トリエチルアミン存在下で応させ、ヌクレオシド化されたCPG担体〔17〕を得ることができる。
操作7 例えば市販のDNA合成用アミダイト試薬とアミダイト試薬〔14〕を適当に組み合わせ、CPG担体〔17〕を用いると、DNA自動合成機(例えば、パーキンエルマー社製)により、本発明のヌクレオシド誘導体を含むアンチセンスDNA同族体〔18〕を容易に合成することができる。
用いた保護基に応じた脱保護処理を施した後、例えば分取用HPLC等により精製することにより、高純度の本発明のアンチセンスDNA同族体を得ることができる。
また、ハロゲン化アンチセンス核酸同族体の調整法を示す。
大木らの方法(WO95/15964)で調製したホモタイプヌクレオシドを例えば式〔19〕を定法通り3',5'-位をテトライソプロピルシロキシル化し、〔20〕を合成し、〔20〕の2'-位をトリフルオロメシル化するとシクロヌクレオシド〔21〕を得ることができる。これをDMF中、ハロゲン化ナトリウム、例えば臭化ナトリウム処理することにより、2'-臭化体〔22〕を得ることができる。2'-臭化体〔22〕を定法通り、テトロブチルアンモニウムフロリド処理して2'-ハロゲノホモヌクレオシド〔23〕を得ることができる。
(ハロゲン化アンチセンス核酸同族体の調製)
Figure 0003911703
この他、例えばRNAタイプやホスホロチオエート結合型アンチセンス核酸同族体なども上記に準じた方法により合成することができる。
本発明に係る化合物は遊離のリン酸のまま治療に用いることができるが、公知の方法により薬学的に許容される塩の形にして用いることもできる。塩としては、ナトリウム塩、カリウム塩を挙げることができる。
例えば、本発明に係る、遊離のリン酸を有する化合物のアルカリ金属塩は、好ましくは、アルコール系溶媒中で、水酸化ナトリウム又は水酸化カリウムなどを加えることにより得ることができる。
本発明に係る化合物は、通常の分離精製手段、例えば、抽出、濃縮、中和、ろ過、再結晶、カラムクロマトグラフィー、逆層クロマトグラフィーなどの手段を用いることにより単離精製することができる。
本発明に係る化合物又はその塩の溶媒和物(水和物を含む)も本発明に含まれる。溶媒和物は通常、対応する溶媒又は対応する溶媒を含む適当な混合溶媒から過剰な溶媒を除去することにより得ることができる。
発明を実施するための最良の形態
以下に実施例、参考例、試験例及び比較例により、本発明を更に詳しく説明するが、本発明は、これらに限定されない。
実施例
実施例1 式〔1〕においてX=H,Y=Hであるヌクレオシドを含む、DNAタイプアンチセンス分子:5'aaaaaAAAAAAAAAAAAAAAaaaaa3'(aはヌクレオシド同族体のうち塩基がアデニン-9-イルのもの、Aはデオキシアデノシンをそれぞれ表す。特記しない限り、ヌクレオシド間の結合は3'→5'のホスホジエステル結合を示す。以下hA10A15と表記する)の合成。
1)アミダイト試薬の合成
1-1)化合物〔12〕(但し、BpはN6-ベンゾイルアデニン-9-イルの場合)の合成
大木らの方法(WO95/15964)により得た式〔11〕で表されるヌクレオシド同族体のうち塩基がアデニンのもの(以下ホモタイプアデノシンという)2.60gをピリジン30mlに懸濁・撹拌し、氷冷下、塩化ベンゾイル8.43gを加えた後、室温で1時間反応させた。クロロホルム100ml、氷70g及び炭酸水素ナトリウム5.48gの混合物に上記反応液を加えた後、分液処理し有機層を分取した。残った水層を更に塩化メチレン50mlで2回抽出し、有機層を合わせ、硫酸ナトリウム乾燥後、溶媒を減圧留去した。
残渣にピリジン20ml、エタノール30mlを加え、氷冷下2規定水酸化ナトリウム溶液40mlとエタノール40mlの混液を加えた。室温で30分撹拌後、2規定塩酸を40ml加えて中和した。更に水200mlを加えた後、エーテルで水層を抽出分液した後、水層を減圧濃縮した。これを冷暗所で一夜放置すると、化合物〔12〕(但し、BpはN6-ベンゾイルアデニンの場合)が白色沈澱物として3.11g得られた。
1-2)化合物〔13〕(但し、BpはN6-ベンゾイルアデニン-9-イルの場合)の合成
1-1)で得た化合物〔12〕3.0gをピリジン35mlに溶解し、4、4'-ジメトキシトリチルクロライド(和光純薬(株))3.03gを加え室温で一夜反応した。反応液にメタノール5mlを加えた後、溶媒を減圧留去した。塩化メチレン-水にて分液処理し得られた有機層を硫酸ナトリウム乾燥後、減圧濃縮乾固した。残渣をシリカゲルカラムクロマトグラフィー(シリカゲル-120g、メタノール/塩化メチレン)で精製し、白色粉末として化合物〔13〕3.97gを得た。
1-3)化合物〔14〕(但し、BpはN6-ベンゾイルアデニン-9-イルの場合)の合成
1-2)で得た化合物〔13〕200mgを使用直前にピリジンと共沸し、次いでトルエンと共沸、そしてテトラヒドロフラン(以下THFと略す)と共沸し、容器内を窒素ガス置換後、無水THF 3mlに溶解した。この溶液にN,N-ジイソプロピルエチルアミンを0.22ml、2-シアノエチルN,N-ジイソプロピルクロロホスホアミダイト(シグマ社製)を0.15ml加え、室温で30分撹拌した。析出した塩をグラスフィルターで濾去し、濾液を減圧濃縮し、乾固した。それぞれ窒素ガスで飽和した酢酸エチル及び飽和炭酸水素ナトリウム溶液で残渣を分配し、得られた有機層を硫酸ナトリウム乾燥後、減圧濃縮乾固した。この残渣を窒素ガスで飽和したn-ヘキサンで粉末化し、化合物〔14〕(但し、BpはN6-ベンゾイルアデニン-9-イルの場合)を白色粉末として174mg得た。高速原子衝撃質量分析法(以下FAB法と略す)にて分子量を測定したところ、分子量は871であった。この化合物〔14〕を以下DNA自動合成機(パーキン・エルマー社)のための試薬として用いた。
2)DNA合成機用CPG担体の調製
1-2)で得た化合物〔13〕470mgを塩化メチレン3mlに溶解し、4-ジメチルアミノピリジン23mg及び無水コハク酸105mgを加えて室温で3時間撹拌した。塩化メチレン10ml及び0.5Mリン酸二水素カリウム液10mlを加えて分配し、有機層を分取した。この有機層を水洗し、硫酸ナトリウム乾燥後、減圧乾固した。その結果、白色粉末としてコハク酸誘導体〔15〕(但し、BpはN6-ベンゾイルアデニン-9-イルの場合)が509mg得られた。
このコハク酸誘導体〔15〕(但し、BpはN6-ベンゾイルアデニン-9-イルの場合)500mgを無水N,N-ジメチルホルムアミドに溶解し、ペンタクロロフェノールを190mgそしてDCCを200mg加えて室温で一夜撹拌した。析出物をグラスフィルターで濾去し、濾液を減圧濃縮乾固した。残渣に少量のベンゼンを加え再度不溶物を濾去した。濾液を減圧濃縮乾固し、n-ペンタンで粉末化を行うと、白色粉末として492mgの活性化体化合物〔16〕を得た。FAB法にて分子量を測定したところ、分子量は1020であった。
この活性化体化合物〔16〕412mgとアミノ化CPG(Long chain amino-alkyl CPG 500オングストローム、フナコシ(株))2g、そして無水N,N-ジメチルホルムアミド10mlを混和、懸濁し、トリエチルアミンを0.44ml加えて、室温で3日間振盪した。CPG担体をフィルター濾取し、N,N-ジメチルホルムアミド、次いでピリジン、そして塩化メチレンで洗浄し、減圧乾燥した。
このCPG担体に無水酢酸2mlとピリジン6mlを加え懸濁し、室温で一夜振盪した。CPG担体をフィルター濾取し、ピリジンに続いて塩化メチレンで洗浄し、減圧乾燥後、CPG担体〔17〕を2g得た。
3)5'aaaaaAAAAAAAAAAAAAAAaaaaa3'の合成
核酸塩基1μMに相当する量のCPG担体〔17〕(但し、BpはN6-ベンゾイルアデニン-9-イルの場合)約25mgをDNA自動合成機用カラムに充填した。
アミダイト試薬〔14〕170mgを無水アセトニトリル3.4mlに溶解した。市販のアミダイト試薬、[N6-ベンゾイル-5'-0-(4,4'-ジメトキシトリチル)-2'-デオキシアデノシン3'-0-(2-シアノエチルN,N-ジイソプロピルホスホアミダイト)](パーキンエルマー社)500mgも無水アセトニトリル5mlに溶解し、これら二つの試薬をDNA自動合成機(パーキンエルマー社)に装着し、合成機のプログラムに従って自動合成を行った。
反応終了後、捕集バイアル中のサンプル溶液(濃アンモニア溶液)を55℃で18時間処理した後、減圧濃縮乾固した。残渣を50mM酢酸-トリエチルアンモニウム緩衝液(pH7.0)(以下TEAA緩衝液と略す)5mlに溶解し、分取用逆相クロマトグラフィー(Preparative RP-18(55〜105μm)、125オングストローム、φ=10mm×100mmカラム ウォーターズ(株))で分取・精製を行った。A液=50mM TEAA緩衝液、B液=40%アセトニトリル(50mM TEAA緩衝液中)を用い、B液が0〜100%の濃度勾配で溶出を行った。分画したフラクションの内、酢酸を加えるとオレンジ色を呈する画分を集め、溶媒を減圧留去した後、5mlの80%酢酸を加え15分間室温で放置した。保護基が外れたことをTLCで確認した後、溶媒を減圧留去した。酢酸エチルと水で分液抽出し、水層を減圧乾固すると、目的物が80 O.D.(260nm)得られた。
実施例2 式〔1〕においてX=H,Y=Hであるヌクレオシドを含む、DNAタイプアンチセンス分子:5'tCCGGTCCCAATGGAGGGGAAt3'(tはヌクレオシド同族体のうち塩基がチミン-1-イルのもの、Cはデオキシシトシン、Gはデオキシグアノシン、Tはデオキシチミジン、Aはデオキシアデノシンをそれぞれ表す。特記しない限り、ヌクレオシド間の結合は3'→5'のホスホジエステル結合を示す)の合成。
1)アミダイト試薬の合成
実施例1の1)に示したものと同様の方法でアミダイト試薬〔14〕(但し、Bpはチミン-1-イルの場合)を白色粉末として260mg得た。FAB法にて分子量を測定したところ、分子量は758であった。
2)DNA合成機用CPG担体の調製
実施例1の2)に示したものと同様の方法でCPG担体〔17〕(但し、Bpはチミン-1-イルの場合)を2g得た。
3)5'tCCGGTCCCAATGGAGGGGAAt3'の合成
核酸塩基2μMに相当する量のCPG担体〔17〕(但し、Bpはチミン-1-イルの場合)約70mgをDNA自動合成機用カラムに充填した。
アミダイト試薬〔14〕(但し、Bpはチミン-1-イルの場合)、市販のDNA合成用アミダイト試薬、[N6-ベンゾイル-5'-0-(4,4'-ジメトキシトリチル)-2'-デオキシアデノシン3'-0-(2-シアノエチルN,N-ジイソプロピルホスホアミダイト)]、[N2-イソブチリル-5'-0-(4,4'-ジメトキシトリチル)-2'-デオキシグアノシン3'-0-(2-シアノエチルN,N-ジイソプロピルホスホアミダイト)]、[N4-ベンゾイル-5'-0-(4,4'-ジメトキシトリチル)-2'-デオキシシチジン3'-0-(2-シアノエチル N,N-ジイソプロピルホスホアミダイト)]及び[5'-0-(4,4'-ジメトキシトリチル)-チミジン 3'-0-(2-シアノエチル N,N-ジイソプロピルホスホアミダイト)](パーキンエルマー社)を用いて実施例1の3)と同様にDNA自動合成機で合成を行った。精製も同様に行い目的物を120 O.D.(260nm)得た。
実施例3 式〔1〕においてX=H,Y=Hであるヌクレオシドを含む、DNAタイプアンチセンス分子:5'aaaaaaaaaaaaaaaaaaaaaaaaa3'(aはヌクレオシド同族体のうち塩基がアデニン-9-イルのものを表す。特記しない限り、ヌクレオシド間の結合は3'→5'のホスホジエステル結合を示す。以下hA25と表記する)の合成。
実施例1と同様の操作により目的物を52 O.D.(260nm)得た。
実施例4 式〔1〕においてX=H,Y=Hであるヌクレオシドを含む、DNAタイプアンチセンス分子:
5'aAAAAAAAAAAAAAAAAAAAAAAAa3'(aはヌクレオシド同族体のうち塩基がアデニン-9-イルのもの、Aはデオキシアデノシンをそれぞれ表す。特記しない限り、ヌクレオシド間の結合は3'→5'のホスホジエステル結合を示す。以下hA2A23と表記する)の合成。
実施例1と同様の操作により目的物を50 O.D.(260nm)得た。
実施例5 式〔1〕においてX−H,Y=Hであるヌクレオシドを含む、DNAタイプアンチセンス分子:5'aaaAAAAAAAAAAAAAAAAAAAaaa3'(aはヌクレオシド同族体のうち塩基がアデニン-9-イルのもの、Aはデオキシアデノシンをそれぞれ表す。特記しない限り、ヌクレオシド間の結合は3'→5'のホスホジエステル結合を示す。以下hA6A19と表記する)の合成。
実施例1と同様の操作により目的物を44 O.D.(260nm)得た。
実施例6 式〔1〕においてX=H,Y=Hであるヌクレオシドを含む、DNAタイプアンチセンス分子:5'aaaaaaaAAAAAAAAAAAaaaaaaa3'(aはヌクレオシド同族体のうち塩基がアデニン-9-イルのもの、Aはデオキシアデノシンをそれぞれ表す。特記しない限り、ヌクレオシド間の結合は3'→5'のホスホジエステル結合を示す。以下hA14A11と表記する)の合成。
実施例1と同様の操作により目的物を90 O.D.(260nm)得た。
実施例7 式〔1〕においてX=H,Y=Hであるヌクレオシドを含む、DNAタイプアンチセンス分子:5'aaaaaaaaaAAAAAAAaaaaaaaaa3'(aはヌクレオシド同族体のうち塩基がアデニン-9-イルのもの、Aはデオキシアデノシンをそれぞれ表す。特記しない限り、ヌクレオシド間の結合は3'→5'のホスホジエステル結合を示す。以下hA18A7と表記する)の合成。
実施例1と同様の操作により目的物を58 O.D.(260nm)得た。
実施例8 式〔1〕においてX=H,Y=Hであるヌクレオシドを含む、DNAタイプアンチセンス分子:
5'aaaaaaaaaaaAAAaaaaaaaaaaa3'(aはヌクレオシド同族体のうち塩基がアデニン-9-イルのもの、Aはデオキシアデノシンをそれぞれ表す。特記しない限り、ヌクレオシド間の結合は3'→5'のホスホジエステル結合を示す。以下hA22A3と表記する)の合成。
実施例1と同様の操作により目的物を61 O.D.(260nm)得た。
試験例
試験例1 マウス繊維芽細胞に対する毒性試験
実施例2で得た5'tCCGGTCCCAATGGAGGGGAAt3'のHER-2遺伝子を発現したマウス繊維芽細胞、NIH3T3-HER2細胞(ディフィオーレら、Methods in Enzymol., 198 272-277, 1991)に対する細胞毒性を、目下のところ最も臨床研究が進んでいるホスホロチオエート型オリゴヌクレオチドと比較した。対照として用いたホスホロチオエート型オリゴヌクレオチドの配列は5'CGGTCCCAATGGAGGGGAAT3'とし、シュタイン等の方法(シュタイン等、Nucleic Acid Res., 16 3209-3221 1988)により調製した。各被験物質の細胞内への透過性を高める目的で、カチオニックリポソームとの複合体をも試験に用いた。カチオニックリポソームの成分は3-0-(2-ジエチルアミノエチル)カルバモイル-1,2-0-ジオレイルグリセロール(WO94/19314号公開参照)と卵黄ホスファチジルエタノールアミン(日本油脂(株))の混合比3:1からなるものを用いた。各被験物質はヌクレオシドの濃度として各々10、3、1又は0.1μMとなるように培地に加えた。カチオニックリポソームとアンチセンスオリゴヌクレオチドとの混合比は2:1とした。
NIH3T3-HER2細胞をコーニング社製24穴プレート中で105細胞/ウェルの密度で撒いた後、ダルベッコ変法イーグル培地中で37℃-5%CO2の条件で一晩培養した。
培地を新しいものに交換した後、各被験物質を上清中に添加し一晩培養した。
細胞形態を顕微鏡下で判定し、細胞が著しく萎縮した被験物質を細胞毒性有り(表中+で表した)、細胞の形態に変化がなかった被験物質を細胞毒性なし(表中−で表した)とした。結果を表1に示す。
Figure 0003911703
ホスホロチオエート型オリゴヌクレオチドは単独でも細胞毒性が比較的強く、カチオニックリポソームとの複合体を形成するとその毒性はより一層増強されるが、一方本発明のアンチセンス分子は単独で添加しても10μMの濃度まで、カチオニックリポソームとの複合体として投与しても1μMの濃度までは毒性を示さなかった。
また実施例3で得た、全てヌクレオシド同族体で構成されている本発明のアンチセンス分子も10μMの濃度までは毒性を示さないことも確認されている。 試験例2 実施例2で合成した5'tCCGGTCCCAATGGAGGGGAAt3'のHER-2合成抑制作用及び毒性試験
実施例2で得た5'tCCGGTCCCAATGGAGGGGAAt3'の細胞での蛋白質合成抑制作用を見た。この塩基配列は、EGF受容体ファミリーのひとつであり乳癌の悪性度に関与していると考えられているHER-2遺伝子の5’キャップ領域近傍のアンチセンス配列を示している(ウールリッヒ等、Science, 230 1132-1139 1985)。対照として同じ配列のDNA及び5'CGGTCCCAATGGAGGGGAAT3’の配列のホスホロチオエート型オリゴヌクレオチドを用いた。DNAは常法に従いDNA合成機(アプライドバイオシステム社 モデル380B)により、ホスホロチオエート型オリゴヌクレオチドは試験例1に示した方法により調製した。
細胞は、試験例1で示したNIH3T3-HER2細胞を用いた。
各被験物質の細胞内への透過性を高める目的で、カチオニックリポソームとの複合体を細胞に投与した。用いたカチオニックリポソーム及び添加方法は試験例1と同様である。各被験物質はヌクレオシドの濃度として各々1、0.1又は0.01μMとなるように培地に加えた。
NIH3T3-HER2細胞をコーニング社製24穴プレート中で105細胞/ウェルの密度で撒いた後、ダルベッコ変法イーグル培地中で37℃-5%CO2の条件で一晩培養した。
0.2%の仔牛血清を含む培地に交換して、被験物質の1回目の添加を行なった。7〜8時間経過後に仔牛血清濃度を5%にして一晩培養した。メチオニンを含まない0.2%の仔牛血清を含む培地に交換した後、各被験物質の2回目の添加を行なった。添加濃度は1回目と同様である。7〜8時間後に35Sメチオニン(アマシャム社、3TBq/mmol)を添加し、仔牛血清濃度を5%にして一晩培養した。
細胞形態を顕微鏡下で判定し、細胞が著しく萎縮した被験物質を細胞毒性有り(表中+で表した)、細胞の形態に変化がなかった被験物質を細胞毒性なし(表中−で表した)とした。
細胞を回収し、抗ヒトHER-2抗体(ニチレイ社)を用いて常法によりHER-2蛋白質を免疫沈降した。
7%ポリアクリルアミドゲルSDS電気泳動を行なった後に、イメージアナライザー(FUJIX BAS2000)を用いてHER-2タンパク質の35Sメチオニンの放射活性を測定することによりHER-2タンパク質の合成量を算定した。被験物質を加えない細胞のHER-2タンパク質の合成量を100%とし、各被験物質添加時のHER-2タンパク質の合成量の減少率を抑制率として表した。
毒性試験については試験例1と同様である。
結果を表2に示す。
Figure 0003911703
本発明のアンチセンス分子はDNAと同濃度でDNAと同等以上のHER-2タンパク質の合成抑制活性を示した。
ホスホロチオエート型オリゴヌクレオチドは、0.01〜0.1μMでは効果がなく、本発明のアンチセンス分子又はDNAが有効な活性を示す。1.0μMの濃度では細胞毒性が発現し、活性は測定できかった。
また、本発明の化合物及びDNAのHER-2遺伝子の5’キャップ領域近傍のセンス配列はHER-2タンパク質の合成抑制活性を示さない。
試験例3 本発明化合物の核酸分解酵素(Nuclease S1)に対する抵抗性
本発明化合物hA25を被験物質とした。コントロールとして、同じ配列を有する天然DNAオリゴマーdA25を用いた。
30mM酢酸緩衝液(pH4.5)に塩化ナトリウムが50mM、硫酸亜鉛が30mMとなるように加え、この緩衝液に、各被験物質を最終濃度が4 O.D.(260nm)になるように加えた。更に、核酸分解酵素Nuclease S1(ベーリンガー・マンハイム山之内社)を2000U/mlになるように加え(最終容積50μl)、37℃で一夜インキュベートした。反応液をサンプリングし、Lichrospher RP-18(4 mmI.D.×125mm)カラムを用いたHPLCにて被験物質のピークの減少度を測定することにより分解度を算定した。結果を表3に示す。
Figure 0003911703
コントロールは60%以上が分解されるのに対し、本発明物質は一夜反応後においても、99%以上が分解されずに残った。
試験例4 蛇毒ホスホジエステラーゼに対する本発明物質の抵抗性
実施例2で合成した本発明物質の5'tCCGGTCCCAATGGAGGGGAAt3'を被験物質とした。コントロールとして、同じ配列を有する天然DNAオリゴマーを用いた。
各検体を100mM Tris-HCl緩衝液(pH8.9)、100mM塩化ナトリウム、14mM塩化マグネシウム溶液に最終濃度が4 O.D.(260nm)になるように調製し、蛇毒ホスホジエステラーゼ(コッホ・ライト社)を3.6U/ml濃度になるように加えた(最終容積0.1ml)。37℃で1時間インキュベートし、最終濃度50mMのEDTAを加え反応を止めた。反応液をサンプリングし、Lichrospher RP-18(4 mmI.D.×125mm)カラムを用いたHPLCにて被験物質のピークの減少度を測定することにより分解度を算定した。結果を表4に示す。
Figure 0003911703
コントロールが60%以上分解されるのに対して、本発明の物質は10%程度しか分解されず、蛇毒ホスホジエステラーゼに対する強い抵抗性を示した。
試験例5 仔牛脾臓ホスホジエステラーゼに対する本発明物質の抵抗性
実施例2で合成した本発明物質の5'tCCGGTCCCAATGGAGGGGAAt3'を被験物質とした。コントロールとして、同じ配列を有する天然DNAオリゴマーを用いた。
各被験物質を100mMコハク酸アンモニウム緩衝液(pH8.9)、1mM EDTA溶液に最終濃度が4 O.D.(260nm)になるように調製し、仔牛脾臓ホスホジエステラーゼ(ベーリンガー社)を0.2U/ml濃度になるように加えた(最終容積0.1ml)。37℃で一時間インキュベートし、反応液をサンプリングし、Lichro-spher RP-18(4 mmI.D.×125mm)カラムを用いた高速液体クロマトグラフ(以下HPLCと略す)にて被験物質のピークの減少度を測定することにより分解度を算定した。結果を表5に示す。
Figure 0003911703
コントロールが30%近く分解されるのに対して、本発明の物質の分解度は1%以下であり、仔牛脾臓ホスホジエステラーゼに対する強い抵抗性を示した。
試験例6 本発明物質に対するRNase Hの基質特異性
本発明物質が天然のRNAとハイブリッドを形成し、RNase Hの基質として認識され、RNAが分解されるか否かにつき調べた。
被験物質としてhA25,hA22A3,hA18A7,hA14A11,hA10A15,hA6A19及びhA2A23を、コントロールとしてdA25を用いた。ハイブリッドを形成するRNAとしてpoly(U)(S20,W6.6、ヤマサ醤油(株))を用いた。
40mM Tris-HCl緩衝液(pH7.7)、1mMジチオスレイトール、4mM塩化マグネシウム、4%(W/V)グリセロール、0.003%(W/V)仔牛血清アルブミン溶液に最終濃度がそれぞれ4 O.D.(260nm)のpoly(U)及び各被験物質を加え、大腸菌RNase H(宝酒造(株))を100U/ml濃度になるように加えた(最終容積0.1ml)。20℃で18時間インキュベートし、-20℃で凍結し反応を止めた。反応液を解凍後直ちに、TSK G4000PWXL(7.8mm I.D.×300mm)ゲルろ過カラムを用いたHPLCにてpoly(U)のピークの減少度を測定することにより分解度を算定した。結果を表6に示した。
Figure 0003911703
hA18A7,hA14A11,hA10A15,hA6A19及びhA2A23は、コントロールとして用いたdA25と同程度にRNase Hの基質になることが示された。
試験例7 DNA又はRNAへの結合安定性
核酸同士が複合体を形成している場合、温度を上げてゆくとある温度の前後で急激に吸光度が増大する。これは核酸のいわゆる淡色効果(hypochromicity)の減少によるものであるが、この前後の吸光度差の2分の1まで吸光度が増大したときの温度(以下Tmという)を測定することにより、核酸との複合体形成能を知ることができる。
被験物質としてhA25,hA22A3,hA18A7,hA14A11,hA10A15,hA6A19及びhA2A23を、コントロールとしてdA25を用いた。ハイブリッドを形成するRNAとしてPoly(U)(S20,W6.6、ヤマサ醤油(株))を用いた。
被験物質又はコントロールとPoly(U)との複合体を形成させ、被験物質濃度100μM、0.15M塩化ナトリウム、10mMリン酸ナトリウム(pH7.0)、昇温速度0.5℃/分の条件下で測定しTm値を求めた。
Figure 0003911703
本発明物質は、天然のRNAと良好な複合体形成能を有していた。ヌクレオシド同族体の含量が増すにつれTm値は低下する傾向にあったが、その含量が40%(hA10A15)までは天然のDNAと比べて遜色のないことも示された。
これらの結果から、本発明のアンチセンス分子は低毒性で、ヘルペスウイルス、インフルエンザウイルス、ヒト免疫不全症ウイルス等の感染や癌遺伝子の働きを抑える医薬として利用し得る。Technical field
The present invention relates to antisense nucleic acid analogs useful as pharmaceuticals. More specifically, it has a function of selectively inactivating, activating or controlling the transmission of genetic information carried by the DNA or RNA by specifically binding to DNA or RNA and forming a complex. Relates to antisense molecules.
Background art
A gene usually has a form of double-stranded DNA consisting of complementary base sequences, and a coding sequence (sense sequence) having meaning as amino acid sequence information is encoded on one strand. Oligonucleotides complementary to this sequence can specifically bind to the sense sequence, and if this binding is strong, selectively inactivate the gene function by covering a certain region of interest. Can be activated or controlled. A compound having such a function is called an antisense molecule.
Antisense molecules can thus bind to DNA and inhibit the process by which messenger RNA is generated. It can also bind to RNA and selectively inhibit the process of protein translation from messenger RNA (Harold M. Weintraub, Scientific American, 34-40 1990).
Based on the above principle, antisense molecules can be used for clear and control of biological functions, and therefore are represented by the formulas [101] to [108] and [111] to [112] (wherein B is a nucleobase. , R and R ′ represent hydrogen, an alkyl group or other substituents). A nucleic acid homologue has been synthesized (Murakami et al., Organic Synthetic Chemistry, Vol. 48, No. 3, 180-193 1990; Murakami Chapter, Cell Engineering, Vol. 13, No. 4, 259-266 1994).
(A) DNA-type oligonucleotide derivative (partial structure is shown in Formula [101])
(B) RNA-type oligonucleotide derivative (partial structure is shown in formula [102])
(C) Phosphate triester type oligonucleotide derivative (partial structure is shown in formula [103])
(D) Methylphosphonate type oligonucleotide derivative (partial structure is shown in Formula [104])
(E) Phosphoramidate type oligonucleotide derivative (partial structure is shown in Formula [105])
(F) Phosphorothioate type oligonucleotide derivative (partial structure is shown in Formula [106])
(G) Phosphorodithioate type oligonucleotide derivative (partial structure is shown in Formula [107])
(H) Carbamate-type oligonucleotide derivative (partial structure is shown in Formula [108])
(I) Thiocarbamate type oligonucleotide derivative (structure is shown in Formula [109])
(J) Thiocarbamate phosphodiester type oligonucleotide derivative (structure is shown in Formula [110])
(K) α-anomeric oligonucleotide derivative (partial structure is shown in formula [111])
(L) Enantiotype oligonucleotide derivative (partial structure is shown in Formula [112])
(M) Other non-phosphate-binding oligonucleotide derivatives (partial structures shown in formulas [113] to [116])
All of them aim to provide antisense molecules that function in vivo by remodeling the natural nucleic acid structure (partial structural formula [1]).
Figure 0003911703
Figure 0003911703
Figure 0003911703
Next, structural formula [109] is represented. In the formula, B represents a nucleobase and R 1 , R 2 Represents hydrogen, an inorganic acid residue, an organic acid residue, an alkyl group, or an acyl group. n represents a natural number.
Figure 0003911703
Next, structural formula [110] is represented. In the formula, B represents a nucleobase, and X and Y are the same or different and represent sulfur or oxygen. n represents a natural number.
Figure 0003911703
Next, Formula [111] and Formula [112] are represented.
Figure 0003911703
Next, Formula [113], Formula [114], Formula [115], and Formula [116] are shown. In the formula, B represents a nucleobase. R represents an alkyl group or a phenyl group.
Figure 0003911703
Other nucleic acid congeners have been reported (John A. Montgomery and Kathleen Hewson., J. Heterocycl. Chem., 7 Apr. 443-445 1970; Antonium Holy., Collection Czechoslov. Chem. Commun., 35 81-88 1970; Michael W. Winkley., Carbohyd. Res., 31 245-254 1973.) None of these are disclosed for application to antisense.
Many other nucleic acid homologues including the above compounds have been synthesized (for example, the nucleic acid homologue described in US Pat. No. 5,034,506, etc.). The development of highly practical antisense molecules having sufficient conditions 1) to 8) above has not been achieved.
1) Binding stability to DNA or RNA (complex formation ability)
2) Resistance to nuclease
3) Physical and chemical stability against acid, alkali, temperature and humidity
4) Low cytotoxicity
5) Specificity of binding to recognition sequence
6) Convenience of synthesis
7) Solubility in water or buffer
8) Preparation without the generation of asymmetric phosphorus, that is, as the nucleic acid becomes longer due to the generation of asymmetric phosphorus diastereomers accompanying the modification of the phosphate ester moiety, which is a disadvantage of the conventional preparation method, Body (2 for n-mer n-1 To eliminate the relative decrease in the content of useful molecules due to the occurrence of isomers (where n is a natural number)
Disclosure of the invention
As a result of intensive studies for the purpose of developing a highly practical antisense molecule sufficiently satisfying the above conditions 1) to 8), the following partial structural formula [1]
Figure 0003911703
(In the formula, B represents adenine-9-yl, guanine-9-yl, hypoxanthin-9-yl, thymine-1-yl, uracil-1-yl or cytosine-1-yl. X and Y represent At least one nucleoside homologue represented by the same or different, each representing hydrogen, hydroxy, halogen or alkoxy, in the same strand of a DNA, RNA or nucleic acid homologue in which a phosphodiester bond is modified or substituted The present inventors have found that the antisense molecules contained above have solved the above-mentioned objects and have excellent properties as antisense molecules, and have completed the present invention.
Examples of the halogen contained in the nucleoside represented by the partial structural formula [1] include chlorine, bromine and fluorine. Examples of the lower alkoxy include linear or branched ones having 1 to 8 carbon atoms. Specific examples include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, iso-butoxy, sec-butoxy or t-butoxy.
The antisense molecule of the present invention can exhibit resistance to various nucleolytic enzymes by including a nucleoside having a partial structure represented by the partial structural formula [1]. In particular, molecules having the nucleoside at the 5 ′ end, 3 ′ end or both ends show significant resistance to exonucleases. Furthermore, it can be expected that those containing a plurality of, for example, 2 to 9 residues of the nucleoside homologues in the vicinity of both ends continuously or intermittently exhibit stronger resistance.
The nucleoside included in the present invention has extremely high solubility in water or the like, in particular, compared to the components of conventional antisense molecules (for example, carbamate-type nucleosides that constitute carbamate-type oligonucleotide derivatives (formula [108])). . Therefore, even when the nucleoside is included in DNA, RNA, or a nucleic acid congener in which a phosphodiester bond is modified or substituted, one or more residues are included without limitation, the solubility in water or the like is not significantly reduced.
It is preferable that an appropriate number of the nucleoside is contained in natural DNA or RNA because the degree of freedom of the three-dimensional structure is less restricted, the association becomes stable, and the function as an antisense molecule is easily exhibited.
The content of the nucleoside is suitably 1 residue or more and 80% or less of all residues constituting the molecule in one antisense nucleic acid homologue. Preference is given to having at least one residue and approximately the same number of the nucleosides continuously at both ends of 5 ′ and 3 ′, and the composition ratio is 60% or less of all the nucleoside residues of the molecule contained.
In addition, the structure of the sugar portion of the nucleoside is the same as that of other nucleic acids (for example, ribose or deoxyribose) constituting the antisense nucleic acid homologue contained therein, and the homogeneity of the three-dimensional helical structure of the side chain. It is expected that the binding specificity to the recognition sequence is particularly excellent. On the other hand, the resistance to degrading enzymes is considered to be greater when the structure of the sugar moiety is different from that of the natural type, and should be appropriately selected according to necessity.
The antisense molecule of the present invention is extremely excellent in the conditions of 2), 3), 4), 5), 6) and 7) while maintaining the conditions of 1) as compared with the conventional antisense molecules. Has characteristics.
The antisense molecule of the present invention has extremely high solubility in water or the like, particularly compared to conventional antisense molecules (for example, carbamate-type oligonucleotide derivatives (formula [108]). Since the ratio of binding to highly water-soluble DNA or RNA increases, it can be expected to be highly useful in the medical field.
When the antisense nucleic acid homologue of the present invention is administered into a living body, it forms a complex with a cationic liposome in particular, so that it can be easily transferred into cells, and is equivalent to or better than natural DNA and nucleic acids. Demonstrate the anti-sense effect.
In the case where stronger resistance to the decomposing enzyme is required, it can be combined with, for example, modification or substitution of the phosphodiester binding moiety [shown by [101] to [106]. Examples of the modified or substituted phosphate ester bond include a phosphorothioate bond, an alkyl phosphorothioate bond, an N-alkyl phosphoramidate bond, a phosphorodithioate bond, and an alkylphosphonate bond. The structure is also useful. Of course, other combinations can be selected as required.
Antisense molecules generally have higher activity and selectivity as the number of bases increases. The number of bases contained in one molecule of the antisense nucleic acid homologue of the present invention is preferably 1-50, and more preferably 4-30.
The base sequence of the antisense nucleic acid homologue of the present invention is selected to be complementary to the base sequence of DNA or RNA to be inactivated, activated or controlled.
The antisense molecules of the present invention have been found to be RNase H substrates. This property is not only inactivated by a gene when administered in vivo, but also shows that it is involved in actively degrading mRNA that has formed a hybrid, and has high utility.
As will be described later, the antisense molecule of the present invention has a pharmacological action such as a membrane receptor protein synthesis inhibitory action in HER-2-expressing cells, and thus is extremely useful as an anticancer agent, for example.
As the use of the antisense molecule according to the present invention, since the antisense molecule of the present invention inactivates its complementary gene information, foreign substances that have entered the living body, such as herpes virus, influenza virus, human immunodeficiency It can be used as a medicine that suppresses infections such as viruses (HIV, AIDS virus, etc.) and oncogenes. Moreover, it can be applied to techniques such as breed improvement by positively controlling animal and plant genes. Furthermore, it has the potential as a DNA probe for analysis of gene function, genetic disease, bacterial and viral infection check, and many other usefulness than the above are considered.
The nucleoside, which is a main component of the antisense nucleic acid homologue of the present invention, is as cytotoxic as a natural nucleoside. Therefore, the toxicity of an antisense molecule containing the nucleoside in DNA or RNA is also different from that of a natural nucleic acid. Equally very low.
When the antisense molecule of the present invention is used as a medicine, the compound of the present invention is administered as it is or in a pharmaceutically acceptable non-toxic and inactive unit.
As the carrier, one or more liquid, solid, or semi-solid diluents, fillers, and other formulation aids are used. The pharmaceutical composition is desirably administered in dosage carrier form. The antisense molecules of the invention can be administered orally, intra-tissuely, topically, or rectally.
Of course, it is administered in dosage forms suitable for these administration methods, for example, various oral preparations, injections, inhalants, eye drops, ointments, suppositories, and the like. In particular, intra-tissue administration and local administration are preferred.
The dose varies depending on the type of disease, symptoms, age, weight, etc. For example, when used for the treatment of herpes, local administration of 1 mg to 1 g as an antisense molecule is suitable for an adult once a day. In the treatment of AIDS, it is common to administer 1 mg to 10 g as an antisense molecule intravenously once a day for adults.
The administration method and dosage should be appropriately changed depending on the therapeutic purpose and the type of the antisense molecule of the present invention to be used.
(Synthesis method)
Next, a general method for synthesizing the antisense nucleic acid homologue of the present invention will be described.
Where B is adenine-9-yl, guanine-9-yl or cytosine-1-yl and Bp is protected adenine-9-yl, guanine-9-yl or cytosine-1-yl or It represents hypoxanthin-9-yl, thymin-1-yl or uracil-1-yl which is not protected.
(Nucleoside derivatives)
Figure 0003911703
(Amidite reagent)
Figure 0003911703
(Preparation of controlled pore glass carrier)
Figure 0003911703
(Solid phase synthesis by phosphatide method)
Figure 0003911703
Operation 1 When homotype nucleoside [11] prepared by the method of Oki et al. (WO95 / 15964) is used, when B is adenine-9-yl or cytosine-1-, for example, benzoyl chloride and B In the case of guanine-9-yl, for example, after reacting with isobutyryl chloride, hydrolysis with a sodium hydroxide solution, followed by neutralization, a base-protected nucleoside derivative [12] can be obtained. When B is hypoxanthin-9-yl, thymine-1-yl or uracil-1-yl, a homotype nucleoside prepared by the method of Oki et al. Can be used as it is as Bp.
Operation 2 [12] obtained in Operation 1 can be reacted with 4,4′-dimethoxytrityl chloride in a pyridine solution, for example, to obtain a dimethoxytrityl compound [13] in which the 5′-hydroxyl group is protected.
Operation 3 In order to make a reagent for automatic synthesis by the so-called amidite method in the solid phase method, for example, the compound [13] is converted into a method such as a phosphorylating agent and Kester (H. Koester et al., Nucleic Acids Res., 12 4539- 4557 1984) to obtain an amidite reagent [14].
Operation 4 The dimethoxytrityl compound [13] obtained in Operation 2 can be reacted with succinic anhydride in methylene chloride, for example, to obtain a succinic acid derivative [15].
Operation 5 The activated compound [16] can be obtained by reacting the compound [15] obtained in Operation 4 with pentachlorophenol and dicyclohexylcarbodiimide (hereinafter abbreviated as DCC) in, for example, N, N-dimethylformamide.
Operation 6 An activated form [16] is reacted with, for example, a controlled pore glass carrier (hereinafter abbreviated as CPG carrier) and N, N-dimethylformamide in the presence of triethylamine to give a nucleoside CPG carrier [17]. Obtainable.
Operation 7 For example, when a commercially available amidite reagent for DNA synthesis and an amidite reagent [14] are appropriately combined and a CPG carrier [17] is used, the nucleoside derivative of the present invention is obtained by an automatic DNA synthesizer (for example, manufactured by Perkin Elmer). The antisense DNA homologue [18] can be easily synthesized.
After performing a deprotection treatment according to the protecting group used, the high-purity antisense DNA homologue of the present invention can be obtained by purification, for example, by preparative HPLC.
Moreover, the preparation method of a halogenated antisense nucleic acid homologue is shown.
A homotype nucleoside prepared by the method of Oki et al. (WO95 / 15964) is converted to tetraisopropylsiloxyl at the 3 ′, 5′-position, for example, according to formula [19], and [20] is synthesized. Cyclonucleoside [21] can be obtained by trifluoromesylation at the '-position. This is treated with sodium halide such as sodium bromide in DMF to obtain 2′-bromide [22]. The 2′-bromide [22] can be treated with tetrobutylammonium fluoride as usual to give 2′-halogeno homonucleoside [23].
(Preparation of halogenated antisense nucleic acid homologue)
Figure 0003911703
In addition, for example, RNA types and phosphorothioate-linked antisense nucleic acid homologues can also be synthesized by methods similar to the above.
The compound according to the present invention can be used for treatment in the form of free phosphoric acid, but can also be used in the form of a pharmaceutically acceptable salt by a known method. Examples of the salt include sodium salt and potassium salt.
For example, the alkali metal salt of the compound having free phosphoric acid according to the present invention can be preferably obtained by adding sodium hydroxide or potassium hydroxide in an alcohol solvent.
The compound according to the present invention can be isolated and purified by using usual separation and purification means such as extraction, concentration, neutralization, filtration, recrystallization, column chromatography, reverse layer chromatography and the like.
Solvates (including hydrates) of the compounds according to the present invention or salts thereof are also included in the present invention. Solvates are usually obtained by removing excess solvent from the corresponding solvent or a suitable mixed solvent containing the corresponding solvent.
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to Examples, Reference Examples, Test Examples, and Comparative Examples, but the present invention is not limited thereto.
Example
Example 1 A DNA-type antisense molecule comprising a nucleoside where X = H and Y = H in the formula [1]: 5′aaaaaaAAAAAAAAAAaaaaaa 3 ′ (a is a nucleoside homologue whose base is adenine-9-yl, A Each represents deoxyadenosine, unless otherwise specified, the linkage between nucleosides is a 3 ′ → 5 ′ phosphodiester linkage, hA Ten A 15 Is written).
1) Synthesis of amidite reagent
1-1) Compound [12] (Bp is N 6 -Benzoyladenine-9-yl)
2.60 g of the nucleoside homologue represented by the formula [11] obtained by the method of Oki et al. (WO95 / 15964) whose base is adenine (hereinafter referred to as homotype adenosine) is suspended in 30 ml of pyridine and stirred. Under cooling, 8.43 g of benzoyl chloride was added and reacted at room temperature for 1 hour. The above reaction solution was added to a mixture of chloroform (100 ml), ice (70 g) and sodium hydrogen carbonate (5.48 g), followed by liquid separation treatment to separate the organic layer. The remaining aqueous layer was further extracted twice with 50 ml of methylene chloride, the organic layers were combined, dried over sodium sulfate, and the solvent was distilled off under reduced pressure.
20 ml of pyridine and 30 ml of ethanol were added to the residue, and a mixture of 40 ml of 2N sodium hydroxide solution and 40 ml of ethanol was added under ice cooling. After stirring at room temperature for 30 minutes, 40 ml of 2N hydrochloric acid was added to neutralize. Further, 200 ml of water was added, the aqueous layer was extracted and separated with ether, and then the aqueous layer was concentrated under reduced pressure. When this is left overnight in a cool dark place, compound [12] (where Bp is N 6 In the case of benzoyladenine), 3.11 g was obtained as a white precipitate.
1-2) Compound [13] (Bp is N 6 -Benzoyladenine-9-yl)
3.0 g of the compound [12] obtained in 1-1) was dissolved in 35 ml of pyridine, and 3.03 g of 4,4′-dimethoxytrityl chloride (Wako Pure Chemical Industries, Ltd.) was added and reacted at room temperature overnight. After adding 5 ml of methanol to the reaction solution, the solvent was distilled off under reduced pressure. The organic layer obtained by liquid separation treatment with methylene chloride-water was dried over sodium sulfate and then concentrated to dryness under reduced pressure. The residue was purified by silica gel column chromatography (silica gel-120 g, methanol / methylene chloride) to obtain 3.97 g of compound [13] as a white powder.
1-3) Compound [14] (Bp is N 6 -Benzoyladenine-9-yl)
200 mg of the compound [13] obtained in 1-2) is azeotroped with pyridine immediately before use, then azeotroped with toluene, and azeotrope with tetrahydrofuran (hereinafter abbreviated as THF). Dissolved in 3 ml of THF. To this solution, 0.22 ml of N, N-diisopropylethylamine and 0.15 ml of 2-cyanoethyl N, N-diisopropylchlorophosphoamidite (manufactured by Sigma) were added and stirred at room temperature for 30 minutes. The precipitated salt was removed by filtration with a glass filter, and the filtrate was concentrated under reduced pressure and dried. The residue was partitioned between ethyl acetate saturated with nitrogen gas and saturated sodium bicarbonate solution, and the resulting organic layer was dried over sodium sulfate and concentrated to dryness under reduced pressure. This residue was pulverized with n-hexane saturated with nitrogen gas, and compound [14] (where Bp is N 6 -Benzoyladenine-9-yl) was obtained as a white powder. When the molecular weight was measured by fast atom bombardment mass spectrometry (hereinafter abbreviated as FAB method), the molecular weight was 871. This compound [14] was used as a reagent for an automatic DNA synthesizer (Perkin Elmer).
2) Preparation of CPG carrier for DNA synthesizer
470 mg of the compound [13] obtained in 1-2) was dissolved in 3 ml of methylene chloride, 23 mg of 4-dimethylaminopyridine and 105 mg of succinic anhydride were added, and the mixture was stirred at room temperature for 3 hours. 10 ml of methylene chloride and 10 ml of 0.5 M potassium dihydrogen phosphate solution were added and partitioned, and the organic layer was separated. The organic layer was washed with water, dried over sodium sulfate, and then dried under reduced pressure. As a result, succinic acid derivative [15] (where Bp is N 6 509 mg of -benzoyladenine-9-yl) were obtained.
This succinic acid derivative [15] (where Bp is N 6 (In the case of -benzoyladenine-9-yl) 500 mg was dissolved in anhydrous N, N-dimethylformamide, 190 mg of pentachlorophenol and 200 mg of DCC were added and stirred overnight at room temperature. The precipitate was filtered off with a glass filter, and the filtrate was concentrated to dryness under reduced pressure. A small amount of benzene was added to the residue, and the insoluble material was removed by filtration again. The filtrate was concentrated to dryness under reduced pressure and powdered with n-pentane to obtain 492 mg of the activated compound [16] as a white powder. When the molecular weight was measured by the FAB method, the molecular weight was 1020.
412 mg of this activated compound [16], 2 g of aminated CPG (Long chain amino-alkyl CPG 500 angstrom, Funakoshi Co., Ltd.) and 10 ml of anhydrous N, N-dimethylformamide are mixed and suspended, and 0.44 ml of triethylamine is added. And shaken at room temperature for 3 days. The CPG carrier was filtered off, washed with N, N-dimethylformamide, then pyridine, and methylene chloride, and dried under reduced pressure.
To this CPG carrier, 2 ml of acetic anhydride and 6 ml of pyridine were suspended, and the mixture was shaken overnight at room temperature. The CPG carrier was collected by filtration, washed with pyridine followed by methylene chloride, and dried under reduced pressure to obtain 2 g of CPG carrier [17].
3) Synthesis of 5′aaaaaaAAAAAAAAAAAAaaaaaa 3 ′
CPG carrier [17] in an amount corresponding to 1 μM of nucleobase (Bp is N 6 (In the case of -benzoyladenine-9-yl) About 25 mg was packed in a column for an automatic DNA synthesizer.
170 mg of amidite reagent [14] was dissolved in 3.4 ml of anhydrous acetonitrile. A commercially available amidite reagent, [N 6 -Benzoyl-5'-0- (4,4'-dimethoxytrityl) -2'-deoxyadenosine 3'-0- (2-cyanoethyl N, N-diisopropylphosphoamidite)] (Perkin Elmer) 500 mg of anhydrous acetonitrile After dissolving in 5 ml, these two reagents were attached to an automatic DNA synthesizer (Perkin Elmer), and automatic synthesis was performed according to the program of the synthesizer.
After completion of the reaction, the sample solution (concentrated ammonia solution) in the collection vial was treated at 55 ° C. for 18 hours, and then concentrated to dryness under reduced pressure. The residue was dissolved in 5 ml of 50 mM acetic acid-triethylammonium buffer (pH 7.0) (hereinafter abbreviated as TEAA buffer) and subjected to preparative reverse phase chromatography (Preparative RP-18 (55 to 105 μm), 125 Å, φ = Separation and purification were carried out using a 10 mm × 100 mm column (Waters). Using solution A = 50 mM TEAA buffer, solution B = 40% acetonitrile (in 50 mM TEAA buffer), solution B was eluted with a concentration gradient of 0-100%. Among the fractions fractionated, acetic acid was added to collect orange fractions. The solvent was distilled off under reduced pressure, 5 ml of 80% acetic acid was added, and the mixture was allowed to stand at room temperature for 15 minutes. After confirming by TLC that the protecting group was removed, the solvent was distilled off under reduced pressure. Separation extraction was performed with ethyl acetate and water, and the aqueous layer was dried under reduced pressure to obtain 80 OD (260 nm) of the desired product.
Example 2 DNA type antisense molecule comprising a nucleoside where X = H and Y = H in the formula [1]: 5′tCCGGTCCCAATGGAGGGAGAt 3 ′ (t is a nucleoside homologue whose base is thymine-1-yl, C Represents deoxycytosine, G represents deoxyguanosine, T represents deoxythymidine, and A represents deoxyadenosine, unless otherwise specified, the bond between nucleosides represents a 3 ′ → 5 ′ phosphodiester bond).
1) Synthesis of amidite reagent
260 mg of amidite reagent [14] (provided that Bp is thymin-1-yl) was obtained as a white powder by the same method as shown in 1) of Example 1. When the molecular weight was measured by the FAB method, the molecular weight was 758.
2) Preparation of CPG carrier for DNA synthesizer
2 g of CPG carrier [17] (provided that Bp is thymin-1-yl) was obtained in the same manner as that shown in 2) of Example 1.
3) Synthesis of 5'tCCGGTCCCAATGGAGGGAAt3 '
About 70 mg of CPG carrier [17] (provided that Bp is thymin-1-yl) in an amount corresponding to 2 μM of nucleobase was packed in a column for an automatic DNA synthesizer.
Amidite reagent [14] (where Bp is thymin-1-yl), commercially available amidite reagent for DNA synthesis, [N 6 -Benzoyl-5'-0- (4,4'-dimethoxytrityl) -2'-deoxyadenosine 3'-0- (2-cyanoethyl N, N-diisopropylphosphoamidite)], [N 2 -Isobutyryl-5′-0- (4,4′-dimethoxytrityl) -2′-deoxyguanosine 3′-0- (2-cyanoethyl N, N-diisopropylphosphoamidite)], [N Four -Benzoyl-5'-0- (4,4'-dimethoxytrityl) -2'-deoxycytidine 3'-0- (2-cyanoethyl N, N-diisopropylphosphoamidite)] and [5'-0- (4 , 4'-dimethoxytrityl) -thymidine 3'-0- (2-cyanoethyl N, N-diisopropylphosphoamidite)] (Perkin Elmer) and synthesized with an automatic DNA synthesizer in the same manner as in Example 1 3) Went. Purification was performed in the same manner to obtain 120 OD (260 nm) of the target product.
Example 3 A DNA type antisense molecule comprising a nucleoside where X = H and Y = H in the formula [1]: 5′aaaaaaaaaaaaaaaaaaaaaaaa3 ′ (a represents a base of adenine-9-yl among nucleoside homologues Unless otherwise specified, the linkage between nucleosides is a 3 ′ → 5 ′ phosphodiester bond, hereinafter hA twenty five Is written).
The target product was obtained in the same manner as in Example 1 to obtain 52 OD (260 nm).
Example 4 DNA-type antisense molecule comprising a nucleoside where X = H and Y = H in formula [1]:
5'aAAAAAAAAAAAAAAAAAAAAa3 '(a is a nucleoside homolog whose base is adenine-9-yl, A represents deoxyadenosine. Unless otherwise specified, the bond between nucleosides indicates a 3' → 5 'phosphodiester bond. .HA 2 A twenty three Is written).
The target product was obtained in the same manner as in Example 1 to 50 OD (260 nm).
Example 5 A DNA-type antisense molecule comprising a nucleoside where XH, Y = H in the formula [1]: 5′aaaAAAAAAAAAAAAAAaaaaaa 3 ′ (a is a nucleoside homologue whose base is adenine-9-yl, A Each represents deoxyadenosine, unless otherwise specified, the linkage between nucleosides is a 3 ′ → 5 ′ phosphodiester linkage, hA 6 A 19 Is written).
44 OD (260 nm) of the target product was obtained by the same operation as in Example 1.
Example 6 A DNA type antisense molecule comprising a nucleoside where X = H and Y = H in the formula [1]: 5′aaaaaaAAAAAAAAaaaaaa 3 ′ (a is a nucleoside homologue of which the base is adenine-9-yl, A Each represents deoxyadenosine, unless otherwise specified, the linkage between nucleosides is a 3 ′ → 5 ′ phosphodiester linkage, hA 14 A 11 Is written).
90 OD (260 nm) of the target product was obtained by the same operation as in Example 1.
Example 7 A DNA-type antisense molecule comprising a nucleoside where X = H and Y = H in the formula [1]: 5′aaaaaaaaAAAAAAaaaaaaaaa3 ′ (a is a nucleoside homologue of which the base is adenine-9-yl, A Each represents deoxyadenosine, unless otherwise specified, the linkage between nucleosides is a 3 ′ → 5 ′ phosphodiester linkage, hA 18 A 7 Is written).
The target product was obtained in the same manner as in Example 1 with 58 OD (260 nm).
Example 8 DNA-type antisense molecule comprising a nucleoside where X = H and Y = H in formula [1]:
5'aaaaaaaaaaaaaaAAaaaaaaaaaaaaaaa 3 '(a is a base of adenine-9-yl among homologues of nucleoside, A represents deoxyadenosine. Unless otherwise specified, the bond between nucleosides indicates a 3' → 5 'phosphodiester bond. .HA twenty two A Three Is written).
The target product was obtained in the same manner as in Example 1 to obtain 61 OD (260 nm).
Test example
Test Example 1 Toxicity test on mouse fibroblasts
Cytotoxicity of mouse fibroblasts and NIH3T3-HER2 cells (Difiore et al., Methods in Enzymol., 198 272-277, 1991) expressing the HER-2 gene of 5'tCCGGTCCCAATGGAGGGAAt3 'obtained in Example 2 However, it was compared with the phosphorothioate-type oligonucleotide, which is the most clinically studied. The sequence of the phosphorothioate-type oligonucleotide used as a control was 5′CGGTCCCAATGGAGGGGAAT 3 ′, and prepared by the method of Stein et al. (Stein et al., Nucleic Acid Res., 16 3209-3221 1988). For the purpose of increasing the permeability of each test substance into cells, a complex with a cationic liposome was also used in the test. The component of the cationic liposome is a mixing ratio of 3-0- (2-diethylaminoethyl) carbamoyl-1,2-0-dioleylglycerol (see WO94 / 19314) and egg yolk phosphatidylethanolamine (Nippon Yushi Co., Ltd.) What consisted of 3: 1 was used. Each test substance was added to the medium so that the concentration of nucleoside was 10, 3, 1 or 0.1 μM. The mixing ratio of the cationic liposome and the antisense oligonucleotide was 2: 1.
NIH3T3-HER2 cells in a 24-well plate made by Corning Five After plating at cell / well density, 37 ° C-5% CO in Dulbecco's modified Eagle's medium 2 Cultured overnight under the conditions of
After replacing the medium with a new one, each test substance was added to the supernatant and cultured overnight.
Cell morphology was determined under a microscope, test substances with markedly atrophy of cells were cytotoxic (represented by + in the table), and test substances with no change in cell morphology were not cytotoxic (represented by-in the table) ). The results are shown in Table 1.
Figure 0003911703
The phosphorothioate-type oligonucleotide alone is relatively strong in cytotoxicity, and its toxicity is further enhanced when it forms a complex with a cationic liposome, whereas the antisense molecule of the present invention is 10 μM even when added alone. Even when administered as a complex with cationic liposomes up to a concentration, it was not toxic up to a concentration of 1 μM.
It was also confirmed that the antisense molecule of the present invention, which was obtained in Example 3 and was composed of all nucleoside homologues, did not show toxicity up to a concentration of 10 μM. Test Example 2 HER-2 Synthesis Inhibitory Action and Toxicity Test of 5'tCCGGTCCCAATGGAGGGAGAt3 'Synthesized in Example 2
The protein synthesis inhibitory action in the cells of 5'tCCGGTCCCAATGGAGGGAAt3 'obtained in Example 2 was observed. This nucleotide sequence represents an antisense sequence in the vicinity of the 5 ′ cap region of the HER-2 gene, which is one of the EGF receptor family and is considered to be involved in the malignancy of breast cancer (Woolrich et al., Science. , 230 1132-1139 1985). As a control, DNA having the same sequence and phosphorothioate-type oligonucleotide having the sequence of 5'CGGTCCCAATGGAGGGGAAT3 'were used. DNA was prepared by a DNA synthesizer (Applied Biosystems Model 380B) according to a conventional method, and phosphorothioate type oligonucleotide was prepared by the method shown in Test Example 1.
The cells used were NIH3T3-HER2 cells shown in Test Example 1.
In order to increase the permeability of each test substance into cells, a complex with cationic liposomes was administered to the cells. The used cationic liposome and addition method are the same as in Test Example 1. Each test substance was added to the medium so that the concentration of nucleoside was 1, 0.1 or 0.01 μM.
NIH3T3-HER2 cells in a 24-well plate made by Corning Five After plating at cell / well density, 37 ° C-5% CO in Dulbecco's modified Eagle's medium 2 Cultured overnight under the conditions of
The medium was replaced with 0.2% calf serum and the first addition of the test substance was performed. After 7-8 hours, the calf serum concentration was increased to 5% and cultured overnight. After changing to a medium containing 0.2% calf serum without methionine, a second addition of each test substance was performed. The addition concentration is the same as the first time. After 7-8 hours 35 S methionine (Amersham, 3 TBq / mmol) was added, and the calf serum concentration was increased to 5% and cultured overnight.
Cell morphology was determined under a microscope, test substances with markedly atrophy of cells were cytotoxic (represented by + in the table), and test substances with no change in cell morphology were not cytotoxic (represented by-in the table) ).
Cells were collected, and HER-2 protein was immunoprecipitated by a conventional method using an anti-human HER-2 antibody (Nichirei).
After performing 7% polyacrylamide gel SDS electrophoresis, HER-2 protein was analyzed using an image analyzer (FUJIX BAS2000). 35 The amount of HER-2 protein synthesized was calculated by measuring the radioactivity of S-methionine. The amount of HER-2 protein synthesis in the cells to which no test substance was added was defined as 100%, and the rate of decrease in the amount of HER-2 protein synthesis when each test substance was added was expressed as the inhibition rate.
The toxicity test is the same as in Test Example 1.
The results are shown in Table 2.
Figure 0003911703
The antisense molecule of the present invention showed HER-2 protein synthesis inhibitory activity equal to or higher than that of DNA at the same concentration as DNA.
The phosphorothioate type oligonucleotide has no effect at 0.01 to 0.1 μM, and the antisense molecule or DNA of the present invention shows effective activity. At a concentration of 1.0 μM, cytotoxicity was expressed and the activity could not be measured.
In addition, the sense sequences in the vicinity of the 5 ′ cap region of the HER-2 gene of the compound of the present invention and DNA do not show HER-2 protein synthesis inhibitory activity.
Test Example 3 Resistance of the present compound to nuclease (Nuclease S1)
Compound hA of the present invention twenty five Was used as a test substance. Natural DNA oligomer dA with the same sequence as a control twenty five Was used.
Sodium chloride was added to 30 mM acetate buffer (pH 4.5) to 50 mM and zinc sulfate to 30 mM, and each test substance was added to this buffer so that the final concentration was 4 OD (260 nm). Furthermore, Nuclease S1 (Boehringer Mannheim Yamanouchi) was added to 2000 U / ml (final volume 50 μl) and incubated at 37 ° C. overnight. The reaction solution was sampled, and the degree of degradation was calculated by measuring the degree of decrease in the peak of the test substance by HPLC using a Lichrospher RP-18 (4 mm I.D. × 125 mm) column. The results are shown in Table 3.
Figure 0003911703
While the control was decomposed by 60% or more, the substance of the present invention remained 99% or more after decomposition overnight.
Test Example 4 Resistance of the substance of the present invention to snake venom phosphodiesterase
The substance of the present invention synthesized in Example 2 was 5′tCCGGTCCCAATGGAGGGAAt3 ′ as a test substance. As a control, a natural DNA oligomer having the same sequence was used.
Each sample was prepared in 100 mM Tris-HCl buffer (pH 8.9), 100 mM sodium chloride, 14 mM magnesium chloride solution to a final concentration of 4 OD (260 nm), and snake venom phosphodiesterase (Koch Wright) 3.6U Added to a concentration of / ml (final volume 0.1 ml). The mixture was incubated at 37 ° C for 1 hour, and the reaction was stopped by adding EDTA at a final concentration of 50 mM. The reaction solution was sampled, and the degree of degradation was calculated by measuring the degree of decrease in the peak of the test substance by HPLC using a Lichrospher RP-18 (4 mm I.D. × 125 mm) column. The results are shown in Table 4.
Figure 0003911703
While the control was degraded by 60% or more, the substance of the present invention was degraded only by about 10% and showed strong resistance to snake venom phosphodiesterase.
Test Example 5 Resistance of the substance of the present invention to calf spleen phosphodiesterase
The substance of the present invention synthesized in Example 2 was 5′tCCGGTCCCAATGGAGGGAAt3 ′ as a test substance. As a control, a natural DNA oligomer having the same sequence was used.
Prepare each test substance in 100 mM ammonium succinate buffer (pH 8.9), 1 mM EDTA solution to a final concentration of 4 OD (260 nm), and calf spleen phosphodiesterase (Boehringer) to a concentration of 0.2 U / ml (Final volume 0.1 ml). Incubate at 37 ° C for 1 hour, sample the reaction solution, and measure the peak of the test substance on a high-performance liquid chromatograph (hereinafter abbreviated as HPLC) using a Lichro-spher RP-18 (4 mm I.D. x 125 mm) column. The degree of degradation was calculated by measuring the degree of decrease. The results are shown in Table 5.
Figure 0003911703
While the control was degraded by nearly 30%, the degradation of the substance of the present invention was 1% or less, indicating strong resistance to calf spleen phosphodiesterase.
Test Example 6 Substrate specificity of RNase H for the substance of the present invention
It was investigated whether the substance of the present invention hybridized with natural RNA, was recognized as a substrate for RNase H, and RNA was degraded.
HA as test substance twenty five , hA twenty two A Three , hA 18 A 7 , hA 14 A 11 , hA Ten A 15 , hA 6 A 19 And hA 2 A twenty three DA as a control twenty five Was used. Poly (U) (S 20, W 6.6, Yamasa Soy Sauce Co., Ltd.) was used.
40 mM Tris-HCl buffer (pH 7.7), 1 mM dithiothreitol, 4 mM magnesium chloride, 4% (W / V) glycerol, 0.003% (W / V) calf serum albumin solution each with a final concentration of 4 OD (260 nm Poly (U) and each test substance, and E. coli RNase H (Takara Shuzo Co., Ltd.) was added to a concentration of 100 U / ml (final volume 0.1 ml). The reaction was stopped by incubating at 20 ° C for 18 hours and freezing at -20 ° C. Immediately after thawing the reaction solution, TSK G4000PW XL The degree of degradation was calculated by measuring the degree of poly (U) peak reduction by HPLC using a gel filtration column (7.8 mm ID × 300 mm). The results are shown in Table 6.
Figure 0003911703
hA 18 A 7 , hA 14 A 11 , hA Ten A 15 , hA 6 A 19 And hA 2 A twenty three DA used as a control twenty five It was shown to be a substrate for RNase H to the same extent as.
Test Example 7 Stability of binding to DNA or RNA
When nucleic acids form a complex, the absorbance rapidly increases around a certain temperature as the temperature is increased. This is due to a decrease in the so-called hypochromicity of the nucleic acid, but by measuring the temperature at which the absorbance increased to half the absorbance difference before and after this (hereinafter referred to as Tm), The complex forming ability can be known.
HA as test substance twenty five , hA twenty two A Three , hA 18 A 7 , hA 14 A 11 , hA Ten A 15 , hA 6 A 19 And hA 2 A twenty three DA as a control twenty five Was used. Poly (U) (S 20, W 6.6, Yamasa Soy Sauce Co., Ltd.) was used.
A complex of test substance or control and Poly (U) is formed and measured under the conditions of test substance concentration of 100 μM, 0.15 M sodium chloride, 10 mM sodium phosphate (pH 7.0), and heating rate of 0.5 ° C./min. Tm value was obtained.
Figure 0003911703
The substance of the present invention had a good ability to form a complex with natural RNA. Tm values tended to decrease as the content of nucleoside congeners increased, but the content was 40% (hA Ten A 15 It was also shown that it was not inferior to natural DNA.
From these results, the antisense molecule of the present invention has low toxicity, and can be used as a medicine that suppresses the infection of herpes virus, influenza virus, human immunodeficiency virus, etc. and the function of oncogenes.

Claims (3)

リン酸ジエステル結合が修飾されていてもよい天然のDNA又はRNAにおいて、その5’及び3’の両末端それぞれの1つ以上同数の連続するヌクレオシドが、次の部分構造式〔1〕
Figure 0003911703
(式中、Bは、アデニン−9−イル、グアニン−9−イル、ヒポキサンチン−9−イル、チミン−1−イル、ウラシル−1−イル又はシトシン−1−イルを表す。X,Yは、同一又は異なって水素、ヒドロキシ、ハロゲン又は低級アルコキシを表す。)で表されるヌクレオシドであり、その構成比が全ヌクレオシドの60%以下であることを特徴とする、総塩基数が4〜30の化合物若しくはその塩又はそれらの溶媒和物。
In the natural DNA or RNA in which the phosphodiester bond may be modified, one or more and the same number of consecutive nucleosides at both the 5 ′ and 3 ′ ends are represented by the following partial structural formula [1]:
Figure 0003911703
(In the formula, B represents adenine-9-yl, guanine-9-yl, hypoxanthin-9-yl, thymin-1-yl, uracil-1-yl or cytosine-1-yl. X and Y represent , Which are the same or different and each represents hydrogen, hydroxy, halogen, or lower alkoxy.), And the constituent ratio is 60% or less of the total nucleosides, and the total number of bases is 4 to 30 Or a salt thereof or a solvate thereof.
修飾されているリン酸ジエステル結合が、ホスホロチオエート結合、アルキルホスホロチオエート結合、N−アルキルホスホアミデート結合、ホスホロジチオエート結合及びアルキルホスホネート結合からなる群から選択される結合である請求項1記載の化合物。The compound according to claim 1, wherein the modified phosphodiester bond is a bond selected from the group consisting of a phosphorothioate bond, an alkyl phosphorothioate bond, an N-alkylphosphoamidate bond, a phosphorodithioate bond and an alkylphosphonate bond. . 請求項1又は請求項2記載の化合物を有効成分とする医薬。A pharmaceutical comprising the compound according to claim 1 or 2 as an active ingredient.
JP51860896A 1994-12-15 1995-12-15 Antisense nucleic acid congeners Expired - Fee Related JP3911703B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP31225194 1994-12-15
PCT/JP1995/002584 WO1996018640A1 (en) 1994-12-15 1995-12-15 Antisense nucleic acid homolog

Publications (1)

Publication Number Publication Date
JP3911703B2 true JP3911703B2 (en) 2007-05-09

Family

ID=18026990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51860896A Expired - Fee Related JP3911703B2 (en) 1994-12-15 1995-12-15 Antisense nucleic acid congeners

Country Status (2)

Country Link
JP (1) JP3911703B2 (en)
WO (1) WO1996018640A1 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0686150B1 (en) * 1993-02-26 1998-05-20 Max-Delbrück-Centrum Für Molekulare Medizin Process for the preparation of C-nucleosides and C-nucleoside analogues, new C-nucleosides and C-nucleoside analogues and their use

Also Published As

Publication number Publication date
WO1996018640A1 (en) 1996-06-20

Similar Documents

Publication Publication Date Title
AU698442B2 (en) Modified oligonucleotides, their preparation and their use
AU653504B2 (en) Oligonucleotide analogs with novel linkages
US5264564A (en) Oligonucleotide analogs with novel linkages
US5596091A (en) Antisense oligonucleotides comprising 5-aminoalkyl pyrimidine nucleotides
CN102282155A (en) Method for the synthesis of phosphorus atom modified nucleic acids
EP0549686A4 (en) Modified internucleoside linkages
US11919922B2 (en) Bicyclic nucleosides and oligomers prepared therefrom
JP2000512630A (en) 2'-substituted nucleoside and oligonucleotide derivatives
EP0739899B1 (en) Novel oligoribonucleotide derivatives and application thereof to antiviral agents
IL108467A (en) Modified oligodeoxyribo-nucleotides their preparation and their therapeutic use
US6017895A (en) Oligonucleotides possessing zwitterionic moieties
JPH08208686A (en) Oligoribonucleotide with amide main chain
JP3911703B2 (en) Antisense nucleic acid congeners
WO1995031470A2 (en) Antisense inhibitors of gene expression
WO1996018640A9 (en)
WO1998049183A1 (en) Base protecting groups and process for oligonucleotide synthesis
WO1996003500A1 (en) Sustance with antiviral activity
CA2122470A1 (en) Oligonucleotides having aminohydrocarbon phosphonate moieties
WO2002006297A1 (en) Novel antisense oligonucleotide derivatives against wilms's tumor gene

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees