JPH08117603A - Aldehyde decomposition catalyst for purifying exhaust gas - Google Patents

Aldehyde decomposition catalyst for purifying exhaust gas

Info

Publication number
JPH08117603A
JPH08117603A JP6258107A JP25810794A JPH08117603A JP H08117603 A JPH08117603 A JP H08117603A JP 6258107 A JP6258107 A JP 6258107A JP 25810794 A JP25810794 A JP 25810794A JP H08117603 A JPH08117603 A JP H08117603A
Authority
JP
Japan
Prior art keywords
catalyst
silver
aldehyde
exhaust gas
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6258107A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Eto
義行 江渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP6258107A priority Critical patent/JPH08117603A/en
Publication of JPH08117603A publication Critical patent/JPH08117603A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: To provide an aldehyde decomposition catalyst for exhaust gas capable of decomposing aldehyde at a low temp. discharged from a combustion engine using an oxygen containing fuel such as methanol. CONSTITUTION: The catalyst decomposes aldehyde in unburned components discharged from the combustion engine using the oxygen containing fuel such as methanol and is obtained by incorporating a conjugate oxide expressed by a chemical formula, Ce1-x Gdx Nd1-y Agy O3-z [wherein, (x) is 0.1 or 0.2; (y) is 0.05 or 0.1; (z) is <=1.5] with palladium of a catalytic active component.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、排ガス浄化用アルデヒ
ド分解触媒に関し、特にメタノール等の含酸素燃料を用
いる燃焼機関から排出されるアルデヒドを低温で分解す
ることのできる排ガス浄化用アルデヒド分解触媒に関す
る。
FIELD OF THE INVENTION The present invention relates to an exhaust gas purifying aldehyde decomposition catalyst, and more particularly to an exhaust gas purifying aldehyde decomposition catalyst capable of decomposing aldehydes discharged from a combustion engine using an oxygen-containing fuel such as methanol at a low temperature. .

【0002】[0002]

【従来技術】従来のアルデヒド分解触媒としては、銀を
含むペロブスカイト型複合酸化物のAサイトにCsを配
置した上でパラジウムと組み合わせることで、アルデヒ
ド類に対し高酸化活性を示す排ガス浄化用アルデヒド分
解触媒が提案されている(特開平3−288549号公
報)。
2. Description of the Related Art As a conventional aldehyde decomposition catalyst, an aldehyde decomposition for exhaust gas purification showing a high oxidation activity for aldehydes by arranging Cs at the A site of a perovskite type composite oxide containing silver and combining it with palladium. A catalyst has been proposed (JP-A-3-288549).

【0003】上記公開公報に記載された触媒は、低温反
応性に優れた銀を高温耐久性に優れたペロブスカイト型
複合酸化物の結晶構造中に固溶し、銀の持つ低温反応性
を維持させながら高温安定性を付与した後、パラジウム
を担持させることで広い温度域及び雰囲気下での反応安
定性を向上させてアルデヒド類に対し高酸化活性を示す
としている。
The catalyst described in the above-mentioned publication makes silver having excellent low temperature reactivity into a solid solution in the crystal structure of a perovskite type complex oxide excellent in high temperature durability and maintains the low temperature reactivity of silver. However, after imparting high-temperature stability, palladium is supported to improve reaction stability in a wide temperature range and atmosphere, and high oxidative activity is exhibited for aldehydes.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな従来のアルデヒド分解触媒にあっては、低温反応性
に優れているものの、燃焼排ガス中に含まれるCoの存
在下、高温で複合酸化物結晶構造に組み込まれたCsが
Co被毒を受け熱的に安定なペロブスカイト結晶構造を
壊し、この結果、銀の結晶成長を引き起こすことが解っ
た。このため、長時間Coを含む雰囲気に曝されると活
性低下を起こすと言う問題があった。
However, although such a conventional aldehyde decomposition catalyst is excellent in low-temperature reactivity, it is possible to form a complex oxide crystal at high temperature in the presence of Co contained in combustion exhaust gas. It has been found that Cs incorporated in the structure is poisoned by Co and destroys the thermally stable perovskite crystal structure, resulting in silver crystal growth. Therefore, there is a problem that the activity is lowered when exposed to an atmosphere containing Co for a long time.

【0005】従って本発明は、このような従来の問題点
に着目してなされたもので、低温活性に優れた銀を耐硫
黄被毒性や高温耐久性に優れた無機複合酸化物(例え
ば、ペロブスカイト型複合酸化物)の結晶中に固溶させ
る際に、Co被毒性を引き起こさないGdをAサイトに
組み込むことにより、銀の低温反応性を維持させながら
耐硫黄被毒性及び高温安定性を付与させることで上記問
題点を解決することを目的としている。
Therefore, the present invention has been made by paying attention to such a conventional problem, and silver excellent in low temperature activity is mixed with an inorganic composite oxide excellent in sulfur poisoning resistance and high temperature durability (eg, perovskite). Gd that does not cause Co poisoning when incorporated into the crystal of (type complex oxide) is added to the A site to impart sulfur poisoning resistance and high temperature stability while maintaining the low temperature reactivity of silver. The purpose is to solve the above problems.

【0006】[0006]

【課題を解決するための手段】本発明の上記の目的は、
メタノール等の含酸素燃料を用いる燃焼機関から排出さ
れる未燃成分の内、アルデヒドを低温で分解処理する触
媒であって、化学式: Ce1-X GdX Nd1-y Agy 3-z (式中、xは0.1又は0.2であり、yは0.05又
は0.1であり、zは1.5以下である)で表される複
合酸化物を触媒活性成分たるパラジウムと組み合わせて
なることを特徴とする排ガス浄化用アルデヒド分解触媒
により達成された。
SUMMARY OF THE INVENTION The above objects of the present invention are as follows.
Among unburned components discharged from a combustion engine using an oxygen-containing fuel such as methanol, the catalyst is a catalyst for decomposing aldehyde at a low temperature and has a chemical formula: Ce 1-X Gd X Nd 1-y Ag y O 3-z (In the formula, x is 0.1 or 0.2, y is 0.05 or 0.1, and z is 1.5 or less). It was achieved by an aldehyde decomposition catalyst for exhaust gas purification, which is characterized by being combined with.

【0007】以下、本発明について更に詳細に説明す
る。まず、本発明の構成を説明すると、本発明の排ガス
浄化用アルデヒド分解触媒は、モノリス担体の表面に、
銀を包含する卑金属複合酸化物とO2 ストレージ能を持
つ高比表面積セリア及びセリウム含有活性アルミナにP
dを担持したPd含有アルミナを塗布せしめるものであ
る。
The present invention will be described in more detail below. First, explaining the configuration of the present invention, the aldehyde decomposition catalyst for exhaust gas purification of the present invention, on the surface of the monolith carrier,
A base metal composite oxide containing silver and a high specific surface area ceria and cerium-containing activated alumina having an O 2 storage capacity are added to P.
The Pd-containing alumina carrying d is applied.

【0008】ここで用いる銀含有複合酸化物は、化学
式: Ce1-x Gdx Nd1-y Agy 3-z (式中、xは0.1又は0.2であり、yは0.05又
は0.1であり、zは1.5以下である)で表される、
いわゆるペロブスカイト型複合酸化物である。
The silver-containing composite oxide used herein has the chemical formula: Ce 1-x Gd x Nd 1-y Ag y O 3-z (where x is 0.1 or 0.2 and y is 0). 0.05 or 0.1 and z is 1.5 or less).
This is a so-called perovskite complex oxide.

【0009】上記複合酸化物は、各金属の塩酸塩を所定
の化学量論比で混合し、オクチル酸ナトリウム溶液中に
添加して、オクチル酸化合物を合成した後、低温で乾燥
し、空気気流中で焼成して得られる。
The above complex oxide is prepared by mixing hydrochlorides of respective metals in a predetermined stoichiometric ratio and adding them into a sodium octylate solution to synthesize an octylate compound, followed by drying at a low temperature and air flow. It is obtained by firing in.

【0010】セリウム酸化物は、O2 ストレージ能を持
つ酸化物として知られている。O2ストレージ能は酸化
物の比表面積に比例することから、高比表面積を有する
活性酸化物を用いる。同時に用いるPdを担持するアル
ミナは、ベーマイトアルミナ(酸化アルミニウム一水和
物)にセリウム塩溶液を混合担持した後焼成して得たセ
リウム担持活性アルミナを用いる。
Cerium oxide is known as an oxide having an O 2 storage ability. Since the O 2 storage capacity is proportional to the specific surface area of the oxide, an active oxide having a high specific surface area is used. As the alumina supporting Pd used at the same time, cerium-supporting activated alumina obtained by mixing and supporting a cerium salt solution on boehmite alumina (aluminum oxide monohydrate) and firing the mixture is used.

【0011】次に、上記排ガス浄化用アルデヒド分解触
媒の製造方法を説明する。まず、ベーマイトアルミナ粉
末にセリウムの硝酸塩等の水溶液を浸せき等で所定量を
担持し、乾燥した後、空気気流中600℃で2時間焼成
してセリウム担持活性アルミナを得る。次いで、硝酸P
d溶液を用い、所定量のPdを含浸担持し、乾燥した
後、空気気流中400℃で2時間焼成してPd担持活性
アルミナを得る。
Next, a method for producing the aldehyde decomposition catalyst for purifying exhaust gas will be described. First, a predetermined amount is supported by immersing an aqueous solution of cerium nitrate or the like in boehmite alumina powder, dried and then calcined in an air stream at 600 ° C. for 2 hours to obtain cerium-supported activated alumina. Then nitric acid P
A d solution is used to impregnate and support a predetermined amount of Pd, which is dried and then calcined in an air stream at 400 ° C. for 2 hours to obtain Pd-supporting activated alumina.

【0012】次に、セリウム、ガドリニウム、ネオジム
及び銀の塩酸塩を純水中に分散混合した後、オクチル酸
ナトリウム溶液中に攪拌しながら添加し、十分に反応さ
せた後、低温で乾燥し、空気気流中800℃で5時間焼
成して銀含有複合酸化物(Ce1-x Gdx Nd1-y Ag
y 3-z )を得る。
Next, cerium, gadolinium, neodymium and silver hydrochloride were dispersed and mixed in pure water, and then added to a sodium octylate solution with stirring, and after sufficient reaction, dried at low temperature, Silver-containing composite oxide (Ce 1-x Gd x Nd 1-y Ag) was obtained by firing at 800 ° C for 5 hours in an air stream.
y O 3-z ) is obtained.

【0013】上記銀含有複合酸化物と、Pd担持セリウ
ム含有活性アルミナ及び高比表面積セリアとを硝酸酸性
アルミナゾルと混合して得られるスラリーをモノリス担
体に塗布した後、乾燥し、燃焼ガス雰囲気中400℃で
焼成して触媒を得る。ペロブスカイト複合酸化物を合成
するに際し、オクチル酸を用いると、800℃という比
較的低温でも効率良く比表面積が大きい、複合酸化物を
得ることができる。通常の方法では1100〜1300
℃の範囲でなければ合成することができない。このよう
な高温ではできあがった複合酸化物の比表面積が小さく
なってしまい、触媒として用いるときに浄化性能が劣っ
てしまう。
A slurry obtained by mixing the above silver-containing composite oxide, Pd-supporting cerium-containing activated alumina and high specific surface area ceria with nitric acid acidic alumina sol is applied to a monolith carrier and then dried, and the mixture is dried in a combustion gas atmosphere at 400 The catalyst is obtained by calcining at ℃. When octylic acid is used in synthesizing the perovskite composite oxide, it is possible to efficiently obtain a composite oxide having a large specific surface area even at a relatively low temperature of 800 ° C. 1100 to 1300 in the normal method
It can be synthesized only in the range of ° C. At such a high temperature, the specific surface area of the resulting complex oxide becomes small, and the purification performance becomes poor when used as a catalyst.

【0014】[0014]

【作用】含酸素燃料を使用する燃焼機関から排出される
排ガスの内、特に低温時に多量に発生するアルデヒドの
分解除去は、現行の白金、パラジウム及びロジウム等を
主体とした酸化触媒が利用されている。
[Function] Among the exhaust gas discharged from the combustion engine using the oxygen-containing fuel, the existing oxidization catalyst mainly composed of platinum, palladium, rhodium, etc. is utilized for the decomposition and removal of a large amount of aldehyde generated particularly at low temperature. There is.

【0015】しかしながら、含酸素燃料の未分解成分は
白金等の酸化触媒の下では200℃以下の温度で分解反
応を起こし、むしろアルデヒドを生成することがあるた
め、十分にその目的を達成し得ないと言う問題がある。
現在までのところ、燃焼システム側の工夫等により対応
せざるを得ないため、コスト的に問題がある。
However, the undecomposed component of the oxygen-containing fuel may cause a decomposition reaction at a temperature of 200 ° C. or lower under an oxidation catalyst such as platinum, and may rather form an aldehyde, so that the object can be sufficiently achieved. There is a problem that says no.
Up to now, there is a cost problem because it has to be dealt with by devising the combustion system side.

【0016】従って、本発明は、特に低温時のアルデヒ
ド分解に効果の高い銀触媒を、自動車等の内燃機関排ガ
ス雰囲気下で使用可能とするため、銀を優れた高温安定
性を持つ複合酸化物の結晶構造中に組み込むことによ
り、高活性及び高耐久性を有する排ガス浄化用触媒を提
供することを目的とした。
Therefore, the present invention makes it possible to use a silver catalyst, which is highly effective in decomposing aldehydes at low temperatures, in an exhaust gas atmosphere of an internal combustion engine such as an automobile, so that silver is a composite oxide having excellent high temperature stability. The purpose of the present invention is to provide an exhaust gas-purifying catalyst having high activity and high durability by incorporating it into the crystal structure of.

【0017】銀含有複合酸化物は、ABO3 からなる基
本構造をもついわゆるペロブスカイト型構造を示すた
め、結晶学的に極めて安定である。この結晶構造中のB
サイトに銀を固溶し、安定な銀酸化物とする事で、銀触
媒の持つ低温活性を失うことなく、耐硫黄被毒性をも持
たせることができる。
The silver-containing composite oxide has a so-called perovskite type structure having a basic structure of ABO 3 and is therefore extremely stable crystallographically. B in this crystal structure
By forming a solid solution of silver in the site to form a stable silver oxide, it is possible to provide sulfur poisoning resistance without losing the low temperature activity of the silver catalyst.

【0018】特に、Aサイトイオンの銀触媒相互作用効
果を目的とし、併せて、それ自身の耐Co被毒性を加味
し、ガドリニウムをセリウムに固溶させ、Bサイトのネ
オジムと共に異常原子価状態とする事で酸素欠陥を導入
した結果、高度の酸素吸脱着能を持たせて銀触媒の活性
安定化を図っている。
In particular, for the purpose of the silver-catalyst interaction effect of the A-site ion, in addition to its own resistance to Co poisoning, gadolinium is dissolved in cerium to form an abnormal valence state together with neodymium of the B-site. As a result, oxygen defects are introduced, and as a result, a high degree of oxygen adsorption / desorption ability is provided, and the activity of the silver catalyst is stabilized.

【0019】一般に、上記酸素欠陥を導入した結果、酸
化活性に重要な収着酸素を増加させる事になる。収着酸
素は、a)アルファー酸素:800℃以下の幅広い温度
範囲で脱離し、Aサイトイオンの部分置換によって生じ
る酸素空孔に収着している。b)ベーター酸素:820
℃付近で鋭いピーク状に脱離し、Bサイト金属の低原子
価への還元に対応すると言う2種が知られている。この
2種N収着酸素の存在により、銀の安定化が図られる。
Generally, as a result of the introduction of the oxygen defects, the sorbed oxygen, which is important for the oxidation activity, is increased. The sorbed oxygen is a) alpha oxygen: desorbed in a wide temperature range of 800 ° C. or lower and sorbed in oxygen vacancies generated by partial substitution of A site ions. b) Beta oxygen: 820
It is known that there are two kinds which are desorbed in the shape of a sharp peak in the vicinity of ° C and correspond to the reduction of the B site metal to a low valence. The presence of this type 2 N sorbed oxygen stabilizes silver.

【0020】以上のようにして得られた銀含有複合酸化
物と、それ自身強力なO2 ストレージ能を持つ高比表面
積セリアPd担持セリウム含有活性アルミナとをモノリ
ス担体表面にコーティングした触媒とする事で、高活性
や高耐久性を有する燃焼排ガス中のアルデヒドを分解浄
化する触媒が得られる。
A catalyst in which the surface of a monolith carrier is coated with the silver-containing composite oxide obtained as described above and the high specific surface area ceria-Pd-supporting cerium-containing activated alumina which itself has a strong O 2 storage capacity. Thus, a catalyst having high activity and high durability for decomposing and purifying aldehyde in combustion exhaust gas can be obtained.

【0021】[0021]

【実施例】以下、本発明を実施例によって更に詳述する
が、本発明はこれによって限定されるものではない。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto.

【0022】実施例1 アルミナ純度が60重量%以上のベーマイトアルミナ粉
末に、硝酸セリウム水溶液を浸せき法を用いて、アルミ
ナに対してセリウム金属として8.0重量%担持した。
担持した後150℃で3時間乾燥し、次いで空気気流中
600℃×2時間焼成してセリウム担持活性アルミナ担
体を得た。得られた活性アルミナ担体に硝酸Pd溶液を
用い、アルミナに対してPd金属として18.0重量%
担持した。その後150℃で3時間乾燥し、空気気流中
400℃×2時間焼成してPd担持セリウム含有活性ア
ルミナとした。
Example 1 A cerium nitrate aqueous solution was dipped in boehmite alumina powder having an alumina purity of 60% by weight or more to support 8.0% by weight of cerium metal on alumina.
After supporting, it was dried at 150 ° C. for 3 hours and then calcined in an air stream at 600 ° C. for 2 hours to obtain a cerium-supported activated alumina carrier. A Pd nitrate solution was used as the obtained activated alumina carrier, and 18.0% by weight as Pd metal based on alumina.
Carried. Then, it was dried at 150 ° C. for 3 hours and calcined in an air stream at 400 ° C. for 2 hours to obtain Pd-supporting cerium-containing activated alumina.

【0023】次に、塩化セリウム172.6g、塩化ガ
ドリニウム25.0g、塩化ネオジム206.6g及び
塩化銀4.65gを純水1Lで分散混合した後、この混
合液を濃度3mol/Lに調製したオクチル酸ナトリウ
ム〔Na(C7 15COO)〕溶液3L中に攪拌しなが
ら投入した。溶液が無色透明になったところで液と沈澱
物を濾別し、沈澱物を低温(50℃以下)で約15時間
乾燥し、2molの酸化物(約660g)を得た。
Next, 172.6 g of cerium chloride, 25.0 g of gadolinium chloride, 206.6 g of neodymium chloride and 4.65 g of silver chloride were dispersed and mixed in 1 L of pure water, and this mixture was prepared to a concentration of 3 mol / L. It was put into 3 L of sodium octylate [Na (C 7 H 15 COO)] solution with stirring. When the solution became colorless and transparent, the solution and the precipitate were separated by filtration, and the precipitate was dried at a low temperature (50 ° C. or lower) for about 15 hours to obtain 2 mol of oxide (about 660 g).

【0024】乾燥が終了した後、空気気流中800℃×
5時間焼成して銀含有複合酸化物を得た。得られた銀含
有複合酸化物をXRDにより測定したところ、Ce0.9
Gd 0.1 Nd0.95Ag0.053 なるペロブスカイト型構
造を示していた。また、格子定数を求めたところ、1
0.979であった。これは、Ce0.5 Nd0.5 1.75
型ペロブスカイトの格子定数10.990に良く一致し
ており、当初設計通りの酸素欠陥構造を有している事が
確認された。
After drying, 800 ° C in an air stream
The silver-containing composite oxide was obtained by firing for 5 hours. Obtained silver included
When the complex oxide was measured by XRD, it was found that Ce0.9
Gd 0.1Nd0.95Ag0.05O3Perovskite type structure
It was showing structure. Also, when the lattice constant was calculated, it was 1
It was 0.979. This is Ce0.5Nd0.5O1.75
Well agrees with the lattice constant 10.990 of the perovskite type
Therefore, it has an oxygen defect structure as originally designed.
confirmed.

【0025】以上、得られたPd担持セリウム含有活性
アルミナ650gと、銀含有複合酸化物粉末588g、
高比表面積セリア617g及び硝酸酸性ベーマイトゾル
(ベーマイトアルミナ10重量%懸濁液に10重量%硝
酸を加えて得られるゾル)2135gとを磁性ボールミ
ルポットへ投入し混合粉砕して得られたスラリーをモノ
リス担体基材(1.7L,400セル)にコーティング
した。コーティングした後、130℃×1時間乾燥し、
燃焼ガス気流中400℃×2時間焼成して触媒1を得
た。ここで得られた触媒のコート量(触媒層の量)は2
00g/Lに設定した。
As described above, 650 g of Pd-supported cerium-containing activated alumina and 588 g of silver-containing composite oxide powder,
617 g of high specific surface area ceria and 2135 g of nitric acid boehmite sol (sol obtained by adding 10% by weight nitric acid to 10% by weight suspension of boehmite alumina) were put into a magnetic ball mill pot and mixed and ground to obtain a slurry. It was coated on a carrier substrate (1.7 L, 400 cells). After coating, dry at 130 ℃ × 1 hour,
Catalyst 1 was obtained by calcining in a combustion gas stream at 400 ° C. for 2 hours. The catalyst coating amount (catalyst layer amount) obtained here was 2
It was set to 00 g / L.

【0026】比較例1 触媒層中に加える銀含有複合酸化物をネオジム及び銀か
ら作られるNdAgO 3 (Nd0.95Ag0.053 )を用
いた他は、実施例1と全く同様にして触媒2を得た。
Comparative Example 1 The silver-containing composite oxide added to the catalyst layer was neodymium and silver.
Made from NdAgO 3(Nd0.95Ag0.05O3)
A catalyst 2 was obtained in exactly the same manner as in Example 1 except that the above was used.

【0027】実施例2 銀含有複合酸化物の組成を、Ce0.8 Gd0.2 Nd0.95
Ag0.053 とした他は、実施例1と全く同様にして触
媒3を得た。
Example 2 The composition of the silver-containing composite oxide was Ce 0.8 Gd 0.2 Nd 0.95.
A catalyst 3 was obtained in exactly the same manner as in Example 1 except that Ag 0.05 O 3 was used.

【0028】実施例3 銀含有複合酸化物の組成を、Ce0.9 Gd0.1 Nd0.9
Ag0.1 3 とした他は、実施例1と全く同様にして触
媒4を得た。
Example 3 The composition of the silver-containing composite oxide was Ce 0.9 Gd 0.1 Nd 0.9.
A catalyst 4 was obtained in the same manner as in Example 1 except that Ag 0.1 O 3 was used.

【0029】実施例4 銀含有複合酸化物の組成をCe0.8 Gd0.2 Nd0.9
0.1 3 とした他は、実施例1と全く同様にして触媒
5を得た。
Example 4 The composition of the silver-containing composite oxide was Ce 0.8 Gd 0.2 Nd 0.9 A.
A catalyst 5 was obtained in exactly the same manner as in Example 1 except that g 0.1 O 3 was used.

【0030】比較例2 特開平3−288549号公報に記載された方法に従っ
て、活性アルミナ担体に、硝酸セリウム水溶液を浸せき
法を用いセリウム金属として8.0重量%担持した後、
150℃×3時間乾燥し、空気気流中600℃×2時間
焼成してセリウム担持活性アルミナ担体を得た。得られ
たアルミナ担体に、ジニトロジアンミンPd硝酸溶液を
用いPdとして1.91重量%になるように担持し、1
50℃×3時間乾燥した後、空気気流中400℃×2時
間焼成してPd担持活性アルミナ粉末を得た。
Comparative Example 2 According to the method described in JP-A-3-288549, 8.0 wt% of cerium metal was supported on an activated alumina carrier by immersing an aqueous cerium nitrate solution in the carrier, and
It was dried at 150 ° C for 3 hours and calcined in an air stream at 600 ° C for 2 hours to obtain a cerium-supported activated alumina carrier. The resulting alumina carrier was loaded with dinitrodiammine Pd nitric acid solution so that the Pd content would be 1.91% by weight.
After drying at 50 ° C. for 3 hours, it was calcined in an air stream at 400 ° C. for 2 hours to obtain Pd-supported activated alumina powder.

【0031】次に、炭酸ランタン、炭酸セシウム、炭酸
ネオジム及び炭酸銀の混合粉末を純水に分散した後、加
熱及び加圧処理して得たスラリーを低温で乾燥し、その
後空気気流中850℃×2時間以上焼成して銀含有複合
酸化物を得た。
Next, a mixed powder of lanthanum carbonate, cesium carbonate, neodymium carbonate and silver carbonate is dispersed in pure water, and then the slurry obtained by heating and pressurizing is dried at a low temperature, and then in an air stream at 850 ° C. It was baked for 2 hours or more to obtain a silver-containing composite oxide.

【0032】以上得られたPd担持活性アルミナ542
g、銀含有複合酸化物粉末588g、高比表面積セリア
735g及び硝酸酸性ベーマイトゾル2135gを磁性
ボールミルポットへ投入し、混合粉砕して得られたスラ
リーをモノリス担体基材にコーティングした。130℃
で1時間乾燥した後、燃焼ガス気流中400℃×2時間
焼成して触媒6を得た。ここで得られる触媒のコート量
は270g/個に設定した。
The Pd-supported activated alumina 542 obtained above.
g, silver-containing composite oxide powder 588 g, high specific surface area ceria 735 g, and nitric acid boehmite sol 2135 g were charged into a magnetic ball mill pot, and mixed and ground to obtain a slurry, which was coated on a monolith carrier substrate. 130 ° C
After being dried for 1 hour at 400 ° C. for 2 hours in a combustion gas stream, a catalyst 6 was obtained. The coating amount of the catalyst obtained here was set to 270 g / piece.

【0033】比較例3 銀含有複合酸化物を、Ce0.7 Gd0.3 Nd0.95Ag
0.053 とした他は、実施例1と全く同様にして触媒7
を得た。結晶構造をXRDで確認したところ、Gd2
3 の単独酸化物が確認された。
Comparative Example 3 A silver-containing composite oxide was mixed with Ce 0.7 Gd 0.3 Nd 0.95 Ag.
A catalyst 7 was prepared in the same manner as in Example 1 except that 0.05 O 3 was used.
I got When the crystal structure was confirmed by XRD, Gd 2 O
Three single oxides were confirmed.

【0034】比較例4 銀含有複合酸化物を、Ce0.9 Gd0.1 Nd0.85Ag
0.153 とした他は、実施例1と全く同様にして触媒8
を得た。結晶構造をXRDで確認したところ、AgOの
単独酸化物が確認された。
Comparative Example 4 A silver-containing composite oxide was mixed with Ce 0.9 Gd 0.1 Nd 0.85 Ag.
A catalyst 8 was prepared in the same manner as in Example 1 except that 0.15 O 3 was used.
I got When the crystal structure was confirmed by XRD, a single oxide of AgO was confirmed.

【0035】比較例5 銀含有複合酸化物を、Ce0.95Gd0.05Nd0.95Ag
0.053 とした他は、実施例1と全く同様にして触媒9
を得た。結晶構造を確認したところ、CeO2 の単独酸
化物が確認された。
Comparative Example 5 A silver-containing composite oxide was mixed with Ce 0.95 Gd 0.05 Nd 0.95 Ag.
A catalyst 9 was prepared in the same manner as in Example 1 except that 0.05 O 3 was used.
I got When the crystal structure was confirmed, a single oxide of CeO 2 was confirmed.

【0036】比較例6 銀含有複合酸化物を、Ce0.9 Gd0.1 Nd0.97Ag
0.033 とした他は、実施例1と全く同様にして触媒1
0を得た。
Comparative Example 6 A silver-containing composite oxide was mixed with Ce 0.9 Gd 0.1 Nd 0.97 Ag.
Catalyst 1 was prepared in the same manner as in Example 1 except that 0.03 O 3 was used.
I got 0.

【0037】比較例7 塩化セリウム、塩化ガドリニウム、塩化ネオジム及び塩
化銀の混合水溶液に25%アンモニア水を添加し、pH
7.8に調整した。この液を良く攪拌した後、沈澱物を
濾別し、得られた沈澱物を120℃で6時間乾燥し、次
いで850℃で5時間焼成して銀含有複合酸化物を得
た。ここで得られた銀含有複合酸化物の結晶構造をXR
Dにより確認したところ、各々の金属の酸化物と一部A
BO3 型の複合酸化物の混合物である事が確認された。
この複合酸化物粉末を用いた他は、実施例1と全く同様
にして触媒11を得た。
Comparative Example 7 25% ammonia water was added to a mixed aqueous solution of cerium chloride, gadolinium chloride, neodymium chloride and silver chloride to adjust the pH.
Adjusted to 7.8. After stirring this solution well, the precipitate was filtered off and the obtained precipitate was dried at 120 ° C. for 6 hours and then calcined at 850 ° C. for 5 hours to obtain a silver-containing composite oxide. The crystal structure of the silver-containing composite oxide obtained here is XR
As confirmed by D, oxides of each metal and part A
It was confirmed to be a mixture of BO 3 type complex oxides.
A catalyst 11 was obtained in exactly the same manner as in Example 1 except that this composite oxide powder was used.

【0038】試験例 実施例1〜4及び比較例1〜7で得た触媒を下記条件で
耐久(ラボ熱、硫黄、Co雰囲気耐久)を行い、モデル
ガス評価によりホルムアルデヒド分解浄化率を測定し
た。その結果を図1にアルデヒド浄化率温度特性結果と
して示した。
Test Example The catalysts obtained in Examples 1 to 4 and Comparative Examples 1 to 7 were subjected to durability (laboratory heat, sulfur, Co atmosphere durability) under the following conditions, and the formaldehyde decomposition purification rate was measured by model gas evaluation. The results are shown in FIG. 1 as the aldehyde purification rate temperature characteristic results.

【0039】 [0039]

【0040】 性能評価条件 装置:常圧流通式反応装置 評価ガス組成:ホルムアルデヒド 100ppm C2 4 300ppm CO 1.0% 空気バランス SV:30,000Hr-1 評価温度:25〜250℃ 10℃/min昇温Performance Evaluation Conditions Device: Atmospheric pressure flow reactor Evaluation gas composition: Formaldehyde 100 ppm C 2 H 4 300 ppm CO 1.0% Air balance SV: 30,000 Hr −1 Evaluation temperature: 25 to 250 ° C. 10 ° C./min Temperature rising

【0041】[0041]

【発明の効果】以上説明してきたように、本発明の排ガ
ス浄化用アルデヒド分解触媒は、それ自身優れた低温酸
化活性を有し、且つ、高い耐熱性、耐硫黄被毒性及び耐
CO被毒性を有する銀含有複合酸化物と、セリウムを担
持することで耐熱性を付与した活性アルミナに担持した
Pd及びO2 ストレージ能の高い比表面積セリアとを共
存させることとしたため、硫黄及びCOを含む雰囲気下
でも十分に耐久性を保ち、排ガス中に含まれるアルデヒ
ドを低温で効率良く浄化することができる。従って、本
発明の排ガス浄化用アルデヒド分解触媒によれば、含酸
素燃料を使用する車両システム等に適応が可能となり、
同システムの早期実用化による大気汚染防止効果の向上
が図れると言うことを期待することができる。
Industrial Applicability As described above, the aldehyde decomposition catalyst for purifying exhaust gas of the present invention has excellent low-temperature oxidation activity, and has high heat resistance, sulfur poisoning resistance and CO poisoning resistance. Since the silver-containing composite oxide and the specific surface area ceria having a high storage capacity of Pd and O 2 supported on activated alumina to which cerium is supported to impart heat resistance are allowed to coexist, in an atmosphere containing sulfur and CO However, the durability is sufficiently maintained, and the aldehyde contained in the exhaust gas can be efficiently purified at a low temperature. Therefore, according to the aldehyde decomposition catalyst for exhaust gas purification of the present invention, it becomes possible to adapt to a vehicle system or the like using an oxygen-containing fuel,
It can be expected that the air pollution prevention effect can be improved by the early commercialization of the system.

【図面の簡単な説明】[Brief description of drawings]

【図1】アルデヒド浄化率温度特性結果を示すグラフで
ある。
FIG. 1 is a graph showing the results of aldehyde purification rate temperature characteristics.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 メタノール等の含酸素燃料を用いる燃焼
機関から排出される未燃成分の内、アルデヒドを低温で
分解処理する触媒であって、化学式: Ce1-X GdX Nd1-y Agy 3-z (式中、xは0.1又は0.2であり、yは0.05又
は0.1であり、zは1.5以下である)で表される複
合酸化物を触媒活性成分たるパラジウムと組み合わせて
なることを特徴とする排ガス浄化用アルデヒド分解触
媒。
1. A catalyst for decomposing an aldehyde among unburned components discharged from a combustion engine using an oxygen-containing fuel such as methanol at a low temperature, represented by a chemical formula: Ce 1-X Gd X Nd 1-y Ag. a composite oxide represented by y O 3-z (wherein x is 0.1 or 0.2, y is 0.05 or 0.1, and z is 1.5 or less) An aldehyde decomposition catalyst for purifying exhaust gas, which is characterized by being combined with palladium which is a catalytically active component.
【請求項2】 複合酸化物を製造するに際し、オクチル
酸を用いることを特徴とする請求項1記載の排ガス浄化
用アルデヒド分解触媒。
2. The aldehyde decomposition catalyst for exhaust gas purification according to claim 1, wherein octylic acid is used in the production of the composite oxide.
JP6258107A 1994-10-24 1994-10-24 Aldehyde decomposition catalyst for purifying exhaust gas Pending JPH08117603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6258107A JPH08117603A (en) 1994-10-24 1994-10-24 Aldehyde decomposition catalyst for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6258107A JPH08117603A (en) 1994-10-24 1994-10-24 Aldehyde decomposition catalyst for purifying exhaust gas

Publications (1)

Publication Number Publication Date
JPH08117603A true JPH08117603A (en) 1996-05-14

Family

ID=17315602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6258107A Pending JPH08117603A (en) 1994-10-24 1994-10-24 Aldehyde decomposition catalyst for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JPH08117603A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007069077A (en) * 2005-09-05 2007-03-22 Mazda Motor Corp Catalyst for cleaning exhaust gas and diesel particulate filter with catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007069077A (en) * 2005-09-05 2007-03-22 Mazda Motor Corp Catalyst for cleaning exhaust gas and diesel particulate filter with catalyst

Similar Documents

Publication Publication Date Title
US10260395B2 (en) Nitrous oxide removal catalysts for exhaust systems
JP3741303B2 (en) Exhaust gas purification catalyst
EP2104567B2 (en) Method of making a NOx storage material
EP1371415B1 (en) Catalyst for hydrogen generation and catalyst for purification of exhaust gas
US7956005B2 (en) Exhaust gas-purifying catalyst
JP3664182B2 (en) High heat-resistant exhaust gas purification catalyst and production method thereof
CA1335278C (en) Exhaust gas catalyst with a reduced tendency to accumulate sulfur dioxide and hydrogen sulfide emissions
CA1328653C (en) Catalysts
US5821190A (en) Catalyst comprising iridium, alkaline metal, alkaline earth or rare earth metal, and metal carbide or metal nitride
JPH09141098A (en) Catalyst for purification of exhaust gas and its production
EP0980707B1 (en) NOx trap catalyst for lean burn engines
JPH10286462A (en) Catalyst of purifying exhaust gas
KR101147055B1 (en) Catalyst for purification of exhaust gas
EP2878368B1 (en) Oxygen storage materials
US8097556B2 (en) Exhaust gas-purifying catalyst and method of manufacturing the same
EP2493594B1 (en) Oxygen adsorbent based on lanthanoide oxysulfate, method for producing it, and exhaust gas purifying catalyst containing it
JP3264697B2 (en) Exhaust gas purification catalyst and purification system using the same
JP3766568B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH08117603A (en) Aldehyde decomposition catalyst for purifying exhaust gas
JPS59162948A (en) Catalyst for purifying exhaust gas
JPH10156183A (en) Catalyst for purification of exhaust gas and method for purifying exhaust gas
JP3770416B2 (en) Method for producing exhaust gas purification catalyst
JP3488999B2 (en) Exhaust gas purification catalyst composition, method for producing the same, and exhaust gas purification catalyst
JPH04235742A (en) Aldehyde decomposing catalyst for purifyying exhaust gas
JP3447513B2 (en) Exhaust gas purification catalyst and exhaust gas purification method