JP2013111709A - Tool for processing inner-diameter groove - Google Patents

Tool for processing inner-diameter groove Download PDF

Info

Publication number
JP2013111709A
JP2013111709A JP2011260535A JP2011260535A JP2013111709A JP 2013111709 A JP2013111709 A JP 2013111709A JP 2011260535 A JP2011260535 A JP 2011260535A JP 2011260535 A JP2011260535 A JP 2011260535A JP 2013111709 A JP2013111709 A JP 2013111709A
Authority
JP
Japan
Prior art keywords
tool
cutting
inner diameter
groove
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011260535A
Other languages
Japanese (ja)
Inventor
Tomohiro Ito
友宏 伊藤
Yohei Koizumi
洋平 小泉
Masahiro Yoshimoto
正博 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011260535A priority Critical patent/JP2013111709A/en
Publication of JP2013111709A publication Critical patent/JP2013111709A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To obtain a stable processing tool without a tool edge damage, by suppressing winding of chips around a tool in the processing of an inner-diameter groove of a pipe.SOLUTION: A T-slot cutter structure includes a plurality of cutting edges, which have predetermined rake angles at each tip and are provided radially at the tip of a bar-shaped tool body that can rotate around its axis to cut a work in a direction of rotation, and ejection ports, which are provided in the tool body, adjacent to the side of the end part of the tool body, to a line of connecting the edge widths of the cutting edges adjoining each other, between the adjacent cutting edges, to eject fluid.

Description

この発明は、パイプの内径溝加工に係り、深溝でも工具刃損がなく高精度に加工が可能な加工工具に関するものである。 The present invention relates to machining of an inner diameter groove of a pipe, and relates to a machining tool which can be machined with high accuracy without a tool blade loss even in a deep groove.

従来の内径溝加工においては、内径加工用バイト工具を用いて加工することが一般的である。 In the conventional inner diameter groove processing, it is common to perform processing using an inner diameter cutting tool.

特開昭58-211802号公報JP 58-211802 A

内径溝の加工において、溝幅が細く深さが深い場合、適用する工具の刃が薄く長いため剛性が低く工具刃損しやすい。また、切削での切屑が溝部から排出されにくく切屑詰まりによる工具刃損や製品へ傷付けが発生する。とくに、特開昭58-211802号公報(特許文献1参照)に示されるバイト工具による加工は、切屑が連続してつながったものとなり、工具に巻き付き工具刃損の原因となっていた。さらにパイプの奥まで加工する場合、工具長が長くなり工具剛性がさらに低下してびびり振動が発生しやすく、工具刃損や加工面の仕上がり悪化を招いていた。 In the processing of the inner diameter groove, when the groove width is narrow and the depth is deep, the tool blade to be applied is thin and long, so that the rigidity is low and the tool blade is easily damaged. Further, it is difficult for chips from cutting to be discharged from the groove portion, resulting in tool blade damage and damage to the product due to chip clogging. In particular, the machining with a bite tool disclosed in Japanese Patent Application Laid-Open No. 58-212102 (see Patent Document 1) is a continuous connection of chips, which causes a tool blade loss due to winding around the tool. Further, when machining to the back of the pipe, the tool length becomes longer, the tool rigidity further decreases, chatter vibration is likely to occur, and the tool blade loss and the finished surface finish deteriorate.

これらの要因により、切込みや送り速度の切削条件を落して加工する必要があり、加工時間が長くかかっていた。また、切屑を除去するために加工毎に機械を止め人作業により切屑を除去する清掃作業が必要となり、無人での連続設備稼動ができなかった。そのため、切削条件を落さず、切屑を効率的に除去することが課題であった。 Due to these factors, it is necessary to cut the cutting conditions such as cutting and feed speed, and the processing time is long. Further, in order to remove chips, a cleaning operation is required to stop the machine every time processing is performed and remove chips by human work, and continuous operation of the equipment cannot be performed unattended. Therefore, it has been a problem to efficiently remove chips without reducing cutting conditions.

この発明に係る内径溝加工用工具は、刃先に所定のすくい角を有し、軸心周りに回転可能な棒状の工具本体の先端部に放射状に設けられ、回転方向に切削する複数の切削刃と、隣接する前記切削刃の間で、前記隣接するそれぞれの前記切削刃の刃幅を結んだ線に対し前記工具本体の末端部側に隣接して前記工具本体に設けられ、液体を噴出する噴出口とを備えたものである。 An inner diameter grooving tool according to the present invention includes a plurality of cutting blades that have a predetermined rake angle at a cutting edge, are provided radially at the tip of a rod-shaped tool body that can rotate around an axis, and cut in a rotating direction. And between the adjacent cutting blades, provided on the tool main body adjacent to the end side of the tool main body with respect to a line connecting the blade widths of the adjacent cutting blades, and ejects liquid And a spout.

この発明によれば、パイプ内径溝の加工において、切屑の工具への巻き付きが抑制され、工具刃損の無い安定した加工工具が得られる。 According to this invention, in the processing of the pipe inner diameter groove, the wrapping of chips around the tool is suppressed, and a stable processing tool free from tool blade loss can be obtained.

この発明の実施の形態1における内径溝加工用工具や加工方法を表した模式図である。It is the schematic diagram showing the tool for internal diameter grooves processing and the processing method in Embodiment 1 of this invention. この発明の実施の形態1における内径溝加工用工具の形状を示す図である。It is a figure which shows the shape of the tool for internal diameter grooves processing in Embodiment 1 of this invention. この発明の実施の形態1における3種類の内径溝加工用工具を用いて、内径溝を加工するときの加工状態を表す図である。It is a figure showing the processing state when processing an internal diameter groove | channel using the three types of internal diameter groove processing tools in Embodiment 1 of this invention. この発明の実施の形態1における内径溝加工用工具の先端から切削刃の刃先に向けて切削液を噴出するときの状態を示す図である。It is a figure which shows the state when ejecting cutting fluid from the front-end | tip of the tool for internal diameter grooving in this Embodiment 1 toward the blade edge | tip of a cutting blade. この発明の実施の形態1における内径溝加工用工具の切削刃の刃先形状を表した図である。It is a figure showing the blade edge | tip shape of the cutting blade of the internal diameter groove processing tool in Embodiment 1 of this invention. この発明の実施の形態2における内径溝加工用工具の形状を示す図である。It is a figure which shows the shape of the tool for internal diameter grooves processing in Embodiment 2 of this invention. この発明の実施の形態3における内径溝加工用工具の形状を示す図である。It is a figure which shows the shape of the tool for internal diameter grooves processing in Embodiment 3 of this invention.

実施の形態1.
以下、この発明の構成を具体的に明らかにするために、実施形態の一例について、図面を参照しつつ、詳細に説明することとする。
Embodiment 1 FIG.
Hereinafter, in order to clarify the configuration of the present invention, an example of an embodiment will be described in detail with reference to the drawings.

図1〜5は、この発明の実施の形態1を表す内径溝加工の加工工具や加工方法を表した模式図である。図1は、この発明の実施の形態1における内径溝加工用工具や加工方法を表した模式図であり、図1において、1は被加工部材であるパイプ材、2は内径溝、3は内径溝加工用工具のTスロットカッタである。 1 to 5 are schematic views showing a machining tool and a machining method for inner diameter grooving that represent Embodiment 1 of the present invention. 1 is a schematic diagram showing an inner diameter groove machining tool and a machining method according to Embodiment 1 of the present invention. In FIG. 1, 1 is a pipe material which is a workpiece, 2 is an inner diameter groove, and 3 is an inner diameter. It is a T slot cutter of a groove processing tool.

図2は、この発明の実施の形態1における内径溝加工用工具の形状を示す図であり、図2において、4はTスロットカッタの切削刃、5は最小工具首、6はテーパ首部、7はシャンクである。図3は、この発明の実施の形態1における3種類の内径溝加工用工具を用いて、内径溝を加工するときの加工状態を表す図であり、図3において、8は内径溝の浅い部分を加工するTスロットカッタ、9は中間の溝深さを加工するTスロットカッタ、10は最も深い溝を加工するためのTスロットカッタである。 FIG. 2 is a view showing the shape of an inner diameter grooving tool according to Embodiment 1 of the present invention. In FIG. 2, 4 is a cutting blade of a T-slot cutter, 5 is a minimum tool neck, 6 is a taper neck, Is a shank. FIG. 3 is a diagram showing a machining state when machining an inner diameter groove using the three types of inner diameter groove machining tools according to Embodiment 1 of the present invention. In FIG. 3, 8 is a shallow portion of the inner diameter groove. T-slot cutter 9 for machining, T-slot cutter 9 for machining an intermediate groove depth, and 10 T-slot cutter for machining the deepest groove.

図4は、この発明の実施の形態1における内径溝加工用工具の先端から切削刃4の刃先に向けて切削液を噴出するときの状態を示す図であり、図4において、11は切削液が噴出されるスルーホール出口部、12はスルーホール部を示す。図5は、この発明の実施の形態1における内径溝加工用工具の切削刃4の刃先形状を表した図であり、図5において、13は切削刃4のすくい角、14は切削刃溝部を示す。 FIG. 4 is a diagram showing a state when the cutting fluid is ejected from the tip of the inner diameter grooving tool according to the first embodiment of the present invention toward the cutting edge of the cutting blade 4. In FIG. The through-hole exit part from which is ejected, 12 shows a through-hole part. FIG. 5 is a view showing the shape of the cutting edge 4 of the cutting tool 4 of the inner diameter grooving tool according to Embodiment 1 of the present invention. In FIG. 5, 13 is a rake angle of the cutting blade 4, and 14 is a cutting blade groove part. Show.

次に、パイプの概略について説明する。図1のようにパイプ1の内部に複数の内径溝2を持つ形状でかつパイプ内径はテーパ状に片側が広がる構造の部品に適用する。パイプの外径はφ50〜70mm程度、内径は最小φ24mmから最大でφ50mmと細い内径形状となっている。その細いパイプ内径に細く深い内径溝2が構成されている。内径溝2は、幅は2〜6.4mm、深さは6〜10mmとなり、もっとも細く深い溝は幅2mm、深さ10mmとなっている。また、各内径溝2は同軸度が要求されており、両側から加工すると同軸度を満足できない。そのため、片側からの加工となっている。 Next, an outline of the pipe will be described. As shown in FIG. 1, the present invention is applied to a part having a plurality of inner diameter grooves 2 inside the pipe 1 and a structure in which the inner diameter of the pipe is tapered and one side is widened. The outer diameter of the pipe is about 50 to 70 mm, and the inner diameter is a thin inner diameter shape from a minimum φ24 mm to a maximum φ50 mm. A narrow and deep inner diameter groove 2 is formed on the inner diameter of the thin pipe. The inner diameter groove 2 has a width of 2 to 6.4 mm and a depth of 6 to 10 mm, and the narrowest and deepest groove has a width of 2 mm and a depth of 10 mm. Moreover, each inner diameter groove | channel 2 is requested | required of coaxiality, and if it processes from both sides, coaxiality cannot be satisfied. Therefore, it is processing from one side.

工具であるTスロットカッタ3の形状について説明する。図2において、Tスロットカッタの切削刃4は放射状に複数の刃を持つ。複数の刃を持つことで切削時の切削刃4へかかる切削抵抗を分散させ、工具剛性が低くても工具刃損を低減する。切削刃径の大きさにより刃数は異なるが、例えば、パイプ内径が最小でφ24mmの場合、6枚の刃を持つ。切削刃4の径はパイプ1の最小内径がφ24mmであり、工具との干渉を防ぐため最小内径から0.5mm小さくしたφ23.5mmとする。切削刃4の刃幅は溝形状から決まり、最小溝幅から切屑の逃げ代分0.2mmを考慮した刃幅とし、最小溝幅が2mmのため刃先4の刃幅は1.8mmとする。 The shape of the T slot cutter 3 as a tool will be described. In FIG. 2, the cutting blade 4 of the T slot cutter has a plurality of blades radially. By having a plurality of blades, the cutting resistance applied to the cutting blade 4 at the time of cutting is dispersed, and the tool blade loss is reduced even if the tool rigidity is low. Although the number of blades varies depending on the size of the cutting blade diameter, for example, when the pipe inner diameter is a minimum of 24 mm, there are six blades. The diameter of the cutting blade 4 is φ23.5 mm, which is 0.5 mm smaller than the minimum inner diameter in order to prevent interference with the tool. The blade width of the cutting blade 4 is determined by the groove shape, and the blade width is determined by taking into account the clearance of the chip from 0.2 mm from the minimum groove width, and since the minimum groove width is 2 mm, the blade width of the cutting edge 4 is 1.8 mm.

工具本体は、最小工具首5、テーパ首部6及びシャンク7で構成されている。
最小工具首5の径はパイプ内径形状から決まり、パイプ1の最小内径が24mm、最大の溝深さが10mmでは最小工具首5の径は加工時の干渉も考慮して3mmとする。さらにテーパ首部6の形状もパイプ内径から決まり、内径溝2の最も深い溝を加工する場合における、工具3がもっともパイプ内径と近づく位置から0.5mm離れた形状とする。また、シャンク7については、工具を機械側で掴む箇所となりパイプ1に干渉しないだけのシャンク径と長さが必要になる。シャンク径はパイプ内径形状によって決まり、最大限に大きくすることで工具剛性を高めることができるが、シャンク径が大きくなると重量も増し工具を掴みにくくなるので適切な大きさが必要となるので、例えば、シャンク径をφ20mmと設定する。このように、Tスロットカッタ3の形状はパイプ内径と内径溝2の形状によって設定されるが、切屑処理性を考慮した適切な工具形状にする必要がある。
The tool body includes a minimum tool neck 5, a taper neck 6, and a shank 7.
The diameter of the minimum tool neck 5 is determined by the pipe inner diameter shape. When the minimum inner diameter of the pipe 1 is 24 mm and the maximum groove depth is 10 mm, the diameter of the minimum tool neck 5 is 3 mm in consideration of interference during processing. Further, the shape of the taper neck 6 is also determined from the inner diameter of the pipe, and when the deepest groove of the inner diameter groove 2 is machined, the tool 3 is shaped to be 0.5 mm away from the position closest to the inner diameter of the pipe. In addition, the shank 7 needs to have a shank diameter and a length that do not interfere with the pipe 1 because it becomes a place where the tool is gripped on the machine side. The shank diameter is determined by the pipe inner diameter shape, and the tool rigidity can be increased by increasing it to the maximum.However, as the shank diameter increases, the weight increases and it becomes difficult to grasp the tool. The shank diameter is set to φ20 mm. As described above, the shape of the T-slot cutter 3 is set according to the shape of the pipe inner diameter and the inner diameter groove 2, but it is necessary to use an appropriate tool shape in consideration of chip disposal.

次に、パイプ1における内径溝2の加工方法について図3を用いて、加工寸法を例示して説明する。内径溝2の加工において、図3(a)〜図3(c)に示すように、Tスロットカッタ3を複数に分けて加工を行う。細く深い溝を加工する場合、先にも述べたように、切削刃4の径が大きく、最小工具首5が細くなり工具剛性が低く工具刃損しやすい。そのため切込みや切削送り等の加工条件を上げることができない。そこで、工具剛性を増し、加工条件を上げるために溝の深さ毎に工具を使い分ける。 Next, a processing method of the inner diameter groove 2 in the pipe 1 will be described with reference to FIG. In processing the inner diameter groove 2, as shown in FIGS. 3A to 3C, the T slot cutter 3 is divided into a plurality of parts. When machining a thin and deep groove, as described above, the diameter of the cutting blade 4 is large, the minimum tool neck 5 is thinned, the tool rigidity is low, and the tool blade is easily damaged. Therefore, processing conditions such as cutting and cutting feed cannot be increased. Therefore, in order to increase the tool rigidity and raise the machining conditions, the tools are used differently for each groove depth.

図3(a)に示すように、内径溝2の浅い箇所を加工する場合は、切削刃4の径を小さく最小工具首5の径を大きくした工具8を適用する。こうすることで工具剛性が増し加工条件を上げることができる。内径溝2の深さは5mmまで加工する場合、最小工具首5の径は16mmまで大きくする。 As shown in FIG. 3A, when machining a shallow portion of the inner diameter groove 2, a tool 8 in which the diameter of the cutting blade 4 is reduced and the diameter of the minimum tool neck 5 is increased is applied. By doing so, the tool rigidity is increased and the machining conditions can be raised. When machining the inner groove 2 to a depth of 5 mm, the diameter of the minimum tool neck 5 is increased to 16 mm.

次に、図3(b)に示すように、内径溝2の深さを9mmまで加工するための工具形状とした工具9を適用する。こうすることで、工具剛性向上による加工条件の改善だけでなく、工具磨耗を分散することができ工具刃損を抑えることも目的とする Next, as shown in FIG.3 (b), the tool 9 made into the tool shape for processing the depth of the internal diameter groove | channel 2 to 9 mm is applied. By doing this, not only the machining conditions are improved by improving the tool rigidity, but also the tool wear can be dispersed and the tool blade loss can be suppressed.

図3(c)に示すように、最終の内径溝2の深さを加工する最も剛性の弱い工具10は、最小限の加工に抑えることとし、工具刃損を抑え全体の内径溝加工の時間を下げることができ、効率的な加工が実施できる。 As shown in FIG. 3C, the weakest tool 10 for processing the depth of the final inner diameter groove 2 is limited to the minimum processing, the tool blade loss is suppressed, and the entire inner diameter groove processing time. Can be reduced, and efficient processing can be performed.

次に、切屑処理性を向上させる方法について図4にて説明する。Tスロットカッタ3の切削刃4に切削液15を噴射できるよう、隣接する切削刃4の根元の間の工具首5に、それぞれの切削刃4の刃幅を結んだ線にシャンク7側に隣接してスルーホール出口部11を設け、さらに工具3の軸心方向にスルーホール12を設けてスルーホール出口部11と接続し、刃先に十分な切削液15が届くようにする。切削刃4の根元から切削液15を噴射させることで切削時の切屑を溝内から溝外へ流しだすことができ、切屑詰まりによる工具刃損を抑えることが可能となる。 Next, a method for improving chip disposal will be described with reference to FIG. Adjacent to the shank 7 side to the line connecting the blade widths of the respective cutting blades 4 to the tool neck 5 between the roots of the adjacent cutting blades 4 so that the cutting fluid 15 can be sprayed to the cutting blades 4 of the T-slot cutter 3 Then, the through-hole exit portion 11 is provided, and further, the through-hole 12 is provided in the axial direction of the tool 3 and connected to the through-hole exit portion 11 so that sufficient cutting fluid 15 reaches the cutting edge. By injecting the cutting fluid 15 from the base of the cutting blade 4, chips at the time of cutting can flow out from the inside of the groove to the outside of the groove, and it becomes possible to suppress tool blade loss due to chip clogging.

スルーホール出口部11は、切削刃4の根元の工具首5にスルーホール12から複数に分岐して工具の回転方向に複数個所設けても良い。スルーホール出口部11を複数設けることにより、各々の切削刃4の刃先に十分な切削液15が届くようになり、スルーホール出口部11が単独の場合よりもスムーズに切削時の切屑を溝内から溝外へさらに流しだすことができ、切屑詰まりによる工具刃損を抑える効果が、スルーホール出口部11が単独の場合より向上する。   A plurality of through-hole exit portions 11 may be provided in the tool neck 5 at the base of the cutting blade 4 so as to branch into a plurality from the through-hole 12 and to be provided at a plurality of locations in the tool rotation direction. By providing a plurality of through-hole exit portions 11, sufficient cutting fluid 15 can reach the cutting edges of the respective cutting blades 4, and chips during cutting can be more smoothly removed in the groove than when the through-hole exit portion 11 is provided alone. The effect of suppressing the tool blade loss due to clogging of chips can be improved more than the case where the through-hole outlet portion 11 is used alone.

また、切削刃4の形状も切屑処理性や切削性を向上させるための構造とする。図5は切削刃4の詳細図を表し、切削性をよくし工具剛性も維持するために例えば、すくい角13を10度±1度に設定する。また、切削刃溝部14について、R形状にして切屑が切削刃溝部14へ入ってきた場合にはスムーズに切屑が外へ逃げるような切削刃形状とし、切屑詰まりによる工具刃損を抑えることが可能となる。 The shape of the cutting blade 4 is also a structure for improving chip disposal and cutting performance. FIG. 5 shows a detailed view of the cutting blade 4 and, for example, the rake angle 13 is set to 10 degrees ± 1 degree in order to improve the machinability and maintain the tool rigidity. In addition, the cutting blade groove portion 14 has an R shape so that when the chips enter the cutting blade groove portion 14, the cutting blade shape is such that the chips smoothly escape to the outside. It becomes.

実施の形態2.
図6は、この発明の実施の形態2における内径溝加工用工具の形状を示す図である。図6(a)は、内径溝加工用工具の回転軸方向から見た正面図であり、図6(b)は、図6(a)のA部を拡大した3面図である。図6において、切削刃4の回転方向の前方側の幅16から後方側の幅17に向かって、切削刃4の回転方向の刃幅が、テーパ形状で次第に狭くなる形状としている。テーパ形状のテーパ角18は、例えば3〜5度とする。このように、切削刃4の回転方向の刃幅を、回転方向の前方側から後方側に向かってテーパ形状で狭くすることにより、スムーズに切屑が切削刃4の外へ逃げ、切屑詰まりによる工具刃損を抑えることが可能となる。
Embodiment 2. FIG.
FIG. 6 is a diagram showing the shape of the inner diameter groove machining tool according to the second embodiment of the present invention. FIG. 6A is a front view of the inner diameter grooving tool viewed from the direction of the rotation axis, and FIG. 6B is a three-sided view enlarging part A of FIG. In FIG. 6, the blade width in the rotation direction of the cutting blade 4 is tapered and gradually narrows from the width 16 on the front side in the rotation direction of the cutting blade 4 toward the width 17 on the rear side. The taper angle 18 of the taper shape is, for example, 3 to 5 degrees. Thus, by narrowing the blade width in the rotational direction of the cutting blade 4 in a tapered shape from the front side to the rear side in the rotational direction, the chips smoothly escape to the outside of the cutting blade 4 and the tool is clogged with chips. Blade loss can be suppressed.

実施の形態3.
図7は、この発明の実施の形態3における内径溝加工用工具の形状を示す図である。この発明の実施の形態3は、切削刃4の切削刃溝部14をR形状とし、切削刃4の回転方向の刃幅を、回転方向の前方側から後方側に向かってテーパ形状で狭くしたものである。このよう形状の切削刃4とすることにより、この発明の実施の形態1の効果とこの発明の実施の形態2の効果が重畳され、切屑詰まりによる工具刃損の抑制効果が向上する。
Embodiment 3 FIG.
FIG. 7 is a view showing the shape of the inner diameter groove machining tool according to the third embodiment of the present invention. In Embodiment 3 of the present invention, the cutting blade groove portion 14 of the cutting blade 4 has an R shape, and the blade width in the rotational direction of the cutting blade 4 is reduced in a tapered shape from the front side to the rear side in the rotational direction. It is. By using the cutting blade 4 having such a shape, the effect of the first embodiment of the present invention and the effect of the second embodiment of the present invention are superimposed, and the effect of suppressing tool blade loss due to chip clogging is improved.

1 パイプ材
2 内径溝
3 Tスロットカッタ(内径溝加工用工具)
4 Tスロットカッタの切削刃
5 最小工具首
6 テーパ首部
7 シャンク
8 浅い内径溝を加工するTスロットカッタ
9 中間の溝深さを加工するTスロットカッタ
10 最も深い溝を加工するTスロットカッタ
11 スルーホール出口部(噴出口)
12 スルーホール
13 すくい角
14 切削刃溝部
15 切削液
16 切削刃の回転方向の前方側の刃幅
17 切削刃の回転方向の後方側の刃幅
18 テーパ角
1 Pipe material 2 Inner groove 3 T slot cutter (Inner groove processing tool)
4 T-slot cutter cutting blade 5 Minimum tool neck 6 Tapered neck 7 Shank 8 T-slot cutter 9 for machining shallow inner groove T-slot cutter 10 for machining intermediate groove depth T-slot cutter 11 for machining deepest groove Through Hall exit (spout)
12 Through hole 13 Rake angle 14 Cutting blade groove 15 Cutting fluid 16 Blade width 17 on the front side in the rotation direction of the cutting blade 17 Blade width 18 on the rear side in the rotation direction of the cutting blade Taper angle

Claims (4)

刃先に所定のすくい角を有し、軸心周りに回転可能な棒状の工具本体の先端部に放射状に設けられ、回転方向に切削する複数の切削刃と、
隣接する前記切削刃の間で、前記隣接するそれぞれの前記切削刃の刃幅を結んだ線に対し前記工具本体の末端部側に隣接して前記工具本体に設けられ、液体を噴出する噴出口とを備えた内径溝加工用工具。
A plurality of cutting blades having a predetermined rake angle at the cutting edge and radially provided at the tip of a rod-shaped tool body rotatable around an axis, and cutting in the rotation direction;
A spout provided in the tool body adjacent to the end of the tool body with respect to a line connecting the blade widths of the adjacent cutting blades between the adjacent cutting blades and ejecting liquid A tool for machining the inner diameter groove.
前記噴出口は、前記切削刃の刃先方向へ液体を噴出する請求項1に記載の内径溝加工用工具。 The inner diameter grooving tool according to claim 1, wherein the ejection port ejects liquid in a cutting edge direction of the cutting blade. 前記切削刃は、前記工具本体との接続部の形状が前記回転方向の前方側に弧を有している請求項1又は請求項2に記載の内径溝加工用工具。 The internal cutting tool according to claim 1 or 2, wherein the cutting blade has an arc on the front side in the rotation direction of the connecting portion with the tool body. 前記切削刃は、前記回転方向の前方から後方に向かって、前記切削刃の刃幅が漸減する請求項1〜請求項3のいずれかに記載の内径溝加工用工具。 4. The inner diameter grooving tool according to claim 1, wherein a cutting width of the cutting blade gradually decreases from the front to the rear in the rotation direction.
JP2011260535A 2011-11-29 2011-11-29 Tool for processing inner-diameter groove Pending JP2013111709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011260535A JP2013111709A (en) 2011-11-29 2011-11-29 Tool for processing inner-diameter groove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011260535A JP2013111709A (en) 2011-11-29 2011-11-29 Tool for processing inner-diameter groove

Publications (1)

Publication Number Publication Date
JP2013111709A true JP2013111709A (en) 2013-06-10

Family

ID=48707805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011260535A Pending JP2013111709A (en) 2011-11-29 2011-11-29 Tool for processing inner-diameter groove

Country Status (1)

Country Link
JP (1) JP2013111709A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140363251A1 (en) * 2013-06-11 2014-12-11 Thomas M. Dieckilman Beveling / chamfering tool - router head for metal
US20170282259A1 (en) * 2016-04-04 2017-10-05 Ford Motor Company Interpolated milling tools and methods
CN111822767A (en) * 2020-06-19 2020-10-27 广东长盈精密技术有限公司 T-shaped milling cutter and method for forming concave buckling structure by machining through T-shaped milling cutter
CN114160827A (en) * 2021-12-15 2022-03-11 江西杰浩硬质合金工具有限公司 Shaping T-shaped cutter for one-step shaping and processing of reverse special-shaped groove

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140363251A1 (en) * 2013-06-11 2014-12-11 Thomas M. Dieckilman Beveling / chamfering tool - router head for metal
US9623491B2 (en) * 2013-06-11 2017-04-18 Thomas M. Dieckilman Beveling / chamfering tool—router head for metal
US20170282259A1 (en) * 2016-04-04 2017-10-05 Ford Motor Company Interpolated milling tools and methods
US10343224B2 (en) * 2016-04-04 2019-07-09 Ford Motor Company Interpolated milling tools and methods
US10695846B2 (en) 2016-04-04 2020-06-30 Ford Motor Company Interpolated milling methods
CN111822767A (en) * 2020-06-19 2020-10-27 广东长盈精密技术有限公司 T-shaped milling cutter and method for forming concave buckling structure by machining through T-shaped milling cutter
CN114160827A (en) * 2021-12-15 2022-03-11 江西杰浩硬质合金工具有限公司 Shaping T-shaped cutter for one-step shaping and processing of reverse special-shaped groove

Similar Documents

Publication Publication Date Title
JP6165165B2 (en) Indexable cutting insert, cutting tool therefor and clamping method therefor
WO2014069265A1 (en) End mill with coolant holes
JP5891572B2 (en) drill
KR102434577B1 (en) Cutting tool
JPH0265912A (en) Multi-way cutter
EP3059035A1 (en) Cutting tool holder and cutting tool
WO2011132686A1 (en) Gun drill
JP2010094748A (en) Cutting tool
JP2013111709A (en) Tool for processing inner-diameter groove
WO2017110903A1 (en) Cutting tool holder, cutting tool, and method for manufacturing cut workpiece
EP3150319B1 (en) A tool body, a milling tool and a method for manufacturing a tool body
JP2010214545A (en) End mill
JP2010149220A (en) Formed cutter
JP6764073B1 (en) Reamer with oil holes
JP2012500127A (en) Reamer
JP2015188951A (en) Cutting tool with coolant hole
JP2008018477A (en) Boring tool
EP4094868A1 (en) Flank cooling for a milling tool
JP2013035101A (en) Reamer
JP6569918B2 (en) Body
JP5952126B2 (en) Inserts and cutting tools
JP2009066682A (en) Cutting tool, and cutting method using the same
JP4805978B2 (en) Cutting tool, machine tool and processing method
JP6447566B2 (en) Drilling tool
JP2007021610A (en) Tapered blade end mill and tapered bore forming method using the same