JP6025107B1 - Cylindrical grinding wheel - Google Patents

Cylindrical grinding wheel Download PDF

Info

Publication number
JP6025107B1
JP6025107B1 JP2015153687A JP2015153687A JP6025107B1 JP 6025107 B1 JP6025107 B1 JP 6025107B1 JP 2015153687 A JP2015153687 A JP 2015153687A JP 2015153687 A JP2015153687 A JP 2015153687A JP 6025107 B1 JP6025107 B1 JP 6025107B1
Authority
JP
Japan
Prior art keywords
grinding
cylindrical
grinding wheel
hole
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015153687A
Other languages
Japanese (ja)
Other versions
JP2017024155A (en
Inventor
義也 福原
義也 福原
誠一郎 金光
誠一郎 金光
幸久 武田
幸久 武田
潔 成田
成田  潔
玲 子安
玲 子安
幸作 野村
幸作 野村
伊藤 幸男
伊藤  幸男
Original Assignee
伊藤 幸男
伊藤 幸男
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 伊藤 幸男, 伊藤 幸男 filed Critical 伊藤 幸男
Priority to JP2015153687A priority Critical patent/JP6025107B1/en
Application granted granted Critical
Publication of JP6025107B1 publication Critical patent/JP6025107B1/en
Publication of JP2017024155A publication Critical patent/JP2017024155A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】特に、薄板から厚板までの板材に対する孔の貫通加工において、最少限の研削屑、砥石内クーラントの効率アップ、研削屑の排出効率アップ、研削時間の短縮による研削効率の改善を達成した新規な研削砥石に関する。【解決手段】 円筒に形成した円筒体3、上記円筒体の内周面3Aから先端面3Sを経由して外周面3Fに繋がる溝3B、3Hを円筒体の軸芯方向Oに向けて円周面上に複数凹設し、上記円筒体の開口する先端面とこの周辺部3Iにダイヤ、CBN電着砥粒叉はWA、GC砥粒Gを固着させ、上記円筒体の後端面から研削液GO叉は研削気体を内周面の溝に供給し先端面から噴出させて研削加工点を冷却し且つ切粉を外周面の溝から排出する円筒体研削砥石2である。【選択図】図1[PROBLEMS] In particular, in the drilling of holes in thin to thick plates, the minimum grinding waste, the efficiency of coolant in the grinding wheel, the efficiency of grinding dust discharge, and the improvement of grinding efficiency by shortening the grinding time are achieved. Relates to the new grinding wheel. SOLUTION: A cylindrical body 3 formed in a cylinder, and grooves 3B and 3H connected from an inner peripheral surface 3A of the cylindrical body to an outer peripheral surface 3F via a distal end surface 3S are directed toward an axial direction O of the cylindrical body. A plurality of recesses are formed on the surface, and diamond, CBN electrodeposited abrasive grains or WA, GC abrasive grains G are fixed to the front end surface of the cylindrical body and the peripheral portion 3I, and grinding fluid is applied from the rear end surface of the cylindrical body. GO is a cylindrical grinding wheel 2 that supplies grinding gas to the groove on the inner peripheral surface and ejects it from the tip surface to cool the grinding point and discharge chips from the groove on the outer peripheral surface. [Selection] Figure 1

Description

本発明は、回転加工する研削工具(カップ砥石や円筒砥石)と、この研削工具による孔あけ加工方法において、最適な使用条件で孔あけ加工他を可能とする研削工具の改良に係わる。特に、薄板から厚板までの板材に対する孔の貫通加工において、最少限の研削屑、砥石内クーラント液の効率アップ、研削屑の排出効率アップ、研削時間の短縮による研削効率の改善を達成した新規なカップ筒体研削砥石及び円筒体研削砥石の孔開けに関する。  The present invention relates to an improvement of a grinding tool (such as a cup grindstone or a cylindrical grindstone) to be rotated and a grinding tool that enables drilling and the like under optimum use conditions in a drilling method using the grinding tool. In particular, in the drilling of holes in thin to thick plates, a new material that has improved grinding efficiency by minimizing grinding scraps, increasing the efficiency of coolant fluid in the grinding wheel, increasing grinding waste discharge efficiency, and shortening the grinding time The present invention relates to drilling of a cup cylindrical grinding wheel and a cylindrical grinding wheel.

近年、切削加工や研削加工分野において、各種板材に対して貫通孔を効率良く開ける方法に、側端面に砥石部を構成した中空円筒状のカップ砥石本体の周側面に複数個の通水用の長孔部を穿孔設配置した研削用カップ砥石がある(例えば、特許文献1参照。)。  In recent years, in the cutting and grinding fields, a method for efficiently opening a through-hole in various plate materials is used for a plurality of water-passing holes on the peripheral side surface of a hollow cylindrical cup grindstone body having a grindstone portion on a side end surface. There is a grinding cup grindstone in which long hole portions are provided by drilling (see, for example, Patent Document 1).

更に、産業分野が異なるコンクリート建造物の分野では、コンクリート加工に多用されているコアドリルが存在する。このコアドリルの一つの公知例は、筒状コアの基部からコア内部に供給される研削材を強制的に切削部位へ誘導し、コア内部での滞留ないし堆積を回避して供給ロスの低減を図るとともに、切削効率の向上を図るものである。具体的な構成は、コアドリル4は、装置本体部6に螺合等の手段をもって取り付けられる筒状コア14と、この筒状コア14の内方においてコンクリート等の被削面F上設けられる案内部材16とから成っている。筒状コア14の先端14aには周方向に等間隔に切削チップ18が配設されており、基部14bには研削材Kを冷却用空気とともにコア内部へ導入するための供給口20が形成されている。案内部材16は筒状コア14の先端側へ末広がりとなる略円錐形に形成されており、被削面F上に対する載置面16aと、研削材Kを誘導する案内斜面16bとを有している(例えば、特許文献2参照。)。  Furthermore, in the field of concrete buildings with different industrial fields, there are core drills that are frequently used for concrete processing. One known example of this core drill is to forcibly guide the abrasive supplied from the base of the cylindrical core to the inside of the core to avoid cutting and accumulation inside the core, thereby reducing supply loss. At the same time, the cutting efficiency is improved. Specifically, the core drill 4 includes a cylindrical core 14 attached to the apparatus main body 6 by means such as screwing, and a guide member 16 provided on a work surface F such as concrete inside the cylindrical core 14. It consists of. Cutting tips 18 are arranged at equal intervals in the circumferential direction at the distal end 14a of the cylindrical core 14, and a supply port 20 for introducing the abrasive K into the core together with cooling air is formed in the base portion 14b. ing. The guide member 16 is formed in a substantially conical shape that spreads toward the tip side of the cylindrical core 14, and has a mounting surface 16 a on the work surface F and a guide slope 16 b that guides the abrasive K. (For example, refer to Patent Document 2).

更に、円筒壁24aを有するコアドリル本体24と、コアドリル本体24の先端に設けられた複数の穿孔刃25とを備えたコアドリル23において、コアドリル本体24に、先端から基端に向けて延在する切粉排出溝26を円筒壁24aを貫通する態様で形成し、切粉排出溝26の穿孔方向寸法L1を穿孔対象物に対する穿孔深さD1(図10)よりも大きく設定したものである(例えば、特許文献3参照。)。  Furthermore, in a core drill 23 having a core drill body 24 having a cylindrical wall 24a and a plurality of drilling blades 25 provided at the distal end of the core drill body 24, the core drill body 24 has a cut extending from the distal end toward the proximal end. The powder discharge groove 26 is formed so as to penetrate the cylindrical wall 24a, and the drilling direction dimension L1 of the chip discharge groove 26 is set larger than the drilling depth D1 (FIG. 10) with respect to the drilling target (for example, (See Patent Document 3).

実開平2−53367号公報  Japanese Utility Model Publication No. 2-53367 実開平5−35217号公報  Japanese Utility Model Publication No. 5-35217 特開2015−3426号公報  Japanese Patent Laying-Open No. 2015-3426

上記実開平2−53367号公報は、中空円筒状のカップ砥石本体の周側面に複数個の通水長孔部を穿孔設配置した研削用カップ砥石である。これにより、比較に薄板の穴の貫通加工において、複数個の通水長孔部からの先端刃部への冷却効果や研削屑の排出には期待できる。然し乍ら、ある程度の板厚から厚板の穴の貫通加工において、最小限の研削屑生成とこの研削屑の排出効率アップ、更に、クーラント液を効率良く刃先への砥石内を通過させた供給と排出性に劣ると言う問題がある。従って、厚板の孔の貫通加工において、加工の効率アップ、研削時間の短縮による研削効率の改善が望めない。  The Japanese Utility Model Laid-Open No. 2-53367 is a grinding cup grindstone in which a plurality of water-passing long hole portions are drilled and arranged on the peripheral side surface of a hollow cylindrical cup grindstone body. Thus, in comparison, in the through-hole processing of the hole in the thin plate, it can be expected to cool the tip blade portion from the plurality of water passage long hole portions and discharge grinding waste. However, in the drilling of holes from a certain thickness to a thick plate, the minimum amount of grinding waste is generated, the efficiency of discharging this grinding waste is increased, and the coolant is supplied and discharged through the grinding wheel efficiently to the cutting edge. There is a problem that it is inferior. Therefore, it is impossible to improve the grinding efficiency by increasing the machining efficiency and shortening the grinding time in the drilling of the hole in the thick plate.

更に、上記実開平5−35217号公報は、コンクリートを粉砕加工するコアドリルであり、研削材を強制的に切削部位へ誘導し、コア内部での滞留ないし堆積を回避して供給ロスの低減を図り、切削効率の向上を図るものであると言う。しかし、金属材料や特に、炭素繊維強化プラスチック板の孔加工を行うと、炭素繊維糸群でシート状とした板材をその繊維方向を交差して積層した炭素繊維強化プラスチック板の構造体であるから、上記コアドリルで通常の加工を行うと、切断した炭素繊維糸群が刃具(切削チップ)に絡み付き、正確な孔あけ加工ができない。更に、研削材は圧縮空気で噴霧状にして筒状コアの基部(加工点から遠い)からコア内部に供給されるから、コア内部で拡散・滞留されてしまい、研削材Kを誘導する案内斜面を有していても効果的に切削部位へ誘導されない。特に、深穴加工時には霧状研削材(圧縮空気のみ到達)は深い加工点まで到達され難く、切削効率の向上は望めないと言う問題点を残存する。更に、追記すれば、深穴の切削チップまで到達した圧縮空気を吸引管で吸引しているから、チップ先端に研削材が留まらず高速で通過するだけであるから、被加工面とチップとの研削材による潤滑冷却(摩擦抵抗の低減・除熱他)が期待されず低減を余儀なくされてしまう。  Furthermore, the above-mentioned Japanese Utility Model Publication No. 5-35217 is a core drill for pulverizing concrete, and forcibly guides the abrasive to the cutting site and avoids stagnation or accumulation inside the core to reduce supply loss. It is said to improve cutting efficiency. However, when drilling a metal material, especially a carbon fiber reinforced plastic plate, it is a structure of a carbon fiber reinforced plastic plate in which the fiber direction is laminated with a sheet material made of a sheet of carbon fiber yarns, When normal processing is performed with the core drill, the cut carbon fiber yarn group is entangled with the cutting tool (cutting tip), and accurate drilling cannot be performed. Furthermore, since the abrasive is sprayed with compressed air and supplied into the core from the base of the cylindrical core (distant from the processing point), it is diffused and stays inside the core, and the guide slope that guides the abrasive K Even if it has, it is not guided to a cutting part effectively. In particular, during deep hole machining, the mist-like abrasive (only reaching compressed air) is difficult to reach a deep machining point, and there remains a problem that improvement in cutting efficiency cannot be expected. In addition, since the compressed air that reaches the deep hole cutting tip is sucked by the suction pipe, the abrasive material does not stay at the tip of the tip and only passes at a high speed. Lubricant cooling (reduction of frictional resistance, heat removal, etc.) by the abrasive is not expected and is forced to be reduced.

更に、上記特開2015−3426号公報は、コアドリルであり、コアドリル本体に、先端から基端に向けて延在する切粉排出溝は円筒壁を貫通する態様で形成し、切粉排出溝の穿孔方向寸法を穿孔対象物に対する穿孔深さよりも大きく設定し、切粉排出の効率を高めている。しかしながら、切粉排出溝は、コアドリル本体の円筒壁を螺旋状に貫通させたものであるから、一見して切粉の排出効果が有るかのように想定されるが、穿孔刃へのクーラント液の供給が無く加工点の発熱に対する冷却作用が得られない。更に、切粉の積極的な排出作用もドリル回転時のみにしか得られない上、ドリル回転数に支配されるため全ての回転域において、排出作用が効率良く得られる保証が無い。等の諸問題が残存する。  Further, JP-A-2015-3426 is a core drill, and a chip discharge groove extending from the distal end to the base end is formed in the core drill main body in a manner penetrating the cylindrical wall, and the chip discharge groove The dimension of the drilling direction is set to be larger than the drilling depth for the drilling object, thereby increasing the efficiency of chip discharge. However, since the chip discharge groove is formed by spirally penetrating the cylindrical wall of the core drill body, it is assumed that there is a chip discharge effect at first glance. Is not supplied, and the cooling action against the heat generated at the processing point cannot be obtained. Furthermore, since the positive discharging action of chips can be obtained only at the time of drill rotation, and since it is governed by the number of rotations of the drill, there is no guarantee that the discharging action can be obtained efficiently in all rotation regions. Etc. still remain.

本発明は、上記カップ砥石やコアドリル等の円筒刃具による厚板・コンクリートのリング状穴あけや孔貫通加工時に見られる諸問題に鑑みて研究開発を続けた結果、下記のような具体的な解決策が必須であることが判明した。即ち、
(1)薄板から厚板までの孔の貫通加工において、加工点・研削点へのクーラント液の効 率アップ、研削屑の排出効率アップ、研削時間の短縮による研削効率の改善を達成する 新規な研削砥石、以下カップ筒体研削砥石と称する)の開発。
(2)カップ砥石による厚板の穴の貫通加工において、最少限の研削屑生成とこの研削屑 の排出効率アップ、クーラント液は砥石内を通過させて刃先へ効率良く噴出させ、研削 効率を改善することで、加工効率のアップ、研削時間の短縮が図れること。
(3)一般の金属製の板材やコンクリートは勿論のこと、炭素繊維糸の線方向と直交する 方向は強度が弱いCFRPに対する切断加工の向上。
(4)切削屑・研削屑となる粉塵を合理的に回収し、環境保全を図れること。
As a result of continuing research and development in view of various problems seen when drilling and drilling thick plates and concrete with cylindrical blades such as the above-mentioned cup grindstone and core drill, the following specific solutions Turned out to be essential. That is,
(1) In the drilling of holes from thin plates to thick plates, the efficiency of the coolant liquid at the processing and grinding points is increased, the efficiency of discharging grinding scraps is improved, and the grinding efficiency is improved by shortening the grinding time. Development of grinding wheel (hereinafter referred to as cup cylinder grinding wheel).
(2) In the drilling of thick plate holes with a cup grindstone, the generation of the minimum amount of grinding waste and the discharge efficiency of this grinding waste is improved. By doing this, machining efficiency can be increased and grinding time can be shortened.
(3) Improved cutting of CFRP, which is weak in the direction perpendicular to the linear direction of carbon fiber yarn, as well as general metal plate and concrete.
(4) It is possible to rationally collect the dust that becomes cutting waste and grinding waste and to preserve the environment.

本発明は、上記カップ筒体研削砥石及び円筒体研削砥石による加工において、具体的に(1)〜(4)の解決策を包括的に纏めると、下記2つの目的に集約される。
その目的は、薄板から厚板に至る穴や貫通孔加工において、最少限の研削屑、砥石内部の通孔から刃先へのクーラント供給の効率アップ、研削屑の排出効率アップ、研削時間の短縮による研削効率の改善を図るべく、新規なカップ筒体研削砥石及び円筒体研削砥石を提供する。
The present invention is summarized to the following two purposes when the solutions (1) to (4) are comprehensively summarized in the processing by the cup cylindrical grinding wheel and the cylindrical grinding wheel.
The purpose is to minimize the amount of grinding scrap, increase the efficiency of coolant supply from the through-hole inside the grinding wheel to the cutting edge, increase the efficiency of discharging the grinding scrap, and shorten the grinding time. In order to improve the grinding efficiency, a novel cup cylindrical grinding wheel and a cylindrical grinding wheel are provided.

上記目的を達成する請求項1の円筒体研削砥石は、内径と外径及び筒長の異なる大径の筒体と小径の筒体を嵌合させた二重筒体は、各筒体を各々2枚構成の薄板材で形成した内外周の壁間内に各々環状空間を有し、上記小径の筒体の外周壁面に大径の筒体を一体的に嵌合するとともに各筒体先端部に砥粒を固着してなり、上記二重筒体の各環状空間内に該筒体の軸芯方向に向けて円周囲の全体にわたり複数の隔壁を等間隔に設けた小径筒体の長管と大径筒体の短管の構成となし、上記長管と短管の各隔壁間は通孔となっており、上記長管と短管の各通孔の先端及び後端に併設した開口部とを有し、上記二重筒体の後端側を保持するとともに長管の後端の各開口部に研削液又はクーラント液を流入する連絡孔及びセンター孔を備えたアーバーと、を具備したことを特徴とする 。 The cylindrical grinding wheel according to claim 1, which achieves the above object, includes a double cylinder in which a large-diameter cylinder and a small-diameter cylinder having different inner and outer diameters and cylinder lengths are fitted to each other. Each cylindrical body has an annular space between inner and outer peripheral walls formed of a thin plate material having two sheets, and a large-diameter cylindrical body is integrally fitted to the outer peripheral wall surface of the small-diameter cylindrical body, and each cylindrical tip portion A long tube of a small-diameter cylindrical body in which a plurality of partition walls are provided at equal intervals over the entire circumference of the circular cylinder in the annular core direction in each annular space of the double cylinder. And a structure of a short pipe of a large-diameter cylindrical body, and a through hole is formed between each partition wall of the long pipe and the short pipe, and an opening provided at the front and rear ends of the through holes of the long pipe and the short pipe And an arbor having a communication hole and a center hole for holding the rear end side of the double cylinder and flowing the grinding liquid or coolant liquid into each opening of the rear end of the long pipe Characterized by comprising a.

請求項2の円筒体研削砥石は、通孔を有する管を複数本円筒状に束ねて管体群とした円筒体と、上記円筒体には研削液又はクーラント液を先端加工点に供給する複数本の長管の先端部には砥粒を固着してなり、上記各長管の間に間隔をあけて先端及び後端を短くした1本乃至数本を併設した排出用短管と、上記円筒体の後端内側を保持するとともに各長管の後端側に開口する各通孔にセンター孔を繋ぎ上記各通孔から研削液又はクーラント液を流入するアーバーと、を具備したことを特徴とする。 The cylindrical grinding wheel according to claim 2 is a cylindrical body in which a plurality of pipes having through holes are bundled into a cylindrical shape to form a pipe group, and a plurality of grinding liquids or coolant liquids are supplied to the tip machining point. A discharge short pipe provided with one or several pipes each having a short tip and a rear end with a gap between the long pipes, and an abrasive grain fixed to the tip of the long pipe, An arbor that holds the inner side of the rear end of the cylindrical body and connects a center hole to each through hole that opens to the rear end side of each long pipe, and that flows in the grinding liquid or coolant liquid from each of the through holes. And

本発明のカップ筒体研削砥石及び円筒体研削砥石は、薄板から厚板までの孔の貫通加工において、加工点・研削点へのクーラント液の効率アップ、研削屑の排出効率アップ、研削時間の短縮による研削効率の改善ができる。  The cup cylinder grinding wheel and cylindrical body grinding wheel of the present invention can improve the efficiency of the coolant liquid to the processing point and grinding point, increase the efficiency of grinding waste discharge, Grinding efficiency can be improved by shortening.

カップ筒体研削砥石及び円筒体研削砥石による厚板の穴の貫通加工において、最少限の研削屑生成とこの研削屑の排出効率アップ、クーラント液は砥石内を通過させて刃先へ効率良く噴出させ、研削効率を改善することで、加工効率のアップ、研削時間の短縮が図れる。一般の金属製の板材やコンクリートの孔加工の他、炭素繊維糸の線方向と直交する方向は強度が弱いCFRPに対する切断加工が向上できる  In the drilling of holes in thick plates with cup cylindrical grinding wheels and cylindrical grinding wheels, the minimum amount of grinding scrap is generated and the efficiency of discharging the grinding scrap is increased. The coolant is efficiently ejected to the cutting edge through the grinding wheel. By improving the grinding efficiency, the processing efficiency can be increased and the grinding time can be shortened. In addition to drilling holes in general metal plates and concrete, cutting in CFRP with weak strength can be improved in the direction perpendicular to the linear direction of the carbon fiber yarn.

更に、切削屑・研削屑となる粉塵を合理的に回収し、環境保全が図れる。即ち、研削時に砥粒の剥奪が無く、研削液は刃先砥粒の表面を刃先内部から浸透(濡らす)できる。即ち、深穴を明けるとき、刃先に研削液を確実に到達できる。従って、砥石刃先(砥粒)は研削液を常に内部の溝や孔から満たし、刃先の冷却効果、研削屑の排出効果、研削抵抗の低減効果による発熱低減効果、研削効率の向上効果等々が大きく期待できる。  Furthermore, it is possible to rationally collect the dust that becomes cutting scraps and grinding scraps and to protect the environment. That is, there is no peeling of the abrasive grains during grinding, and the grinding liquid can penetrate (wet) the surface of the cutting edge abrasive grains from the inside of the cutting edge. That is, when drilling a deep hole, the grinding liquid can reliably reach the cutting edge. Therefore, the grinding wheel edge (abrasive grain) always fills the grinding fluid from the internal grooves and holes, and the blade edge cooling effect, grinding dust discharge effect, reduction effect of grinding resistance, heat generation reduction effect, grinding efficiency improvement effect, etc. are great. I can expect.

本発明の第1実施の形態を示し、円筒体研削砥石の斜視図である。  1 shows a first embodiment of the present invention and is a perspective view of a cylindrical grinding wheel. FIG. 本発明の第1実施の形態を示し、円筒体研削砥石の断面図と先端面図である。  BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a first embodiment of the present invention, and is a sectional view and a front end view of a cylindrical grinding wheel. 円筒体研削砥石にアーバーを組み付けた断面図である。  It is sectional drawing which assembled | attached the arbor on the cylindrical grinding wheel. 円筒体研削砥石を工具ホルダに組み付けた断面図と正面図及び先端面図である。  It is sectional drawing, front view, and front end view which assembled | attached the cylindrical body grinding grindstone to the tool holder. 本発明の第1実施の形態を示し、円筒体研削砥石の作用図である。  FIG. 2 is an operation diagram of the cylindrical grinding wheel according to the first embodiment of the present invention. 本発明の第2実施の形態を示し、カップ筒体研削砥石の斜視図である。  It is a perspective view of a cup cylinder grinding grindstone which shows a 2nd embodiment of the present invention. カップ筒体研削砥石を工具ホルダに組み付けた断面図と正面図である。  It is sectional drawing and the front view which assembled | attached the cup cylinder grinding grindstone to the tool holder. 本発明の第3実施の形態を示し、円筒体研削砥石の断面図と先端面図である。  The 3rd Embodiment of this invention is shown, and it is sectional drawing and a front end view of a cylindrical grinding wheel. 本発明の第3及び第4実施の形態における作用図である。  It is an effect | action figure in the 3rd and 4th embodiment of this invention. 本発明の第4実施の形態を示し、円筒体研削砥石の正面図である。  It is a front view of a cylindrical grinding wheel showing a fourth embodiment of the present invention. 本発明の第4実施の形態を示し、円筒体研削砥石の作用断面図である。  FIG. 10 is a sectional view showing the operation of a cylindrical grinding wheel according to a fourth embodiment of the present invention. 本発明の各実施の形態を示し、研削液の供給・回収経路の構造と作用図である。  FIG. 4 shows each embodiment of the present invention, and is a structure and action diagram of a grinding fluid supply / recovery path. 第1と第2実施形態の円筒体の製造工程図である。  It is a manufacturing-process figure of the cylindrical body of 1st and 2nd embodiment.

以下、図1乃至図13を参照して本発明の各実施の形態となる円筒体研削砥石及びカップ筒体研削砥石と、これらの研削砥石による加工方法を順次に説明する。  Hereinafter, with reference to FIG. 1 thru | or FIG. 13, the cylindrical grinding wheel and cup cylindrical grinding wheel which become each embodiment of this invention, and the processing method by these grinding stones are demonstrated sequentially.

本発明の第1実施の形態となる円筒体研削砥石2の構成と作用を図1〜図5により説明する。先ず、図1と図2において、円筒体研削砥石2の素材は、薄板材を円筒に形成した円筒体3からなる。上記カップ筒体の内周面3Aの対向する2箇所には、半円状の溝3B,3Cが軸芯方向Oに向けて全長にわたって凹設されており、該溝3B,3Cの先端は、カップ筒体3の先端面3Sの切欠部3Eまで繋がっている。更に、切欠部3Eの凹辺に繋がる外周面3Fには、溝3G,3Hが軸芯方向Oに向けて全長にわたって凹設されている。尚、上記溝3B,3Cと溝3G,3Hとの関係位置は、切欠部3Eにおける両端縁に離して配置されている。これにより、カップ筒体3の薄板材が薄くても内外に配置した二つの溝3Bと3H、溝3Cと3Gとが離れるから干渉し合わない。しかして、内周面3Aの二つの3B,3C内を流れる研削液GO叉は研削気体及びクーラント液COは、切欠部3Eを経由する形態で外周面3Fの溝3G,3Hへと送り出される二つの経路が形成される。  The configuration and operation of the cylindrical grinding wheel 2 according to the first embodiment of the present invention will be described with reference to FIGS. First, in FIGS. 1 and 2, the material of the cylindrical grinding wheel 2 is composed of a cylindrical body 3 in which a thin plate material is formed into a cylinder. Semicircular grooves 3B and 3C are recessed over the entire length in the axial direction O at two opposing positions on the inner peripheral surface 3A of the cup cylinder, and the tips of the grooves 3B and 3C are The cup cylinder 3 is connected to the notch 3E of the tip surface 3S. Furthermore, grooves 3G and 3H are recessed in the axial direction O along the entire length on the outer peripheral surface 3F connected to the concave side of the notch 3E. The relative positions of the grooves 3B and 3C and the grooves 3G and 3H are arranged apart from both end edges of the notch 3E. Thereby, even if the thin plate material of the cup cylinder 3 is thin, the two grooves 3B and 3H and the grooves 3C and 3G arranged inside and outside are separated from each other, so that they do not interfere with each other. Thus, the grinding fluid GO or the grinding gas and the coolant fluid CO flowing through the two 3B and 3C of the inner peripheral surface 3A are sent out to the grooves 3G and 3H of the outer peripheral surface 3F in a form passing through the notch 3E. Two paths are formed.

尚、上記切欠部3Eとこの内外の溝は、図1及び図2において、180°の対象位置に配置したが、90°、45°、30°等の回転角度の間隔位置に複数組から多数組を配置しても良い。上記カップ筒体3の開口する先端面3Sと切欠部3Eとこの内外の周辺部3Iには、ダイヤ、CBN電着砥粒叉はWA、GC砥粒等の切刃砥粒Gを固着させている。上記カップ筒体3の後端面は、図3に示すように、アーバー4の嵌合部4Aに接合支持されている。また、アーバー4には、センター孔h1が開けられ、後端が工具ホルダHとの結合軸4Bになっている。  The notch 3E and the inner and outer grooves are arranged at the target position of 180 ° in FIGS. 1 and 2, but a plurality of sets are provided at intervals of rotation angles of 90 °, 45 °, 30 °, etc. A set may be arranged. Cutting edge abrasive grains G such as diamond, CBN electrodeposited abrasive grains or WA, GC abrasive grains are fixed to the front end surface 3S, the notch 3E, and the peripheral portion 3I inside and outside of the cup cylinder 3 which are opened. Yes. As shown in FIG. 3, the rear end surface of the cup cylinder 3 is joined and supported by the fitting portion 4 </ b> A of the arbor 4. The arbor 4 has a center hole h1 and a rear end serving as a coupling shaft 4B with the tool holder H.

上記円筒体研削砥石2は、図4に示すように、アーバー4の先端に装備され、結合軸4Bを工具ホルダHに保持されるとともに加工機の主軸からのセンタースルーにより研削液GO叉はクーラント液COがアーバー4のセンター孔h1から円筒体研削砥石2の内周面3A内に供給される。続いて、図5に示すように、金属板材やコンクリートブロック等のワークWに対する穴開け研削作業(切削作業)が行われる。図5に示すように先ず、加工機の主軸センタースルー(図示なし)から研削液GO叉は研削気体及びクーラント液COが供給されると、アーバー4のセンター孔h1を介して円筒体研削砥石2内に噴射される。この噴射流は研削液GO叉は研削気体及びクーラント液COで、筒体3内に噴射されると、両溝3B,3Cに供給され、先端面3Sにおいて、この切欠部3Eを経由して外周面3Fの溝3G,3Hに噴出する循環系を形成する。  As shown in FIG. 4, the cylindrical grinding wheel 2 is mounted at the tip of the arbor 4, the coupling shaft 4B is held by the tool holder H, and the grinding fluid GO or coolant is supplied by the center through from the main shaft of the processing machine. The liquid CO is supplied from the center hole h 1 of the arbor 4 into the inner peripheral surface 3 A of the cylindrical grinding wheel 2. Subsequently, as shown in FIG. 5, a drilling grinding operation (cutting operation) is performed on the workpiece W such as a metal plate material or a concrete block. As shown in FIG. 5, first, when the grinding fluid GO or the grinding gas and the coolant fluid CO are supplied from the spindle center through (not shown) of the processing machine, the cylindrical grinding wheel 2 is passed through the center hole h1 of the arbor 4. Is injected into the inside. This jet flow is a grinding fluid GO or a grinding gas and a coolant liquid CO, and is injected into the cylindrical body 3 and is supplied to both grooves 3B and 3C, and the outer peripheral surface of the front end surface 3S via this notch 3E. A circulation system is formed which is ejected into the grooves 3G and 3H on the surface 3F.

即ち、円筒体研削砥石2は、工具ホルダHの回転による先端面3Sと切欠部3Eとこの内外の周辺部3Iの切刃砥粒Gにより、ワークWに対してリング状の穴加工を始める。これと同時に、研削液GO叉は研削気体及びクーラント液COは、アーバー4のセンター孔h1からカップ筒体研削砥石2内に噴射される。この噴射流は、内周面3Aの両溝3B,3Cに供給され、先端面3Sとこの切欠部3Eを経由して外周面3Fの溝3G,3Hに噴流する循環系を形成する。しかして、ワークWに対してリング状の穴加工の遂行とともに、先端面3Sの切刃砥粒Gや周辺部3Iを冷却し、切削屑の排除、切削効率アップ等を図りながら、ワークWに対してリング状の穴加工を円滑に完了する。尚、穴加工を完了すると貫通孔が開けられ、筒状の残片G0が抜け落ち、効率の良い孔加工が短時間に実行される。  That is, the cylindrical grinding wheel 2 starts ring-shaped hole machining on the workpiece W by the cutting edge abrasive grains G of the tip surface 3S, the cutout portion 3E, and the inner and outer peripheral portions 3I by the rotation of the tool holder H. At the same time, the grinding fluid GO or the grinding gas and the coolant liquid CO are injected into the cup cylinder grinding wheel 2 from the center hole h1 of the arbor 4. This jet flow is supplied to both grooves 3B and 3C of the inner peripheral surface 3A, and forms a circulation system that jets into the grooves 3G and 3H of the outer peripheral surface 3F via the tip surface 3S and the notch 3E. Thus, while performing the ring-shaped hole machining on the workpiece W, the cutting edge abrasive grain G and the peripheral portion 3I of the tip surface 3S are cooled to eliminate the cutting waste and increase the cutting efficiency. On the other hand, ring-shaped hole machining is completed smoothly. When the drilling is completed, the through hole is opened, the cylindrical residue G0 is dropped off, and efficient drilling is executed in a short time.

上記円筒体研削砥石2による薄板から厚板までの孔の貫通加工において、最少限の研削屑生成とこの研削屑の排出効率アップ、研削気体及びクーラント液は砥石内を通過させて刃先へ効率良く噴出させ、研削効率を改善することで、加工効率のアップ、研削時間の短縮が図れる。  In the drilling of holes from a thin plate to a thick plate with the cylindrical grinding wheel 2, the minimum amount of grinding waste is generated and the efficiency of discharging the grinding waste is increased. By jetting and improving the grinding efficiency, the processing efficiency can be increased and the grinding time can be shortened.

上記円筒体研削砥石2は、その後端開口部にアーバー4を機密保持させたが、図6に示すように、円筒体研削砥石2の後端開口部を閉塞板5aで閉塞させたカップ筒体研削砥石5としても良い。この第2実施形態のカップ筒体研削砥石5は、図6において、後端の閉塞板5aの中心位置に取付孔5bがあけられている。上記カップ筒体研削砥石5の閉塞板5aは、アーバー4の大径嵌合穴4aに取り付けるべく、座板1の孔1aにボルトBを通して先端ネジBaを取付ネジ孔4bに螺着する。上記アーバー4の中心には、図7(a)に示すように、センター孔h1が開けられ、ボルトBの中心孔Bbを介して研削液GO叉は研削気体及びクーラント液COがカップ筒体研削砥石5内に噴射される。しかして、図7(a)に示すように、工具ホルダHに装着されたカップ筒体研削砥石5の内周面から先端方向に研削液GO叉は研削気体及びクーラント液COが噴射される。  In the cylindrical grinding wheel 2, the arbor 4 is kept secret at the rear end opening, but as shown in FIG. 6, a cup cylinder in which the rear end opening of the cylindrical grinding wheel 2 is closed with a closing plate 5 a. A grinding wheel 5 may be used. In the cup cylinder grinding wheel 5 of the second embodiment, a mounting hole 5b is formed at the center position of the closing plate 5a at the rear end in FIG. The closing plate 5a of the cup cylinder grinding grindstone 5 is screwed into the mounting screw hole 4b through the bolt B through the hole 1a of the seat plate 1 to be attached to the large diameter fitting hole 4a of the arbor 4. As shown in FIG. 7A, a center hole h1 is opened at the center of the arbor 4, and the grinding fluid GO or the grinding gas and the coolant fluid CO are ground through the center hole Bb of the bolt B. It is injected into the grindstone 5. Accordingly, as shown in FIG. 7A, the grinding fluid GO or the grinding gas and the coolant fluid CO are sprayed from the inner peripheral surface of the cup cylindrical grinding wheel 5 attached to the tool holder H toward the tip.

上記カップ筒体研削砥石5においても、上記円筒体研削砥石2と同一の作用効果が得られるから、説明を省略する。尚、溝5B,5C、先端面5S、切欠部5E、外周面5F、溝5G,5H、周辺部5Iである。  Also in the cup cylindrical grinding wheel 5, the same effect as that of the cylindrical grinding wheel 2 can be obtained, and thus the description thereof is omitted. The grooves 5B and 5C, the tip surface 5S, the notch portion 5E, the outer peripheral surface 5F, the grooves 5G and 5H, and the peripheral portion 5I.

更に、第3実施形態の円筒体研削砥石8は、図8に示すように、外径及び筒長の異なる環状の筒体8A、8Bを嵌合させた二重筒体8Xとし、該二重筒体の環状空間内S,Sに該筒体の軸芯方向Oに向けて円周囲の全体にわたり複数の隔壁Pを等間隔に設け、長管8Lと短管8Sとを構成している。これで、上記二重筒体8Xの複数枚の隔壁Pの各隙間には、複数の通孔h7,h8が形成され、この各通孔の先端及び後端には、短管8Sにおいて開口部8C、8D、長管8Lにおいて開口部8M、8Nが併設されている。上記長管8Lの各隔壁間が形成する通孔h8の各開口部8Nがアーバー4のセンター孔h1から複数に分岐された連絡孔h2と繋がれ、該各開口部8Nから研削液G0は研削気体及びクーラント液C0を流入可能としている。これで、上記長管8Lの先端孔8Mから加工点の切粉と研削気体及びクーラント液を吹き飛ばし、続いて短管8Sの先端開口部8Cへ流入され、後端開口部8Dの通孔h7から排出する構成とした。その他の構成は、上記第1実施の形態となる円筒体研削砥石2の構成と同一に付き、説明を省略する。勿論、上記第3実施形態の円筒体研削砥石8において、図6に示すように、円筒体研削砥石2の後端開口部を閉塞板5aで閉塞させた円筒体研削砥石としても良い。Furthermore, as shown in FIG. 8, the cylindrical grinding wheel 8 of the third embodiment is a double cylinder 8X in which annular cylinders 8A and 8B having different outer diameters and cylinder lengths are fitted. In each annular space S, S of the cylindrical body, a plurality of partition walls P are provided at equal intervals over the entire circumference of the circle toward the axial direction O of the cylindrical body, thereby constituting a long pipe 8L and a short pipe 8S. . Thus, a plurality of through holes h7, h8 are formed in the gaps of the plurality of partition walls P of the double cylinder 8X , and the opening and the opening of the short tube 8S are formed at the front and rear ends of the through holes. Openings 8M and 8N are provided in the 8C and 8D and the long tube 8L . Each opening 8N of each hole h8 that between the partition walls of the long pipe 8L is formed is coupled with communication hole h2 which is branched into a plurality of center holes h1 arbor 4, grinding fluid G0 also from the respective openings 8N Allows inflow of grinding gas and coolant liquid C0 . As a result, chips, grinding gas, and coolant liquid at the processing point are blown off from the tip hole 8M of the long pipe 8L, and subsequently flown into the tip opening 8C of the short pipe 8S, and from the through hole h7 of the rear end opening 8D. It was set as the structure discharged | emitted. Other configurations are the same as the configuration of the cylindrical grinding wheel 2 according to the first embodiment, and the description thereof is omitted. Of course, as shown in FIG. 6, the cylindrical grinding wheel 8 of the third embodiment may be a cylindrical grinding wheel in which the rear end opening of the cylindrical grinding wheel 2 is closed with a closing plate 5a.

更に、第4実施形態の円筒体研削砥石6は、上記第3実施形態の円筒体研削砥石8において、筒体8A、8Bを嵌合させた二重筒体8Xに替えて、図10と図11に示すように、通孔hを有する多数の長管6Aと、少ない本数の短管6Bとを交互に束ねた管体群としている。上記長管6Aに間隔をあけて先端及び後端を短くした1本乃至数本の短管6Bを併設させている。上記長管群の後端側の通孔hは、アーバー4のセンター孔h1から分岐された枝孔h0と繋がれ、該通孔の後端側から研削液G0又は研削気体及びクーラント液C0を流入可能とし、短管6Bの先端孔hから加工点の切粉と研削気体及びクーラント液を吸引し、該短管の後端孔hから排出する構成と成っている。尚、図10(a)と図11は、工具ホルダ4と管体群6A、6Bとを分離した状態。図10(b)は、組み付け状態。図10(c)は、長管6Aと短管6Bとアーバー4の断面を示す。尚、図6に示すように、円筒体研削砥石2の後端開口部を閉塞板5aで閉塞させた円筒体研削砥石としても良い。Furthermore, the cylindrical grinding wheel 6 of the fourth embodiment is replaced with the double cylindrical body 8X in which the cylindrical bodies 8A and 8B are fitted in the cylindrical grinding wheel 8 of the third embodiment, as shown in FIGS. As shown in FIG. 11, a tube body group is formed by alternately bundling a large number of long tubes 6A having through holes h and a small number of short tubes 6B . And then it offers a short pipe 6B of one to present several short for leading edge and the trailing edge at intervals to the long tube 6A. The through hole h on the rear end side of the long tube group is connected to the branch hole h0 branched from the center hole h1 of the arbor 4, and the grinding liquid G0 or the grinding gas and the coolant liquid C0 are supplied from the rear end side of the through hole. It is configured to be able to flow in, and the chips, grinding gas and coolant liquid at the machining point are sucked from the front end hole h of the short pipe 6B and discharged from the rear end hole h of the short pipe. 10A and 11 show a state in which the tool holder 4 and the tube groups 6A and 6B are separated. FIG. 10B shows the assembled state. FIG. 10C shows a cross section of the long tube 6 </ b> A, the short tube 6 </ b> B, and the arbor 4. In addition, as shown in FIG. 6, it is good also as a cylindrical grinding wheel with which the rear-end opening part of the cylindrical grinding wheel 2 was obstruct | occluded with the obstruction board 5a.

尚、第4実施形態の円筒体研削砥石6は、上記第3実施形態の円筒体研削砥石8と、ほぼ同一の作用効果を奏する。即ち、図9により、上記第3実施形態の円筒体研削砥石8及びカップ筒体研削砥石を含めたワークWへの孔あけ作業を説明する。先ず、図9(a)において、工具ホルダHに取り付けられた研削砥石6(8)は回転しながらワークW側へと送り込まれるとともに、研削液G0又は研削気体及びクーラント液C0を長い管体群6Aの後端側の通孔hから先端へ送り込まれ、ワークWに向けて噴射される。そして、図9(b)になると長い管体群6Aの刃先砥粒Dで円形の溝加工W1をはじめ、研削液G0又は研削気体及びクーラント液C0は長い管体群6Aから加工済みの溝W1を介して跳ね返り、切粉や粉塵を排除している。更に、図9(c)のように溝加工W1が進んで短管6Bの刃先砥粒Dも溝加工W1をはじめると、研削液G0又は研削気体及びクーラント液C0は長い管体群6Aから加工済みの溝W1を介して短管6B内を先端から逆流して短管6B内の上端から加工済みの切粉や粉塵を含んだ汚泥Jとして外部へ排出される。更に、研削砥石3Dは回転しながらワークW側へと送り込まれる。最後に、図9(f)に見るように、長い管体群6Aの刃先砥粒DがワークWの裏面に到達して貫通孔Hを形成する。これで、研削液G0又は研削気体及び研削気体及びクーラント液が吹き出し、筒状の残片G1が抜け落ち、効率の良い孔加工が短時間に実行する。The cylindrical grinding wheel 6 of the fourth embodiment has substantially the same operational effects as the cylindrical grinding wheel 8 of the third embodiment. That is, with reference to FIG. 9, the drilling work on the workpiece W including the cylindrical grinding wheel 8 and the cup cylindrical grinding wheel of the third embodiment will be described. First, in FIG. 9A, the grinding wheel 6 (8) attached to the tool holder H is sent to the workpiece W side while rotating, and a long tube body group is supplied with the grinding fluid G0 or the grinding gas and the coolant fluid C0. 6A is sent from the through hole h on the rear end side to the front end and sprayed toward the workpiece W. 9B, the groove W1 including the circular groove machining W1 and the grinding fluid G0 or the grinding gas and the coolant liquid C0 are processed from the long pipe group 6A. Bounces through and eliminates chips and dust. Further, as shown in FIG. 9C, when the groove processing W1 advances and the cutting edge abrasive grain D of the short pipe 6B also starts the groove processing W1, the grinding fluid G0 or the grinding gas and the coolant fluid C0 are processed from the long tube body group 6A. The inside of the short pipe 6B flows backward from the tip through the finished groove W1, and is discharged to the outside as sludge J containing processed chips and dust from the upper end of the short pipe 6B. Further, the grinding wheel 3D is fed to the workpiece W side while rotating. Finally, as shown in FIG. 9 (f), the cutting edge abrasive grains D of the long tube group 6 </ b> A reach the back surface of the workpiece W to form a through hole H. As a result, the grinding fluid G0 or the grinding gas, the grinding gas, and the coolant are blown out, and the cylindrical residue G1 falls off, so that efficient drilling is performed in a short time.

上記各円筒体研削砥石(2、5)、6、8及び図6に示すカップ筒体研削砥石5他 における研削液G0叉は研削気体及びクーラント液C0の流路と切粉排出作用の関係を図12により説明する。
先ず、上記研削砥石6、8の長短パイプの構造において、Aは加圧されたクーラント(気体、液体)で、導入路から筒状に配置された複数のパイプへ供給される。Bにおいて、複数のパイプをクーラント(研削液G0叉は研削気体及びクーラント液C0)で自己冷却しながら加工点Cに噴出する。Cの加工点では、クーラントが切粉・粉塵を回収しながら冷却する。Dでは、短管6B、8A、8Sの排出パイプからクーラントは切粉・粉塵とともに押し出され外部へ排出される。
また、円筒体研削砥石2(カップ筒体研削砥石5)の内周面と外周面に軸芯方向に複数の縦溝を設けたものにおいて、Aは加圧されたクーラント(気体、液体)で、クーラントは、Bにおいて円筒体3及びカップ筒体5他の複数ある内側の溝3B,3Cへ圧入される。Bにおいて、複数の縦溝をクーラントは自己冷却しながら加工点Cに噴出する。Cの加工点では、クーラントが切粉・粉塵を巻き取りながら冷却する。Dでは、排出用の外周面3Fの溝3G,3Hからクーラントは切粉・粉塵とともに押し出され外部へ排出される。
Each cylindrical grinding wheel (2, 5), 6, 8 and the cup cylinder grinding wheel 5 shown in FIG. This will be described with reference to FIG.
First, in the structure of the long and short pipes of the grinding wheels 6 and 8, A is a pressurized coolant (gas, liquid), which is supplied from an introduction path to a plurality of pipes arranged in a cylindrical shape. In B, a plurality of pipes are ejected to the machining point C while being self-cooled with coolant (grinding fluid G0 or grinding gas and coolant fluid C0). At the processing point C, the coolant cools while collecting chips and dust. In D, the coolant is pushed out from the discharge pipes of the short pipes 6B, 8A and 8S together with the chips and dust and discharged to the outside.
Further, in the cylindrical grinding wheel 2 (cup cylindrical grinding wheel 5) provided with a plurality of longitudinal grooves in the axial direction on the inner peripheral surface and outer peripheral surface, A is a pressurized coolant (gas, liquid). In B, the coolant is press-fitted into the plurality of inner grooves 3B and 3C other than the cylindrical body 3 and the cup cylinder 5. In B, the coolant is jetted to the processing point C while the coolant self-cools the plurality of vertical grooves. At the processing point C, the coolant cools while taking up chips and dust. In D, the coolant is pushed out together with chips and dust from the grooves 3G and 3H of the outer peripheral surface 3F for discharge and discharged to the outside.

最後に、上記第1実施の形態となる円筒体研削砥石2及びカップ筒体研削砥石5の製造方法を、図13により説明する。材料は、外径φ44mm 内径φ23mmのアルミのパイプ材。第1工程では、バイトによる端面と外径削り。第2工程では、バイトによる内径削り。第3工程では、回転カッターによる外径溝切り、先端面の切り欠き。第4工程では、穴開け(第5工程で溝になる)。第5工程では、バイトによる内径削りで、穴を切り欠いて溝にする。第6工程では、所定の長さに切り落とし、円筒体3とする。  Finally, a method for manufacturing the cylindrical grinding wheel 2 and the cup cylindrical grinding wheel 5 according to the first embodiment will be described with reference to FIG. The material is an aluminum pipe with an outer diameter of φ44 mm and an inner diameter of φ23 mm. In the first step, the end face and outer diameter are cut with a cutting tool. In the second step, internal cutting with a cutting tool. In the third step, outer diameter grooving with a rotary cutter and notch of the tip surface. In the fourth step, a hole is formed (a groove is formed in the fifth step). In the fifth step, the hole is cut out into a groove by cutting the inner diameter with a cutting tool. In the sixth step, the cylindrical body 3 is cut off to a predetermined length.

以上のように、本発明の各円筒体研削砥石2(カップ筒体研削砥石5)、6、8によると、下記の効果が得られる。先ず、薄板から厚板までの孔の貫通加工において、加工点・研削点へのクーラント液、研削気体及びの効率アップ、研削屑の排出効率アップ、研削時間の短縮による研削効率の改善ができる。  As described above, according to the cylindrical grinding wheels 2 (cup cylindrical grinding wheels 5), 6, and 8 of the present invention, the following effects are obtained. First, in the drilling of holes from a thin plate to a thick plate, it is possible to improve the grinding efficiency by increasing the efficiency of the coolant liquid and grinding gas to the machining point / grinding point, increasing the efficiency of discharging grinding scraps, and shortening the grinding time.

円筒体研削砥石2及びカップ筒体研削砥石5他による厚板の穴の貫通加工において、最少限の研削屑生成とこの研削屑の排出効率アップ、研削気体及びクーラント液は砥石内を通過させて刃先へ効率良く噴出させ、研削効率を改善することで、加工効率のアップ、研削時間の短縮が図れる。
また、一般の金属製の板材やコンクリートの孔加工の他、炭素繊維糸の線方向と直交する方向は強度が弱いCFRPに対する切断加工に使用すると飛躍的に加工が向上できる。即ち、CFRP繊維の最高強度方向に無理やり引っ張る従来の回転加工だけでなく切断進行方向に「叩き切る」相乗効果を発揮させ、CFRPの宿命的テーマと言われている層間剥離、バリ(デラミ)発生を著しく改善できる。
In the drilling of the hole of the thick plate by the cylindrical grinding wheel 2 and the cup cylindrical grinding wheel 5 and others, the minimum grinding waste generation and the discharge efficiency of the grinding waste are increased, and the grinding gas and the coolant liquid are passed through the grinding wheel. By efficiently ejecting to the cutting edge and improving the grinding efficiency, the processing efficiency can be increased and the grinding time can be shortened.
In addition to drilling holes in a general metal plate or concrete, when the direction perpendicular to the linear direction of the carbon fiber yarn is used for cutting CFRP having a low strength, the machining can be dramatically improved. In other words, not only the conventional rotational processing that forcibly pulls the CFRP fiber in the direction of maximum strength but also the synergistic effect of “slashing” in the direction of cutting progress, delamination and delamination are said to be the fatal theme of CFRP. Can be significantly improved.

更に、切削屑・研削屑となる粉塵を合理的に回収し、環境保全が図れる。
即ち、研削時に砥粒の剥奪が無く、研削液は刃先砥粒の表面を刃先内部から浸透(濡らす)できる。即ち、深穴を明けるとき、刃先に研削液を確実に到達できる。従って、砥石刃先(砥粒)は研削液、研削気体及びを常に内部小孔から満たし、刃先の冷却効果、研削屑の排出効果、研削抵抗の低減効果による発熱低減効果、研削効率の向上効果等々が大きく期待できる。
Furthermore, it is possible to rationally collect the dust that becomes cutting scraps and grinding scraps and to protect the environment.
That is, there is no peeling of the abrasive grains during grinding, and the grinding liquid can penetrate (wet) the surface of the cutting edge abrasive grains from the inside of the cutting edge. That is, when drilling a deep hole, the grinding liquid can reliably reach the cutting edge. Therefore, the grinding wheel edge (abrasive grain) always fills the grinding fluid, grinding gas, and internal holes from the internal small holes, the cutting edge cooling effect, the grinding dust discharge effect, the grinding resistance reduction effect, the heat generation reduction effect, the grinding efficiency improvement effect, etc. Can be expected greatly.

本発明は、上記各研削砥石2、5、6、8の実施形態において、粉塵を集塵する集塵カバーと吸引器を配置した実施態様としても良い。更に、その対象物を、トレパンカッター、カップ砥石による炭素繊維強化プラスチック加工に適用しても良い。更に、チョッピング工具ホルダに取り付けこの駆動源を、脈動圧縮する研削液GO又はクーラント液COに求めるほか、圧縮空気供給源(エアーコンプレッサ)の脈動する圧縮空気に求めてもよい。この場合は、圧縮空気により研削砥石や切削工具を冷却する。更に、工作機械用の研削盤やミーリングマシン(フライス盤等の加工機)に使用されるチョッピング工具ホルダに取り付けたチョッピング加工制御装置の実施態様としても実施できる。  This invention is good also as an embodiment which has arrange | positioned the dust collection cover and suction device which collect dust in the embodiment of each said grinding grindstone 2,5,6,8. Further, the object may be applied to carbon fiber reinforced plastic processing using a trepan cutter or a cup grindstone. Furthermore, the drive source attached to the chopping tool holder may be obtained from the pulsating compressed air supplied from the compressed air supply source (air compressor) in addition to the grinding fluid GO or coolant liquid CO to be pulsated and compressed. In this case, the grinding wheel or cutting tool is cooled by compressed air. Furthermore, the present invention can also be implemented as an embodiment of a chopping control device attached to a chopping tool holder used in a machine tool grinder or milling machine (milling machine or other processing machine).

1 大径嵌合穴座板
1a 孔
2,6,8 円筒体研削砥石
3 円筒体
3A 内周面
3F 外周面
3B、3C、3G、3H 溝
3I 周辺部
3S 先端面
4 アーバー
4A センター孔
4a 大径嵌合穴
4b 取付ネジ
5 カップ筒体研削砥石
5a 閉塞板
5B,5C,5G,5H 溝
5S 先端面
5E 切欠部
5F 外周面
5I 周辺部
6A 長管
6B 短管
8A、8B 筒体
8X 二重筒体
8L 長管
8S 短管
8C、8D 開口部
8M 先端孔
B ボルト
Ba 先端ネジ
Bb 中心孔
CO クーラント液
G 砥粒
GO 研削液、研削気体
P 隔壁
h 通孔
h1 センター孔
O 軸芯方向
S 空間
W ワーク
DESCRIPTION OF SYMBOLS 1 Large diameter fitting hole seat board 1a Hole 2, 6, 8 Cylindrical body grinding grindstone 3 Cylindrical body 3A Inner peripheral surface 3F Outer peripheral surface 3B, 3C, 3G, 3H Groove 3I Peripheral part 3S Front end surface 4 Arbor 4A Center hole 4a Large Diameter fitting hole 4b Mounting screw 5 Cup cylinder grinding wheel 5a Closing plate 5B, 5C, 5G, 5H Groove 5S Tip face 5E Notch part 5F Outer peripheral face 5I Peripheral part 6A Long pipe 6B Short pipe 8A, 8B Cylindrical body 8X Double Cylindrical body 8L Long tube 8S Short tube 8C, 8D Opening 8M Tip hole B Bolt Ba Tip screw Bb Center hole CO Coolant fluid G Abrasive fluid GO Grinding fluid, grinding gas P Partition h Through hole h1 Center hole O Axial direction S Space W Work

Claims (2)

内径と外径及び筒長の異なる大径の筒体と小径の筒体を嵌合させた二重筒体は、各筒体を各々2枚構成の薄板材で形成した内外周の壁間内に各々環状空間を有し、上記小径の筒体の外周壁面に大径の筒体を一体的に嵌合するとともに各筒体先端部に砥粒を固着してなり、上記二重筒体の各環状空間内に該筒体の軸芯方向に向けて円周囲の全体にわたり複数の隔壁を等間隔に設けた小径筒体の長管と大径筒体の短管の構成となし、上記長管と短管の各隔壁間は通孔となっており、上記長管と短管の各通孔の先端及び後端に併設した開口部とを有し、上記二重筒体の後端側を保持するとともに長管の後端の各開口部に研削液又はクーラント液を流入する連絡孔及びセンター孔を備えたアーバーと、を具備したことを特徴とする円筒体研削砥石 A double cylinder in which a large diameter cylinder and a small diameter cylinder having different inner diameters, outer diameters and cylinder lengths are fitted to each other is formed between two inner and outer walls formed by a thin plate material composed of two sheets. Each of which has an annular space, and a large-diameter cylinder is integrally fitted to the outer peripheral wall surface of the small-diameter cylinder, and abrasive grains are fixed to the tip of each cylinder. In each annular space, there is a configuration of a long tube of a small diameter cylinder and a short tube of a large diameter cylinder in which a plurality of partition walls are provided at equal intervals over the entire circumference of the circle in the axial direction of the cylinder, A through hole is formed between each partition wall of the tube and the short tube, and has an opening provided at the front end and the rear end of each through hole of the long tube and the short tube. cylinder grinding wheel, characterized in that anda arbor having a contact hole and a center hole to flow the grinding fluid or coolant to the respective openings of the rear end of the long tube holds the. 通孔を有する管を複数本円筒状に束ねて管体群とした円筒体と、上記円筒体には研削液又はクーラント液を先端加工点に供給する複数本の長管の先端部には砥粒を固着してなり、上記各長管の間に間隔をあけて先端及び後端を短くした1本乃至数本を併設した排出用短管と、上記円筒体の後端内側を保持するとともに各長管の後端側に開口する各通孔にセンター孔を繋ぎ上記各通孔から研削液又はクーラント液を流入するアーバーと、を具備したことを特徴とする円筒体研削砥石。A cylindrical body in which a plurality of pipes having through-holes are bundled into a cylindrical shape to form a pipe body group, and a grinding liquid or a coolant liquid is supplied to the tip machining point in the cylindrical body. A discharge short pipe provided with one or several pipes which are fixed to each other and which has a short tip and a rear end with a gap between the long pipes, and a rear end inner side of the cylindrical body. A cylindrical grinding wheel, comprising: a center hole connected to each through hole that opens to the rear end side of each long pipe; and an arbor into which a grinding liquid or a coolant liquid flows from each through hole.
JP2015153687A 2015-07-15 2015-07-15 Cylindrical grinding wheel Active JP6025107B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015153687A JP6025107B1 (en) 2015-07-15 2015-07-15 Cylindrical grinding wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015153687A JP6025107B1 (en) 2015-07-15 2015-07-15 Cylindrical grinding wheel

Publications (2)

Publication Number Publication Date
JP6025107B1 true JP6025107B1 (en) 2016-11-16
JP2017024155A JP2017024155A (en) 2017-02-02

Family

ID=57326576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015153687A Active JP6025107B1 (en) 2015-07-15 2015-07-15 Cylindrical grinding wheel

Country Status (1)

Country Link
JP (1) JP6025107B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107175694A (en) * 2017-04-27 2017-09-19 北京航空航天大学 On a kind of tool surface can self-lubricating structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616012U (en) * 1992-07-28 1994-03-01 ショーボンド建設株式会社 Diamond core bit
JPH09300223A (en) * 1996-05-20 1997-11-25 Showa:Kk Cutting tool
JP2000117641A (en) * 1998-10-19 2000-04-25 Nanotemu:Kk Manufacture of grinding wheel, and grinding wheel
JP2001232627A (en) * 2000-02-21 2001-08-28 Goei Seisakusho:Kk Core bit
JP2007118133A (en) * 2005-10-28 2007-05-17 Ngk Insulators Ltd Boring tool
JP2011105560A (en) * 2009-11-19 2011-06-02 Nippon Electric Glass Co Ltd Core drill and drilling method of glass plate using the drill

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616012U (en) * 1992-07-28 1994-03-01 ショーボンド建設株式会社 Diamond core bit
JPH09300223A (en) * 1996-05-20 1997-11-25 Showa:Kk Cutting tool
JP2000117641A (en) * 1998-10-19 2000-04-25 Nanotemu:Kk Manufacture of grinding wheel, and grinding wheel
JP2001232627A (en) * 2000-02-21 2001-08-28 Goei Seisakusho:Kk Core bit
JP2007118133A (en) * 2005-10-28 2007-05-17 Ngk Insulators Ltd Boring tool
JP2011105560A (en) * 2009-11-19 2011-06-02 Nippon Electric Glass Co Ltd Core drill and drilling method of glass plate using the drill

Also Published As

Publication number Publication date
JP2017024155A (en) 2017-02-02

Similar Documents

Publication Publication Date Title
JP6165974B2 (en) Vacuum drilling system and method
JP6713033B2 (en) Fluid supply vacuum cutter
KR101818807B1 (en) Spirally-fed drilling and milling cutter
JP2012250343A (en) Improved rotary cutting tool with coated cutting edge and cooling agent hole, and manufacturing method thereof
KR102291712B1 (en) Cutting tools with coolant deflection
JP2009078330A (en) Rotary boring tool
JP2011051092A (en) Through tool coolant adapter for drilling motor
EP1407865B1 (en) Tool, device and method for drilling
JP6025107B1 (en) Cylindrical grinding wheel
JP6069775B1 (en) Wire mesh grinding wheel with coolant guide base metal
JPS595757B2 (en) Senkoukougu
JP2005262348A (en) Rotary cutter body and boring method by rotary cutter body
CN104439934A (en) Machining method for aero-engine inclusive casing
JP6041248B1 (en) Wire mesh grinding wheel with coolant guide base metal
CN110614400A (en) Miniature cutter with coolant liquid delivery hole
JP2007015041A (en) Rotating tool and machine tool
JP2013111709A (en) Tool for processing inner-diameter groove
WO2010062850A1 (en) Coolant delivery system in rotating cutting tool
JP6041249B1 (en) Chopping processing method using bird&#39;s nest-like grindstone and bird&#39;s nest-like grindstone
JP2009066682A (en) Cutting tool, and cutting method using the same
JP5276504B2 (en) Tool having a flow path in the tool
JP2015223655A (en) Dust collection mechanism, dust collection method, and machining method
JP5954554B1 (en) Wire mesh grinding wheel with coolant guide
CN208772607U (en) A kind of alloy substrate weld tabs reamer
JPH07195251A (en) Chip suction device in end milling

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160930

R150 Certificate of patent or registration of utility model

Ref document number: 6025107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250