JP2011105560A - Core drill and drilling method of glass plate using the drill - Google Patents

Core drill and drilling method of glass plate using the drill Download PDF

Info

Publication number
JP2011105560A
JP2011105560A JP2009264022A JP2009264022A JP2011105560A JP 2011105560 A JP2011105560 A JP 2011105560A JP 2009264022 A JP2009264022 A JP 2009264022A JP 2009264022 A JP2009264022 A JP 2009264022A JP 2011105560 A JP2011105560 A JP 2011105560A
Authority
JP
Japan
Prior art keywords
core drill
core
drill
peripheral surface
glass plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009264022A
Other languages
Japanese (ja)
Inventor
Ichiro Yamaoka
一郎 山岡
Masatada Kawamura
昌正 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2009264022A priority Critical patent/JP2011105560A/en
Publication of JP2011105560A publication Critical patent/JP2011105560A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Abstract

<P>PROBLEM TO BE SOLVED: To accurately form a through hole by preventing core deviation or reduction in machining accuracy resulting from the core deviation as much as possible while allowing smooth supply of cooling fluid to a drill tip, in the piercing of a glass plate using a core drill. <P>SOLUTION: The outer circumferential surface 11 of a cutting part provided on the tip side of the core drill 10 has a cross section of a round shape, and the center O is on the axis of rotation of the core drill 10. The inner circumferential surface 12 of the core drill 10 has a plurality of bulged parts 15 each having a shape bulged on the outer diameter side from an imaginary inscribed circle 13 which is in contact with a minimum diameter part 14 of the inner circumferential surface 12 when seen from a cross section perpendicular to the axis of rotation of the core drill 10. All of the plurality of bulged parts 15 are arranged so that they are symmetrical about the axis of rotation of the core drill 10. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、コアドリルおよびこのドリルを用いたガラス板の孔開け方法に関する。   The present invention relates to a core drill and a method for drilling a glass plate using the drill.

周知のように、プラズマディスプレイ(PDP)、フィールドエミッションディスプレイ(FED)、エレクトロルミネッセンスディスプレイ(ELD)などのフラットパネルディスプレイに使用されるガラス基板の中には、パネル内の排気やガス封入に使用することを目的として、貫通孔を形成するものがある。   As is well known, some glass substrates used for flat panel displays such as plasma display (PDP), field emission display (FED), and electroluminescence display (ELD) are used for exhaust and gas filling in the panel. For this purpose, there is one that forms a through hole.

例えばPDPの場合、実効性あるプラズマ放電を生じさせるために、前面板と背面板との間の空間にXeやAr等のガスを封入する必要があり、背面板の周縁部もしくは角部に、空気を排出して上記ガスを充填するための直径数mm程度の貫通孔が1又は複数箇所に形成される。また、FEDの場合も、前面板と背面板との間の空間を高真空にする必要があることから、PDP用のガラス基板と同様、背面板の周縁部もしくは角部に1又は複数の貫通孔が形成される。   For example, in the case of a PDP, in order to generate an effective plasma discharge, it is necessary to enclose a gas such as Xe or Ar in the space between the front plate and the back plate. A through hole having a diameter of about several millimeters for discharging air and filling the gas is formed at one or a plurality of locations. Also, in the case of FED, since the space between the front plate and the back plate needs to be high vacuum, one or more penetrations are made in the peripheral portion or corner portion of the back plate in the same manner as the glass substrate for PDP. A hole is formed.

このように、ガラス板の厚み方向に貫通孔を形成する場合には、通常、加工精度と加工速度(生産性)の双方の観点から、コアドリルが使用される。このドリルは中空の切刃形状を有するもので、ベースとなる円筒状の台金の表面にダイヤモンド砥粒やCBN砥粒などの切削用砥粒を適当な固着材で固着させたもの(サーフェスタイプ)や、上記砥粒をメタルボンド内に分散配置して形成したチップを使用したもの(インプリタイプ)などが知られている。   Thus, when forming a through-hole in the thickness direction of a glass plate, a core drill is normally used from the viewpoint of both processing accuracy and processing speed (productivity). This drill has a hollow cutting edge shape and is made by fixing cutting abrasive grains such as diamond abrasive grains and CBN abrasive grains on the surface of a cylindrical base metal as a base (surface type) ), And those using chips formed by dispersing and arranging the abrasive grains in metal bonds (impletype) are known.

ところで、上記のコアドリルを用いてガラス板の孔開け加工を行う場合、加工後のコアドリルの中空孔内部には、コアと呼ばれる柱状の未切削物が残ることがある。このコアは、コアドリルの切込みが進むにつれてガラス板の厚み方向に生成されていくもので、通常、コアドリルの中空孔との間にほとんど隙間を空けることなく嵌り合った状態で生成されていく。そのため、例えば上記中空孔を通じて冷却液や切削液をドリル先端の加工箇所に供給しながら穿孔加工を行う場合には、冷却液等のドリル先端への円滑な供給がコアにより妨げられ、切削箇所における冷却効率が不十分又は不均一となりやすい。これでは、切削条件(切込み速度など)を緩めざるを得ず、結果として加工速度の低下を招来するおそれがある。また、穿孔加工に伴い発生した切削屑の排出も十分に行われないため切削効率の低下を招くおそれも懸念される。   By the way, when drilling a glass plate using the above-described core drill, a columnar uncut object called a core may remain inside the hollow hole of the core drill after processing. The core is generated in the thickness direction of the glass plate as the core drill cuts, and is normally generated in a state of being fitted with almost no gap between the core drill and the hollow hole. Therefore, for example, when performing drilling while supplying coolant or cutting fluid to the drill tip processing location through the hollow hole, smooth supply of coolant or the like to the drill tip is hindered by the core, and at the cutting location. Cooling efficiency tends to be insufficient or uneven. In this case, the cutting conditions (cutting speed and the like) must be relaxed, and as a result, the processing speed may be reduced. In addition, there is a concern that the cutting efficiency generated by the drilling process may not be sufficiently discharged, leading to a reduction in cutting efficiency.

上記不具合の対策として、例えば下記特許文献1には、切削部となる電着層形成部の内径中心を外径中心に対して所定量だけ偏心させた形状として、コア径を内径よりも小さくすることにより、切削部の内周面とコアの外周面との間に所定の隙間を確保して、冷却液の円滑な供給を可能とした電着工具(コアドリル)が提案されている。   As a countermeasure against the above-mentioned problem, for example, in Patent Document 1 below, the core diameter is made smaller than the inner diameter by making the inner diameter center of the electrodeposition layer forming portion serving as a cutting portion eccentric from the outer diameter center by a predetermined amount. Thus, there has been proposed an electrodeposition tool (core drill) that secures a predetermined gap between the inner peripheral surface of the cutting part and the outer peripheral surface of the core and enables smooth supply of the coolant.

特開平8−118124号公報JP-A-8-118124

近年、上記したフラットパネルディスプレイの需要が増加するのに伴い、対応するガラス基板の生産性向上への要求も高まっている。そのため、上記コアドリルを用いたガラス基板への穿孔加工についてもその高速化が課題となってきている。一方で、上記ディスプレイの薄型化、軽量化の影響で加工に供されるガラス基板の薄肉化が進行している現状がある。そのため、従来と同様の加工条件で穿孔していたのでは、ガラス基板に割れを生じやすく、加工速度を高めることが困難な状況となっている。   In recent years, as the demand for the above-described flat panel display increases, the demand for improving the productivity of the corresponding glass substrate has also increased. For this reason, increasing the speed of drilling a glass substrate using the core drill has been an issue. On the other hand, there is a present situation that a glass substrate used for processing is thinned due to the thinning and lightening of the display. Therefore, if the holes are drilled under the same processing conditions as before, the glass substrate is likely to be cracked, and it is difficult to increase the processing speed.

ここで、図9に示すように、切削面となる外周面101に対して同軸となる孔102を有するコアドリル100を用いて穿孔加工を行った場合、コアドリル100の外径に等しい内径の孔がガラス板に形成されることになる。これに対して、上記特許文献1に記載の電着工具(コアドリル)を用いた場合には、ドリル切削部の厚み(半径方向幅)が円周方向位置で異なることに起因して芯振れを生じ易い。具体的には、図10に示すように、切削部(電着層形成部)200の相対的に幅の厚い部分203では薄い部分204に比べて切削抵抗が増すため、この抵抗差を解消する向きの力、図10でいえば外周面201の中心O1から内周面202の中心O2へと向かう力Fがコアドリル(切削部200)に作用する。このようにして切削部200に半径方向への力Fが作用する結果、コアドリルに芯振れが生じ、切削部200の外径よりも大きな内径を有する貫通孔がガラス基板に形成されることになる。 Here, as shown in FIG. 9, when drilling is performed using a core drill 100 having a hole 102 coaxial with the outer peripheral surface 101 serving as a cutting surface, a hole having an inner diameter equal to the outer diameter of the core drill 100 is formed. It will be formed on a glass plate. On the other hand, when the electrodeposition tool (core drill) described in Patent Document 1 is used, the core runout is caused by the difference in the thickness (radial width) of the drill cutting portion in the circumferential position. It is likely to occur. Specifically, as shown in FIG. 10, since the cutting resistance is increased in the relatively thick portion 203 of the cutting portion (electrodeposit layer forming portion) 200 as compared with the thin portion 204, this resistance difference is eliminated. the direction of the force, the force F directed to the center O 2 of the inner peripheral surface 202 from the center O 1 of the outer peripheral surface 201 in terms of the FIG. 10 is applied to the core drill (cutting portion 200). As a result of the radial force F acting on the cutting part 200 in this way, the core drill is caused to run out, and a through hole having an inner diameter larger than the outer diameter of the cutting part 200 is formed in the glass substrate. .

また、上記貫通孔は、ドリル先端の振れを伴って穿孔形成されたものであるから、その加工精度も不十分となりやすく、内周面の仕上がり状態にもばらつきが生じやすい。また、このことにより貫通孔の強度低下も懸念される。これは、貫通孔の内周面性状が不安定で微小なクラック等の欠陥が内在していると、当該欠陥を起点として比較的容易に破損を生じ得るからである。さらに、上記特許文献1に開示のコアドリルは、その回転軸(外周面201の中心O1を通る)から半径方向にずれた位置に重心を有することになるため、このことも、上記ドリルの芯振れを助長する向きに作用するおそれがある。以上の不具合は、加工速度(例えば切込み速度など)が大きくなるほど顕著となる傾向にある。よって、生産性向上のために加工速度を高めようとすると、コアドリルの芯振れが顕著となり、加工精度の低下を招く。 Further, since the through hole is formed by drilling with the deflection of the drill tip, the processing accuracy is likely to be insufficient, and the finished state of the inner peripheral surface is likely to vary. In addition, there is a concern that the strength of the through hole may be reduced. This is because if the inner peripheral surface property of the through-hole is unstable and a defect such as a micro crack is present, damage can be caused relatively easily starting from the defect. Furthermore, since the core drill disclosed in Patent Document 1 has a center of gravity at a position shifted in the radial direction from the rotation axis (passing through the center O 1 of the outer peripheral surface 201), this is also the core of the drill. There is a risk of acting in a direction that promotes runout. The above problems tend to become more prominent as the machining speed (for example, the cutting speed) increases. Therefore, when trying to increase the processing speed in order to improve the productivity, the core runout of the core drill becomes remarkable, and the processing accuracy is lowered.

以上の事情に鑑み、本発明では、コアドリルを用いたガラス板の穿孔加工において、ドリル先端への冷却液の円滑な供給を可能としつつも、芯振れ又は芯振れに起因する加工精度の低下を可及的に防止して、貫通孔を精度よく形成することを技術的な課題とする。   In view of the above circumstances, in the present invention, in the drilling of a glass plate using a core drill, while allowing the coolant to be smoothly supplied to the tip of the drill, the center runout or the processing accuracy due to the runout is reduced. It is a technical problem to prevent through as much as possible and form the through hole with high accuracy.

前記課題の解決は、本発明に係るコアドリルにより達成される。すなわち、このコアドリルは、ドリル先端側に設けた切削部でガラス板に所定の孔開け加工を施すためのコアドリルにおいて、切削部の内周面は、任意の軸直交断面で見た場合に内周面の最小径部と接する仮想内接円から外径側に膨出する形状を呈する複数の膨出部を有すると共に、複数の膨出部は何れも、切削部の回転軸まわりに対称となるように配置されている点をもって特徴づけられる。   The solution to the above problem is achieved by the core drill according to the present invention. That is, this core drill is a core drill for performing a predetermined drilling process on a glass plate at a cutting portion provided on the tip side of the drill, and the inner peripheral surface of the cutting portion is an inner periphery when viewed in an arbitrary cross section perpendicular to the axis. It has a plurality of bulging portions that have a shape that bulges from the virtual inscribed circle that contacts the smallest diameter portion of the surface to the outer diameter side, and the plurality of bulging portions are all symmetric about the rotation axis of the cutting portion It is characterized by the points arranged as follows.

上記のように、本発明に係るコアドリルにあっては、その内周面の断面形状を非真円形状としたので、上記従来のコアドリルの場合と同様に、コアドリル切削部の肉厚(半径方向幅)が円周方向位置で不均一であることに起因する半径方向の力F(図10を参照)が生じるようにも思われる。しかし、本発明では、上記の如く、内周面を構成する膨出部を切削部の回転軸まわりに対称となるように配置したので、上記半径方向の力は、切削部全体で見れば互いに相殺されることになる。そのため、上記半径方向の力に起因して生じるコアドリルの芯振れを抑制することができる。また、切削部の重心を回転軸上におくことができる(あるいは切削部の重心をその回転軸になるべく近づけることができる)ので、これによっても、コアドリルの芯振れをなるべく小さくすることができる。また、上記構成によれば、穿孔加工に伴い、コアドリル切削部の内周面における最小径部と接する仮想内接円に相当する径のコアが生成される。そのため、コアと仮想内接円から外径側に膨出した形状の膨出部との間に形成される空間を冷却液等の供給流路として使用することができ、切削箇所となるドリル先端に潤沢な冷却液等をスムーズに供給することができる。これにより、切削部の冷却効率を改善すると共に切削効率を高めることができるので、例えば加工速度を上げても加工精度を確保することができ、所要の面精度ないし強度を有する貫通孔を短時間で形成することができる。   As described above, in the core drill according to the present invention, since the cross-sectional shape of the inner peripheral surface thereof is a non-circular shape, the thickness (radial direction) of the core drill cutting portion is the same as in the case of the conventional core drill. It also appears that a radial force F (see FIG. 10) arises due to the non-uniformity of the (width) at the circumferential position. However, in the present invention, as described above, the bulging portions constituting the inner peripheral surface are arranged so as to be symmetric around the rotation axis of the cutting portion. Will be offset. Therefore, the runout of the core drill caused by the radial force can be suppressed. In addition, since the center of gravity of the cutting part can be placed on the rotation axis (or the center of gravity of the cutting part can be as close as possible to the rotation axis), the core runout of the core drill can be reduced as much as possible. Moreover, according to the said structure, the core of the diameter equivalent to the virtual inscribed circle which contact | connects the minimum diameter part in the internal peripheral surface of a core drill cutting part is produced | generated with a drilling process. Therefore, the space formed between the core and the bulging portion of the shape that bulges from the virtual inscribed circle to the outer diameter side can be used as a supply flow path for cooling liquid, etc. A rich coolant can be supplied smoothly. As a result, the cooling efficiency of the cutting portion can be improved and the cutting efficiency can be increased. For example, even if the processing speed is increased, the processing accuracy can be ensured, and the through hole having the required surface accuracy or strength can be formed in a short time. Can be formed.

ここで、複数の膨出部は互いにその円周方向端部で連続しており、これにより切削部の内周面が複数の膨出部で構成されていてもよい。   Here, the plurality of bulging portions are continuous with each other at their circumferential ends, and thereby the inner peripheral surface of the cutting portion may be constituted by a plurality of bulging portions.

このように構成することで、内周面の最小径部と仮想内接円とが点接触あるいは非常に接触面積を小さくした状態で接することになる。仮想内接円はコアの外周面に対応しているので、上記のように仮想内接円と接するように内周面を構成することで、穿孔加工時におけるコアドリル切削部の内周面とコア外周面の接触面積も小さくすることができる。これにより、コアドリルに作用する切削抵抗を低減して、加工精度をさらに向上させることが可能になる。また、この場合、内周面はコアに対して円周方向に等ピッチで接触(支持)されることになるので、切削部の姿勢が安定する。このことによっても、コアドリルによる貫通孔の加工精度が向上する。   By comprising in this way, the minimum diameter part of an internal peripheral surface and a virtual inscribed circle will contact | connect in the state which made the point contact or the contact area very small. Since the virtual inscribed circle corresponds to the outer peripheral surface of the core, the inner peripheral surface and the core of the core drill cutting part at the time of drilling are formed by configuring the inner peripheral surface to contact the virtual inscribed circle as described above. The contact area of the outer peripheral surface can also be reduced. Thereby, the cutting resistance acting on the core drill can be reduced, and the processing accuracy can be further improved. In this case, the inner peripheral surface is contacted (supported) with a constant pitch in the circumferential direction with respect to the core, so that the posture of the cutting portion is stabilized. This also improves the processing accuracy of the through hole by the core drill.

また、切削部の先端面は、半径方向に伸びる複数の半径方向溝部を有するものであってもよく、その場合、複数の半径方向溝部は何れも回転軸まわりに対称となるように配置されていてもよい。   Further, the tip surface of the cutting part may have a plurality of radial grooves extending in the radial direction, and in this case, the plurality of radial grooves are all arranged symmetrically around the rotation axis. May be.

このように切削部の先端面に半径方向の溝部を設けることで、膨出部とコアとの隙間を通じてドリル先端に供給された冷却液等をコアドリルの外側にスムーズに排出することができる。また、この場合、上記複数の半径方向溝部を、切削部の回転軸まわりに対称となるように配置することで、当該溝部を先端面に設けることによる芯振れの発生もしくは増大を可及的に防いで、芯振れを抑制することが可能となる。   Thus, by providing the groove portion in the radial direction on the tip surface of the cutting portion, the coolant supplied to the drill tip through the gap between the bulge portion and the core can be smoothly discharged to the outside of the core drill. Further, in this case, by arranging the plurality of radial grooves so as to be symmetrical around the rotation axis of the cutting part, the occurrence or increase of runout due to the provision of the grooves on the tip surface is made as much as possible. This prevents the runout from occurring.

また、切削部の外周面は、軸方向に伸びる複数の軸方向溝部を有するものであってもよく、その場合、複数の軸方向溝部は何れも回転軸まわりに対称となるように配置されていてもよい。   In addition, the outer peripheral surface of the cutting part may have a plurality of axial grooves extending in the axial direction, and in this case, the plurality of axial grooves are all arranged symmetrically around the rotation axis. May be.

このように、切削部の外周面に軸方向の溝部を設けることで、半径方向溝部と同様、膨出部とコアとの隙間を通じてドリル先端に供給され、次いでコアドリルの外周側に流出した冷却液等をドリル基端側にスムーズに排出することができる。また、この場合、上記複数の軸方向溝部を、切削部の回転軸まわりに対称となるように配置することで、当該溝部を外周面に設けることによる芯振れの発生もしくは増大を可及的に防いで、芯振れを抑制することが可能となる。   Thus, by providing an axial groove on the outer peripheral surface of the cutting part, the coolant that is supplied to the drill tip through the gap between the bulging part and the core, and then flows out to the outer peripheral side of the core drill, like the radial groove. Etc. can be smoothly discharged to the base end side of the drill. Further, in this case, by arranging the plurality of axial grooves so as to be symmetric around the rotation axis of the cutting portion, the occurrence or increase of runout due to the provision of the grooves on the outer peripheral surface is made as much as possible. This prevents the runout from occurring.

あるいは、切削部の先端面に設けた複数の半径方向溝部は、その内径側で膨出部と連続し、その外径側で軸方向溝部と連続していてもよい。   Or the some radial direction groove part provided in the front end surface of the cutting part may be continued with the bulging part on the inner diameter side, and may be continued with the axial direction groove part on the outer diameter side.

上述した半径方向溝部や軸方向溝部は各々単独でも所定の冷却液等の排出作用を有するが、上記のように、半径方向溝部を膨出部および軸方向溝部と連続させるようにすることで、膨出部とコアとの隙間を通じてドリル先端に供給された冷却液等を半径方向溝部、そして軸方向溝部を通じてドリル基端側にスムーズかつ確実に排出することができる。これにより多量の切削液を供給しながら穿孔加工を施すことができ、冷却効率や切削効率の更なる向上を図ることができる。   Each of the above-described radial groove portion and axial groove portion has a discharge action of a predetermined coolant or the like alone, but as described above, by making the radial groove portion continuous with the bulging portion and the axial groove portion, The coolant supplied to the drill tip through the gap between the bulge and the core can be discharged smoothly and reliably to the drill base end through the radial groove and the axial groove. Accordingly, drilling can be performed while supplying a large amount of cutting fluid, and cooling efficiency and cutting efficiency can be further improved.

また、本発明に係るコアドリルは、ガラス板に穿孔形成される貫通孔の内径が1mm以上かつ5mm以下となるものであってもよい。小径の孔開け加工では、コアドリル自体も細くなるため相対的に芯振れを生じやすく、ドリルの剛性を高めるのにも限界があるが、本発明に係るコアドリルであれば、ガラス板の端面に対して垂直に荷重が作用する向きに穿孔加工を施す限りにおいて芯振れを防止し、もしくは芯振れをできる限り小さくすることができる。また、膨出部とコアとの間の空間を利用して冷却液等の供給も円滑に行い得る。以上より、比較的小径の貫通孔であっても、平滑で面精度の良好な貫通孔をガラス板に穿孔形成することができる。   In the core drill according to the present invention, the inner diameter of the through hole formed in the glass plate may be 1 mm or more and 5 mm or less. In the small-diameter drilling process, the core drill itself is also thin and relatively easy to cause core runout, and there is a limit to increasing the rigidity of the drill, but with the core drill according to the present invention, the end face of the glass plate As long as the drilling is performed in the direction in which the load acts vertically, the runout can be prevented or the runout can be minimized. In addition, the coolant and the like can be smoothly supplied using the space between the bulging portion and the core. As mentioned above, even if it is a through-hole of a comparatively small diameter, the through-hole with a smooth and favorable surface accuracy can be perforated and formed in a glass plate.

また、前記課題の解決は、本発明に係るガラス板の孔開け方法によっても達成される。すなわち、この孔開け方法は、コアドリルの先端に設けた切削部でガラス板に所定の孔開け加工を施す方法において、切削部の内周面は、任意の軸直交断面で見た場合に内周面の最小径部と接する仮想内接円から外径側に膨出する形状を呈する複数の膨出部を有すると共に、複数の膨出部は何れも、切削部の回転軸まわりに対称となるように配置されている点をもって特徴づけられる。   Moreover, the solution of the above-mentioned problem is also achieved by the glass plate perforating method according to the present invention. That is, this drilling method is a method in which a predetermined drilling process is performed on the glass plate with a cutting part provided at the tip of the core drill. The inner peripheral surface of the cutting part is an inner periphery when viewed in an arbitrary cross section perpendicular to the axis. It has a plurality of bulging portions that have a shape that bulges from the virtual inscribed circle that contacts the smallest diameter portion of the surface to the outer diameter side, and the plurality of bulging portions are all symmetric about the rotation axis of the cutting portion It is characterized by the points arranged as follows.

上記の孔開け方法についても、本欄の冒頭で述べたコアドリルと同一の技術的特徴を有することから、上記コアドリルによる作用効果と同一の作用効果を得ることができる。   The above-described drilling method also has the same technical characteristics as the core drill described at the beginning of this section, so that the same effect as the effect of the core drill can be obtained.

以上のように、本発明に係るコアドリルおよびこのドリルを用いたガラス板の孔開け方法によれば、コアドリルを用いたガラス板の穿孔加工において、ドリル先端への冷却液の円滑な供給を可能としつつも、芯振れ又は芯振れに起因する加工精度の低下を可及的に防止して、貫通孔を精度よく形成することができる。   As described above, according to the core drill according to the present invention and the method for drilling a glass plate using the drill, in the drilling process of the glass plate using the core drill, the coolant can be smoothly supplied to the tip of the drill. However, the through-hole can be formed with high accuracy by preventing as much as possible the deterioration of the processing accuracy due to the core runout or the runout.

本発明の第1実施形態に係るコアドリルの軸直交断面図である。It is an axis orthogonal sectional view of a core drill concerning a 1st embodiment of the present invention. (a)〜(d)はそれぞれ、本発明に係るコアドリルを用いたガラス板の孔開け方法の一実施形態であって、図1に示すコアドリルを用いたガラス板の孔開け加工のうち先行ドリルによる穿孔作業の概要を時系列順に示す断面図である。(A)-(d) is each one Embodiment of the drilling method of the glass plate using the core drill which concerns on this invention, Comprising: Of the drilling processing of the glass plate using the core drill shown in FIG. It is sectional drawing which shows the outline | summary of the drilling operation | work by chronological order. (a)〜(c)はそれぞれ、図1に示すコアドリルを用いたガラス板の孔開け加工のうち後行ドリルによる穿孔作業の概要を時系列順に示す断面図である。(A)-(c) is sectional drawing which shows the outline | summary of the drilling | boring operation | work by a subsequent drill among the drilling processes of the glass plate using the core drill shown in FIG. 1, respectively. 本発明の第2実施形態に係るコアドリルの軸直交断面図である。It is an axis orthogonal sectional view of a core drill concerning a 2nd embodiment of the present invention. 本発明の第3実施形態に係るコアドリルの含軸断面図である。It is a shaft-containing sectional view of a core drill according to a third embodiment of the present invention. 図5に示すコアドリルの軸直交断面図である。It is an axial orthogonal sectional view of the core drill shown in FIG. 図5に示すコアドリルのドリル先端側から見た平面図である。It is the top view seen from the drill front end side of the core drill shown in FIG. 本発明の第4実施形態に係るコアドリルのドリル先端側から見た平面図である。It is the top view seen from the drill front end side of the core drill which concerns on 4th Embodiment of this invention. 従来のコアドリルの軸直交断面図である。It is an axial orthogonal cross section of the conventional core drill. 従来のコアドリルの軸直交断面図である。It is an axial orthogonal cross section of the conventional core drill.

以下、本発明の実施形態を図1〜図8に基づき説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1は、本発明の第1実施形態に係るコアドリル10の軸直交断面図を示している。このコアドリル10は概して筒状をなすもので、例えばコアドリル10のベースとなる金属製基体の表面にダイヤモンド砥粒やCBN砥粒などの研削用砥粒を適当な固着材で固着することで、その先端側を切削部として使用できるようにしたものである。   FIG. 1 shows an axial orthogonal cross-sectional view of a core drill 10 according to a first embodiment of the present invention. The core drill 10 has a generally cylindrical shape. For example, the abrasive grains such as diamond abrasive grains and CBN abrasive grains are fixed to the surface of a metal base serving as a base of the core drill 10 with an appropriate fixing material. The tip side can be used as a cutting part.

ここでコアドリル10(の切削部)の断面形状に着目すると、コアドリル10の外周面11は断面真円形状を呈し、その中心Oはコアドリル10の回転軸上にある。また、コアドリル10の内周面12は、図1に示すように、コアドリル10の回転軸に直交する軸直交断面で見た場合に内周面12の最小径部14と接する仮想内接円13(図1中、1点鎖線で示す円)から外径側に膨出した形状を呈する、複数の膨出部15を有している。そして、これら複数の膨出部15は何れも、コアドリル10の回転軸まわりに対称となるように配置されている。   Here, when attention is paid to the cross-sectional shape of the core drill 10 (the cutting portion thereof), the outer peripheral surface 11 of the core drill 10 has a perfectly circular cross-section, and its center O is on the rotation axis of the core drill 10. Further, as shown in FIG. 1, the inner peripheral surface 12 of the core drill 10 has a virtual inscribed circle 13 that is in contact with the minimum diameter portion 14 of the inner peripheral surface 12 when viewed in an axis orthogonal cross section orthogonal to the rotation axis of the core drill 10. It has a plurality of bulging portions 15 that have a shape bulging from the outer diameter side (circle shown by a one-dot chain line in FIG. 1). The plurality of bulging portions 15 are all arranged symmetrically around the rotation axis of the core drill 10.

この実施形態では、内周面12は、いわゆる「ダルマ形」の断面形状を呈しており、2つの膨出部15は共に断面円弧状を成すと共に、何れも回転軸まわりに180°対称となるように、回転軸を挟んで正対する位置に配置されている。また、これら2つの膨出部15は互いに円周方向端で連続した形状を呈しており、これら膨出部15,15で内周面12が構成されている。この場合、2つの膨出部15,15間で連続する部分(つながっている部分)が内周面12の最小径部14となり、最小径部14が2箇所にかつ回転軸を挟んで正対する位置に形成される(図1を参照)。この実施形態では、最小径部14は何れも、断面円弧状を成す2つの膨出部15を断面R部で滑らかにつないだ形態を有している。後述する第2実施形態における最小径部24についても同様の形態を有している。   In this embodiment, the inner peripheral surface 12 has a so-called “Dharma-shaped” cross-sectional shape, and the two bulging portions 15 both have a circular arc cross-section, and both are symmetrical about the rotation axis by 180 °. Thus, it arrange | positions in the position which opposes on both sides of a rotating shaft. Moreover, these two bulging parts 15 are exhibiting the shape which continued mutually in the circumferential direction end, and the inner peripheral surface 12 is comprised by these bulging parts 15 and 15. FIG. In this case, the continuous part (connected part) between the two bulging parts 15 and 15 becomes the minimum diameter part 14 of the inner peripheral surface 12, and the minimum diameter part 14 faces two places across the rotating shaft. Formed in position (see FIG. 1). In this embodiment, each of the minimum diameter portions 14 has a form in which two bulging portions 15 having an arcuate cross section are smoothly connected by a cross section R. The minimum diameter portion 24 in the second embodiment to be described later has a similar form.

上記断面形状を呈するコアドリル10は、例えば下記の態様でガラス板の孔開け方法に用いられる。以下、本発明に係るコアドリルを用いたガラス板の孔開け方法の一実施形態を、PDP用のガラス基板に排気孔としての貫通孔を形成する場合を例にとって説明する。なお、以下の説明における『上下』方向は、単に各図における要素間の位置関係を容易に理解するために規定したに過ぎない。よって、以下に述べるコアドリルの設置方向や使用態様、あるいはガラス板の設置方向を特定するものではない。   The core drill 10 having the above-described cross-sectional shape is used in a method for punching a glass plate in the following manner, for example. Hereinafter, an embodiment of a method for drilling a glass plate using a core drill according to the present invention will be described by taking as an example the case of forming a through hole as an exhaust hole in a glass substrate for PDP. Note that the “up and down” direction in the following description is merely defined for easy understanding of the positional relationship between elements in each drawing. Therefore, it does not specify the installation direction or use mode of the core drill described below or the installation direction of the glass plate.

図2および図3は、図1に示すコアドリル10を用いたガラス板の孔開け方法の概要を示している。これらの図に係る孔開け方法は、ガラス板16の下端面の側から切削を伴い先行ドリルとしてのコアドリル10を厚み方向に侵入させて有底孔18を形成した後にコアドリル10を後退させ、然る後、ガラス板16の上端面の側から切削を伴い後行ドリルとしてのコアドリル10を先行ドリルと同軸に侵入させることでガラス板16に貫通孔19を形成するものである。このうち、図2は、上記孔開け加工の中の先行ドリルによる穿孔作業の概要を(a)から(d)の時系列順に示した断面図である。また、図2では、コアドリル10を、図1のA−A断面で見た場合の含軸断面図として示している。   2 and 3 show an outline of a method for punching a glass plate using the core drill 10 shown in FIG. In the drilling method according to these drawings, the core drill 10 as a preceding drill is inserted in the thickness direction by cutting from the lower end surface side of the glass plate 16 to form the bottomed hole 18, and then the core drill 10 is moved backward. After that, a through hole 19 is formed in the glass plate 16 by cutting the core drill 10 as a subsequent drill into the same direction as the preceding drill with cutting from the upper end surface side of the glass plate 16. Among these, FIG. 2 is sectional drawing which showed the outline | summary of the drilling operation | work by the preceding drill in the said drilling process in order of the time series from (a) to (d). Moreover, in FIG. 2, the core drill 10 is shown as a shaft-containing cross-sectional view when seen in the AA cross section of FIG.

ここで、先行ドリルおよび後行ドリルとして用いられるコアドリル10は、ガラス板16を挟んで互いに正対した状態で同軸に配置されている。また、双方のコアドリル10は、互いに独立して上下動および回転駆動できるように構成されている。   Here, the core drill 10 used as the leading drill and the trailing drill is coaxially arranged in a state of facing each other across the glass plate 16. Further, both core drills 10 are configured to be able to move up and down and rotate independently of each other.

次に、2つのコアドリル10(先行ドリルと後行ドリル)を使用して、ガラス板に貫通孔を形成する手順を図2および図3に基づき説明する。   Next, a procedure for forming a through-hole in a glass plate using two core drills 10 (preceding drill and following drill) will be described with reference to FIGS.

まず、図2(a)に示すように、水平姿勢にあるガラス板16の下方に配置した先行ドリルとしてのコアドリル10を回転を伴って上昇させることにより、コアドリル10をガラス板16の下端面の側から切削を伴って厚み方向に侵入させていく。この際、コアドリル10の中空孔となる内周面12の内部を通じて切削箇所となるコアドリル10の先端に水等の冷却液を供給しながら、コアドリル10をガラス板16に侵入させていく。そして、コアドリル10の先端がガラス板16の下端面に当接した後も、引き続きコアドリル10の上昇動作を続けることで、図2(b)に示すように、切削部となるコアドリル10の先端側がガラス板16の下端面に対して垂直に切込んでいく。これにより、ガラス板16の下端面側にコアドリル10による円筒状の切込み領域が生成されていくと同時に、当該切込み領域の内側に、図2(b)に示す柱状のコア17が生成されていく。   First, as shown in FIG. 2 (a), the core drill 10 as a preceding drill disposed below the glass plate 16 in a horizontal posture is raised with rotation, whereby the core drill 10 is moved to the lower end surface of the glass plate 16. It penetrates in the thickness direction with cutting from the side. At this time, the core drill 10 is allowed to enter the glass plate 16 while supplying a coolant such as water to the tip of the core drill 10 that is a cutting point through the inner peripheral surface 12 that is a hollow hole of the core drill 10. And even after the front-end | tip of the core drill 10 contact | abuts to the lower end surface of the glass plate 16, as shown in FIG.2 (b), the front end side of the core-drill 10 used as a cutting part is continued by continuing the raise operation | movement of the core drill 10. The glass plate 16 is cut perpendicularly to the lower end surface. Thereby, a cylindrical incision region by the core drill 10 is generated on the lower end surface side of the glass plate 16, and at the same time, a columnar core 17 shown in FIG. 2B is generated inside the incision region. .

この際、内周面12を構成する2つの膨出部15は何れも、コアドリル10の回転軸まわりに180°対称となるように配置されているので、膨出部15を設けたことによりコアドリル10の肉厚にばらつきが生じても、このばらつきに起因して生じる半径方向の力F(図10を参照)は相殺される。よって、コアドリル10の芯振れ、特に切削部となるドリル先端側の振れを抑制した状態で上記穿孔作業を続けることができる。また、上述のように2つの膨出部15を配置することで、コアドリル10全体の重心をその回転軸になるべく近づけることができ、これによっても、コアドリル10の芯振れを抑制することができる。   At this time, since the two bulging portions 15 constituting the inner peripheral surface 12 are arranged so as to be 180 ° symmetrical about the rotation axis of the core drill 10, the core drill is provided by providing the bulging portion 15. Even if the thickness of 10 varies, the radial force F (see FIG. 10) caused by the variation is canceled out. Therefore, the drilling operation can be continued in a state in which the core runout of the core drill 10, particularly the runout on the drill tip side serving as a cutting portion is suppressed. Moreover, by arranging the two bulging portions 15 as described above, the center of gravity of the entire core drill 10 can be made as close as possible to the rotation axis thereof, and thereby the core runout of the core drill 10 can be suppressed.

また、この際、コア17の外周は主にコアドリル10の内周面12の最小径部14で切削形成されることになるため、コア17の外径は、図1に示す仮想内接円13の半径寸法に等しい。よって、切削動作中のコアドリル10の内周面12とコア17の外周面との間には、最大で膨出部15の最大内径とコア17の外径との差の分の半径方向隙間が空くことになる。そのため、上記のように冷却液をコアドリル10の先端に供給しながら穿孔加工を行う場合には、上記膨出部15とコア17との隙間を通じて潤沢な冷却液が切削箇所となるコアドリル10の先端に供給される。これにより、コアドリル10の切削部における冷却効率ないし切削効率を高めて、その高寿命化を図ることができる。また、冷却効率や切削効率を高めることができる分、コアドリル10の回転数ないし切込み速度を高めることができる。   At this time, since the outer periphery of the core 17 is mainly formed by cutting at the minimum diameter portion 14 of the inner peripheral surface 12 of the core drill 10, the outer diameter of the core 17 is the virtual inscribed circle 13 shown in FIG. Equal to the radial dimension of Therefore, a radial clearance corresponding to the difference between the maximum inner diameter of the bulging portion 15 and the outer diameter of the core 17 is between the inner peripheral surface 12 of the core drill 10 and the outer peripheral surface of the core 17 during the cutting operation. It will be empty. Therefore, when drilling is performed while supplying the coolant to the tip of the core drill 10 as described above, the tip of the core drill 10 where abundant coolant becomes a cutting point through the gap between the bulging portion 15 and the core 17. To be supplied. Thereby, the cooling efficiency in the cutting part of the core drill 10 thru | or the cutting efficiency can be improved, and the lifetime improvement can be achieved. Further, since the cooling efficiency and the cutting efficiency can be increased, the rotational speed or cutting speed of the core drill 10 can be increased.

なお、この実施形態のように、コアドリル10の回転軸まわりに180°対称となる位置に2つの最小径部14が形成される場合、これら軸方向に伸びる最小径部14,14でコア17を2点支持した状態で穿孔作業が行われることになる。そのため、コアドリル10に作用する切削抵抗をなるべく減らした状態で穿孔作業を行うことができ、これにより加工精度をさらに向上させることできる。また、180°間隔でコア17と接触することになるため、膨出部15とコア17との間に相応の隙間が生じる場合であっても、コアドリル10の姿勢を安定させることができ、上記の穿孔作業を精度よく行うことが可能となる。   In the case where two minimum diameter portions 14 are formed at positions that are 180 ° symmetrical about the rotation axis of the core drill 10 as in this embodiment, the core 17 is formed by the minimum diameter portions 14 and 14 extending in the axial direction. The drilling operation is performed with two points supported. Therefore, it is possible to perform the drilling operation with the cutting resistance acting on the core drill 10 reduced as much as possible, thereby further improving the processing accuracy. Moreover, since it contacts with the core 17 at intervals of 180 °, even when a corresponding gap is generated between the bulging portion 15 and the core 17, the posture of the core drill 10 can be stabilized. It is possible to perform the drilling operation with high accuracy.

そして、図2(c)に示すように、ガラス板16の上端面の側に所定の厚み寸法分だけ残した状態でコアドリル10がガラス板16の軸方向中間位置まで侵入した時点で、コアドリル10の上昇を停止する。そして、この状態から、コアドリル10の下降動作を開始し、図2(d)に示すように、ガラス板16からコアドリル10を抜き出して同図に示す退避位置まで移動させる。これにより、ガラス板16には、コアドリル10の形状に倣って略筒状をなし、下方のみが開口する非貫通状態の有底孔18が形成されると共に、その中央には有底孔18の深さに等しい高さのコア17が残るようになっている。   Then, as shown in FIG. 2 (c), when the core drill 10 has entered the intermediate position in the axial direction of the glass plate 16 while leaving a predetermined thickness dimension on the upper end surface side of the glass plate 16, the core drill 10 Stop rising. Then, the descending operation of the core drill 10 is started from this state, and as shown in FIG. 2D, the core drill 10 is extracted from the glass plate 16 and moved to the retracted position shown in FIG. As a result, the glass plate 16 is formed in a substantially cylindrical shape following the shape of the core drill 10 and is formed with a bottomed hole 18 in a non-penetrating state in which only the lower part is opened. A core 17 having a height equal to the depth remains.

次に、図3(a)に示すように、ガラス板16の上方に配置した後行ドリルとしてのコアドリル10を回転を伴って下降させることにより、コアドリル10をガラス板16の上端面の側から切削を伴って厚み方向に侵入させていく。この場合、ガラス板16の上方に配置したコアドリル10を、先に穿孔を行った下方側のコアドリル10(先行ドリル)とその軸心を合わせた状態で配置しているので、ガラス板16に既に形成されている有底孔18の軸心と後行ドリル(コアドリル10)の軸心とが一致した状態で後述する穿孔作業が実施される。そして、後行ドリルとしてのコアドリル10の先端がガラス板16の上端面に当接した後も、引き続きコアドリル10の下降動作を続けることで、切削部となるコアドリル10の先端側がガラス板16の上端面に対して垂直に切込んでいく。これにより、ガラス板16の上端面側にコアドリル10による切込み領域が生成されていくと同時に、当該切込み領域の内側に、図3(a)に示す柱状のコア17が生成されていく。   Next, as shown in FIG. 3 (a), the core drill 10 is lowered from the upper end surface side of the glass plate 16 by lowering the core drill 10 as a subsequent drill disposed above the glass plate 16 with rotation. It penetrates in the thickness direction with cutting. In this case, since the core drill 10 arranged above the glass plate 16 is arranged in a state where the lower core drill 10 previously drilled (preceding drill) and its axis are aligned, the glass plate 16 has already been aligned. A drilling operation to be described later is performed in a state where the axis of the formed bottomed hole 18 and the axis of the subsequent drill (core drill 10) coincide with each other. And even after the front-end | tip of the core drill 10 as a subsequent drill contact | abuts to the upper end surface of the glass plate 16, the front-end side of the core drill 10 used as a cutting part continues on the glass plate 16 by continuing the downward movement of the core drill 10. Cut vertically to the end face. Thereby, the cutting area | region by the core drill 10 is produced | generated by the upper end surface side of the glass plate 16, and the columnar core 17 shown to Fig.3 (a) is produced | generated inside the said cutting area | region.

もちろん、この場合においても、内周面12を構成する2つの膨出部15は何れも、コアドリル10の回転軸まわりに180°対称となるように配置されているので、コアドリル10の芯振れを抑制した状態で上記穿孔作業を続けることができる。また、上記膨出部15とコア17との隙間を通じて潤沢な冷却液が切削箇所となるコアドリル10の先端側に供給されるので、コアドリル10の切削部における冷却効率ないし切削効率を高めて、その高寿命化を図ることができる。あるいは、コアドリル10の回転数ないし切込み速度を高めることができる。   Of course, also in this case, since the two bulging portions 15 constituting the inner peripheral surface 12 are both arranged 180 degrees symmetrical around the rotation axis of the core drill 10, the core runout of the core drill 10 is reduced. The drilling operation can be continued in a suppressed state. In addition, since abundant coolant is supplied to the distal end side of the core drill 10 serving as a cutting point through the gap between the bulging portion 15 and the core 17, the cooling efficiency or cutting efficiency in the cutting portion of the core drill 10 is increased, Long life can be achieved. Alternatively, the rotational speed or cutting speed of the core drill 10 can be increased.

そして、コアドリル10を下降させ続けてさらにガラス板16に侵入させていくことにより、図3(b)に示すように、コアドリル10で形成した有底孔18の底部となる部分が全て削り取られる。これにより、ガラス板16の厚み方向上下に伸びるコア17,17も除去され(ガラス板16本体と分離されて落下し)、内径寸法が一定の貫通孔19が形成される。そして、所定の厚み方向位置(図3(b)を参照)までコアドリル10を下降させた状態から、コアドリル10の上昇動作を開始し、図3(c)に示すように、ガラス板16からコアドリル10を抜き出して同図に示す退避位置まで移動させる。これにより、ガラス板16には、両端面に開口部を有する排気孔としての貫通孔19が形成される。また、貫通孔19の内周面が、その軸方向全領域にわたってコアドリル10によりその芯振れを抑制した状態でかつ切削部となるコアドリル10の先端に潤沢な冷却液等を供給した状態で研削されるので、貫通孔19の内周面が高精度に仕上げられる。   Then, by continuing to lower the core drill 10 and further entering the glass plate 16, as shown in FIG. 3B, all of the bottom portion of the bottomed hole 18 formed by the core drill 10 is scraped off. Thereby, the cores 17 and 17 extending vertically in the thickness direction of the glass plate 16 are also removed (separated from the glass plate 16 main body and dropped), and a through hole 19 having a constant inner diameter is formed. Then, from the state where the core drill 10 is lowered to a predetermined position in the thickness direction (see FIG. 3B), the core drill 10 starts to move upward, and as shown in FIG. 10 is extracted and moved to the retracted position shown in FIG. Thereby, the glass plate 16 is formed with through holes 19 as exhaust holes having openings on both end faces. Further, the inner peripheral surface of the through hole 19 is ground in a state where the core runout is suppressed by the core drill 10 over the entire axial direction region and a sufficient amount of cooling liquid is supplied to the tip of the core drill 10 serving as a cutting portion. Therefore, the inner peripheral surface of the through hole 19 is finished with high accuracy.

以上、本発明に係るコアドリルとこのドリルを用いたガラス板の孔開け方法の一実施形態を説明したが、これらは、上記例示の形態に限定されることなく、本発明の範囲内において任意の形態を採り得る。   In the above, one embodiment of the core drill according to the present invention and the method of drilling a glass plate using the drill has been described. However, these are not limited to the above-described exemplary forms, and are arbitrary within the scope of the present invention. It can take a form.

図4は、本発明の第2実施形態に係るコアドリル20の軸直交断面図を示している。このコアドリル20は、図4に示すように、コアドリル10の回転軸に直交する軸直交断面で見た場合に内周面22の最小径部24と接する仮想内接円23(図4中、1点鎖線で示す円)から外径側に膨出した形状を呈する、複数の膨出部25を有し、これら複数の膨出部25が何れも、コアドリル20の回転軸(外周面21の中心Oを通る)まわりに対称となるように配置されている点については、第1実施形態に係るコアドリル10と同じである。しかし、この実施形態では、膨出部25が何れも回転軸まわりに120°対称となるように、互いに等ピッチとなる円周方向位置に配置されている点で、第1実施形態に係るコアドリル20と相違する。   FIG. 4 shows a cross-sectional view perpendicular to the axis of the core drill 20 according to the second embodiment of the present invention. As shown in FIG. 4, the core drill 20 includes a virtual inscribed circle 23 that contacts the minimum diameter portion 24 of the inner peripheral surface 22 when viewed in an axial orthogonal section orthogonal to the rotation axis of the core drill 10 (1 in FIG. 4). It has a plurality of bulging portions 25 that exhibit a shape bulging from the outer diameter side from a circle indicated by a chain line, and each of the plurality of bulging portions 25 is the rotation axis of the core drill 20 (the center of the outer peripheral surface 21). It is the same as the core drill 10 according to the first embodiment in that it is arranged so as to be symmetrical around (through O). However, in this embodiment, the core drill according to the first embodiment is that the bulging portions 25 are arranged at circumferential positions at equal pitches so that all of the bulging portions 25 are symmetrical about the rotation axis. 20 and different.

このように、内周面22を構成する3つの膨出部25は何れも、コアドリル20の回転軸まわりに120°対称となるように配置されているので、膨出部25を設けたことによりコアドリル20の肉厚にばらつきが生じても、このばらつきに起因して生じる半径方向の力F(図10を参照)は相殺される。よって、第1実施形態に係るコアドリル10と同様、コアドリル20の芯振れ、特に切削部となるドリル先端側の振れを抑制した状態で図2および図3に示す孔開け方法を行うことが可能となる。また、上述のように3つの膨出部25を配置することで、コアドリル20全体の重心をその回転軸になるべく近づけることができ、これによっても、コアドリル20の芯振れを抑制することができる。   As described above, since the three bulging portions 25 constituting the inner peripheral surface 22 are all arranged so as to be symmetrical about 120 ° around the rotation axis of the core drill 20, the bulging portion 25 is provided. Even if the thickness of the core drill 20 varies, the radial force F (see FIG. 10) caused by the variation is canceled out. Therefore, similarly to the core drill 10 according to the first embodiment, the drilling method shown in FIGS. 2 and 3 can be performed in a state in which the core runout of the core drill 20, particularly the runout on the drill tip side serving as a cutting portion is suppressed. Become. Moreover, by arranging the three bulging portions 25 as described above, the center of gravity of the entire core drill 20 can be made as close as possible to the rotation axis thereof, and thereby the core runout of the core drill 20 can be suppressed.

また、図4に示すコアドリル20を用いて図2および図3に示す孔開け加工を行った場合、切削動作中のコアドリル20の内周面22と、コアドリル20の穿孔作業によりガラス板に生成されるコア17(図2および図3を参照)の外周面との間には、最大で膨出部25の最大内径とコア17の外径との差の分の半径方向隙間が空くことになる。そのため、第1実施形態と同様、上記膨出部25とコア17との隙間を通じて潤沢な冷却液を切削箇所となるコアドリル20の先端側に供給でき、コアドリル20の切削部における冷却効率ないし切削効率を高めることができる。また、冷却効率や切削効率を高めることができる分、コアドリル20の回転数ないし切込み速度を高めることができる。   Further, when the drilling shown in FIGS. 2 and 3 is performed using the core drill 20 shown in FIG. 4, it is generated on the glass plate by the inner peripheral surface 22 of the core drill 20 during the cutting operation and the drilling work of the core drill 20. A gap in the radial direction corresponding to the difference between the maximum inner diameter of the bulging portion 25 and the outer diameter of the core 17 is left between the outer peripheral surface of the core 17 (see FIGS. 2 and 3). . Therefore, as in the first embodiment, an abundant coolant can be supplied to the distal end side of the core drill 20 serving as a cutting location through the gap between the bulging portion 25 and the core 17, and cooling efficiency or cutting efficiency in the cutting portion of the core drill 20. Can be increased. Further, since the cooling efficiency and the cutting efficiency can be increased, the rotational speed or the cutting speed of the core drill 20 can be increased.

この実施形態では、また、3つの膨出部25は互いに円周方向端で連続した形状を呈しており、これら3つの膨出部25で内周面22が構成されている。この場合、3つの膨出部25,25,25間で連続する部分(つながっている部分)が内周面22の最小径部24となり、最小径部24が3箇所にかつ互いに120°ピッチとなる位置に形成される(図4を参照)。よって、このコアドリル20を用いてガラス板の孔開け加工を行った場合、これら軸方向に伸びる3つの最小径部24,24,24でコアを円周方向等間隔に3点支持した状態で穿孔作業が行われることになる。そのため、第1実施形態に比べて、より安定した姿勢を保った状態でコアドリル20による上記の穿孔作業を精度よく行うことが可能となる。   In this embodiment, the three bulging portions 25 have a shape that is continuous with each other at the circumferential ends, and the inner circumferential surface 22 is configured by these three bulging portions 25. In this case, a continuous portion (connected portion) between the three bulging portions 25, 25, 25 becomes the minimum diameter portion 24 of the inner peripheral surface 22, and the minimum diameter portions 24 are arranged at three positions and at a 120 ° pitch. (See FIG. 4). Therefore, when drilling a glass plate using this core drill 20, drilling is performed in a state where the core is supported at three points at equal intervals in the circumferential direction by these three minimum diameter portions 24, 24, 24 extending in the axial direction. Work will be done. Therefore, compared with 1st Embodiment, it becomes possible to perform said drilling operation | work by the core drill 20 with a sufficient state in the state which maintained the more stable attitude | position.

もちろん、複数の膨出部15,25は何れも、コアドリル10,20の回転軸まわりに対称となるように配置される限りにおいて、その形状や数は任意である。何れも図示は省略するが、4個以上の膨出部15,25を内周面12,22に設けてもよく、また、断面円弧状以外の形状を呈する膨出部15,25を内周面12,22に設けてもよい。例えば、2つの膨出部15をともに楕円弧形状とし、双方の膨出部15,15を滑らかにつないだ形態を採ることも可能である。この場合、双方の膨出部15,15で1つの楕円形状を構成し、すなわち内周面12が断面楕円形状を呈する。また、複数の膨出部15,25が円周方向に断続的に配置するようにしてもよい。この場合、複数の膨出部15,25の間が、仮想内接円13,23と同じ径寸法を有する真円状の円弧面でつながった断面形状を呈する。ただし、上記何れの形態を採る場合であっても、冷却液等のドリル先端側への円滑な供給ないし潤沢な供給を確保できる程度に、膨出部15,25が仮想内接円13,23から外径側に所定量だけ膨出した断面形状を呈することが肝要である。   Of course, as long as the plurality of bulging portions 15 and 25 are arranged so as to be symmetrical around the rotation axis of the core drills 10 and 20, the shape and number thereof are arbitrary. Although not shown in the drawings, four or more bulging portions 15 and 25 may be provided on the inner peripheral surfaces 12 and 22, and the bulging portions 15 and 25 having a shape other than an arcuate cross section are provided on the inner peripheral surface. It may be provided on the surfaces 12 and 22. For example, it is possible to adopt a form in which the two bulging portions 15 are both elliptical arc shapes and the bulging portions 15 and 15 are both smoothly connected. In this case, both the bulging portions 15 and 15 form one elliptical shape, that is, the inner peripheral surface 12 has a cross-sectional elliptical shape. Moreover, you may make it arrange the some bulging parts 15 and 25 intermittently in the circumferential direction. In this case, a cross-sectional shape in which the plurality of bulging portions 15 and 25 are connected by a perfect circular arc surface having the same diameter as the virtual inscribed circles 13 and 23 is exhibited. However, in any of the above-described forms, the bulging portions 15 and 25 have virtual inscribed circles 13 and 23 to the extent that smooth supply or abundant supply of coolant or the like to the drill tip side can be ensured. It is important to exhibit a cross-sectional shape bulging by a predetermined amount from the outer diameter side to the outer diameter side.

また、潤沢な冷却液等のドリル先端への供給を考慮した場合、例えば図5に示す形態(第3実施形態)を採ることも可能である。この図に示すコアドリル30は、上記第1実施形態で説明したコアドリル10に、さらに冷却液等の排出用の溝部を設けたものである。詳述すると、図5に示すコアドリル30は、その先端面に、半径方向に伸びて内周面12とその内径端で連続し、かつ外周面11とその外径端で連続する複数の半径方向溝部31を有している。また、この図示例では、半径方向溝部31に加えて、軸方向に伸びる複数の軸方向溝部32を外周面11に有している。なお、この実施形態では、軸方向溝部32は、図6に示すように、軸方向に沿って一定の断面形状(断面円弧形状)を呈している。半径方向溝部31についても、図示は省略するが、半径方向に沿って一定の断面形状(断面円弧形状)を呈している。   In addition, when supply of abundant coolant or the like to the drill tip is taken into account, for example, the form shown in FIG. 5 (third embodiment) can be adopted. The core drill 30 shown in this figure is obtained by further providing a groove for discharging coolant or the like in the core drill 10 described in the first embodiment. More specifically, the core drill 30 shown in FIG. 5 has a plurality of radial directions extending radially at its distal end surface and continuing at the inner circumferential surface 12 and its inner diameter end and continuing at the outer circumferential surface 11 and its outer diameter end. A groove 31 is provided. In the illustrated example, in addition to the radial groove 31, the outer peripheral surface 11 has a plurality of axial grooves 32 extending in the axial direction. In this embodiment, as shown in FIG. 6, the axial groove 32 has a constant cross-sectional shape (cross-sectional arc shape) along the axial direction. The radial groove 31 also has a constant cross-sectional shape (cross-sectional arc shape) along the radial direction, although illustration is omitted.

このようにして半径方向溝部31や軸方向溝部32を設けることにより、コアドリル30の中空孔(内周面12内部)を通じて、穿孔作業時には、膨出部15とコア17(図2を参照)との隙間を通じてドリル先端側へと供給された冷却液等を、半径方向溝部31や軸方向溝部32を通じてコアドリル30の外側およびドリル基端側へと排出することができる。よって、コアドリル30の冷却効率ないし切削効率をさらに高めることができる。また、この実施形態では、膨出部15と同数の半径方向溝部31および軸方向溝部32を設けると共に、各々の半径方向溝部31を、その内径端で膨出部15と連続させ、かつその外径端で軸方向溝部32と連続させるようにしているので、上記の排出作用をより一層高めることができる。   By providing the radial groove portion 31 and the axial groove portion 32 in this way, the bulging portion 15 and the core 17 (see FIG. 2) are formed during drilling through the hollow hole (inside the inner peripheral surface 12) of the core drill 30. The coolant or the like supplied to the drill distal end through the gap can be discharged to the outside of the core drill 30 and the drill proximal end through the radial groove 31 and the axial groove 32. Therefore, the cooling efficiency or cutting efficiency of the core drill 30 can be further increased. Further, in this embodiment, the same number of radial grooves 31 and axial grooves 32 as the bulging portions 15 are provided, and each radial groove 31 is connected to the bulging portion 15 at the inner diameter end thereof, and outside thereof. Since it is made to continue with the axial direction groove part 32 at a diameter end, said discharge | emission action can be improved further.

加えて、この実施形態では、図6や図7に示すように、形状・寸法ともに等しい複数(2つ)の半径方向溝部31を何れもコアドリル30の回転軸まわりに対称となるように配置しているので、半径方向溝部31を設けたことによりコアドリル30の回転精度(芯振れの程度)に悪影響が及ぶ事態を可及的に回避して、加工精度を確保することができる。軸方向溝部32に関しても、同様に、形状・寸法ともに等しい複数(2つ)の軸方向溝部32を何れもコアドリル30の回転軸まわりに対称となるように配置しているので、軸方向溝部32を設けたことによりコアドリル30の回転精度に悪影響が及ぶ事態を可及的に回避して、加工精度を確保することができる。   In addition, in this embodiment, as shown in FIGS. 6 and 7, a plurality (two) of radial grooves 31 having the same shape and dimensions are arranged so as to be symmetrical around the rotation axis of the core drill 30. Therefore, by providing the radial groove 31, it is possible to avoid as much as possible a situation in which the rotational accuracy (the degree of runout) of the core drill 30 is adversely affected, and to ensure machining accuracy. Similarly, with respect to the axial groove 32, a plurality of (two) axial grooves 32 having the same shape and size are all arranged symmetrically around the rotation axis of the core drill 30. By providing as much as possible, a situation in which the rotational accuracy of the core drill 30 is adversely affected is avoided as much as possible, and the processing accuracy can be ensured.

また、上記の半径方向溝部31や軸方向溝部32は、膨出部の形態や数によらずコアドリルに適用することができる。図8は、本発明の第4実施形態に係るコアドリルをドリル先端から見た平面図を示している。この図に示すコアドリル40は、第2実施形態に係るコアドリル20に、膨出部25と同数の半径方向溝部41および軸方向溝部42を設けたものである。よって、このコアドリル40によれば、第2実施形態に係るコアドリル20により得られる作用効果に加えて、上記第3実施形態で述べた作用効果を享受することができる。   Moreover, said radial direction groove part 31 and axial direction groove part 32 are applicable to a core drill irrespective of the form and number of bulging parts. FIG. 8: has shown the top view which looked at the core drill which concerns on 4th Embodiment of this invention from the drill front-end | tip. The core drill 40 shown in this figure is obtained by providing the core drill 20 according to the second embodiment with the same number of radial grooves 41 and axial grooves 42 as the bulging portions 25. Therefore, according to the core drill 40, in addition to the operational effects obtained by the core drill 20 according to the second embodiment, the operational effects described in the third embodiment can be enjoyed.

もちろん、上記半径方向溝部31,41や軸方向溝部32,42の配設態様は上記形態に限られない。冷却液の排出に支障がない限りにおいて、半径方向溝部31,41が膨出部15,25、あるいは軸方向溝部32,42と連続していなくても構わない。また、上記半径方向溝部31,41や軸方向溝部32,42がコアドリル10,20の芯振れの程度に与える影響は、膨出部15,25に比べれば小さいので、上記溝部31,32,41,42は必ずしもコアドリル10,20の回転軸まわりに対称となるように配置しなくてもよい。また、このことから、上記半径方向溝部31,41や軸方向溝部32,42の数は複数に限られない(1つのみでもよい)。   Of course, the arrangement | positioning aspect of the said radial direction groove parts 31 and 41 and the axial direction groove parts 32 and 42 is not restricted to the said form. As long as there is no hindrance to the discharge of the coolant, the radial groove portions 31 and 41 may not be continuous with the bulging portions 15 and 25 or the axial groove portions 32 and 42. Further, the influence of the radial groove portions 31 and 41 and the axial groove portions 32 and 42 on the degree of runout of the core drills 10 and 20 is smaller than that of the bulging portions 15 and 25. , 42 are not necessarily arranged so as to be symmetrical around the rotation axis of the core drills 10,20. From this, the number of the radial groove portions 31 and 41 and the axial groove portions 32 and 42 is not limited to a plurality (only one may be used).

以上のコアドリル10,20に関する構成については、コアドリル10,20の軸方向全長にわたって設けられている必要はなく、少なくとも、切削部となるドリル先端からコア17の高さ(切削深さ)分までの軸方向領域に設けられていればよい。   About the structure regarding the above core drills 10 and 20, it is not necessary to be provided over the axial direction full length of the core drills 10 and 20, and from the drill tip used as a cutting part to the height (cutting depth) of the core 17 at least. What is necessary is just to be provided in the axial direction area | region.

また、以上の説明では、本発明に係るガラス板の孔開け方法として、2つのコアドリル10を用いてガラス板16に貫通孔19を形成する場合を例示したが、もちろん上記以外の孔開け方法にも本発明に係るコアドリル10を適用することができる。例えば、先行ドリルにのみ本発明に係るコアドリル10を用い、後行ドリルに他のコアドリルを用いても構わない。あるいは、1個のコアドリル10を用いて、1度の穿孔作業でガラス板16の一端面側から他端面側に貫通する貫通孔を形成するようにしても構わない。   Moreover, in the above description, although the case where the through-hole 19 was formed in the glass plate 16 using the two core drills 10 was illustrated as a method for perforating the glass plate according to the present invention, of course, other than the above-described perforation methods. Also, the core drill 10 according to the present invention can be applied. For example, the core drill 10 according to the present invention may be used only for the preceding drill, and another core drill may be used for the subsequent drill. Or you may make it form the through-hole penetrated from the one end surface side of the glass plate 16 to the other end surface side by one drilling operation using one core drill 10.

また、以上の説明では、PDP用のガラス基板に排気孔としての貫通孔を形成する場合に本発明を適用したが、これ以外に、FED用或いはELD用のガラス基板に貫通孔を形成する場合にも同様にして本発明を適用することができる。また、本発明に係るコアドリルであれば、優れた冷却効果と芯振れ抑制効果により高い加工精度を発揮し得ることから、上記した好適な範囲(1mm以上かつ5mm以下)を外れる厚みを有するガラス板に本発明を適用できることは言うまでもない。   In the above description, the present invention is applied to the case where a through hole as an exhaust hole is formed in a glass substrate for PDP. However, in the case where a through hole is formed in a glass substrate for FED or ELD in addition to this, The present invention can also be applied to the same. Moreover, if it is a core drill which concerns on this invention, since a high processing precision can be exhibited by the outstanding cooling effect and a core runout suppression effect, the glass plate which has the thickness which remove | deviates from the above suitable range (1 mm or more and 5 mm or less) Needless to say, the present invention can be applied.

また、上記以外の事項についても、本発明の技術的意義を没却しない限りにおいて他の具体的形態を採り得ることはもちろんである。   Of course, other specific forms can be adopted for matters other than the above as long as the technical significance of the present invention is not lost.

本発明の効果を確認すべく、以下に示す試験ならびにその検討を行った。本発明に係るコアドリル(実施例)、および、従来のコアドリル(比較例)をそれぞれ用いてガラス板に貫通孔を形成し、その際の板厚方向への研削速度(切込み速度)の違いが芯振れ量に影響する度合いを検証した。先に共通する項目を説明する。まず、貫通孔を形成するガラス板には、横寸法が500mmで縦寸法が600mmであり且つ厚みが1.8mmのPDP用のガラス基板を、それぞれ50枚ずつ用意した。そして、後述する形状、寸法を有するコアドリルを用いて上記ガラス板に排気孔となる貫通孔を形成した。何れも穿孔作業については、まずコアドリルをガラス基板の下面側から一定量(例えば厚み寸法の70%)侵入させて切り込んだ後、上面側からコアドリルを侵入させて貫通させることにより貫通孔を形成するようにした。この際、板厚方向への研削速度(切込み速度)を0.1mm/minから0.2mm/min刻みで1.1mm/minまで段階的に上げていき、各々の場合について上記ガラス板に貫通孔を穿孔形成した。コアドリルの回転数については同一とした。   In order to confirm the effect of the present invention, the following tests and examinations were conducted. Through holes are formed in a glass plate using the core drill according to the present invention (Example) and a conventional core drill (Comparative Example), respectively, and the difference in grinding speed (cutting speed) in the thickness direction at that time is the core. The degree of influence on the shake amount was verified. The common items will be described first. First, 50 glass substrates for PDP each having a horizontal dimension of 500 mm, a vertical dimension of 600 mm, and a thickness of 1.8 mm were prepared for the glass plates forming the through holes. And the through-hole used as an exhaust hole was formed in the said glass plate using the core drill which has the shape and dimension mentioned later. In any of the drilling operations, first, a core drill is inserted from a lower surface side of the glass substrate by a certain amount (for example, 70% of the thickness dimension) and then cut, and then the core drill is inserted from the upper surface side and penetrated to form a through hole. I did it. At this time, the grinding speed (cutting speed) in the thickness direction is gradually increased from 0.1 mm / min to 1.1 mm / min in increments of 0.2 mm / min, and in each case, the glass plate is penetrated. Holes were drilled. The number of rotations of the core drill was the same.

ここで、実施例に係るコアドリルには、図1に示す形状のコアドリルを使用した。また、比較例に係るコアドリルには、図10に示す形状のコアドリルを使用した。外径は2.0mmである。また、内周面の最小径(仮想内接円の直径)は0.35mm、膨出部の仮想内接円からの最大膨出量は0.65mmとした。これに対して、従来例に係るコアドリルには、図10に示すように、内周面中心が外周面中心に対して偏心した断面形状を呈するコアドリルを使用した。外径は実施例と同じく2.0mmとした。また、内径は1.0mm、偏心量は0.2mmとした。   Here, the core drill of the shape shown in FIG. 1 was used for the core drill according to the example. Moreover, the core drill of the shape shown in FIG. 10 was used for the core drill which concerns on a comparative example. The outer diameter is 2.0 mm. The minimum diameter of the inner peripheral surface (the diameter of the virtual inscribed circle) was 0.35 mm, and the maximum bulge amount from the virtual inscribed circle of the bulged portion was 0.65 mm. On the other hand, as shown in FIG. 10, the core drill which concerns on a prior art example used the core drill which exhibits the cross-sectional shape in which the inner peripheral surface center was eccentric with respect to the outer peripheral surface center. The outer diameter was 2.0 mm as in the example. The inner diameter was 1.0 mm and the amount of eccentricity was 0.2 mm.

そして、上記の各コアドリルを用いて、上記設定した研削速度(切込み速度)ごとに上
記ガラス板に貫通孔を穿孔形成し、然る後、形成した貫通孔の孔径を測定して、ドリル径(2.0mm)との差を芯振れ量として算出した。その結果を下記の表1に示す。表1の中段および下段に示した数値が芯振れ量を示している。なお、図9に示す従来のコアドリルについても同様に穿孔加工を行ったが、中空孔にコアが詰まり所要の貫通孔を形成することができなかった。

Figure 2011105560
Then, using each of the above core drills, through holes are formed in the glass plate for each of the set grinding speeds (cutting speeds), and then the diameters of the formed through holes are measured. 2.0 mm) was calculated as the amount of runout. The results are shown in Table 1 below. The numerical values shown in the middle and lower parts of Table 1 indicate the amount of runout. Note that the conventional core drill shown in FIG. 9 was similarly perforated, but the core was clogged in the hollow hole, and the required through hole could not be formed.
Figure 2011105560

上記表1を見るとわかるように、従来のコアドリルでガラス板に貫通孔を穿孔形成した場合、その切込み速度が大きくなるほど、芯振れ量も大きくなることがわかった。特に、切込み速度が0.5mm/minを越えたあたりから、芯振れ量が急激に増大していることがわかる。ここで、芯振れ量が30μmより大きくなると、加工面(貫通孔の内周面)の面性状が不安定となり、その面粗度に関してもばらつきが大きくなる。これに対して、本発明に係るコアドリルで貫通孔を穿孔形成した場合、何れの切込み速度においても、芯振れは見られなかった。このことから、芯振れに起因する加工精度の低下を抑制するには、本発明に係るコアドリルが有効であることがわかった。   As can be seen from Table 1 above, it was found that when the through hole was formed in the glass plate with a conventional core drill, the amount of runout increased as the cutting speed increased. In particular, it can be seen that the amount of runout of the core increases abruptly when the cutting speed exceeds 0.5 mm / min. Here, when the center runout amount is larger than 30 μm, the surface property of the processed surface (the inner peripheral surface of the through hole) becomes unstable, and the surface roughness also varies greatly. On the other hand, when the through hole was formed by drilling with the core drill according to the present invention, no runout was observed at any cutting speed. From this, it has been found that the core drill according to the present invention is effective in suppressing a decrease in machining accuracy due to runout.

10,20,30,40 コアドリル
11,21 外周面
12,22 内周面
13,23 仮想内接円
14,24 最小径部
15,25 膨出部
16 ガラス板
17 コア
18 有底孔
19 貫通孔
31 半径方向溝部
32 軸方向溝部
100 コアドリル
101 外周面
102 孔
200 切削部(コアドリル)
201 外周面
202 内周面
203 (半径方向)幅の厚い部分
204 (半径方向)幅の薄い部分
F 半径方向の力
O,O1 外周面の中心
2 内周面の中心
10, 20, 30, 40 Core drills 11, 21 Outer peripheral surfaces 12, 22 Inner peripheral surfaces 13, 23 Virtual inscribed circles 14, 24 Minimum diameter portions 15, 25 Swelled portion 16 Glass plate 17 Core 18 Bottomed hole 19 Through hole 31 Radial groove 32 Axial groove 100 Core drill 101 Outer peripheral surface 102 Hole 200 Cutting part (core drill)
201 outer peripheral surface 202 inner peripheral surface 203 (radial direction) thick portion 204 (radial direction) thin portion F radial force O, center of O 1 outer peripheral surface center of O 2 inner peripheral surface

Claims (7)

ドリル先端側に設けた切削部でガラス板に所定の孔開け加工を施すためのコアドリルにおいて、
前記切削部の内周面は、任意の軸直交断面で見た場合に前記内周面の最小径部と接する仮想内接円から外径側に膨出する形状を呈する複数の膨出部を有すると共に、
前記複数の膨出部は何れも、前記切削部の回転軸まわりに対称となるように配置されていることを特徴とするコアドリル。
In the core drill for applying a predetermined drilling process to the glass plate at the cutting part provided on the drill tip side,
The inner peripheral surface of the cutting portion includes a plurality of bulged portions that have a shape that bulges outward from a virtual inscribed circle in contact with the smallest diameter portion of the inner peripheral surface when viewed in an arbitrary axis orthogonal cross section. And having
The core drill, wherein the plurality of bulging portions are arranged so as to be symmetrical around the rotation axis of the cutting portion.
前記複数の膨出部は互いにその円周方向端で連続しており、これにより前記切削部の前記内周面が前記複数の膨出部で構成されている請求項1に記載のコアドリル。   2. The core drill according to claim 1, wherein the plurality of bulging portions are continuous with each other at circumferential ends thereof, whereby the inner peripheral surface of the cutting portion is configured by the plurality of bulging portions. 前記切削部の先端面は、半径方向に伸びる複数の半径方向溝部を有すると共に、前記複数の半径方向溝部は何れも、前記回転軸まわりに対称となるように配置されている請求項1又は2に記載のコアドリル。   The front end surface of the cutting part has a plurality of radial grooves extending in the radial direction, and the plurality of radial grooves are all arranged symmetrically around the rotation axis. Core drill as described in 前記切削部の外周面は、軸方向に伸びる複数の軸方向溝部を有すると共に、前記複数の軸方向溝部は何れも、前記回転軸まわりに対称となるように配置されている請求項1又は2に記載のコアドリル。   The outer peripheral surface of the cutting portion has a plurality of axial grooves extending in the axial direction, and the plurality of axial grooves are all arranged symmetrically around the rotation axis. Core drill as described in 前記切削部の先端面は、半径方向に伸びる複数の半径方向溝部を有すると共に、前記切削部の内周面は、軸方向に伸びる複数の軸方向溝部を有し、かつ、前記複数の半径方向溝部は、その内径端で前記膨出部と連続し、その外径端で前記軸方向溝部と連続している請求項1又は2に記載のコアドリル。   The front end surface of the cutting portion has a plurality of radial grooves extending in the radial direction, and the inner peripheral surface of the cutting portion has a plurality of axial grooves extending in the axial direction, and the plurality of radial directions The core drill according to claim 1 or 2, wherein the groove portion is continuous with the bulging portion at an inner diameter end thereof and is continuous with the axial groove portion at an outer diameter end thereof. 前記ガラス板に穿孔形成される貫通孔の内径が1mm以上かつ5mm以下となる請求項1〜5の何れかに記載のコアドリル。   The core drill according to any one of claims 1 to 5, wherein an inner diameter of the through-hole formed in the glass plate is 1 mm or more and 5 mm or less. コアドリルの先端側に設けた切削部でガラス板に所定の孔開け加工を施す方法において、
前記切削部の内周面は、任意の軸直交断面で見た場合に前記内周面の最小径部と接する仮想内接円から外径側に膨出する形状を呈する複数の膨出部を有すると共に、
前記複数の膨出部は何れも、前記切削部の回転軸まわりに対称となるように配置されていることを特徴とするコアドリルを用いたガラス板の孔開け方法。
In the method of performing a predetermined drilling process on the glass plate at the cutting part provided on the tip side of the core drill,
The inner peripheral surface of the cutting portion includes a plurality of bulged portions that have a shape that bulges outward from a virtual inscribed circle in contact with the smallest diameter portion of the inner peripheral surface when viewed in an arbitrary axis orthogonal cross section. And having
The glass plate drilling method using a core drill, wherein the plurality of bulging portions are arranged so as to be symmetrical around the rotation axis of the cutting portion.
JP2009264022A 2009-11-19 2009-11-19 Core drill and drilling method of glass plate using the drill Pending JP2011105560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009264022A JP2011105560A (en) 2009-11-19 2009-11-19 Core drill and drilling method of glass plate using the drill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009264022A JP2011105560A (en) 2009-11-19 2009-11-19 Core drill and drilling method of glass plate using the drill

Publications (1)

Publication Number Publication Date
JP2011105560A true JP2011105560A (en) 2011-06-02

Family

ID=44229504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009264022A Pending JP2011105560A (en) 2009-11-19 2009-11-19 Core drill and drilling method of glass plate using the drill

Country Status (1)

Country Link
JP (1) JP2011105560A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014024121A (en) * 2012-07-24 2014-02-06 Allied Material Corp Super-abrasive tool and method for drilling workpiece using the same, and method for cutting out cylindrical object
JP2016182764A (en) * 2015-03-26 2016-10-20 京セラ株式会社 Core drill
JP6025107B1 (en) * 2015-07-15 2016-11-16 伊藤 幸男 Cylindrical grinding wheel
EP4163071A1 (en) * 2021-10-11 2023-04-12 Hilti Aktiengesellschaft Annular drill bit with improved drill core removal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06144859A (en) * 1992-10-30 1994-05-24 Kiyokuei Kenma Kako Kk Diamond core drill
JPH08118124A (en) * 1994-10-25 1996-05-14 Citizen Watch Co Ltd Electrodeposited tool
JP3091491U (en) * 2002-07-17 2003-01-31 旭ダイヤモンド工業株式会社 Core drill

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06144859A (en) * 1992-10-30 1994-05-24 Kiyokuei Kenma Kako Kk Diamond core drill
JPH08118124A (en) * 1994-10-25 1996-05-14 Citizen Watch Co Ltd Electrodeposited tool
JP3091491U (en) * 2002-07-17 2003-01-31 旭ダイヤモンド工業株式会社 Core drill

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014024121A (en) * 2012-07-24 2014-02-06 Allied Material Corp Super-abrasive tool and method for drilling workpiece using the same, and method for cutting out cylindrical object
JP2016182764A (en) * 2015-03-26 2016-10-20 京セラ株式会社 Core drill
JP6025107B1 (en) * 2015-07-15 2016-11-16 伊藤 幸男 Cylindrical grinding wheel
EP4163071A1 (en) * 2021-10-11 2023-04-12 Hilti Aktiengesellschaft Annular drill bit with improved drill core removal
WO2023061751A1 (en) * 2021-10-11 2023-04-20 Hilti Aktiengesellschaft Annular core drill bit with improved core removal

Similar Documents

Publication Publication Date Title
JP5366003B2 (en) Router end mill
JP2012511438A (en) Small drill and method for manufacturing small drill
JP2015134406A (en) solid step drill
KR20090104682A (en) Insert for drill and insert drill
JP2009039811A (en) Tool and method for drilling hole in fiber-reinforced composite material
JP2006150553A (en) Drill
JP2014087873A (en) Two-blade double margin drill
JP2011073129A (en) Boring drill
JP2011105560A (en) Core drill and drilling method of glass plate using the drill
TWI577471B (en) Drilling tools
JP2011200963A (en) Drilling tool
JPWO2015118684A1 (en) Drill and drilling method
CN104014989B (en) A kind of semicircle orifice processing method
JP6797873B2 (en) Drill for carbon fiber composite material
CN105750596B (en) drill bit
JP2008142834A (en) Drill
JP6383603B2 (en) drill
JP2017164836A (en) drill
JP2020023051A (en) Drill
JP6015527B2 (en) End mill
JP6727567B1 (en) Carbon fiber composite drill
JP5845288B2 (en) Drill and method of manufacturing cut product using the same
CN106862618A (en) Drilling machining cutter
JP2011111370A (en) Apparatus and method for manufacturing glass plate
JP5085189B2 (en) Drilling tool and drilling method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131220