JPH08119727A - Method for sintering oxide magnetic material - Google Patents

Method for sintering oxide magnetic material

Info

Publication number
JPH08119727A
JPH08119727A JP6289103A JP28910394A JPH08119727A JP H08119727 A JPH08119727 A JP H08119727A JP 6289103 A JP6289103 A JP 6289103A JP 28910394 A JP28910394 A JP 28910394A JP H08119727 A JPH08119727 A JP H08119727A
Authority
JP
Japan
Prior art keywords
temperature
sintering
magnetic material
cooling process
oxide magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6289103A
Other languages
Japanese (ja)
Inventor
Tatsufumi Goto
達文 後藤
Kiyoshi Shoji
潔 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP6289103A priority Critical patent/JPH08119727A/en
Publication of JPH08119727A publication Critical patent/JPH08119727A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain an oxide magnetic material having a high permeability, a low iron loss and prescribed characteristics by avoiding the compositional regulation such as addition of accessory components as much as possible and specifying sintering conditions in an Mn-Zn-based ferrite. CONSTITUTION: An oxide magnetic material consisting essentially of Fe2 O3 , MnO and ZnO is sintered. When the oxygen partial pressure in a cooling process of the sintering step is PO2 and the temperature is T, with the proviso that A and B are constants in the process, the oxygen partial pressure PO2 of the atmosphere in the cooling process is controlled according to the formula represented by logPO2 =-(A/T) × 10<-4> + B corresponding to the respective temperatures in the cooling process from the sintering temperature. The constant A is set within the range of 2000-50000 in the case of the oxide magnetic material for a high permeability and within the range of 2000-80000 in the case of the oxide magnetic material for a low iron loss.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、通信用の変成器等に磁
芯として使われる高透磁率を示す酸化物磁性材料、及び
電子装置の電源要素の磁芯として使われる低損失特性を
示す酸化物磁性材料の焼結方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention shows an oxide magnetic material having a high magnetic permeability which is used as a magnetic core in a transformer for communication and the like and a low loss characteristic which is used as a magnetic core of a power source element of an electronic device. The present invention relates to a method for sintering an oxide magnetic material.

【0002】[0002]

【従来の技術】従来、各種通信機器、電子機器の信号用
変成器や電力用トランス等の磁芯材料としては、酸化物
磁性材料が多く使われ、特に、数100kHzで高透磁
率、低損失特性を生かして使われている。従来のMn−
Zn系の酸化物磁性材料の初透磁率(μ)の値とその温
度特性の改善や、鉄損(Pcv)やその温度特性の改善に
あたっては、材料のμ−Tカーブ特性を求め、そのμの
セカンドピークを示す温度とそのμの大きさや、Pcv
Tカーブ特性を求め、Pcvが最低となる温度やPcvの大
きさ等を参考にして、組成を変化させて行っていた。特
に、微量の添加物による組成を変化させて、μやPcv
及びその温度特性の改善が行われていた。
2. Description of the Related Art Conventionally, oxide magnetic materials have been widely used as magnetic core materials for signal transformers and electric power transformers of various communication equipments and electronic equipments, and particularly, high magnetic permeability and low loss at several 100 kHz. It is used by taking advantage of its characteristics. Conventional Mn-
In order to improve the initial magnetic permeability (μ) value of Zn-based oxide magnetic material and its temperature characteristic, and improve the iron loss (P cv ) and its temperature characteristic, the μ-T curve characteristic of the material is obtained, and The temperature showing the second peak of μ and the magnitude of μ, and P cv
The T-curve characteristics were obtained, and the composition was changed with reference to the temperature at which P cv was the lowest and the size of P cv . In particular, by changing the composition due to the addition of trace amounts, mu and P cv,
And its temperature characteristics have been improved.

【0003】通信機器における信号用の変成器には、小
型化、高性能化が求められ、このため、特に、初透磁率
が大きいMn−Zn系フェライトが使用されている。上
述の如く、初透磁率のセカンドピークを示す温度、及び
その温度における初透磁率を制御することができるなら
ば、μの大きさや温度特性が制御できるという関係があ
る。従来の磁芯材料の温度特性の制御は、この初透磁率
のセカンドピークの温度とそのピークの値が制御の目安
に使われてきたが、その方法は、主として、副成分の添
加を含む組成の制御によって要求特性を満たす製品を得
ているが、非常に難しく、極めて厳密な管理のもとに、
多大な労力と低い歩留を余儀なくされるため、量産に適
しないという問題があった。
Signal transformers in communication equipment are required to be compact and have high performance. For this reason, Mn-Zn type ferrite having a large initial magnetic permeability is particularly used. As described above, if the temperature at which the second peak of the initial magnetic permeability shows and the initial magnetic permeability at that temperature can be controlled, the magnitude of μ and the temperature characteristic can be controlled. In the conventional control of the temperature characteristics of the magnetic core material, the temperature of the second peak of the initial magnetic permeability and the value of the peak have been used as a guide for the control, but the method is mainly based on the composition including addition of a subcomponent. Although we have obtained products that meet the required characteristics by controlling, it is extremely difficult and under extremely strict control,
There is a problem that it is not suitable for mass production because it requires a great deal of labor and a low yield.

【0004】他方、電力用トランス等に使われる酸化物
磁性材料には、低損失特性のほか、これが組み込まれ使
用される機器の環境温度に従って、鉄損(Pcv)の温度
特性を制御することが望まれ、CaO及びSiO2を副
成分として含むMn−Zn系フェライトが使われ、それ
ぞれの要求温度特性に応じて、さらにAl23、SnO
2,TiO2、V25,Nb25等々の副成分を添加する
方法が一般的であった。この場合も材料のPcv−Tカー
ブ特性のPcvの最低を示す温度と、そのPcvの値を目安
に改善していた。このため、フェライトの組成を個々の
要求にもとづく温度特性に応じて調製していた。多様な
要求特性を満たすためには、前記高透磁率材料の場合と
同様に、多種類の組成の粉末を極めて厳密な管理のもと
に作製する必要があり、繁雑な管理と低い歩留のため、
非効率的な作業を余儀なくされたという問題があった。
On the other hand, in addition to low loss characteristics, oxide magnetic materials used for power transformers and the like have to control the temperature characteristics of iron loss (P cv ) according to the environmental temperature of the equipment in which they are incorporated and used. However, Mn—Zn-based ferrite containing CaO and SiO 2 as subcomponents is used, and Al 2 O 3 and SnO are further added depending on required temperature characteristics.
A general method is to add auxiliary components such as 2 , TiO 2 , V 2 O 5 , Nb 2 O 5 and the like. In this case as well, the temperature was shown to be the minimum P cv of the P cv -T curve characteristic of the material and the value of P cv was used as a standard for improvement. For this reason, the composition of ferrite has been adjusted according to the temperature characteristics based on individual requirements. In order to satisfy various required characteristics, it is necessary to prepare powders of various compositions under extremely strict control, as in the case of the high magnetic permeability material, which requires complicated control and low yield. For,
There was a problem that it was forced to work inefficiently.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、所定
の温度特性を持ち、かつ、高透磁率特性や低損失特性が
求められるMn−Zn系フェライトについて、副成分の
添加等の組成の調製に頼ることを極力避け、焼結条件の
制御により、上記諸特性の改善の目安である、μ−Tカ
ーブ特性における初透磁率のセカンドピークを示す温
度、及びその温度における初透磁率の値、又は、Pcv
Tカーブ特性におけるPcvが最小を示す温度やPcvの大
きさを目安にして、高透磁率や低鉄損で所定の温度特性
を有する酸化物磁性材料を実現できる焼結方法を供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a Mn-Zn-based ferrite which has a predetermined temperature characteristic and a high magnetic permeability characteristic and a low loss characteristic. The temperature showing the second peak of the initial magnetic permeability in the μ-T curve characteristic, which is a standard for improving the above-mentioned various properties, and the value of the initial magnetic permeability at that temperature, which is a measure for improving the above-mentioned various properties, by avoiding relying on preparation as much as possible , Or P cv
And the magnitude of the temperature and P cv where P cv in T curve characteristic exhibits a minimum as a guide, in providing sintering process the oxide magnetic material can be realized having a predetermined temperature characteristic with high magnetic permeability and low core loss is there.

【0006】[0006]

【課題を解決するための手段】本発明は、上記課題を解
決するために、Fe23、MnO及びZnOを主成分
として構成する酸化物磁性材料の焼結方法において、焼
結工程の冷却過程における雰囲気の酸素分圧をPO2、温
度をT、A及びBを定数として、焼結温度からの冷却過
程における各温度に応じて、logPO2=−(A/T)
×10-4+Bで表す式に従って、冷却過程の雰囲気の酸
素分圧PO2を制御する酸化物磁性材料の焼結方法を提供
する。
In order to solve the above-mentioned problems, the present invention provides a method for sintering an oxide magnetic material containing Fe 2 O 3 , MnO and ZnO as main components. The oxygen partial pressure of the atmosphere in the process is P O2 , the temperature is T, A and B are constants, and log P O2 =-(A / T) according to each temperature in the cooling process from the sintering temperature.
Provided is a method for sintering an oxide magnetic material, which controls an oxygen partial pressure P O2 of an atmosphere in a cooling process according to a formula represented by × 10 -4 + B.

【0007】前記記載の酸化物磁性材料の焼結方法
において、Aの値を2000ないし50000の範囲と
することを特徴とする酸化物磁性材料の焼結方法を提供
する。
A method of sintering an oxide magnetic material, characterized in that the value of A is in the range of 2000 to 50,000 in the method of sintering an oxide magnetic material described above.

【0008】Fe23、MnO及びZnOを主成分と
し、少なくとも副成分としてCaO、及びSiO2を含
有し、各含有率がCaOは0.02ないし0.15重量
%、SiO2は0.005ないし0.1重量%である酸
化物磁性材料の焼結方法において、焼結工程の冷却過程
における雰囲気の酸素分圧をPO2、温度をT、A及びB
を定数とし、焼結温度からの冷却過程における各温度に
応じて、logPO2=−(A/T)×10-4+Bで表す
式に従って、冷却過程の雰囲気の酸素分圧PO2を制御
し、Aの値を2000ないし80000の範囲とする酸
化物磁性材料の焼結方法を提供する。
Fe 2 O 3 , MnO, and ZnO are contained as main components, and CaO and SiO 2 are contained as at least subordinate components. The content ratios of CaO are 0.02 to 0.15% by weight, and SiO 2 is 0. In the sintering method of the oxide magnetic material of 005 to 0.1% by weight, the oxygen partial pressure of the atmosphere in the cooling process of the sintering process is P O2 and the temperatures are T, A and B.
Is a constant, and the oxygen partial pressure P O2 of the atmosphere during the cooling process is controlled according to the expression log P O2 = − (A / T) × 10 −4 + B according to each temperature in the cooling process from the sintering temperature. , A of the oxide magnetic material in the range of 2000 to 80,000 is provided.

【0009】[0009]

【作用】Mn−Zn系フェライトにおけるμやPcvの温
度特性を改善する方法として、本発明は、その焼結工
程、特に、冷却過程の雰囲気の酸素分圧を、冷却温度の
関数として連続的に制御することによって、目的とする
μ−Tカーブ特性、Pcv−Tカーブ特性を得、目的の温
度特性を実現する。
As a method of improving the temperature characteristics of μ and P cv in Mn-Zn system ferrite, the present invention continuously changes the oxygen partial pressure of the atmosphere during the sintering process, particularly the cooling process, as a function of the cooling temperature. By controlling to, the target μ-T curve characteristic and P cv -T curve characteristic are obtained, and the target temperature characteristic is realized.

【0010】[0010]

【実施例】以下に本発明を実施例によって説明する。図
1は、後述する実施例1及び実施例2における焼結工程
の、特に冷却過程での温度と、その温度に連動して制御
する酸素分圧の関係を示す。図2(a)は、実施例1に
おいて、本発明が示した式における定数Aとμ−Tカー
ブにおけるセカンドピークを示す温度との関係を示し、
図2(b)は定数Aとセカンドピークにおける初透磁率
の大きさとの関係を示す。図3(a)は、実施例2にお
いて、本発明が示した式における定数Aと、最小の鉄損
(Pcv)となる温度との関係を示し、図3(b)は、定
数Aの最小の鉄損(Pcv)との関係を示す。
The present invention will be described below with reference to examples. FIG. 1 shows the relationship between the temperature in the sintering process, particularly in the cooling process, and the oxygen partial pressure controlled in conjunction with the temperature in the sintering process in Examples 1 and 2 described below. FIG. 2 (a) shows the relationship between the constant A in the formula shown by the present invention and the temperature showing the second peak in the μ-T curve in Example 1,
FIG. 2B shows the relationship between the constant A and the magnitude of the initial magnetic permeability at the second peak. FIG. 3A shows the relationship between the constant A in the formula shown by the present invention and the temperature at which the minimum iron loss (P cv ) is obtained in Example 2, and FIG. The relationship with the minimum iron loss (P cv ) is shown.

【0011】(実施例1)本実施例は、高透磁率用のM
n−Zn系フェライトの一例である。Fe23、MnO
及びZnOを主成分として構成するMn−Zn系フェラ
イトにおいて、組成比は、Fe2352.0モル%、M
nO25.0モル%、残部をZnOとする。
(Embodiment 1) In this embodiment, M for high magnetic permeability is used.
It is an example of an n-Zn ferrite. Fe 2 O 3 , MnO
In the Mn-Zn-based ferrite composed mainly of ZnO and ZnO, the composition ratio is Fe 2 O 3 52.0 mol%, M
nO25.0 mol% and the balance ZnO.

【0012】上記組成比の粉末をボールミルにより混
合、予備焼成、造粒し成形焼結する。成形体は、外径3
0mm、内径18mm、高さ5mmに成形した。この材
料の望ましい焼結条件は、酸素0.5〜3.5%を含む
窒素雰囲気中で、焼結温度1300〜1400℃におい
て保持2〜10時間であることが知られている。本実施
例における焼結保持条件は、酸素1.5%を含む窒素雰
囲気中で、焼結温度1350℃で2時間保持とした。
The powder having the above composition ratio is mixed by a ball mill, pre-baked, granulated and molded and sintered. Molded body has an outer diameter of 3
It was molded into 0 mm, inner diameter 18 mm, and height 5 mm. It is known that a desirable sintering condition for this material is to hold at a sintering temperature of 1300 to 1400 ° C. for 2 to 10 hours in a nitrogen atmosphere containing 0.5 to 3.5% of oxygen. The sintering retention conditions in this example were such that the sintering temperature was maintained at 1350 ° C. for 2 hours in a nitrogen atmosphere containing 1.5% oxygen.

【0013】次に、別に定める冷却プログラムで示され
る焼結の冷却過程の温度Tに対する、酸素分圧PO2をl
ogPO2=−(A/T)×10-4+Bで表す式に従っ
て、定数Aの値を種々設定した。なお、Bは冷却過程の
雰囲気の酸素分圧の制御を始める温度と傾きによって決
まる定数である。加熱手段である電気炉の温度は、プロ
グラムコントローラで制御した。酸素分圧の制御は、前
記プログラムコントローラに連動したマスフローコント
ローラを使い、空気と窒素の流量を調節することによっ
て行った。
Next, the oxygen partial pressure P O2 is set to 1 with respect to the temperature T in the cooling process of sintering, which is indicated by a cooling program separately defined.
The value of the constant A was variously set according to the expression represented by ogP O2 =-(A / T) × 10 -4 + B. It should be noted that B is a constant determined by the temperature and slope at which the control of the oxygen partial pressure of the atmosphere during the cooling process is started. The temperature of the electric furnace, which is the heating means, was controlled by the program controller. The oxygen partial pressure was controlled by using a mass flow controller linked to the program controller and adjusting the flow rates of air and nitrogen.

【0014】図1には、設定した定数Aの値に応じ、冷
却過程の各温度と、その温度に対応して制御すべき酸素
分圧の関係を示す。上記の焼結条件で得られた焼結体の
磁芯を試料とした。図2(a)には、前記式における定
数Aの各値に対する、試料を周波数1kHzで測定した
初透磁率のセカンドピークを示す温度の依存性を、図2
(b)には、定数Aの各値に対する、セカンドピークに
おける初透磁率の依存性をそれぞれ示す。A=2000
の時、及びA=50000の時、セカンドピークを示す
温度はそれぞれ−10℃、50℃、又初透磁率はそれぞ
れ7200、及び11800である。Aの値が2000
〜50000の範囲では、図2(a)及び図2(b)に
明らかなとおり、周波数1kHzにおいて、Aの増大と
ともにセカンドピークを示す温度は、より高温となる。
ピーク値すなわち初透磁率も、同様にAとともに単調に
増加する。この結果から、セカンドピークを示す温度、
及びその温度における初透磁率の制御は、上記焼結条件
により安定に得られていることがわかる。
FIG. 1 shows the relationship between each temperature in the cooling process according to the value of the set constant A and the oxygen partial pressure to be controlled corresponding to the temperature. The magnetic core of the sintered body obtained under the above sintering conditions was used as a sample. FIG. 2 (a) shows the dependence of the temperature showing the second peak of the initial permeability when the sample was measured at a frequency of 1 kHz for each value of the constant A in the above equation.
(B) shows the dependence of the initial magnetic permeability at the second peak on each value of the constant A. A = 2000
And when A = 50000, the temperatures showing the second peak are −10 ° C. and 50 ° C., respectively, and the initial magnetic permeability is 7200 and 11800, respectively. The value of A is 2000
In the range of up to 50,000, as is apparent from FIGS. 2A and 2B, the temperature showing the second peak becomes higher with the increase of A at the frequency of 1 kHz.
Similarly, the peak value, that is, the initial magnetic permeability, monotonically increases with A. From this result, the temperature showing the second peak,
It can be seen that the control of the initial magnetic permeability at that temperature and the temperature thereof are stably obtained under the above sintering conditions.

【0015】しかしながら、Aの値を2000以下に設
定して得た試料では、異常粒成長に起因すると思われる
低い磁気特性を示す結果となり、セカンドピークを示す
温度の制御は困難であった。又、Aの値を50000を
超えて設定した場合には、損失(tanδ/μ)が増大す
ることが判明した。
However, in the sample obtained by setting the value of A to 2000 or less, the result shows the low magnetic property which is considered to be caused by the abnormal grain growth, and it is difficult to control the temperature showing the second peak. It was also found that when the value of A was set to exceed 50,000, the loss (tan δ / μ) increased.

【0016】(実施例2)本実施例は、トランス用低損
失特性のMn−Zn系フェライトの一例について示す。
主成分として53.0モル%のFe23、39.0モル
%のMnO、8.0モル%のZnOからなるMn−Zn
系フェライトに、副成分としてSiO2を0.02重量
%、CaOを0.05重量%それぞれ添加し、前記実施
例1と同様の方法で成形体を焼結した。本実施例におけ
る焼結保持条件は、酸素0.5〜5.0%を含む窒素雰
囲気中で、焼結温度1250〜1350℃で2時間保持
とした。
(Embodiment 2) This embodiment shows an example of Mn-Zn type ferrite having low loss characteristics for a transformer.
Mn-Zn composed of 53.0 mol% Fe 2 O 3 , 39.0 mol% MnO, and 8.0 mol% ZnO as main components
0.02 wt% of SiO 2 and 0.05 wt% of CaO were added as subcomponents to the system ferrite, and the molded body was sintered in the same manner as in Example 1 above. The sintering and holding conditions in this example were holding for 2 hours at a sintering temperature of 1250 to 1350 ° C. in a nitrogen atmosphere containing 0.5 to 5.0% oxygen.

【0017】本実施例では、前記実施例1と同様に、焼
結の冷却過程において冷却温度Tに対応して、酸素分圧
PO2をlogPO2=−(A/T)×10-4+Bで表す式に
従って、定数Aの値を種々設定した。図1には、A=1
2000の場合の、冷却過程の温度に対応して制御した
酸素分圧の関係を示す。その結果、得られた焼結体の試
料について、最大励振磁束密度(Bm)=200mT、
周波数100kHzの条件で測定したPCVが最小となる
温度と定数Aの各値の関係を図3(a)に示す。図3
(b)にはPCVのレベルと定数Aの各値との関係を示
す。Aの値が2000〜80000の範囲では、図3に
明らかなとおり、Aの増大とともに、PCVが最小となる
温度は単調に上昇する。又、PCVのレベルはAが200
00と40000の間の値をとる時に最小となる。な
お、A=2000〜80000の範囲でPCVは要求特性
基準とする550以下を示し、十分に満足する。なおA
が1000の時、及び100000の時、PCVはそれぞ
れ750、及び950で、要求特性基準を満たす結果と
はならなかった。
In this embodiment, as in the case of Embodiment 1, the oxygen partial pressure corresponds to the cooling temperature T in the cooling process of sintering.
The value of the constant A was variously set in accordance with the expression expressing P O2 by log P O2 = − (A / T) × 10 −4 + B. In FIG. 1, A = 1
The relationship of the oxygen partial pressure controlled corresponding to the temperature of the cooling process in the case of 2000 is shown. As a result, with respect to the obtained sintered body sample, the maximum excitation magnetic flux density (B m ) = 200 mT,
FIG. 3A shows the relationship between the temperature at which P CV measured under the condition of a frequency of 100 kHz becomes the minimum and each value of the constant A. FIG.
(B) shows the relationship between the level of P CV and each value of the constant A. When the value of A is in the range of 2000 to 80,000, as is clear from FIG. 3, the temperature at which P CV becomes the minimum increases monotonically as A increases. The level of P CV is 200 for A.
It takes a minimum when it takes a value between 00 and 40,000. In the range of A = 2000 to 80,000, P CV is 550 or less, which is the required characteristic standard, and is sufficiently satisfied. A
There time 1000, and time of 100000, P CV in each 750 and 950, did not result in meeting the required characteristics standards.

【0018】以上の事実は、焼結工程の冷却過程におい
て、温度と酸素分圧の関係を適切な条件とすることによ
って、PCVが最小となる温度及びPCVを制御することが
可能であることを示す。
The above facts, in the cooling process of the sintering process, by the appropriate conditions the relationship between temperature and the oxygen partial pressure, it is possible to control the temperature and P CV which P CV is minimum Indicates that.

【0019】[0019]

【発明の効果】以上、説明したように、Mn−Zn系フ
ェライトの焼結工程の冷却過程において、酸素分圧PO2
を、冷却温度Tに対してlogPO2=−(A/T)×1
-4+Bで表す式に従って、定数Aの値を所定の値に設
定することにより、副成分を添加する等、組成の調製に
頼ることなく、初透磁率のセカンドピークを示す温度、
及びその温度における初透磁率の制御することができ、
又、鉄損の温度特性の制御が可能であることを明らかに
した。
As described above, in the cooling process of the sintering process of the Mn-Zn ferrite, the oxygen partial pressure P O2
With respect to the cooling temperature T, logP O2 =-(A / T) × 1
By setting the value of the constant A to a predetermined value according to the expression represented by 0 -4 + B, the temperature at which the second peak of the initial magnetic permeability shows without relying on the preparation of the composition such as the addition of auxiliary components,
And the initial permeability at that temperature can be controlled,
It was also clarified that the temperature characteristics of iron loss can be controlled.

【0020】本実施例は、電気炉の温度をプログラムコ
ントローラによって制御し、酸素分圧の制御は、前記プ
ログラムコントローラに連動したマスフローコントロー
ラを使い、空気と窒素の流量を調節して焼結を行ったこ
とは、すでに述べたとおりである。制御された温度分布
と、その温度分布に連動して酸素分圧が保たれた空間を
有する、いわゆる連続炉を使用しても、同様な効果を得
ることができることはいうまでもない。
In the present embodiment, the temperature of the electric furnace is controlled by a program controller, and the oxygen partial pressure is controlled by using a mass flow controller linked to the program controller and adjusting the flow rates of air and nitrogen to carry out sintering. This is as already mentioned. Needless to say, the same effect can be obtained by using a so-called continuous furnace having a controlled temperature distribution and a space in which the oxygen partial pressure is maintained in association with the temperature distribution.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の冷却時の雰囲気の酸素分圧と冷却温度
との関係式における定数Aの値に応じた冷却過程の温度
と、その温度に対応して制御すべき酸素分圧の関係を示
す図。
FIG. 1 is a relationship between a temperature of a cooling process according to a value of a constant A in a relational expression between an oxygen partial pressure of an atmosphere during cooling and a cooling temperature of the present invention and an oxygen partial pressure to be controlled corresponding to the temperature. FIG.

【図2】図2(a)は、実施例1において、定数Aの各
値に対する、周波数1kHzでの初透磁率のセカンドピ
ークを示す温度の依存性を示す図、図2(b)は、図2
(a)と同じ条件で測定したセカンドピークの初透磁率
の、定数Aに対する依存性を示す図。
FIG. 2 (a) is a diagram showing temperature dependence showing a second peak of the initial permeability at a frequency of 1 kHz for each value of the constant A in Example 1, and FIG. 2 (b) is Figure 2
The figure which shows the dependence with respect to the constant A of the initial magnetic permeability of the second peak measured on the same conditions as (a).

【図3】図3(a)は、実施例2において、Bm=20
0mT、周波数100kHzの条件で測定したPCVが最
小となる温度と定数Aの関係を示す図、図3(b)は、
図3(a)と同じ条件で測定したPCVのレベルと定数A
関係を示す図。
FIG. 3 (a) shows that in Example 2, B m = 20.
FIG. 3B is a diagram showing the relationship between the temperature at which P CV measured under the condition of 0 mT and a frequency of 100 kHz is minimum and the constant A,
P CV level and constant A measured under the same conditions as in FIG.
The figure which shows a relationship.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/34 B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location H01F 1/34 B

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Fe23、MnO及びZnOを主成分と
して構成する酸化物磁性材料の焼結方法において、焼結
工程の冷却過程における雰囲気の酸素分圧をPO2、温度
をT、A及びBを定数として、焼結温度からの冷却過程
における各温度に応じて、logPO2=−(A/T)×
10-4+Bで表す式に従って、冷却過程の雰囲気の酸素
分圧PO2を制御することを特徴とする酸化物磁性材料の
焼結方法。
1. A method of sintering an oxide magnetic material mainly composed of Fe 2 O 3 , MnO and ZnO, wherein the oxygen partial pressure of the atmosphere in the cooling process of the sintering step is P O2 and the temperature is T, A. And B as constants, log P O2 =-(A / T) ×, depending on each temperature in the cooling process from the sintering temperature.
A method for sintering an oxide magnetic material, comprising controlling an oxygen partial pressure P O2 of an atmosphere in a cooling process according to an expression represented by 10 −4 + B.
【請求項2】 請求項1記載の酸化物磁性材料の焼結方
法において、Aの値を2000ないし50000の範囲
とすることを特徴とする酸化物磁性材料の焼結方法。
2. The method for sintering an oxide magnetic material according to claim 1, wherein the value of A is in the range of 2,000 to 50,000.
【請求項3】 Fe23、MnO及びZnOを主成分と
し、少なくとも副成分としてCaO、及びSiO2を含
有し、各含有率がCaOは0.02ないし0.15重量
%、SiO2は0.005ないし0.1重量%である酸
化物磁性材料の焼結方法において、焼結工程の冷却過程
における雰囲気の酸素分圧をPO2、温度をT、A及びB
を定数とし、焼結温度からの冷却過程における各温度に
応じて、logPO2=−(A/T)×10-4+Bで表す
式に従って、冷却過程の雰囲気の酸素分圧PO2を制御
し、Aの値を2000ないし80000の範囲とするこ
とを特徴とする酸化物磁性材料の焼結方法。
3. Fe 2 O 3 , MnO and ZnO as main components and at least CaO and SiO 2 as sub-components, each content of CaO is 0.02 to 0.15 wt%, SiO 2 is In the sintering method of the oxide magnetic material of 0.005 to 0.1 wt%, the oxygen partial pressure of the atmosphere in the cooling process of the sintering process is P O2 , and the temperatures are T, A and B.
Is a constant, and the oxygen partial pressure P O2 of the atmosphere during the cooling process is controlled according to the expression log P O2 = − (A / T) × 10 −4 + B according to each temperature in the cooling process from the sintering temperature. , A in the range of 2000 to 80,000.
JP6289103A 1994-10-27 1994-10-27 Method for sintering oxide magnetic material Pending JPH08119727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6289103A JPH08119727A (en) 1994-10-27 1994-10-27 Method for sintering oxide magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6289103A JPH08119727A (en) 1994-10-27 1994-10-27 Method for sintering oxide magnetic material

Publications (1)

Publication Number Publication Date
JPH08119727A true JPH08119727A (en) 1996-05-14

Family

ID=17738836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6289103A Pending JPH08119727A (en) 1994-10-27 1994-10-27 Method for sintering oxide magnetic material

Country Status (1)

Country Link
JP (1) JPH08119727A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008247675A (en) * 2007-03-30 2008-10-16 Tdk Corp METHOD OF MANUFACTURING MnZn-BASED FERRITE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008247675A (en) * 2007-03-30 2008-10-16 Tdk Corp METHOD OF MANUFACTURING MnZn-BASED FERRITE

Similar Documents

Publication Publication Date Title
CN100558675C (en) A kind of wideband low-loss high-permeability Mn-Zn Ferrite Material and preparation method thereof
EP1293994B1 (en) Transformer with ferrite core and method for driving it
EP1101736B1 (en) Mn-Zn ferrite and production thereof
US6627103B2 (en) Mn-Zn ferrite production process, Mn-Zn ferrite, and ferrite core for power supplies
EP1083158A2 (en) Magnetic ferrit material
JP4711897B2 (en) MnCoZn ferrite and transformer core
JPH05335132A (en) Oxide magnetic body material
JPH06120022A (en) Oxide magnetic material
JP2007204349A (en) Manufacturing method of low-loss oxide magnetic material
JPH06310320A (en) Oxide magnetic substance material
JPH081844B2 (en) High frequency low loss ferrite for power supply
JP3288113B2 (en) Mn-Zn ferrite magnetic material
KR960013030B1 (en) Low power -loss oxide magnetic material and process for producing the same
JPH06204025A (en) Manganese-zinc ferrite
JP4750563B2 (en) MnCoZn ferrite and transformer core
JPH08169756A (en) Low loss manganese-zinc ferrite core and its production
JP2855990B2 (en) Oxide magnetic material
JPH08119727A (en) Method for sintering oxide magnetic material
JPH07130527A (en) Oxide magnetic material
JPH10340807A (en) Manganese-cobalt ferrite material
JP2802839B2 (en) Oxide soft magnetic material
JPH10270231A (en) Mn-ni ferrite material
JP2627676B2 (en) Manufacturing method of oxide magnetic material
JPH08148323A (en) Production of oxide magnetic material and molding
JP2939035B2 (en) Soft magnetic oxide substance