WO2011132686A1 - Gun drill - Google Patents

Gun drill Download PDF

Info

Publication number
WO2011132686A1
WO2011132686A1 PCT/JP2011/059662 JP2011059662W WO2011132686A1 WO 2011132686 A1 WO2011132686 A1 WO 2011132686A1 JP 2011059662 W JP2011059662 W JP 2011059662W WO 2011132686 A1 WO2011132686 A1 WO 2011132686A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
flow passage
gun drill
portion flow
coolant
Prior art date
Application number
PCT/JP2011/059662
Other languages
French (fr)
Japanese (ja)
Inventor
公志 西川
賢傑 崔
Original Assignee
株式会社タンガロイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タンガロイ filed Critical 株式会社タンガロイ
Publication of WO2011132686A1 publication Critical patent/WO2011132686A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/06Drills with lubricating or cooling equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/06Drills with lubricating or cooling equipment
    • B23B51/063Deep hole drills, e.g. ejector drills
    • B23B51/066Gun drills

Definitions

  • the present invention relates to a single-blade gun drill in which a coolant flow passage is formed.
  • a gun drill When drilling small-diameter deep holes, a gun drill is generally used, and a single-edged gun drill is often used among gun drills.
  • Some single-blade gun drills have a flow passage formed therein so that coolant (cutting oil) supplied from the rear end portion is injected from the front end portion (see Patent Document 1). ).
  • coolant cutting oil supplied from the rear end portion
  • the coolant When the coolant is injected from the tip of the gun drill, the frictional force generated between the cutting edge and the hole bottom is reduced, and the cutting edge is also cooled.
  • the coolant also has a function of discharging the generated chips out of the machining hole.
  • the chip discharge effect depends on the coolant flow rate passing through the chip discharge groove formed on the side of the gun drill, and the higher the flow rate, the higher the discharge effect.
  • An object of the present invention is to provide a gun drill in which the chip discharge capability is improved by increasing the flow rate of the coolant flowing in the chip discharge groove without reducing the strength of the tip.
  • the gun drill of the present invention has a flow path for the coolant flowing along the longitudinal direction inside the substantially rod-shaped gun drill having a rotation axis extending in the longitudinal direction.
  • a chip discharge groove for discharging chips is formed on the outer peripheral surface of the gun drill along the longitudinal direction, and a rake face is formed along the longitudinal direction in the chip discharge groove, and the tip of the gun drill is formed.
  • a coolant guide surface is formed at the tip of the gun drill, the coolant guide surface intersects the flank surface, and intersects one wall surface defining the chip discharge groove,
  • the opening on the front end side of the flow passage has first and second openings, The first opening is formed in the flank; The second opening is formed to extend from the flank to the coolant guide surface, and an opening area of the second opening is larger than an opening area of the first opening.
  • the chip discharge capability is high. Since the chips are smoothly discharged out of the machining hole, the drill does not bite the chips or the chips are less likely to damage the inner wall of the machining hole.
  • the coolant is more efficiently injected onto the cutting edge than the conventional gun drill, so that the cooling ability of the cutting edge is high.
  • the gun drill of the present invention has improved chip discharge capacity and cutting edge cooling capacity compared to the conventional technique, the decrease in strength at the tip is minimized, and general drilling is performed. It can handle enough.
  • FIG. 1 is a front view of the single blade gun drill of the present embodiment.
  • 2A is a cross-sectional view taken along the line IIA-IIA in FIG. 2B is a cross-sectional view taken along the line IIB-IIB in FIG. 2C is a cross-sectional view taken along the line IIC-IIC in FIG.
  • FIG. 3 is a side view of the gun drill of FIG. 1 as viewed from the front end side.
  • FIG. 4 is an explanatory diagram for explaining an inclination angle of the coolant guide surface.
  • Drawing 5A is an explanatory view showing the shape of the 1st opening in another embodiment.
  • Drawing 5B is an explanatory view showing the shape of the 1st opening part in another embodiment.
  • FIG. 5C is an explanatory view showing the shape of the 1st opening in another embodiment.
  • Drawing 5D is an explanatory view showing the shape of the 1st opening in another embodiment.
  • FIG. 6 is a diagram illustrating a connection state between the shank portion flow passage and the tip portion flow passage according to another embodiment.
  • FIG. 7A is a front view of the first embodiment.
  • FIG. 7B is a left side view illustrating the shape of the tip of the first embodiment.
  • FIG. 8A is a front view of the second embodiment.
  • FIG. 8B is a left side view illustrating the shape of the tip of the second embodiment.
  • 9A is a front view of Comparative Example 1.
  • FIG. 9B is a left side view showing the shape of the tip of Comparative Example 1.
  • FIG. 9A is a front view of Comparative Example 1.
  • FIG. 9B is a left side view showing the shape of the tip of Comparative Example 1.
  • FIG. 9A is a front view of Comparative Example 1.
  • FIG. 10A is a front view of Comparative Example 2.
  • FIG. 10B is a left side view showing the shape of the tip of Comparative Example 2.
  • 11A is a front view of Comparative Example 3.
  • FIG. 11B is a left side view showing the shape of the tip of Comparative Example 3.
  • FIG. 1 is a front view of the single blade gun drill of this embodiment.
  • 2A to 2C are sectional views of the gun drill
  • FIG. 3 is a side view of the gun drill as viewed from the tip side.
  • the gun drill 1 includes a driver 2, and the driver 2 is formed at the rear end of the gun drill 1.
  • the driver 2 functions as a grip when the gun drill 1 is attached to the machine tool.
  • the gun drill 1 is substantially rod-shaped and includes a shank portion 1A and a tip portion 1B attached to the tip of the shank portion 1A, and one V-shaped chip discharge groove 3 is formed on the outer peripheral surface thereof.
  • the chip discharge groove 3 is linearly formed along the rotation axis CL from the tip of the gun drill 1 to the shank portion 1A. The generated chips are swept away by the coolant flowing in the chip discharge groove 3 and discharged out of the machining hole.
  • a flow passage for circulating coolant is formed inside the gun drill 1, and the flow passage is divided into two parts, a shank portion flow passage 4a and a tip portion flow passage 4b. It consists of
  • the shank portion flow passage 4a is a flow passage that extends to the inside of the driver 2 of the gun drill 1 and is connected to a coolant supply port (supply side opening) formed at an end portion on the side where the driver 2 is provided. It accounts for more than half of the entire road.
  • the range indicated by S1 in FIG. 1 is a portion where the shank portion flow passage 4a is formed. As shown in FIG.
  • the shank portion flow passage 4 a is formed almost entirely along the cross-sectional shape of the shank portion 1 ⁇ / b> A of the gun drill 1.
  • the shank portion 1A has a tubular cross-sectional shape having a substantially constant wall thickness within the range indicated by S1 in FIG.
  • the tip part flow passage 4 b is formed continuously with the shank part flow passage 4 a and is connected to a coolant injection port (injection side opening) formed at the tip of the gun drill 1.
  • the tip portion flow passage 4b is formed in the range indicated by S2 in the gun drill 1.
  • the tip portion flow passage 4b includes a first tip portion flow passage 4b1 connected to a substantially circular first opening (first injection port) and a second opening (curved in a substantially C shape). 2nd tip part flow path 4b2 connected to (2nd injection port).
  • the first tip portion flow passage 4b1 and the second tip portion flow passage 4b2 are formed so as to extend substantially in parallel along the rotation axis of the gun drill 1 without intersecting each other.
  • a rake face 5, a flank face 6, a cutting edge 7, and a coolant guide face 8 are formed at the tip of the gun drill 1.
  • the vicinity of the end of one groove wall of the chip discharge groove 3 functions as the rake face 5, and the generated chip is rounded by the rake face 5 and cut at an appropriate length.
  • the flank 6 is composed of a first flank 6a and a second flank 6b, and a cutting edge 7 is formed at the intersection ridgeline between the flank and the rake face 5.
  • the cutting edge formed at the intersecting ridge line portion between the first flank 6a and the rake face 5 functions as a central edge 7a for cutting the center portion of the machining hole
  • the second flank 6b and the rake face 5 The cutting edge formed in the intersecting ridge line portion functions as an outer peripheral blade 7b that cuts the outer peripheral side of the machining hole.
  • the first flank 6a intersects the second flank 6b at an obtuse angle, and its intersection IS_1 becomes the most distal end of the gun drill 1, and the rear end of the gun drill 1 increases as the distance from the intersection IS_1 increases. Inclined to the side. Further, the intersecting portion IS_1 is also inclined to the rear end side of the gun drill 1 with the intersection IS_2 between the center blade 7a and the outer peripheral blade 7b as a vertex. In other words, this will be described with reference to FIG. 3. The intersection IS_1 is inclined so as to go to the back side of the drawing as it is away from the intersection IS_2.
  • first flank 6a is inclined so as to go to the back side of the paper as it gets away from the intersection IS_1 with the second flank 6b.
  • first flank 6a is inclined in this way, a space is secured between the machining hole bottom and the first flank 6a during machining.
  • the second flank 6b is also inclined so as to go to the back side of the page as the distance from the intersection IS_1 with the first flank 6a increases.
  • intersection IS_1 between the first flank 6a and the second flank 6b is formed at a position deviated from the rotation axis CL of the gun drill 1. Therefore, the center blade 7a and the outer peripheral blade 7b intersect at an obtuse angle, and these intersections IS_2 are also necessarily located at a position deviated from the rotation axis CL of the gun drill 1.
  • the coolant guide surface 8 intersects the flank 6a at an obtuse angle, and also intersects the wall surface 5b of the chip discharge groove 3 that does not function as the rake surface 5. In other words, the coolant guide surface 8 is inclined so as to go to the back side of the paper surface as the distance from the intersection IS_3 with the flank 6a increases. In the present embodiment, the coolant guide surface 8 is a flat surface.
  • Chamfering is applied to the edge of the tip of the gun drill 1. By chamfering the edge, the portion is difficult to chip.
  • the first opening 9 a is formed in a substantially circular shape and is formed in the flank 6, and in the direction of rotation of the gun drill about the rotation axis CL, the first opening 9 a is It is formed in front of the second opening 9b.
  • the 1st opening part 9a is arrange
  • the first opening 9a is a plane in contact with the outer end of the outer peripheral blade 7b (a plane perpendicular to a straight line passing through the rotation axis CL and the outer end of the outer peripheral blade 7b) G in the flank 6; These are formed only in a region parallel to the plane G and between the plane F including the rotation axis CL.
  • the 1st opening part 9a is arrange
  • the shape of the second opening 9b is such that the second opening 9b extends along the circumferential direction around the rotation axis CL, and has an inner diameter side that is a concave curved curve toward the outer circumference. This part is composed of a curved curve. That is, when a circle with a predetermined diameter is moved in the circumferential direction along a circle with a predetermined radius centered on the rotation axis CL, it substantially coincides with the locus drawn by the circle with the predetermined diameter.
  • the second opening 9b is formed across the first flank 6a and the coolant guide surface 8, and does not extend to the cutting edge 7 side of the virtual plane F.
  • the opening area of the second opening 9b is larger than the opening area of the first opening 9b.
  • FIG. 2C is a sectional view taken along the line IIC-IIC in FIG.
  • the shank portion flow passage 4a and the tip portion flow passage 4b are on the supply port side of the tip portion flow passages 4b1 and 4b2 when viewed from the direction of the rotation axis CL.
  • They are in a positional relationship in which they are respectively included inside the outline of the opening on the injection port side of the shank portion flow passage 4a.
  • the pressure loss generated when the coolant moves from the shank portion flow passage 4a to the tip portion flow passage 4b is minimized. Can be suppressed.
  • a part of the second opening 9b extends from the first flank 6a to the coolant guide surface 8, so that the energy loss of the coolant flowing through the chip discharge groove 3 is minimized. become. That is, in the conventional gun drill, the coolant injected from the injection port once collides with the bottom of the machining hole and then flows into the chip discharge groove. Therefore, when the coolant collided with the bottom of the machining hole, a part of the energy that the coolant had was lost, and as a result, the flow rate of the coolant passing through the chip discharge groove was reduced.
  • the opening (injection port) is formed also in the coolant guide surface 8, the coolant injected from there once collides with the hole bottom of the machining hole. Although there is no change until now, a large space near the coolant guide surface 8 is secured, so that a large amount of coolant is guided to the chip discharge groove 3 with minimal energy loss. Therefore, the coolant flows through the chip discharge groove 3 at a larger flow rate than in the past.
  • the cooling effect of the coolant is enhanced by forming a part of the second opening 9b to extend to the coolant guide surface 8. That is, in the case of the conventional injection method, when passing through a narrow space, the coolant receives heat from the bottom of the processing hole where the coolant has become hot, and the coolant temperature has already risen before the cutting edge is cooled.
  • a large amount of coolant injected from the second opening 9b formed in the coolant guide surface 8 into a wide space is applied to the cutting edge 7 from the chip discharge groove 3 side. Therefore, the temperature rise of the coolant is suppressed and the cooling effect of the coolant is enhanced.
  • the second opening 9 b formed in the coolant guide surface 8 is located closest to the cutting edge 7 in the forward direction of the cutting edge 7. Accordingly, the amount of coolant directly applied to the rake face 5 is increased, and the cooling effect of the cutting edge 7 is increased. Furthermore, the second opening 9b formed in the coolant guide surface 8 is positioned farther from the machining hole bottom than the conventional gun drill, and the coolant guide surface 8 is open toward the chip discharge groove 3. Therefore, the rake face that rotates before the sprayed coolant reaches the bottom of the machining hole can move to the coolant arrival point, and the frequency at which the coolant directly collides with the rake face 5 is greatly increased. For this reason, the gun drill 1 of the present embodiment has a higher cooling effect than the conventional gun drill.
  • the coolant sprayed from here is from the side opposite to the second opening 9b across the cutting edge 7, that is, the flank 6 side. To the cutting edge 7 directly.
  • the coolant is applied in a large amount to the cutting edge 7 from two different directions, so that the temperature of the cutting edge 7 of the gun drill 1 of the present embodiment is less likely to rise than the conventional gun drill.
  • the second opening 9b is formed close to the coolant guide surface 8 side, and the first opening 9a is formed only in the flank 6 so that the space between the second opening 9b and the first opening 9a is increased. A sufficient wall thickness can be secured.
  • the gun drill 1 can have a rigidity that is applicable to cutting under normal cutting conditions.
  • FIG. 4 is an explanatory diagram for explaining the inclination angle of the coolant guide surface.
  • the coolant guide surface 8 when the coolant guide surface 8 is viewed in parallel to the center blade 7a, that is, the center blade 7a, it is 30 ° or more and 45 ° or less with respect to the straight line F1 orthogonal to the rotation axis CL. It is preferable to be formed so as to intersect within a range. That is, when the angle ⁇ in FIG. 4 is 30 ° or more and 45 ° or less, the coolant is more effectively guided to the chip discharge groove 3.
  • the gun drill of the present invention includes not only the above-described embodiment but also various other ones.
  • the first opening has a triangular shape (see FIG. 5A), a substantially triangular shape with rounded corners (see FIG. 5B), a semicircle (see FIG. 5C), and an arcuate shape (see FIG. 5D). ) Etc. are possible. That is, as long as it is formed only in the flank 6, the first opening 9 a may have any shape. Naturally, the flow rate of the coolant increases as the area of the first opening 9a increases. The shape of the 1st opening part 9a is adjusted so that the coolant which injected and turned up at the hole bottom of the processing hole may reach the cutting blade 7 in a larger amount.
  • a part of the tip portion flow passage 4b when viewed from the direction of the rotation axis CL, a part of the tip portion flow passage 4b can be formed to protrude outside the shank portion flow passage 4a. That is, as shown in FIG. 6, it is also possible to connect the tip part flow passages 4b1 and 4b2 so that a part of the opening part protrudes outside the opening part of the shank part flow passage 4a. In this case, as a matter of course, part of the openings 9a and 9b is formed so as to protrude from the extended line of the shank portion flow passage 4a.
  • the coolant flow rate is increased as compared with the conventional single-blade gun drill, but the coolant flow rate is decreased as compared with the above-described embodiment.
  • the first flank 6a is a plane, but it may be formed as two intersecting planes or curved surfaces. That is, for example, on the side opposite to the cutting edge 7 of the virtual plane F, a larger space between the first flank 6a and the machining hole bottom may be secured.
  • Example 2 when viewed from the direction of the rotation axis CL, the edge portion of the tip portion flow passage is formed to protrude outside the shank portion flow passage.
  • the opening 109a formed across the first flank 6a and the coolant guide surface 8 is formed in a circular shape instead of a curved shape as in the first embodiment. Further, the size of the opening 109b is smaller than the size of the opening 109a.
  • a single opening 110 having a larger area than the second opening 9b of Example 1 and extending in the circumferential direction is formed only in the first flank 6a.
  • the second opening 9b having the same shape as that of Example 1 is formed in the same region as that of Example 1. However, the circular opening having the same shape as the first opening 9a of Example 1 is used.
  • 111 is formed across both of the regions of the first flank 6 a divided into two by the virtual plane F.
  • Example 1 (see FIGS. 7A and B): Diameter 6 mm Coolant supply pressure 5 MPa Area of the first opening 0.665mm 2 Area of second opening 2.015mm 2 Length from the front end to the rear end 200mm Material Cemented carbide
  • Example 2 (see FIGS. 8A and 8B): Diameter 6 mm Coolant supply pressure 5 MPa Area of the first opening 0.665mm 2 Area of second opening 2.015mm 2 Length from the front end to the rear end 200mm Material Cemented carbide Comparative Example 1 (see FIGS.
  • Example 1 As shown in Table 1, when Example 1 and Comparative Example 1 are compared, the area of the opening of Comparative Example 1 is 85% of Example 1, whereas the flow rate is 79% of Example 1. It has become. This indicates that the injection performance of the coolant of Example 1 has improved beyond the degree of increase in flow rate due to a simple increase in the opening area.
  • Example 1 when Example 1 is compared with Comparative Example 2, the flow rate of Comparative Example 1 is only 84% of Example 1 although the area of the opening is about 9% larger than Example 1. ing. In the first embodiment, this means that a part of the second opening is formed on the coolant guide surface, and the formation of the first opening on the first flank produces a synergistic effect and the injection performance. It shows that improve.
  • Example 1 Regarding each single-blade gun drill cutting edge temperature, as shown in Table 1, the temperature of the cutting edge of Example 1 was the lowest, indicating the high cooling performance of Example 1.
  • the torsional rigidity of Example 1 is slightly larger than that of Comparative Example 1 and smaller than that of Comparative Example 2. However, the torsional rigidity of Example 1 is larger than that of Comparative Example 1 having a torsional rigidity having a practically no problem. Has been shown to have a sufficient size.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Drilling Tools (AREA)

Abstract

Disclosed is a roughly rod-shaped gun drill (1) provided with a shank portion flow path (4a) which circulates a coolant internally, and a tip portion flow path (4b). On the tip of the gun drill (1) are formed a cutting surface (5), a first flank surface (6a), a second flank surface (6b), a cutting blade (7) and a coolant guide surface (8). A roughly circular first aperture (9a) (a coolant nozzle) is formed in the first flank surface (6a), and a second aperture (9b) (another coolant aperture) is formed spanning the first flank surface (6a) and the coolant guide surface (8), wherein the aperture area of the second aperture is greater than that of the aforementioned first aperture.

Description

ガンドリルGun drill
 本発明は、内部にクーラントの流通路が形成された1枚刃のガンドリルに関する。 The present invention relates to a single-blade gun drill in which a coolant flow passage is formed.
 小径の深穴加工を行う場合、一般的にガンドリルが使用され、ガンドリルの中でも特に1枚刃のガンドリルが多用される。1枚刃ガンドリルには、その後端部から供給されたクーラント(切削油)が先端部から噴射されるようにするために、内部に流通路が形成されているものも存在する(特許文献1参照)。クーラントがガンドリルの先端から噴射されると、切れ刃と穴底との間で生じる摩擦力が低減し、切れ刃も冷却される。また、クーラントには生成された切りくずを加工穴の外へと排出する機能もある。 ¡When drilling small-diameter deep holes, a gun drill is generally used, and a single-edged gun drill is often used among gun drills. Some single-blade gun drills have a flow passage formed therein so that coolant (cutting oil) supplied from the rear end portion is injected from the front end portion (see Patent Document 1). ). When the coolant is injected from the tip of the gun drill, the frictional force generated between the cutting edge and the hole bottom is reduced, and the cutting edge is also cooled. The coolant also has a function of discharging the generated chips out of the machining hole.
特開2003-165010号公報JP 2003-165010 A
 上述したようなクーラントの効果のうち、切りくずの排出効果はガンドリルの側部に形成された切りくず排出溝を通過するクーラントの流量によって左右され、この流量が多いほど排出効果は高くなる。 Among the effects of the coolant as described above, the chip discharge effect depends on the coolant flow rate passing through the chip discharge groove formed on the side of the gun drill, and the higher the flow rate, the higher the discharge effect.
 しかしながら、加工穴の内壁と切りくず排出溝との間に形成される空間は非常に狭く且つ長さが長いため、そこに生じる圧損は大きい。従って、現行のガンドリルは深穴加工に求められる切りくず排出能力を十分に備えているとはいえない。
 この問題の一解決策として、クーラントの噴射口の面積を大きくするという方法が試みられているが、噴射口の面積を増大させることはガンドリルの先端部の強度低下につながるため、クーラントの噴射口の面積を十分に確保することは困難である。
However, since the space formed between the inner wall of the machining hole and the chip discharge groove is very narrow and long, the pressure loss generated there is large. Therefore, it cannot be said that the current gun drill has sufficient chip discharge capability required for deep hole machining.
As a solution to this problem, a method of increasing the area of the coolant injection port has been attempted, but increasing the area of the injection port leads to a decrease in strength of the tip of the gun drill. It is difficult to secure a sufficient area.
 本発明は、上述した問題を鑑みて開発されたものである。本発明の目的は、先端部の強度を低下させることなく、切りくず排出溝内を流れるクーラントの流量を増大させて切りくずの排出能力を向上させたガンドリルを提供することにある。 The present invention has been developed in view of the above-described problems. An object of the present invention is to provide a gun drill in which the chip discharge capability is improved by increasing the flow rate of the coolant flowing in the chip discharge groove without reducing the strength of the tip.
 本発明のガンドリルは、上述した課題を解決するために、長手方向に延在する回転軸線を有する略棒状のガンドリルの内部にはクーラントが流通するための流通路が長手方向に沿って形成され、前記ガンドリルの外周面には切りくずを排出するための切りくず排出溝が長手方向に沿って形成され、前記切りくず排出溝にはすくい面が長手方向に沿って形成され、前記ガンドリルの先端部には逃げ面が形成され、前記逃げ面とすくい面との交差部に切れ刃が形成された1枚刃のガンドリルにおいて、
 前記ガンドリルの先端部にクーラント誘導面が形成され、該クーラント誘導面は前記逃げ面と交差し、且つ、前記切りくず排出溝を画定する一壁面と交差しており、
 前記流通路の前記先端部側の開口部は、第1および第2開口部を有し、
 前記第1開口部は、前記逃げ面に形成され、
 前記第2開口部は、前記逃げ面から前記クーラント誘導面にまたがって形成され、且つ、第2開口部の開口面積は前記第1開口部の開口面積よりも大きいことを特徴とする。
In order to solve the above-described problem, the gun drill of the present invention has a flow path for the coolant flowing along the longitudinal direction inside the substantially rod-shaped gun drill having a rotation axis extending in the longitudinal direction. A chip discharge groove for discharging chips is formed on the outer peripheral surface of the gun drill along the longitudinal direction, and a rake face is formed along the longitudinal direction in the chip discharge groove, and the tip of the gun drill is formed. In a one-blade gun drill in which a flank is formed and a cutting edge is formed at the intersection of the flank and the rake face,
A coolant guide surface is formed at the tip of the gun drill, the coolant guide surface intersects the flank surface, and intersects one wall surface defining the chip discharge groove,
The opening on the front end side of the flow passage has first and second openings,
The first opening is formed in the flank;
The second opening is formed to extend from the flank to the coolant guide surface, and an opening area of the second opening is larger than an opening area of the first opening.
 本発明のガンドリルによれば、従来のガンドリルと比べて切りくず排出溝を通過するクーラントの流量が大きいので、切りくず排出能力が高い。切りくずが加工穴外へスムーズに排出されることで、ドリルが切りくずを噛み込んだり、切りくずが加工穴の内壁を傷つけたりすることが少なくなる。 According to the gun drill of the present invention, since the flow rate of the coolant passing through the chip discharge groove is larger than that of the conventional gun drill, the chip discharge capability is high. Since the chips are smoothly discharged out of the machining hole, the drill does not bite the chips or the chips are less likely to damage the inner wall of the machining hole.
 また、本発明のガンドリルによれば、従来のガンドリルよりも切れ刃に対してクーラントが効率よく噴射されるので、切れ刃の冷却能力が高くなっている。 Also, according to the gun drill of the present invention, the coolant is more efficiently injected onto the cutting edge than the conventional gun drill, so that the cooling ability of the cutting edge is high.
 本発明のガンドリルは切りくずの排出能力および切れ刃の冷却能力が、従来よりも向上しているにもかかわらず、先端部の強度の低下が最小限に抑えられており、一般的な穴加工に十分対応できるものとなっている。 Although the gun drill of the present invention has improved chip discharge capacity and cutting edge cooling capacity compared to the conventional technique, the decrease in strength at the tip is minimized, and general drilling is performed. It can handle enough.
図1は、本実施形態の1枚刃ガンドリルの正面図である。FIG. 1 is a front view of the single blade gun drill of the present embodiment. 図2Aは、図1のIIA-IIA線方向の断面図である。2A is a cross-sectional view taken along the line IIA-IIA in FIG. 図2Bは、図1のIIB-IIB線方向の断面図である。2B is a cross-sectional view taken along the line IIB-IIB in FIG. 図2Cは、図1のIIC-IIC線方向の断面図である。2C is a cross-sectional view taken along the line IIC-IIC in FIG. 図3は、図1のガンドリルの先端側から見た側面図である。FIG. 3 is a side view of the gun drill of FIG. 1 as viewed from the front end side. 図4は、クーラント誘導面の傾斜角度を説明するための説明図である。FIG. 4 is an explanatory diagram for explaining an inclination angle of the coolant guide surface. 図5Aは、別の実施形態における第1開口部の形状を示す説明図である。Drawing 5A is an explanatory view showing the shape of the 1st opening in another embodiment. 図5Bは、別の実施形態における第1開口部の形状を示す説明図である。Drawing 5B is an explanatory view showing the shape of the 1st opening part in another embodiment. 図5Cは、別の実施形態における第1開口部の形状を示す説明図である。Drawing 5C is an explanatory view showing the shape of the 1st opening in another embodiment. 図5Dは、別の実施形態における第1開口部の形状を示す説明図である。Drawing 5D is an explanatory view showing the shape of the 1st opening in another embodiment. 図6は、別の実施形態におけるシャンク部流通路とチップ部流通路との接続の状態を示す図である。FIG. 6 is a diagram illustrating a connection state between the shank portion flow passage and the tip portion flow passage according to another embodiment. 図7Aは、実施例1の正面図である。FIG. 7A is a front view of the first embodiment. 図7Bは、実施例1の先端の形状を示す左側面図である。FIG. 7B is a left side view illustrating the shape of the tip of the first embodiment. 図8Aは、実施例2の正面図である。FIG. 8A is a front view of the second embodiment. 図8Bは、実施例2の先端の形状を示す左側面図である。FIG. 8B is a left side view illustrating the shape of the tip of the second embodiment. 図9Aは、比較例1の正面図である。9A is a front view of Comparative Example 1. FIG. 図9Bは、比較例1の先端の形状を示す左側面図である。9B is a left side view showing the shape of the tip of Comparative Example 1. FIG. 図10Aは、比較例2の正面図である。10A is a front view of Comparative Example 2. FIG. 図10Bは、比較例2の先端の形状を示す左側面図である。FIG. 10B is a left side view showing the shape of the tip of Comparative Example 2. 図11Aは、比較例3の正面図である。11A is a front view of Comparative Example 3. FIG. 図11Bは、比較例3の先端の形状を示す左側面図である。FIG. 11B is a left side view showing the shape of the tip of Comparative Example 3.
 図1は本実施形態の1枚刃ガンドリルの正面図である。図2A~2Cはガンドリルの断面図、図3はガンドリルを先端側から見た側面図である。 FIG. 1 is a front view of the single blade gun drill of this embodiment. 2A to 2C are sectional views of the gun drill, and FIG. 3 is a side view of the gun drill as viewed from the tip side.
 図1~図3に示すように、本実施形態のガンドリル1はドライバ2を備え、ドライバ2はガンドリル1の後端部に形成される。ドライバ2はガンドリル1を工作機械に取り付ける際の把持部として機能する。ガンドリル1は略棒状であり、シャンク部1Aと、シャンク部1Aの先端に取り付けられたチップ部1Bからなり、その外周面にはV字状の切りくず排出溝3が1条形成されている。切りくず排出溝3はガンドリル1の先端からシャンク部1Aにかけて回転軸線CLに沿って直線的に形成される。生成された切りくずは切りくず排出溝3内を流れるクーラントによって押し流され、加工穴の外へと排出される。 As shown in FIGS. 1 to 3, the gun drill 1 according to the present embodiment includes a driver 2, and the driver 2 is formed at the rear end of the gun drill 1. The driver 2 functions as a grip when the gun drill 1 is attached to the machine tool. The gun drill 1 is substantially rod-shaped and includes a shank portion 1A and a tip portion 1B attached to the tip of the shank portion 1A, and one V-shaped chip discharge groove 3 is formed on the outer peripheral surface thereof. The chip discharge groove 3 is linearly formed along the rotation axis CL from the tip of the gun drill 1 to the shank portion 1A. The generated chips are swept away by the coolant flowing in the chip discharge groove 3 and discharged out of the machining hole.
 図1の断面図が示すように、ガンドリル1の内部にはクーラントが流通するための流通路が形成されており、その流通路はシャンク部流通路4aとチップ部流通路4bとの二つの部分で構成されている。
 シャンク部流通路4aはガンドリル1のドライバ2の内部まで延長され、ドライバ2が設けられた側の端部に形成されたクーラントの供給口(供給側開口部)とつながる流通路であって、流通路全体の半分以上を占める。本実施形態においては、図1の中のS1で示された範囲が、シャンク部流通路4aが形成される部分である。シャンク部流通路4aは図2Bに示すように、ガンドリル1のシャンク部1Aの断面形状に沿ってほぼ全体に亘って形成されている。別の表現を使えば、ガンドリル1のうち、図1の中のS1で示された範囲の部分の内、シャンク部1Aは肉厚がほぼ一定である管状の断面形状を有する。クーラントの流量を増加させるためには、ガンドリル1のねじり剛性が過度に損なわれない範囲で、シャンク部流通路4aを限界まで大きく形成することが好ましい。
As shown in the cross-sectional view of FIG. 1, a flow passage for circulating coolant is formed inside the gun drill 1, and the flow passage is divided into two parts, a shank portion flow passage 4a and a tip portion flow passage 4b. It consists of
The shank portion flow passage 4a is a flow passage that extends to the inside of the driver 2 of the gun drill 1 and is connected to a coolant supply port (supply side opening) formed at an end portion on the side where the driver 2 is provided. It accounts for more than half of the entire road. In the present embodiment, the range indicated by S1 in FIG. 1 is a portion where the shank portion flow passage 4a is formed. As shown in FIG. 2B, the shank portion flow passage 4 a is formed almost entirely along the cross-sectional shape of the shank portion 1 </ b> A of the gun drill 1. In other words, the shank portion 1A has a tubular cross-sectional shape having a substantially constant wall thickness within the range indicated by S1 in FIG. In order to increase the coolant flow rate, it is preferable to make the shank portion flow passage 4a as large as possible as long as the torsional rigidity of the gun drill 1 is not excessively impaired.
 チップ部流通路4bはシャンク部流通路4aに連続して形成され、ガンドリル1の先端部に形成されたクーラントの噴射口(噴射側開口部)につながっている。本実施形態においては、ガンドリル1のうち、S2で示された範囲にチップ部流通路4bが形成されている。チップ部流通路4bは図2Aに示すように、略円形状の第1開口部(第1噴射口)につながる第1チップ部流通路4b1と、略C字状に湾曲した第2開口部(第2噴射口)につながる第2チップ部流通路4b2と、からなる。第1チップ部流通路4b1と第2チップ部流通路4b2とは互いに交差することなく、ガンドリル1の回転軸線に沿ってほぼ平行に延びて形成されている。 The tip part flow passage 4 b is formed continuously with the shank part flow passage 4 a and is connected to a coolant injection port (injection side opening) formed at the tip of the gun drill 1. In the present embodiment, the tip portion flow passage 4b is formed in the range indicated by S2 in the gun drill 1. As shown in FIG. 2A, the tip portion flow passage 4b includes a first tip portion flow passage 4b1 connected to a substantially circular first opening (first injection port) and a second opening (curved in a substantially C shape). 2nd tip part flow path 4b2 connected to (2nd injection port). The first tip portion flow passage 4b1 and the second tip portion flow passage 4b2 are formed so as to extend substantially in parallel along the rotation axis of the gun drill 1 without intersecting each other.
 図2に示すように、ガンドリル1の先端には、すくい面5と、逃げ面6と、切れ刃7と、クーラント誘導面8と、が形成されている。本実施形態のガンドリル1においては、切りくず排出溝3の一方の溝壁の端部付近がすくい面5として機能し、生成された切りくずはすくい面5によって丸められ、適当な長さで切断される。 As shown in FIG. 2, a rake face 5, a flank face 6, a cutting edge 7, and a coolant guide face 8 are formed at the tip of the gun drill 1. In the gun drill 1 of the present embodiment, the vicinity of the end of one groove wall of the chip discharge groove 3 functions as the rake face 5, and the generated chip is rounded by the rake face 5 and cut at an appropriate length. The
 逃げ面6は第1逃げ面6aと第2逃げ面6bとからなり、両逃げ面とすくい面5との交差稜線部には切れ刃7が形成される。特に、第1逃げ面6aとすくい面5との交差稜線部に形成される切れ刃は、加工穴の中心部を切削する中心刃7aとして機能し、第2逃げ面6bとすくい面5との交差稜線部に形成される切れ刃は、加工穴の外周側を切削する外周刃7bとして機能する。 The flank 6 is composed of a first flank 6a and a second flank 6b, and a cutting edge 7 is formed at the intersection ridgeline between the flank and the rake face 5. In particular, the cutting edge formed at the intersecting ridge line portion between the first flank 6a and the rake face 5 functions as a central edge 7a for cutting the center portion of the machining hole, and the second flank 6b and the rake face 5 The cutting edge formed in the intersecting ridge line portion functions as an outer peripheral blade 7b that cuts the outer peripheral side of the machining hole.
 図1に示すように、第1逃げ面6aは、第2逃げ面6bと鈍角に交差し、その交差部IS_1がガンドリル1の最も先端になり、当該交差部IS_1から離れるに従ってガンドリル1の後端側に向かうように傾斜している。さらに、交差部IS_1も、中心刃7aと外周刃7bとの交点IS_2を頂点として、ガンドリル1の後端側に向かうように傾斜している。すなわち、このことを図3を用いて説明すると、交差部IS_1は、交点IS_2から離れるに従って紙面奥側に向かうように傾斜している。さらに、第1逃げ面6aは、第2逃げ面6bとの交差部IS_1から離れるに従って紙面奥側に向かうように傾斜している。第1逃げ面6aがこのように形成されることで、加工の際に、加工穴底と第1逃げ面6aとの間に空間が確保される。第1逃げ面6aと同様に、第2逃げ面6bも第1逃げ面6aとの交差部IS_1から離れるに従って紙面奥側に向かうように傾斜している。また、第1逃げ面6aと第2逃げ面6bとの交差部IS_1は、ガンドリル1の回転軸線CLからずれた位置に形成される。したがって、中心刃7aと外周刃7bとは鈍角に交差し、これらの交点IS_2も必然的にガンドリル1の回転軸線CLからずれた場所に位置する。 As shown in FIG. 1, the first flank 6a intersects the second flank 6b at an obtuse angle, and its intersection IS_1 becomes the most distal end of the gun drill 1, and the rear end of the gun drill 1 increases as the distance from the intersection IS_1 increases. Inclined to the side. Further, the intersecting portion IS_1 is also inclined to the rear end side of the gun drill 1 with the intersection IS_2 between the center blade 7a and the outer peripheral blade 7b as a vertex. In other words, this will be described with reference to FIG. 3. The intersection IS_1 is inclined so as to go to the back side of the drawing as it is away from the intersection IS_2. Further, the first flank 6a is inclined so as to go to the back side of the paper as it gets away from the intersection IS_1 with the second flank 6b. By forming the first flank 6a in this way, a space is secured between the machining hole bottom and the first flank 6a during machining. Similar to the first flank 6a, the second flank 6b is also inclined so as to go to the back side of the page as the distance from the intersection IS_1 with the first flank 6a increases. Further, the intersection IS_1 between the first flank 6a and the second flank 6b is formed at a position deviated from the rotation axis CL of the gun drill 1. Therefore, the center blade 7a and the outer peripheral blade 7b intersect at an obtuse angle, and these intersections IS_2 are also necessarily located at a position deviated from the rotation axis CL of the gun drill 1.
 クーラント誘導面8は逃げ面6aと鈍角に交差する面であって、切りくず排出溝3の壁面のうちすくい面5として機能しない方の壁面5bとも交差している。また別の言い方をすると、クーラント誘導面8は、逃げ面6aとの交差部IS_3から離れるに従って、紙面奥側に向かうように傾斜している。なお、本実施形態では、クーラント誘導面8は平面となっている。 The coolant guide surface 8 intersects the flank 6a at an obtuse angle, and also intersects the wall surface 5b of the chip discharge groove 3 that does not function as the rake surface 5. In other words, the coolant guide surface 8 is inclined so as to go to the back side of the paper surface as the distance from the intersection IS_3 with the flank 6a increases. In the present embodiment, the coolant guide surface 8 is a flat surface.
 ガンドリル1の先端の縁の部分には面取り加工が施されている。縁に面取り加工が施されることで、その部分が欠け難くなる。 Chamfering is applied to the edge of the tip of the gun drill 1. By chamfering the edge, the portion is difficult to chip.
 図3に示すように、第1開口部9aは、略円形状に形成され、且つ逃げ面6内に形成され、回転軸線CLを中心としたガンドリルの回転方向において、第1開口部9aは、第2の開口部9bよりも前方側に形成されている。第1開口部9aは、後述する第2開口部9bとできるだけ距離を確保できる位置に配置される。好適には、第1開口部9aは、逃げ面6内において、外周刃7bの外側端部に接する平面(回転軸線CLと外周刃7bの外側端部とを通る直線に垂直な平面)Gと、この平面Gに平行で、回転軸線CLを含む平面Fとの間の領域にのみ形成される。第1開口部9aは、後述する第2開口部9bとできるだけ距離を確保できる位置に配置される。なお、第1開口部9aと第2の開口部9bとの間の距離が確保できるのであれば、逃げ面6内のいずれの位置に形成してもよい。 As shown in FIG. 3, the first opening 9 a is formed in a substantially circular shape and is formed in the flank 6, and in the direction of rotation of the gun drill about the rotation axis CL, the first opening 9 a is It is formed in front of the second opening 9b. The 1st opening part 9a is arrange | positioned in the position which can ensure distance as much as possible with the 2nd opening part 9b mentioned later. Preferably, the first opening 9a is a plane in contact with the outer end of the outer peripheral blade 7b (a plane perpendicular to a straight line passing through the rotation axis CL and the outer end of the outer peripheral blade 7b) G in the flank 6; These are formed only in a region parallel to the plane G and between the plane F including the rotation axis CL. The 1st opening part 9a is arrange | positioned in the position which can ensure distance as much as possible with the 2nd opening part 9b mentioned later. In addition, you may form in any position in the flank 6 if the distance between the 1st opening part 9a and the 2nd opening part 9b can be ensured.
 第2開口部9bの形状は、第2開口部9bは、回転軸線CLを中心として、周方向に沿って延在し、その内径側が外周側に向かって凹状の湾曲した曲線で構成され、その他の部分は凸状に湾曲した曲線で構成されている。すなわち、回転軸線CLを中心とする所定半径の円に沿って、所定直径の円を周方向に移動したときに、所定直径の円が描く軌跡に略一致している。そして、第2開口部9bは、第1逃げ面6aおよびクーラント誘導面8にまたがって形成され、且つ、仮想平面Fの切れ刃7側には延在していない。また、第2開口部9bの開口面積は第1開口部9bの開口面積よりも大きい。これにより、クーラント誘導面から流出するクーラントの流量が増加し、温度が上昇し易い切れ刃の表側の冷却効果が高くなる。 The shape of the second opening 9b is such that the second opening 9b extends along the circumferential direction around the rotation axis CL, and has an inner diameter side that is a concave curved curve toward the outer circumference. This part is composed of a curved curve. That is, when a circle with a predetermined diameter is moved in the circumferential direction along a circle with a predetermined radius centered on the rotation axis CL, it substantially coincides with the locus drawn by the circle with the predetermined diameter. The second opening 9b is formed across the first flank 6a and the coolant guide surface 8, and does not extend to the cutting edge 7 side of the virtual plane F. The opening area of the second opening 9b is larger than the opening area of the first opening 9b. Thereby, the flow rate of the coolant flowing out from the coolant guide surface is increased, and the cooling effect on the front side of the cutting edge that is likely to increase in temperature is enhanced.
 図2Cは図1のIIC-IIC断面図である。図2Cに示すように、本実施形態のガンドリル1においては、シャンク部流通路4aとチップ部流通路4bとは、回転軸線CLの方向から見て、チップ部流通路4b1,4b2の供給口側の開口部が、シャンク部流通路4aの噴射口側の開口部の輪郭の内側にそれぞれ包含される位置関係にある。このような位置関係にシャンク部流通路4aとチップ部流通路4bとが設計されると、クーラントがシャンク部流通路4aからチップ部流通路4bへと移動するときに生じる圧力損失を最小限に抑えることができる。 FIG. 2C is a sectional view taken along the line IIC-IIC in FIG. As shown in FIG. 2C, in the gun drill 1 of this embodiment, the shank portion flow passage 4a and the tip portion flow passage 4b are on the supply port side of the tip portion flow passages 4b1 and 4b2 when viewed from the direction of the rotation axis CL. Are in a positional relationship in which they are respectively included inside the outline of the opening on the injection port side of the shank portion flow passage 4a. When the shank portion flow passage 4a and the tip portion flow passage 4b are designed in such a positional relationship, the pressure loss generated when the coolant moves from the shank portion flow passage 4a to the tip portion flow passage 4b is minimized. Can be suppressed.
 本実施形態のガンドリル1では、第2開口部9bの一部が第1逃げ面6aからクーラント誘導面8まで延在しているため、切りくず排出溝3を流れるクーラントのエネルギーの損失が最小限になる。すなわち、従来のガンドリルでは噴射口から噴射されたクーラントは一度、加工穴の穴底へ衝突してから切りくず排出溝へと流入していた。そのため、クーラントが加工穴の底に衝突した際に、クーラントが持っていたエネルギーの一部が失われ、結果として切りくず排出溝内を通過するクーラントの流量が低下していた。 In the gun drill 1 of the present embodiment, a part of the second opening 9b extends from the first flank 6a to the coolant guide surface 8, so that the energy loss of the coolant flowing through the chip discharge groove 3 is minimized. become. That is, in the conventional gun drill, the coolant injected from the injection port once collides with the bottom of the machining hole and then flows into the chip discharge groove. Therefore, when the coolant collided with the bottom of the machining hole, a part of the energy that the coolant had was lost, and as a result, the flow rate of the coolant passing through the chip discharge groove was reduced.
 これに対し、本実施形態のガンドリル1においては、クーラント誘導面8にも開口部(噴射口)が形成されているため、そこから噴射されたクーラントは、一度、加工穴の穴底へ衝突することまでは変わらないが、クーラント誘導面8付近の空間が広く確保されているため、エネルギーの損失を最小限にして、大量のクーラントが切りくず排出溝3へ誘導される。そのため、従来よりも大きい流量でクーラントは切りくず排出溝3を流れる。 On the other hand, in the gun drill 1 of this embodiment, since the opening (injection port) is formed also in the coolant guide surface 8, the coolant injected from there once collides with the hole bottom of the machining hole. Although there is no change until now, a large space near the coolant guide surface 8 is secured, so that a large amount of coolant is guided to the chip discharge groove 3 with minimal energy loss. Therefore, the coolant flows through the chip discharge groove 3 at a larger flow rate than in the past.
 さらに、第2開口部9bの一部をクーラント誘導面8に伸ばして形成することにより、クーラントの冷却効果が高まる。すなわち、従来の噴射方法の場合、狭い空間を通過するときに、クーラントが高温になった加工穴底から熱を受け取り、切れ刃を冷却する以前にすでにクーラントの温度が上昇してしまう。しかしながら、本実施形態のガンドリル1においては、クーラント誘導面8に形成された第2開口部9bから広い空間へ噴射されたクーラントが、切れ刃7に対して切りくず排出溝3側から大量に付与されるので、クーラントの温度上昇が抑制され、クーラントの冷却効果が高くなる。また、ガンドリル1の加工穴に対する相対的な回転方向を考えると、クーラント誘導面8に形成された第2開口部9bは、切れ刃7の回転方向前方で切れ刃7に最も近い位置にある。従って、すくい面5に直接的に付与されるクーラントの量が増大し、切れ刃7の冷却効果が増大する。さらに、クーラント誘導面8に形成された第2開口部9bが従来のガンドリルよりも加工穴底から離れた場所に位置し、なおかつクーラント誘導面8が切りくず排出溝3に向かって開放されているため、噴射されたクーラントが加工穴底に到達する前に回転移動するすくい面がクーラントの到達地点に移動可能となり、クーラントがすくい面5に直接衝突する頻度が大幅に増大する。そのため、本実施形態のガンドリル1は従来のガンドリルよりも冷却効果が高くなる。 Furthermore, the cooling effect of the coolant is enhanced by forming a part of the second opening 9b to extend to the coolant guide surface 8. That is, in the case of the conventional injection method, when passing through a narrow space, the coolant receives heat from the bottom of the processing hole where the coolant has become hot, and the coolant temperature has already risen before the cutting edge is cooled. However, in the gun drill 1 of the present embodiment, a large amount of coolant injected from the second opening 9b formed in the coolant guide surface 8 into a wide space is applied to the cutting edge 7 from the chip discharge groove 3 side. Therefore, the temperature rise of the coolant is suppressed and the cooling effect of the coolant is enhanced. Further, considering the relative rotation direction with respect to the machining hole of the gun drill 1, the second opening 9 b formed in the coolant guide surface 8 is located closest to the cutting edge 7 in the forward direction of the cutting edge 7. Accordingly, the amount of coolant directly applied to the rake face 5 is increased, and the cooling effect of the cutting edge 7 is increased. Furthermore, the second opening 9b formed in the coolant guide surface 8 is positioned farther from the machining hole bottom than the conventional gun drill, and the coolant guide surface 8 is open toward the chip discharge groove 3. Therefore, the rake face that rotates before the sprayed coolant reaches the bottom of the machining hole can move to the coolant arrival point, and the frequency at which the coolant directly collides with the rake face 5 is greatly increased. For this reason, the gun drill 1 of the present embodiment has a higher cooling effect than the conventional gun drill.
 また、第1開口部9aが第1逃げ面6aに形成されることで、ここから噴射されたクーラントは、切れ刃7を挟んで第2開口部9bとは反対側から、すなわち逃げ面6側から切れ刃7に対して直接付与される。 Further, since the first opening 9a is formed in the first flank 6a, the coolant sprayed from here is from the side opposite to the second opening 9b across the cutting edge 7, that is, the flank 6 side. To the cutting edge 7 directly.
 このように、クーラントが切れ刃7に対して異なる二つの方向から大量に付与されることで、本実施形態のガンドリル1の切れ刃7は従来のガンドリルよりも温度が上昇しにくくなる。 As described above, the coolant is applied in a large amount to the cutting edge 7 from two different directions, so that the temperature of the cutting edge 7 of the gun drill 1 of the present embodiment is less likely to rise than the conventional gun drill.
 第2開口部9bをクーラント誘導面8側に寄せて形成し、且つ、第1開口部9aを逃げ面6内のみに形成することで、第2開口部9bと第1開口部9aとの間に形成される壁の肉厚を十分に確保できる。このことにより、ガンドリル1は通常の切削条件での切削に適用可能な程度の剛性を持つことができる。 The second opening 9b is formed close to the coolant guide surface 8 side, and the first opening 9a is formed only in the flank 6 so that the space between the second opening 9b and the first opening 9a is increased. A sufficient wall thickness can be secured. Thus, the gun drill 1 can have a rigidity that is applicable to cutting under normal cutting conditions.
 図4はクーラント誘導面の傾斜角度を説明するための説明図である。図4に示すように、中心刃7aに平行に、すなわち中心刃7aなりにクーラント誘導面8を見たときに、回転軸線CLに直交する直線F1に対して30°以上、かつ45°以下の範囲で交差するように形成されることが好ましい。すなわち、図4のθの角度が30°以上、かつ45°以下であると、クーラントがより効果的に切りくず排出溝3へと誘導される。 FIG. 4 is an explanatory diagram for explaining the inclination angle of the coolant guide surface. As shown in FIG. 4, when the coolant guide surface 8 is viewed in parallel to the center blade 7a, that is, the center blade 7a, it is 30 ° or more and 45 ° or less with respect to the straight line F1 orthogonal to the rotation axis CL. It is preferable to be formed so as to intersect within a range. That is, when the angle θ in FIG. 4 is 30 ° or more and 45 ° or less, the coolant is more effectively guided to the chip discharge groove 3.
 本発明のガンドリルは上述した実施形態だけでなく、他にも様々なものがある。例えば、図5A~Dに示すように、第1開口部の形状が三角形(図5A参照)、角が丸まった略三角形(図5B参照)、半円(図5C参照)、弓形(図5D参照)等の形状が可能である。すなわち、逃げ面6内にのみ形成される限り、第1開口部9aはどのような形状であっても構わない。また当然、第1開口部9aの面積が大きいほどクーラントの流量は増加する。第1開口部9aの形状は、噴射されて加工穴の穴底で折り返したクーラントが、より大量に切れ刃7へ届くように調整される。 The gun drill of the present invention includes not only the above-described embodiment but also various other ones. For example, as shown in FIGS. 5A to 5D, the first opening has a triangular shape (see FIG. 5A), a substantially triangular shape with rounded corners (see FIG. 5B), a semicircle (see FIG. 5C), and an arcuate shape (see FIG. 5D). ) Etc. are possible. That is, as long as it is formed only in the flank 6, the first opening 9 a may have any shape. Naturally, the flow rate of the coolant increases as the area of the first opening 9a increases. The shape of the 1st opening part 9a is adjusted so that the coolant which injected and turned up at the hole bottom of the processing hole may reach the cutting blade 7 in a larger amount.
 また別の実施形態として、回転軸線CLの方向から見たときに、チップ部流通路4bの一部をシャンク部流通路4aの外側へはみ出させて形成することも可能である。すなわち、図6に示すように、チップ部流通路4b1、4b2の開口部の一部が、シャンク部流通路4aの開口部の外側へはみ出るように、互いを接続させることも可能である。この場合、当然、開口部9a、9bの一部もシャンク部流通路4aの延長線からはみ出して形成されることになる。ただし、この場合、従来の1枚刃ガンドリルよりはクーラントの流量は増加するが、上述した実施形態よりはクーラントの流量が低下する。しかしながら、シャンク部流通路4aに対して、チップ部流通路4bを外周側にずらすことによって、クーラントがより切削速度が高いガンドリルの外周側に向けて効果的に噴射される。その結果、高温になりやすい外周刃の冷却効果が高まる。 As another embodiment, when viewed from the direction of the rotation axis CL, a part of the tip portion flow passage 4b can be formed to protrude outside the shank portion flow passage 4a. That is, as shown in FIG. 6, it is also possible to connect the tip part flow passages 4b1 and 4b2 so that a part of the opening part protrudes outside the opening part of the shank part flow passage 4a. In this case, as a matter of course, part of the openings 9a and 9b is formed so as to protrude from the extended line of the shank portion flow passage 4a. However, in this case, the coolant flow rate is increased as compared with the conventional single-blade gun drill, but the coolant flow rate is decreased as compared with the above-described embodiment. However, by shifting the tip portion flow passage 4b toward the outer peripheral side with respect to the shank portion flow passage 4a, the coolant is effectively injected toward the outer peripheral side of the gun drill having a higher cutting speed. As a result, the cooling effect of the outer peripheral blade that tends to become high temperature is enhanced.
 また、本実施形態では第1逃げ面6aを平面としたが、交差するような2つの平面や、曲面に形成されてもよい。すなわち、例えば、仮想平面Fの切れ刃7と反対側は、第1逃げ面6aと加工穴底との間の空間をより大きく確保するようにしてもよい。また、上記実施形態では中心刃7aと外周刃7bとは鈍角に交差していたが、鋭角に交差させてもよい。 In the present embodiment, the first flank 6a is a plane, but it may be formed as two intersecting planes or curved surfaces. That is, for example, on the side opposite to the cutting edge 7 of the virtual plane F, a larger space between the first flank 6a and the machining hole bottom may be secured. Moreover, in the said embodiment, although the center blade 7a and the outer periphery blade 7b crossed the obtuse angle, you may make it cross | intersect an acute angle.
 次に、本発明の実施例のガンドリルと、比較例のガンドリルとを比較実験した結果を以下に示す。なお、実施例および比較例の形状を図7A~図11Bに示す。なお、比較例は、従来技術を基本にしているが、本発明の構成の効果を確認するため、一部従来技術には属さない比較品と比較した。具体的には、図9A,Bの比較例1などは、従来技術ではなく、本発明に近い考案品であるが、本発明の権利範囲外の比較例である。なお、実施例2では、回転軸線CLの方向から見たときに、チップ部流通路の縁の部分がシャンク部流通路の外側にはみ出して形成されている。また、比較例1では第1逃げ面6aとクーラント誘導面8とにまたがって形成された開口部109aが、実施例1のような湾曲した形状ではなく、円形状に形成されている。さらに、開口部109bの大きさが開口部109aの大きさよりも小さくなっている。また、比較例2では、実施例1の第2開口部9bよりも面積の大きく、かつ、周方向に延在する単一の開口部110が、第1逃げ面6a内にのみ形成されている。また、比較例3では実施例1と同じ形状の第2開口部9bが実施例1と同じ領域に形成されているが、実施例1の第1開口部9aと同じ形状の円形状の開口部111が仮想平面Fで二つに分けられた第1逃げ面6aの領域のうち、両方の領域にまたがって形成されている。 Next, the results of a comparative experiment between the gun drill of the example of the present invention and the gun drill of the comparative example are shown below. The shapes of the example and the comparative example are shown in FIGS. 7A to 11B. In addition, although the comparative example is based on a prior art, in order to confirm the effect of the structure of this invention, it compared with the comparative product which does not belong to a part of prior art. Specifically, Comparative Example 1 and the like in FIGS. 9A and 9B are not related art but are devised products close to the present invention, but are comparative examples outside the scope of the present invention. In Example 2, when viewed from the direction of the rotation axis CL, the edge portion of the tip portion flow passage is formed to protrude outside the shank portion flow passage. In Comparative Example 1, the opening 109a formed across the first flank 6a and the coolant guide surface 8 is formed in a circular shape instead of a curved shape as in the first embodiment. Further, the size of the opening 109b is smaller than the size of the opening 109a. In Comparative Example 2, a single opening 110 having a larger area than the second opening 9b of Example 1 and extending in the circumferential direction is formed only in the first flank 6a. . In Comparative Example 3, the second opening 9b having the same shape as that of Example 1 is formed in the same region as that of Example 1. However, the circular opening having the same shape as the first opening 9a of Example 1 is used. 111 is formed across both of the regions of the first flank 6 a divided into two by the virtual plane F.
 以下に実施例1~比較例3までの緒元を示す。
(緒元)
実施例1(図7A,B参照):直径  6mm
 クーラントの供給圧力  5MPa
 第1開口部の面積  0.665mm2
 第2開口部の面積  2.015mm2
 先端から後端までの長さ 200mm
 材質 超硬合金

実施例2(図8A,B参照):直径  6mm
 クーラントの供給圧力  5MPa
 第1開口部の面積  0.665mm2
 第2開口部の面積  2.015mm2
 先端から後端までの長さ 200mm
 材質 超硬合金

比較例1(図9A,B参照):直径  6mm
 クーラントの供給圧力  5MPa
 開口部の総面積(二つの合計)2.27mm2
 先端から後端までの長さ 200mm
 材質 超硬合金

比較例2(図10A,B参照):直径  6mm
 クーラントの供給圧  5MPa
 開口部の面積 2.934mm2
 先端から後端までの長さ 200mm
 材質 超硬合金

比較例3(図11A,B参照):直径  6mm
 クーラントの供給圧  5MPa
 第1開口部の面積 0.665mm2 
 第2開口部の面積 2.015mm2
 先端から後端までの長さ 200mm
 材質 超硬合金
The specifications from Example 1 to Comparative Example 3 are shown below.
(Omoto)
Example 1 (see FIGS. 7A and B): Diameter 6 mm
Coolant supply pressure 5 MPa
Area of the first opening 0.665mm 2
Area of second opening 2.015mm 2
Length from the front end to the rear end 200mm
Material Cemented carbide

Example 2 (see FIGS. 8A and 8B): Diameter 6 mm
Coolant supply pressure 5 MPa
Area of the first opening 0.665mm 2
Area of second opening 2.015mm 2
Length from the front end to the rear end 200mm
Material Cemented carbide

Comparative Example 1 (see FIGS. 9A and 9B): Diameter 6 mm
Coolant supply pressure 5 MPa
Total area of the opening (total of the two) 2.27mm 2
Length from the front end to the rear end 200mm
Material Cemented carbide

Comparative Example 2 (see FIGS. 10A and 10B): Diameter 6 mm
Coolant supply pressure 5 MPa
Area of opening 2.934 mm 2
Length from the front end to the rear end 200mm
Material Cemented carbide

Comparative Example 3 (see FIGS. 11A and 11B): Diameter 6 mm
Coolant supply pressure 5 MPa
Area of the first opening 0.665mm 2
Area of second opening 2.015mm 2
Length from the front end to the rear end 200mm
Material Cemented carbide
(流量に関する実験)
 穴径6.05mm、深さ100mmの鉛直上向きに開口した穴に各ガンドリルを挿入し、その後それぞれの1枚刃ガンドリルにクーラントを供給する。5分間クーラントを供給し、その間に穴から溢れ出たクーラントの量を測定する。測定したクーラントの量をクーラントの供給時間で除して流量を算出する。この実験を5回繰り返し、その平均の値を表1に載せた。
(Experiment regarding flow rate)
Each gun drill is inserted into a vertically open hole having a hole diameter of 6.05 mm and a depth of 100 mm, and then coolant is supplied to each single-blade gun drill. Supply the coolant for 5 minutes and measure the amount of coolant that has overflowed from the holes during that time. The flow rate is calculated by dividing the measured coolant amount by the coolant supply time. This experiment was repeated 5 times, and the average value was listed in Table 1.
(ねじり剛性に関する実験)
 各ガンドリルの先端から30mmの位置を固定して1N/mのトルクを加えたときに発生する最大主応力の値をコンピュータ解析で算出した。
 算出された最大主応力から、実施例1のねじり剛性に対する他の1枚刃ガンドリルのねじり剛性の比を算出するために、実施例1の最大主応力を実施例2および比較例の最大主応力で除し、その結果を表1に載せた。
(Experiment on torsional rigidity)
The value of the maximum principal stress generated when a torque of 1 N / m was applied while fixing a position 30 mm from the tip of each gun drill was calculated by computer analysis.
In order to calculate the ratio of the torsional rigidity of another one-blade gun drill to the torsional rigidity of Example 1 from the calculated maximum main stress, the maximum main stress of Example 1 and the maximum main stress of Example 2 are compared The results are shown in Table 1.
(切れ刃部の温度に関する実験)
 各1枚刃ガンドリルを用いて、S45Cの立方体ブロックに深さ100mmの穴を切削速度120m/分で加工し、加工終了後の切れ刃の温度を測定する。この実験を5回行い、その平均値を表1に載せた。
(Experiment on cutting edge temperature)
Using each single-blade gun drill, a hole having a depth of 100 mm is machined into a S45C cubic block at a cutting speed of 120 m / min, and the temperature of the cutting edge after the machining is measured. This experiment was performed 5 times, and the average value was listed in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1と比較例1とを比べた場合、比較例1の開口部の面積は実施例1の85%であるのに対して、流量は実施例1の79%となっている。このことは、実施例1のクーラントの噴射性能が単純な開口面積の増加による流量増加の程度を超えて向上していることを示している。 As shown in Table 1, when Example 1 and Comparative Example 1 are compared, the area of the opening of Comparative Example 1 is 85% of Example 1, whereas the flow rate is 79% of Example 1. It has become. This indicates that the injection performance of the coolant of Example 1 has improved beyond the degree of increase in flow rate due to a simple increase in the opening area.
 また、実施例1と比較例2とを比べた場合、比較例1は実施例1よりも開口部の面積が約9%程大きいにもかかわらず、その流量は実施例1の84%に留まっている。このことは、実施例1においては、第2開口部の一部がクーラント誘導面に形成されること、および第1逃げ面に第1開口部が形成されることが相乗効果を生み出して噴射性能を向上させることを示している。 Further, when Example 1 is compared with Comparative Example 2, the flow rate of Comparative Example 1 is only 84% of Example 1 although the area of the opening is about 9% larger than Example 1. ing. In the first embodiment, this means that a part of the second opening is formed on the coolant guide surface, and the formation of the first opening on the first flank produces a synergistic effect and the injection performance. It shows that improve.
 各1枚刃ガンドリル切れ刃温度に関しても、表1に示すように実施例1の切れ刃の温度が最も低くなっており、実施例1の冷却性能の高さが示された。 Regarding each single-blade gun drill cutting edge temperature, as shown in Table 1, the temperature of the cutting edge of Example 1 was the lowest, indicating the high cooling performance of Example 1.
 実施例1のねじれ剛性は比較例1よりも僅かに大きく、比較例2よりも小さいが、実用上問題ない大きさのねじれ剛性を有する比較例1よりも大きいことから、実施例1のねじれ剛性は十分な大きさを有しているということが示された。 The torsional rigidity of Example 1 is slightly larger than that of Comparative Example 1 and smaller than that of Comparative Example 2. However, the torsional rigidity of Example 1 is larger than that of Comparative Example 1 having a torsional rigidity having a practically no problem. Has been shown to have a sufficient size.
1…ガンドリル
2…ドライバ
3…切りくず排出溝
4a…シャンク部流通路
4b…チップ部流通路
4b1…第1チップ部流通路
4b2…第2チップ部流通路
5…すくい面
6…逃げ面
6a…第1逃げ面
6b…第2逃げ面
7…切れ刃
7a…中心刃
7b…外周刃
8…クーラント誘導面
9a…第1開口部
9b…第2開口部
DESCRIPTION OF SYMBOLS 1 ... Gun drill 2 ... Driver 3 ... Chip discharge groove 4a ... Shank part flow path 4b ... Tip part flow path 4b1 ... First tip part flow path 4b2 ... Second tip part flow path 5 ... Rake face 6 ... Flank 6a ... 1st flank 6b ... 2nd flank 7 ... Cutting edge 7a ... Center blade 7b ... Outer peripheral blade 8 ... Coolant guide surface 9a ... 1st opening part 9b ... 2nd opening part

Claims (6)

  1.  長手方向に延在する回転軸線を有する略棒状のガンドリルの内部にはクーラントが流通するための流通路が長手方向に沿って形成され、前記ガンドリルの外周面には切りくずを排出するための切りくず排出溝が長手方向に沿って形成され、前記切りくず排出溝にはすくい面が長手方向に沿って形成され、前記ガンドリルの先端部には逃げ面が形成され、前記逃げ面とすくい面との交差部に切れ刃が形成された1枚刃のガンドリルにおいて、
     前記ガンドリルの先端部にクーラント誘導面が形成され、該クーラント誘導面は前記逃げ面と交差し、且つ、前記切りくず排出溝を画定する一壁面と交差しており、
     前記流通路の前記先端部側の開口部は、第1および第2開口部を有し、
     前記第1開口部は、前記逃げ面内に形成され、
     前記第2開口部は、前記逃げ面および前記クーラント誘導面にまたがって形成され、且つ、第2開口部の開口面積は前記第1開口部の開口面積よりも大きいことを特徴とするガンドリル。
    Inside the substantially rod-shaped gun drill having a rotation axis extending in the longitudinal direction, a flow passage for circulating coolant is formed along the longitudinal direction, and a cut for discharging chips on the outer peripheral surface of the gun drill. A chip discharge groove is formed along the longitudinal direction, a rake face is formed along the longitudinal direction in the chip discharge groove, a flank face is formed at the tip of the gun drill, the flank face and the rake face, In a one-blade gun drill with a cutting edge formed at the intersection of
    A coolant guide surface is formed at the tip of the gun drill, the coolant guide surface intersects the flank surface, and intersects one wall surface defining the chip discharge groove,
    The opening on the front end side of the flow passage has first and second openings,
    The first opening is formed in the flank;
    The gun drill, wherein the second opening is formed across the flank and the coolant guide surface, and an opening area of the second opening is larger than an opening area of the first opening.
  2.  前記第2開口部は、前記回転軸線を中心として円周方向に延在していることを特徴とする請求項1に記載のガンドリル。 The gun drill according to claim 1, wherein the second opening extends in a circumferential direction about the rotation axis.
  3.  前記切れ刃は中心刃と外周刃とを有し、
     前記中心刃と前記外周刃とは、180°よりも小さい角度で交差し、且つ、その交点は前記回転軸線から外れた場所に位置し、
     前記クーラント誘導面は、前記中心刃に平行な方向からクーラント誘導面を見たときに、前記回転軸線に直交する直線に対して30°以上45°以下の範囲で交差するように形成されていることを特徴とする請求項1又は2に記載のガンドリル。
    The cutting edge has a center edge and an outer peripheral edge,
    The central blade and the outer peripheral blade intersect with each other at an angle smaller than 180 °, and the intersection is located at a location deviating from the rotation axis,
    The coolant guide surface is formed so as to intersect with a straight line orthogonal to the rotation axis in a range of 30 ° to 45 ° when the coolant guide surface is viewed from a direction parallel to the central blade. The gun drill according to claim 1 or 2, wherein
  4.  前記流通路は、供給側の開口部と連通するシャンク部流通路と、該シャンク部流通路に連続して形成され且つ噴射側の開口部と連通するチップ部流通路とを有し、
     前記チップ部流通路は、前記第1開口部に連通する第1チップ部流通路と、前記第2開口部に連通する第2チップ部流通路とを有し、
     前記第1チップ部流通路と前記第2チップ部流通路とは互いに離間して形成されていることを特徴とする請求項1ないし3のいずれかに記載のガンドリル。
    The flow passage has a shank portion flow passage that communicates with the opening on the supply side, and a tip portion flow passage that is formed continuously with the shank portion flow passage and communicates with the opening on the injection side.
    The tip portion flow passage has a first tip portion flow passage that communicates with the first opening, and a second tip portion flow passage that communicates with the second opening,
    The gun drill according to any one of claims 1 to 3, wherein the first tip portion flow passage and the second tip portion flow passage are formed apart from each other.
  5.  前記第1チップ部流通路の開口部のうち、前記シャンク部流通路に連通する開口部は、前記回転軸線方向から見て、前記シャンク部流通路の開口部の輪郭内に包含されるように形成され、
     前記第2チップ部流通路の開口部のうち、前記シャンク部流通路に連通する開口部は、前記回転軸線方向から見て、前記シャンク部流通路の開口部の輪郭内に包含されるように形成されていることを特徴とする請求項4に記載のガンドリル。
    Of the openings of the first tip portion flow passage, the opening communicating with the shank portion flow passage is included in the outline of the opening of the shank portion flow passage when viewed from the rotational axis direction. Formed,
    Of the openings of the second tip portion flow passage, the opening communicating with the shank portion flow passage is included within the outline of the opening of the shank portion flow passage when viewed from the rotational axis direction. The gun drill according to claim 4, wherein the gun drill is formed.
  6.  前記回転軸線方向から見て、前記第1チップ部流通路の開口部の一部が前記シャンク部流通路の開口部の外周側に突出するように配置され、且つ、前記第2チップ部流通路の開口部の一部が前記シャンク部流通路の開口部の外周側に突出するように配置されていることを特徴とする請求項4または5に記載のガンドリル。 The second tip portion flow passage is disposed so that a part of the opening portion of the first tip portion flow passage projects toward the outer peripheral side of the opening portion of the shank portion passage passage when viewed from the rotation axis direction. 6. The gun drill according to claim 4, wherein a part of the opening is disposed so as to protrude to the outer peripheral side of the opening of the shank portion flow passage.
PCT/JP2011/059662 2010-04-19 2011-04-19 Gun drill WO2011132686A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010096253A JP2013139059A (en) 2010-04-19 2010-04-19 Single-edged gun drill
JP2010-096253 2010-04-19

Publications (1)

Publication Number Publication Date
WO2011132686A1 true WO2011132686A1 (en) 2011-10-27

Family

ID=44834203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059662 WO2011132686A1 (en) 2010-04-19 2011-04-19 Gun drill

Country Status (2)

Country Link
JP (1) JP2013139059A (en)
WO (1) WO2011132686A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014147240A1 (en) * 2013-03-21 2014-09-25 Gühring KG Multi-lip drilling tool having internal cooling ducts
US20150217383A1 (en) * 2012-08-24 2015-08-06 Botek Praezisionsbohrtechnik Gmbh Single-lip drill
US20150321267A1 (en) * 2013-01-29 2015-11-12 Osg Corporation Drill
US20160031016A1 (en) * 2013-03-26 2016-02-04 Osg Corporation Three-bladed drill with cutting fluid supply hole
CN105904004A (en) * 2016-06-23 2016-08-31 重村钢模机械工业(苏州)有限公司 Gun drill
CN106964802A (en) * 2017-05-09 2017-07-21 山西平阳重工机械有限责任公司 Small-deep Hole expanding method and its cutter
CN107206510A (en) * 2015-02-13 2017-09-26 博泰克精密钻孔技术有限公司 Single-edge deep-hole is bored
US10814406B1 (en) * 2019-04-24 2020-10-27 Raytheon Technologies Corporation Internal cooling passages for rotating cutting tools

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6594473B2 (en) * 2018-03-29 2019-10-23 みやび建設株式会社 Drill mounting jig, drill device forming mechanism, and drill device
CN114083001B (en) * 2021-10-20 2022-12-30 厦门金鹭特种合金有限公司 Laminated material thin plate hole machining tool

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52136488A (en) * 1976-05-10 1977-11-15 Sumitomo Electric Ind Ltd Gun drill
JPS5541285U (en) * 1978-09-11 1980-03-17
JP2003165010A (en) * 2001-11-29 2003-06-10 Toshiba Tungaloy Co Ltd Solid gun drill
JP2004160651A (en) * 2002-11-11 2004-06-10 Ford Global Technologies Llc Gundrill
JP2005001082A (en) * 2003-06-13 2005-01-06 Mitsubishi Materials Corp Drill

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52136488A (en) * 1976-05-10 1977-11-15 Sumitomo Electric Ind Ltd Gun drill
JPS5541285U (en) * 1978-09-11 1980-03-17
JP2003165010A (en) * 2001-11-29 2003-06-10 Toshiba Tungaloy Co Ltd Solid gun drill
JP2004160651A (en) * 2002-11-11 2004-06-10 Ford Global Technologies Llc Gundrill
JP2005001082A (en) * 2003-06-13 2005-01-06 Mitsubishi Materials Corp Drill

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150217383A1 (en) * 2012-08-24 2015-08-06 Botek Praezisionsbohrtechnik Gmbh Single-lip drill
US9669474B2 (en) * 2012-08-24 2017-06-06 Botek Praezisionsbohrtechnik Gmbh Single-lip drill
US9604286B2 (en) 2013-01-29 2017-03-28 Osg Corporation Drill
US20150321267A1 (en) * 2013-01-29 2015-11-12 Osg Corporation Drill
EP2952278A4 (en) * 2013-01-29 2016-09-14 Osg Corp Drill
WO2014147240A1 (en) * 2013-03-21 2014-09-25 Gühring KG Multi-lip drilling tool having internal cooling ducts
US9636756B2 (en) 2013-03-21 2017-05-02 Guehring Kg Multi-lip drilling tool with internal cooling ducts
US20160031016A1 (en) * 2013-03-26 2016-02-04 Osg Corporation Three-bladed drill with cutting fluid supply hole
US9623490B2 (en) * 2013-03-26 2017-04-18 Osg Corporation Three-bladed drill with cutting fluid supply hole
EP2979794A4 (en) * 2013-03-26 2016-11-16 Osg Corp Three-bladed drill with cutting fluid supply hole
CN107206510A (en) * 2015-02-13 2017-09-26 博泰克精密钻孔技术有限公司 Single-edge deep-hole is bored
CN107206510B (en) * 2015-02-13 2019-06-11 博泰克精密钻孔技术有限公司 Single-edge deep-hole bores
CN105904004A (en) * 2016-06-23 2016-08-31 重村钢模机械工业(苏州)有限公司 Gun drill
CN106964802A (en) * 2017-05-09 2017-07-21 山西平阳重工机械有限责任公司 Small-deep Hole expanding method and its cutter
US10814406B1 (en) * 2019-04-24 2020-10-27 Raytheon Technologies Corporation Internal cooling passages for rotating cutting tools

Also Published As

Publication number Publication date
JP2013139059A (en) 2013-07-18

Similar Documents

Publication Publication Date Title
WO2011132686A1 (en) Gun drill
JP5951113B2 (en) 3-flute drill with cutting fluid supply hole
JP5926877B2 (en) drill
KR101701543B1 (en) Cutting insert and rotary cutting tool
JP5526967B2 (en) Drill with coolant hole
JP6086172B2 (en) drill
JP4802095B2 (en) Drill
US7909545B2 (en) Ballnose end mill
WO2014069265A1 (en) End mill with coolant holes
US20160214187A1 (en) End mill with coolant hole
WO2015080168A1 (en) Cutting insert and replaceable cutting edge cutting tool
JP5940208B1 (en) drill
JP6720335B2 (en) Drill
JP4959395B2 (en) Throw-away insert, turning tool equipped with the insert, and cutting method
JP5940205B1 (en) drill
JP2010162645A (en) Drill
JP4815386B2 (en) 3-flute ball end mill and 4-flute ball end mill
JP4554383B2 (en) Throw-away drill
KR20160079502A (en) Indexable Drill
KR20170055941A (en) Indexable Drill
JP2009136998A (en) Drill
JP2006315126A (en) Boring tool
JP2007015066A (en) Drill

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11772019

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11772019

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP