JPH08118124A - Electrodeposited tool - Google Patents

Electrodeposited tool

Info

Publication number
JPH08118124A
JPH08118124A JP28392594A JP28392594A JPH08118124A JP H08118124 A JPH08118124 A JP H08118124A JP 28392594 A JP28392594 A JP 28392594A JP 28392594 A JP28392594 A JP 28392594A JP H08118124 A JPH08118124 A JP H08118124A
Authority
JP
Japan
Prior art keywords
tool
electrodeposition
electrodeposition tool
core
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28392594A
Other languages
Japanese (ja)
Inventor
Hisao Ono
久男 小野
Mikio Unno
幹夫 海野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP28392594A priority Critical patent/JPH08118124A/en
Publication of JPH08118124A publication Critical patent/JPH08118124A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D18/00Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
    • B24D18/0018Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for by electrolytic deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/04Drills for trepanning
    • B23B51/042Drills for trepanning with lubricating or cooling equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/02Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by sawing
    • B28D1/04Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by sawing with circular or cylindrical saw-blades or saw-discs
    • B28D1/041Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by sawing with circular or cylindrical saw-blades or saw-discs with cylinder saws, e.g. trepanning; saw cylinders, e.g. having their cutting rim equipped with abrasive particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/02Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by rotary tools, e.g. drills
    • B28D5/021Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by rotary tools, e.g. drills by drilling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/31Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2265/00Details of general geometric configurations
    • B23B2265/12Eccentric

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mining & Mineral Resources (AREA)
  • Drilling Tools (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PURPOSE: To improve productivity of a workpiece according to extending life of an electrodeposited tool. CONSTITUTION: Relating to an external diameter D1 of an electrodeposited tool 3, by eccentrically forming an internal diameter D2 by an eccentric amount (e) to contract a core diameter D3 smaller than the internal diameter D2, a flow amount of grinding fluid is ensured simultaneously with eliminating blinding a core, and by arranging a groove 10 in at least one or more parts in the vicinity of a maximum thickness part, discharging a grinding chip and flowing of the grinding fluid are smoothed. Further by providing a chamfer 11 in an edge part of the internal diameter D2 with a center C1 of the external diameter D1 serving as the center, abrasive grain coming off is reduced in a internal peripheral edge part in the vicinity of the maximum thickness part where a grinding load is applied, to attain extending life of the electrodeposited tool 3. In this way, drilling work of layer-built hard/brittle material is continuously performed, to reduce a work cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はガラス板等の硬脆性材料
の穴明け加工に用いる電着工具に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrodeposition tool used for drilling a hard and brittle material such as a glass plate.

【0002】[0002]

【従来の技術】従来よりガラス板、セラミック等の硬脆
性材料に対する穴明け加工法は、遊離砥粒を用いる超音
波加工、ダイヤモンド粒を電着したパイプ形状の工具を
用いた加工法等が採用されている。前者は研削液中に含
まれる砥粒が工具の振動により、被加工物にマイクロク
ラックを与え、細かく破砕することで成立する加工法
で、工具自体の回転運動は必然でないので、円形以外の
形状、すなわち角穴等の異形でも加工することが可能で
ある。これに対して後者は工具のパイプ形状の中心より
研削液を加工箇所に供給し、工具自体には高速回転を与
える加工法で、円形の穴明け加工に限定されている。前
記それぞれの加工法はその加工の目的に合わせて選択さ
れていることは周知の通りである。
2. Description of the Related Art Conventionally, as a drilling method for hard and brittle materials such as glass plates and ceramics, ultrasonic processing using free abrasive grains and processing method using a pipe-shaped tool with electrodeposited diamond grains have been adopted. Has been done. The former is a processing method in which the abrasive grains contained in the grinding fluid cause micro-cracks on the work piece due to the vibration of the tool and finely crush it.The rotation movement of the tool itself is not inevitable. That is, it is possible to process irregular shapes such as square holes. On the other hand, the latter is a processing method in which the grinding liquid is supplied to the processing location from the center of the pipe shape of the tool and the tool itself is rotated at high speed, and is limited to circular drilling. It is well known that each of the above processing methods is selected according to the purpose of the processing.

【0003】近年、腕時計もアナログ表示時計、デジタ
ル表示時計、更には両表示するコンビネーション全面液
晶表示時計が市場ニーズとして出現するに至った。従っ
て、1枚の液晶セルに複数個の穴を形成することが必要
とされる。従来はシャンクと該シャンクより径小な電着
層の境に面取りを設けた電着工具を用いて、液晶セルを
1枚毎その上下面より穴明けを行っていたが、1枚の液
晶セルに複数個(例えば、4個)の穴明け加工を行うよ
うになり、生産性に問題があった。
In recent years, wristwatches have come to the market as analog display clocks, digital display clocks, and even a combination full-face liquid crystal display clock that displays both. Therefore, it is necessary to form a plurality of holes in one liquid crystal cell. Conventionally, a liquid crystal cell was punched from the upper and lower sides of each liquid crystal cell by using an electrodeposition tool having a chamfer on the boundary between the shank and the electrodeposition layer having a smaller diameter than the shank. In addition, a plurality of holes (for example, four holes) have to be drilled, which causes a problem in productivity.

【0004】そこで、生産性を上げるためにパイプ形状
の電着工具を用いて複数枚の液晶セルを積層して穴明け
加工する従来技術を図面に基づいてその概要を説明す
る。
Therefore, an outline of a conventional technique for laminating and punching a plurality of liquid crystal cells by using a pipe-shaped electrodeposition tool in order to increase productivity will be described with reference to the drawings.

【0005】図4(a)は液晶セル等の被加工物の平面
図、図4(b)はそのX−X線断面図である。図5は従
来のパイプ形状の電着工具で、図5(a)は正面図、図
5(b)はその先端の平面図である。図6は加工状態の
説明図である。図7はコア詰まりの状態を示す電着工具
先端部の一部切り欠き断面図である。
FIG. 4A is a plan view of an object to be processed such as a liquid crystal cell, and FIG. 4B is a sectional view taken along line XX thereof. FIG. 5 is a conventional pipe-shaped electrodeposition tool, FIG. 5 (a) is a front view, and FIG. 5 (b) is a plan view of its tip. FIG. 6 is an explanatory diagram of a processed state. FIG. 7 is a partially cutaway sectional view of the tip portion of the electrodeposition tool showing a state where the core is clogged.

【0006】図5において、1はシャンクで、金属性
(例えば、スチール材)のパイプ形状をしており、2は
ダイヤモンド砥粒(例えば、メッシュ#325程度)の
電着層で、電着工具30の電着層2の先端部は外径と内
径は同心円である。
In FIG. 5, reference numeral 1 denotes a shank, which has a metal (for example, steel) pipe shape, and 2 denotes an electrodeposition layer of diamond abrasive grains (for example, mesh # 325), which is an electrodeposition tool. The outer diameter and the inner diameter of the tip of the electrodeposited layer 2 of 30 are concentric circles.

【0007】図4及び図6において、ホウ珪酸ガラスよ
りなる液晶セル等の被加工物4を複数枚(例えば、厚さ
t=0.61mmの液晶セルを8枚程度)積層して、そ
の上下には、加工の際に上下にチッピングが発生するの
で、コスト的に安価なソーダガラス等よりなる捨て板5
(例えば、厚さ0.7mm程度)で押さえ、加工治具6
上の所定の位置に密着固定する。次に、前記電着工具3
0のパイプ穴を通して切削液7を穴8の穴明け箇所に供
給しながら、電着工具30に高速回転を与えて、矢印A
方向に所定の速度で穴明け加工を実施する。1箇所の穴
明け加工を完了すると、図7に示すように被加工物4の
厚さに等しいコア90が積層された状態で生成され、電
着工具30のパイプ内部1aに押し上げられて、コア詰
まりの現象が生ずる。尚、図5に示す電着工具30の構
造では、電着するダイヤモンドの粒度を変えることで、
加工能率や加工品質を変えることは可能である。例え
ば、ダイヤモンドの粒度を細かくすれば加工品質は良く
なるが、一方加工能率は著しく低下するので、加工目的
に合致した選択が必要でなる。いずれにせよ上記構造の
電着工具30ではコア詰まりは避けられない。
In FIGS. 4 and 6, a plurality of workpieces 4 (for example, about eight liquid crystal cells having a thickness t = 0.61 mm) such as liquid crystal cells made of borosilicate glass are stacked, and the upper and lower sides thereof are stacked. Since chipping occurs vertically during processing, the discard plate 5 made of soda glass or the like, which is inexpensive in cost, is used.
Pressing (for example, about 0.7 mm in thickness), the processing jig 6
Fix it tightly in place on the top. Next, the electrodeposition tool 3
While supplying the cutting fluid 7 to the hole 8 at the drilling point through the 0 pipe hole, the electrodeposition tool 30 is rotated at high speed, and the arrow A
Drilling is performed in a predetermined direction at a predetermined speed. When the drilling at one place is completed, a core 90 having a thickness equal to the thickness of the workpiece 4 is produced in a laminated state as shown in FIG. The phenomenon of clogging occurs. In the structure of the electrodeposition tool 30 shown in FIG. 5, by changing the grain size of diamond to be electrodeposited,
It is possible to change processing efficiency and processing quality. For example, if the grain size of diamond is made finer, the processing quality is improved, but the processing efficiency is significantly reduced, so that selection that matches the processing purpose is required. In any case, core clogging is inevitable in the electrodeposition tool 30 having the above structure.

【0008】[0008]

【発明が解決しようとする課題】上述した電着工具30
には、次のような問題点がある。即ち、前記電着工具3
0を用いた穴明け加工法では、パイプ穴を通して切削液
7を供給する方式を採っており、パイプ内部1aに生成
されたコア90が被加工物4の枚数分(例えば、8枚)
が押し上げられてパイプ内部1aに詰まる。そのため1
箇所の穴明け加工を完了する毎に、電着工具30を機械
の主軸より取り外し、コア90を除去した後で次の穴加
工を行うので連続穴明け加工が不可能であり、生産性を
阻害する。また、この場合、パイプ内部1aに入ったコ
ア90は電着工具30と同一に回転しているため、電着
工具30のパイプ内壁に付着しているダイヤモンド粒に
研削されることなく、次第に上方に押し上げされるの
で、電着工具30のパイプ内壁のダイヤモンド粒に脱落
が生じ、コア90の外径は次第に大きくなる。この現象
が発生すると、電着工具30のパイプ内径とコエ90の
外径との差が極めて小さくなり、研削液7の流れが阻害
されて供給能力が極端に低下し、電着工具30の先端の
冷却効果が減少して、その結果工具先端は赤熱し、電着
工具30の寿命は著しく短縮され、生産性の低下を招く
致命的な問題が発生した。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
Has the following problems. That is, the electrodeposition tool 3
In the drilling method using 0, a method of supplying the cutting fluid 7 through the pipe hole is adopted, and the core 90 generated in the pipe inner portion 1a corresponds to the number of the workpieces 4 (for example, 8).
Is pushed up and clogs inside the pipe 1a. Therefore 1
Every time the drilling of a part is completed, the electrodeposition tool 30 is removed from the main spindle of the machine, the next drilling is performed after the core 90 is removed, and continuous drilling is impossible, which impedes productivity. To do. Further, in this case, since the core 90 that has entered the inside 1a of the pipe rotates in the same manner as the electrodeposition tool 30, the diamond particles adhering to the inner wall of the pipe of the electrodeposition tool 30 are not ground and gradually move upward. As a result, the diamond grains on the inner wall of the pipe of the electrodeposition tool 30 drop off, and the outer diameter of the core 90 gradually increases. When this phenomenon occurs, the difference between the inner diameter of the pipe of the electrodeposition tool 30 and the outer diameter of the coer 90 becomes extremely small, the flow of the grinding fluid 7 is obstructed, the supply capacity is extremely reduced, and the tip of the electrodeposition tool 30 is reduced. As a result, the tool tip becomes red hot, the life of the electrodeposition tool 30 is remarkably shortened, and a fatal problem that causes a decrease in productivity occurs.

【0009】本発明は上記従来の課題に鑑みなされたも
のであり、その目的は、硬脆性材料の穴明け加工で、コ
ア詰まりを解消し、長寿命で生産性の優れた電着工具を
提供するものである。
The present invention has been made in view of the above conventional problems, and an object thereof is to provide an electrodeposition tool which eliminates core clogging by drilling a hard and brittle material, has a long life and is excellent in productivity. To do.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明における電着工具は、ガラス板等の硬脆性材
料の穴明け加工に用いるパイプ形状の電着工具におい
て、前記電着工具の外径に対して内径を偏心させて先端
部を形成したことを特徴とするものである。
In order to achieve the above object, the electrodeposition tool according to the present invention is a pipe-shaped electrodeposition tool used for drilling a hard and brittle material such as a glass plate. The inner diameter is eccentric with respect to the outer diameter to form the tip.

【0011】また、前記パイプ形状の電着工具の偏心さ
せた先端部に、少なくとも1個以上の溝を形成したこと
を特徴とするものである。
Further, the present invention is characterized in that at least one groove is formed in the eccentric tip portion of the pipe-shaped electrodeposition tool.

【0012】[0012]

【作用】従って、本発明により得られる電着工具におい
て、前述したように、電着工具の外径に対して内径を偏
心させることにより、該内径に対してコア径が小さくな
り、研削液の流量が確保されて充分な冷却効果を発揮
し、且つ、加工完了後にパイプ内径部に生成されたコア
を、研削液の圧力で電着工具の外部に排出することが可
能である。また、前記電着工具の偏心させた先端部に、
少なくとも1個以上の溝を形成することにより、研削屑
を排出し、研削液の流れをスムーズにして冷却効果を一
層確実にする。
Therefore, in the electrodeposition tool obtained by the present invention, as described above, by eccentricizing the inner diameter with respect to the outer diameter of the electrodeposition tool, the core diameter becomes smaller than the inner diameter, and the grinding fluid It is possible to secure a sufficient flow rate, exhibit a sufficient cooling effect, and discharge the core generated in the inner diameter portion of the pipe after the completion of processing to the outside of the electrodeposition tool by the pressure of the grinding fluid. Also, the eccentric tip of the electrodeposition tool,
By forming at least one groove, grinding debris is discharged, the flow of the grinding fluid is made smooth, and the cooling effect is further ensured.

【0013】[0013]

【実施例】以下図面に基づいて好適な実施例を説明す
る。図1、図2及び図3は本発明の実施例で、図1
(a)は電着工具の先端形状を示す正面図、図1(b)
はその先端の平面図である。図2及び図3は加工前後の
状態の説明図である。図において、従来技術と同一部材
は同一符号で示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment will be described below with reference to the drawings. 1, 2 and 3 show an embodiment of the present invention.
1A is a front view showing the tip shape of the electrodeposition tool, FIG. 1B.
Is a plan view of the tip. 2 and 3 are explanatory views of a state before and after processing. In the drawings, the same members as those in the conventional technique are designated by the same reference numerals.

【0014】図1〜図3において、電着工具3はシャン
ク1と電着層2とで構成され、電着工具3の電着層2の
外径D1の中心C1に対して、内径D2の中心C2をず
らし、即ち、偏心量eを設定する。該偏心量eは、加工
目的に合わせて後述するように適切な値に設定する。こ
のように外径D1に対して内径D2を偏心量eだけ偏心
させることにより、電着層3の先端形状は肉厚に差を生
じ、加工されたコア径D3と工具内径D2とのとの間に
は当然偏心量eの2倍の隙間が確保されて、前記研削液
7を充分に供給することが可能になる。
1 to 3, the electrodeposition tool 3 is composed of a shank 1 and an electrodeposition layer 2, and the electrodeposition tool 2 has an inner diameter D2 with respect to the center C1 of the outer diameter D1 of the electrodeposition layer 2. The center C2 is shifted, that is, the eccentricity e is set. The eccentricity amount e is set to an appropriate value as described later according to the processing purpose. By thus eccentricizing the inner diameter D2 with respect to the outer diameter D1 by the eccentric amount e, the tip shape of the electrodeposition layer 3 has a difference in wall thickness, and the machined core diameter D3 and tool inner diameter D2 are different from each other. Naturally, a gap of twice the eccentricity e is secured between them, and the grinding fluid 7 can be sufficiently supplied.

【0015】前記偏心量eの設定にあたり、電着工具3
の外径D1が2mmでは、内径D2が1.1mm程度
で、内径D2は外径D1に対して60%程度に設定す
る。偏心量eは0.15mm±30%程度で、コア径D
3は0.8mm程度になり、コア径D3が内径D2に対
して、70%〜75%程度の値になるように設定する。
例えば、外径D1が3mmでは、内径D2が1.7m
m、偏心量eが0.23mm、コア径D3が1.24m
m程度になる。更に、外径D1が4mmでは、内径D2
が2.3mm、偏心量eが0.31mm、コア径D3が
1.68mm程度になる。従って、これを越える寸法を
設定した場合、偏心した内径D2が外径D1に干渉する
か、パイプの肉厚に極端に差を生ずるため、工具として
の成立が不可能となる。以上のように電着工具3の偏心
量eと内径D2の値を適切に変化させることで、その電
着工具3がもつコア9の排出性や、工具寿命等の基本的
性質が決められることになる。
In setting the eccentricity e, the electrodeposition tool 3
When the outer diameter D1 is 2 mm, the inner diameter D2 is about 1.1 mm, and the inner diameter D2 is set to about 60% of the outer diameter D1. Eccentricity e is about 0.15 mm ± 30%, core diameter D
3 is about 0.8 mm, and the core diameter D3 is set to a value of about 70% to 75% with respect to the inner diameter D2.
For example, when the outer diameter D1 is 3 mm, the inner diameter D2 is 1.7 m
m, eccentricity e is 0.23 mm, core diameter D3 is 1.24 m
It will be about m. Further, when the outer diameter D1 is 4 mm, the inner diameter D2
Is about 2.3 mm, the eccentricity e is about 0.31 mm, and the core diameter D3 is about 1.68 mm. Therefore, if a dimension exceeding this is set, the eccentric inner diameter D2 interferes with the outer diameter D1 or an extreme difference occurs in the wall thickness of the pipe, so that it cannot be established as a tool. By properly changing the values of the eccentricity e and the inner diameter D2 of the electrodeposition tool 3 as described above, basic properties such as the discharge property of the core 9 of the electrodeposition tool 3 and the tool life can be determined. become.

【0016】更に、前記電着工具3の電着層2の先端部
に溝10を配設する。該溝10は本実施例では、偏心方
向を基準に90度間隔に配設し、これによりパイプ形状
の肉厚の最大部分と最小部分及びそれに対し90度方向
に溝10が配設されることになり、穴明け加工の際に前
記最大肉厚部分にかかる研削負荷を分散することが可能
になる。また、最小肉厚は溝10を設けることで除去さ
ることになり、強度的なバランスを保つことができる。
前記溝10は硬脆性材料の研削屑を排出すると同時に、
研削液7の流れをスムーズにして、電着工具3の冷却効
果を促進する。尚、前記溝10は、本実施例では最大肉
厚部分を含み4箇所に配設したが、これに限るものでな
く、最大肉厚部分の近傍を含み少なくとも1箇所以上配
設することが好ましい。
Further, a groove 10 is provided at the tip of the electrodeposition layer 2 of the electrodeposition tool 3. In this embodiment, the grooves 10 are arranged at intervals of 90 degrees with respect to the eccentric direction, so that the grooves 10 are arranged in the maximum and minimum portions of the wall thickness of the pipe and in the 90 degree direction with respect to the maximum and minimum portions. Therefore, it becomes possible to disperse the grinding load applied to the maximum thickness portion at the time of drilling. Further, the minimum wall thickness is removed by providing the groove 10, and the strength balance can be maintained.
The groove 10 discharges grinding dust of hard and brittle material, and at the same time,
The flow of the grinding fluid 7 is made smooth to promote the cooling effect of the electrodeposition tool 3. In this embodiment, the groove 10 is provided at four places including the maximum thickness portion, but the present invention is not limited to this, and it is preferable to provide at least one place including the vicinity of the maximum thickness portion. .

【0017】前記電着工具3の先端部に配設した溝10
の深さdは、電着工具3の外径D1に対し、15%程度
に設定する。この値を越えて溝10を深くすると、工具
強度を低下させて加工された穴8(図4)の周囲にチッ
ピングが発生する等、加工品質を損なう。また、前記溝
10を浅くすると、研削液7の供給能力及び研削屑の排
出性が低下し、電着工具3の冷却が不十分になり、工具
寿命を短縮することになる。
A groove 10 provided at the tip of the electrodeposition tool 3
Depth d is set to about 15% of the outer diameter D1 of the electrodeposition tool 3. If the groove 10 is made deeper than this value, the tool strength is lowered and chipping occurs around the machined hole 8 (FIG. 4), which impairs machining quality. Further, if the groove 10 is made shallow, the supply ability of the grinding fluid 7 and the discharge property of the grinding dust are lowered, the cooling of the electrodeposition tool 3 becomes insufficient, and the tool life is shortened.

【0018】また、図1(b)に示すように、電着工具
3の外径D1の中心C1を中心にして内径D2のエッジ
部分に、外径D1の10%程度、例えば外径D1が2m
mで0.2mm程度の面取り11を行うことにより、研
削負荷がかかる最大肉厚部分近傍の内周エッジ部が面取
りされて、研削加工によりエッジ部の砥粒の脱落が減少
し、工具寿命を延長することができる。
Further, as shown in FIG. 1B, about 10% of the outer diameter D1, for example, the outer diameter D1 is provided at the edge portion of the inner diameter D2 with the center C1 of the outer diameter D1 of the electrodeposition tool 3 as the center. 2m
By chamfering about 0.2 mm in m, chamfering of the inner peripheral edge portion in the vicinity of the maximum thickness portion where the grinding load is applied reduces the loss of abrasive grains at the edge portion due to the grinding process, and improves the tool life. It can be extended.

【0019】また、図1(a)に示すように、電着工具
3の電着層2の長さLは、外径D1の半分程度に設定す
る。長さLを長く設定すると、内径D2において、前述
したように研削加工中のコア9が被加工物4を1枚加工
する毎に押し上げられて、積層されたコア9がダイヤモ
ンド砥粒に引っ掛かることになる。
Further, as shown in FIG. 1A, the length L of the electrodeposition layer 2 of the electrodeposition tool 3 is set to about half the outer diameter D1. When the length L is set to be long, the inner core D2 is pushed up every time one of the workpieces 4 is machined, as described above, and the laminated core 9 is caught by the diamond abrasive grains. become.

【0020】以上のように構成された電着工具3を用い
た硬脆性材料の穴明け加工を説明する。図2は加工開始
時、図3は加工終了時の状態を示す説明図である。図
1、図2及び図3において、液晶セル等の被加工物4を
上下に捨て板5を挟み加工治具6に密着固定するのは従
来技術と同様である。外径D1に対して内径D2を偏心
させ、更に、偏心させた先端部に溝10及び内径D2の
エッジに面取り11が形成された前記電着工具3のパイ
プ穴を通して切削液7を、被加工物4の穴明け箇所に供
給し、電着工具3に高速回転を与えながら、矢印A方向
に所定の速度で穴明け加工を実施し、1箇所の穴明け加
工を完了すると、被加工物4の厚さに等しいコア9が積
層された状態で生成され、電着工具3のパイプ内部に押
し上げられるが、前述したように、外径D1対して内径
D2を偏心させることにより、前記内径に対してコア径
D3が小さくなり、研削液の流量が確保されて、前記溝
10も作用して十分な冷却効果を発揮する。且つ、図3
に示すように加工完了時にパイプ内径部に詰まったコア
9を、研削液7の圧力で電着工具3の外部に排出するこ
とが可能である。また、前記電着工具3の偏心させた先
端部に、溝10を形成することにより、研削屑を排出
し、研削液7の流れをスムーズにすることは前述した通
りである。
Drilling of a hard and brittle material using the electrodeposition tool 3 constructed as described above will be described. FIG. 2 is an explanatory diagram showing a state at the start of processing and FIG. 3 is a state at the end of processing. 1, FIG. 2 and FIG. 3, it is the same as in the prior art that a workpiece 4 such as a liquid crystal cell is vertically fixed by closely sandwiching a discarding plate 5 to a processing jig 6. The inner diameter D2 is eccentric with respect to the outer diameter D1, and the cutting fluid 7 is processed through the pipe hole of the electrodeposition tool 3 in which the groove 10 is formed at the eccentric tip and the chamfer 11 is formed at the edge of the inner diameter D2. It is supplied to the hole-drilling point of the object 4, and while the electrodeposition tool 3 is rotated at high speed, the hole-drilling is performed at a predetermined speed in the direction of the arrow A, and when the hole-drilling at one point is completed, the workpiece 4 The core 9 having a thickness equal to that of the electrode 9 is generated in a laminated state and pushed up into the pipe of the electrodeposition tool 3, but as described above, by eccentricizing the inner diameter D2 with respect to the outer diameter D1, As a result, the core diameter D3 is reduced, the flow rate of the grinding fluid is secured, and the groove 10 also acts to exert a sufficient cooling effect. Moreover, FIG.
It is possible to discharge the core 9 clogged in the pipe inner diameter portion to the outside of the electrodeposition tool 3 by the pressure of the grinding fluid 7 as shown in FIG. Further, as described above, the groove 10 is formed at the eccentric tip portion of the electrodeposition tool 3 to discharge the grinding dust and smooth the flow of the grinding liquid 7.

【0021】前記電着工具3はダイヤモンド砥粒の正常
な磨耗以外の要素で、工具寿命を劣化させることもな
く、硬脆性材料である被加工物4を積層された状態で、
1箇所の穴明け加工を完了し、従来のように電着工具3
を機械の主軸より取り外すこともなく、電着工具3は被
加工物4の上に戻し、次の穴加工を連続的に行うことが
可能である。
The electrodeposition tool 3 is an element other than the normal wear of diamond abrasive grains, and does not deteriorate the tool life, and in a state where the work pieces 4 which are hard and brittle materials are laminated,
Completed drilling at one place, and electrodeposition tool 3
It is possible to return the electrodeposition tool 3 onto the workpiece 4 and continuously perform the next hole drilling without removing the tool from the spindle of the machine.

【0022】[0022]

【発明の効果】以上説明したように、本発明によれば、
市場が要求するアナログ・デジタルをコンビネイション
表示する全面液晶時計において、複数個の穴を有する液
晶セル等の硬脆性材料の穴明け加工に際し、使用する工
具の外径に対して内径を偏心させ、更に先端に溝を形成
する電着工具は、従来のようにコア詰まりに起因する研
削液の冷却効果を阻害し、工具寿命を短縮することな
く、コア詰まりが解消され、研削液の流れ、研削屑の排
出が良好で、冷却効果が向上して、著しく電着工具の寿
命を延長させることが可能となった。従って、積層した
硬脆性材料の穴明け加工を連続的に行えるようになり、
生産性が向上し、廉価に加工することが可能である等多
大の効果を奏するものである。
As described above, according to the present invention,
In a full-screen liquid crystal timepiece that displays a combination of analog and digital required by the market, when drilling hard and brittle materials such as liquid crystal cells with multiple holes, eccentric the inner diameter with respect to the outer diameter of the tool used, Furthermore, the electrodeposition tool that forms a groove at the tip obstructs the cooling effect of the grinding fluid caused by core clogging as in the past and eliminates core clogging without shortening the tool life. The waste was discharged well, the cooling effect was improved, and it became possible to significantly extend the life of the electrodeposition tool. Therefore, it becomes possible to continuously perform drilling of laminated hard and brittle materials,
The productivity is improved, and it is possible to process at a low cost, which is a great effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係わる電着工具で、図1
(a)は正面図、図1(b)はその先端部の平面図であ
る。
FIG. 1 is an electrodeposition tool according to an embodiment of the present invention.
FIG. 1A is a front view, and FIG. 1B is a plan view of a tip portion thereof.

【図2】図1の電着工具を使用した穴明け加工前の状態
う示す説明図である。
FIG. 2 is an explanatory view showing a state before drilling using the electrodeposition tool of FIG.

【図3】図1の電着工具を使用した穴明け加工後の状態
う示す説明図である。
FIG. 3 is an explanatory diagram showing a state after drilling using the electrodeposition tool of FIG. 1.

【図4】被加工物である液晶セルで図4(a)は平面
図、図4(b)はそのX−X線断面図である。
FIG. 4A is a plan view of a liquid crystal cell as a workpiece, and FIG. 4B is a sectional view taken along line XX thereof.

【図5】従来技術に係わる電着工具で、図5(a)は正
面図、図5(b)はその先端部の平面図である。
5 (a) is a front view and FIG. 5 (b) is a plan view of a tip portion thereof, showing an electrodeposition tool according to a conventional technique.

【図6】図5の電着工具を使用した穴明け加工前の状態
う示す説明図である。
FIG. 6 is an explanatory view showing a state before drilling using the electrodeposition tool of FIG. 5.

【図7】コア詰まりの状態を示す電着工具の一部切り欠
き断面図である。
FIG. 7 is a partially cutaway cross-sectional view of an electrodeposition tool showing a state of core clogging.

【符号の説明】[Explanation of symbols]

1 シャンク 2 電着層 3 電着工具 4 被加工物 5 捨て板 7 研削液 8 穴 9 コア 10 溝 11 面取り D1 外径 D2 内径 D3 コア径 d 溝深さ e 偏心量 1 Shank 2 Electroplated layer 3 Electroplated tool 4 Workpiece 5 Discarding plate 7 Grinding liquid 8 Hole 9 Core 10 Groove 11 Chamfering D1 Outer diameter D2 Inner diameter D3 Core diameter d Groove depth e Eccentricity

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ガラス板等の硬脆性材料の穴明け加工に
用いるパイプ形状の電着工具において、前記電着工具の
外径に対して内径を偏心させて先端部を形成したことを
特徴とする電着工具。
1. A pipe-shaped electrodeposition tool used for drilling a hard and brittle material such as a glass plate, wherein an inner diameter is eccentric with respect to an outer diameter of the electrodeposition tool to form a tip portion. An electrodeposition tool.
【請求項2】 前記パイプ形状の電着工具の偏心させた
先端部に、少なくとも1個以上の溝を形成したことを特
徴とする請求項1記載の電着工具。
2. The electrodeposition tool according to claim 1, wherein at least one groove is formed at an eccentric tip portion of the pipe-shaped electrodeposition tool.
JP28392594A 1994-10-25 1994-10-25 Electrodeposited tool Pending JPH08118124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28392594A JPH08118124A (en) 1994-10-25 1994-10-25 Electrodeposited tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28392594A JPH08118124A (en) 1994-10-25 1994-10-25 Electrodeposited tool

Publications (1)

Publication Number Publication Date
JPH08118124A true JPH08118124A (en) 1996-05-14

Family

ID=17671991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28392594A Pending JPH08118124A (en) 1994-10-25 1994-10-25 Electrodeposited tool

Country Status (1)

Country Link
JP (1) JPH08118124A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006305672A (en) * 2005-04-28 2006-11-09 Central Glass Co Ltd Drilling drill of glass substrate
WO2010058387A1 (en) * 2008-11-18 2010-05-27 Iscar Ltd. Trepanning drill
JP2011020222A (en) * 2009-07-16 2011-02-03 Toyota Motor Corp Core drill
JP2011105560A (en) * 2009-11-19 2011-06-02 Nippon Electric Glass Co Ltd Core drill and drilling method of glass plate using the drill
JP2011201095A (en) * 2010-03-25 2011-10-13 Hitachi Koki Co Ltd Drill bit
WO2012029666A1 (en) * 2010-09-01 2012-03-08 旭硝子株式会社 Hole boring drill for glass
US20120170990A1 (en) * 2009-09-23 2012-07-05 Jiro Osawa Cutting tool
FR3021570A1 (en) * 2014-05-28 2015-12-04 Diamoutils DRILLING TOOL
JP2022070471A (en) * 2020-10-27 2022-05-13 信越化学工業株式会社 Method for treating synthetic quartz glass substrate

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006305672A (en) * 2005-04-28 2006-11-09 Central Glass Co Ltd Drilling drill of glass substrate
JP4693479B2 (en) * 2005-04-28 2011-06-01 セントラル硝子株式会社 Glass substrate drill
WO2010058387A1 (en) * 2008-11-18 2010-05-27 Iscar Ltd. Trepanning drill
JP2011020222A (en) * 2009-07-16 2011-02-03 Toyota Motor Corp Core drill
US20120170990A1 (en) * 2009-09-23 2012-07-05 Jiro Osawa Cutting tool
US8753049B2 (en) * 2009-09-23 2014-06-17 Osg Corporation Cutting tool
JP2011105560A (en) * 2009-11-19 2011-06-02 Nippon Electric Glass Co Ltd Core drill and drilling method of glass plate using the drill
JP2011201095A (en) * 2010-03-25 2011-10-13 Hitachi Koki Co Ltd Drill bit
WO2012029666A1 (en) * 2010-09-01 2012-03-08 旭硝子株式会社 Hole boring drill for glass
FR3021570A1 (en) * 2014-05-28 2015-12-04 Diamoutils DRILLING TOOL
JP2022070471A (en) * 2020-10-27 2022-05-13 信越化学工業株式会社 Method for treating synthetic quartz glass substrate

Similar Documents

Publication Publication Date Title
JP5988314B2 (en) How to make a through hole and countersink in a polycrystalline body
KR20000023028A (en) Outer diameter blade, inner diameter blade, core drill and working apparatus with them
JPH08118124A (en) Electrodeposited tool
WO2007088353A1 (en) A cutting insert
JPS6157123B2 (en)
JPH08155702A (en) Cutting tool with chip breaker and its manufacture
JP4996642B2 (en) Die for forming honeycomb structure and method for manufacturing the same
CN206967280U (en) A kind of diamond grinding head for processing zirconia ceramics plane
JP3043782B2 (en) Tools for drilling hard and brittle materials
JP3037594B2 (en) Via hole forming tool and via hole forming method
EP1252975A2 (en) Electro-deposited thin-blade grindstone
JPH0760547A (en) Thread cutting tool and manufacture thereof
JP2685659B2 (en) Diamond core drill
JPH08323541A (en) Reamer with chip breaker
JPH06114629A (en) Electrodeposition reamer tool
KR100466692B1 (en) Grinder Tools and Its Manufacturing Method
KR200366567Y1 (en) Grinder Tools
CN220216957U (en) Anti-chip removal cutter for rotary cutting machining
JPH071218Y2 (en) Core drill
KR20090082575A (en) A diamond tool and method of manufacturing the same
CN216176723U (en) CBN cutter with chip breaker groove
CN220408337U (en) Grinding head for processing cover plate of electronic equipment
JPH02100807A (en) Centering drill
SU1144798A1 (en) Method of drilling holes
JP2957906B2 (en) Core drill for small diameter drilling and method of manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041228