JPH08114424A - Strain detecting method and strain sensor - Google Patents

Strain detecting method and strain sensor

Info

Publication number
JPH08114424A
JPH08114424A JP6251794A JP25179494A JPH08114424A JP H08114424 A JPH08114424 A JP H08114424A JP 6251794 A JP6251794 A JP 6251794A JP 25179494 A JP25179494 A JP 25179494A JP H08114424 A JPH08114424 A JP H08114424A
Authority
JP
Japan
Prior art keywords
strain
optical waveguide
optical
substrate
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6251794A
Other languages
Japanese (ja)
Inventor
Takanobu Tanabe
高信 田辺
Ryoji Muramatsu
良二 村松
Yuichi Togano
祐一 戸叶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP6251794A priority Critical patent/JPH08114424A/en
Publication of JPH08114424A publication Critical patent/JPH08114424A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To provide a strain detecting method and a strain sensor that is compact and excellent in reliability without being affected by electric noises and radiating noises to the periphery. CONSTITUTION: Light wave guide elements 4a and 4b in which light wave guides 2a and 2b are respectively placed on substrates 1a and 1b are stuck on an object wherein its strain is to be measured so as to generate strain in the guide 2, and the change in refractive index that is generated by the photoelastic effect due to the strain is detected on the basis of the change in light wave passing through the guide 2, so that the strain in the object to be measured can be detected. In addition, there are two types of operation for this purpose; a light wave guide is divided into two, a strain receptor and a reference body, and a light wave is made incident into two light wave guides from the end part of one and the combined light waves are exited from the other end part so as to detect a strain. On the other hand, only one strain receptor as a light wave guide is prepared, and a light wave is made incident from one end part through a semi-transmitting film and it is totally reflected by a total reflection film on the other end part, then it is exited from the end part so as to detect a strain.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,物体の歪の検出に関
し,特に物体の歪を光学的に検出する方法及びその方法
を実施するための歪センサとそれを用いた歪検出装置及
び音圧センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the detection of distortion of an object, and more particularly to a method for optically detecting the distortion of an object, a distortion sensor for implementing the method, a distortion detecting device and sound pressure using the same. Regarding sensors.

【0002】[0002]

【従来の技術】物体の歪の検出は,機械的,電気的ある
いは光学的な方法がとられてきた。とりわけ歪ゲージに
よる方法は,目標とする部分の歪を離れた場所で高精度
にとらえることができる点で便利であり,多用されてい
る。また歪による光弾性効果で光ファイバの屈折率が変
化する現象をもって,歪を検出するいわゆるファイバセ
ンサによる手段も知られている。この方法は直接電気的
な手段を使わないことを特徴とする。
2. Description of the Related Art A mechanical, electrical or optical method has been used to detect the distortion of an object. In particular, the strain gauge method is convenient and widely used because it can accurately detect the strain of a target portion at a distant place. Further, there is also known a means using a so-called fiber sensor for detecting the strain by the phenomenon that the refractive index of the optical fiber changes due to the photoelastic effect due to the strain. This method is characterized by not using direct electrical means.

【0003】[0003]

【発明が解決しようとする課題】しかしながら,前記歪
ゲージ等の電気的手段は,電気的ノイズを受けやすく,
導体ケーブルを通じて空間ノイズを取り込むだけでな
く,空間にノイズを放射するという問題もある。一方,
例えば,歪センサに使用されている電気光学効果を有す
る結晶の歪みを測定する場合,電気的検出手段では,そ
の電気信号,ノイズ,他により被測定物であるその結晶
に変化を与え測定が困難であった。このように,電気的
検出手段が使用環境上好ましくない場合もあり,遠隔測
定における信号の減衰を補完するため増幅手段を必要と
するなどの技術的問題を抱えている。また光ファイバに
よる歪検出の場合には,センサが光ファイバのコイルか
ら構成されているために,小型化に難点がある。
However, the electrical means such as the strain gauge is susceptible to electrical noise,
There is a problem that not only spatial noise is taken in through the conductor cable, but also noise is emitted into the space. on the other hand,
For example, when measuring the strain of a crystal having an electro-optical effect used in a strain sensor, the electrical detection means causes a change in the crystal that is an object to be measured due to the electrical signal, noise, etc., which makes measurement difficult. Met. As described above, the electrical detection means may not be preferable in the usage environment, and there is a technical problem that an amplification means is required to complement the attenuation of the signal in the remote measurement. Further, in the case of strain detection using an optical fiber, there is a problem in downsizing because the sensor is composed of an optical fiber coil.

【0004】そこで,本発明の技術的課題は,こうした
問題点に鑑み,電気的ノイズに影響されずまた周囲にノ
イズを放射することなく,小型でかつ信頼性の高い歪検
出法及び歪センサを提供するものであり,併せてこれを
応用した音圧センサ法を提供することにある。
In view of these problems, the technical problem of the present invention is to provide a compact and highly reliable strain detection method and strain sensor which are not affected by electrical noise and emit noise to the surroundings. The purpose is to provide a sound pressure sensor method to which this is applied.

【0005】[0005]

【課題を解決するための手段】本発明によれば,光導波
路を設けた基板を被歪測定物に貼り付けて該光導波路に
歪を生じさせ,この歪によって光弾性効果により生じる
屈折率の変化を,該光導波路を通る光の変化により検知
して前記被歪測定物の歪みを検出することを特徴とする
歪検出方法が得られる。
According to the present invention, a substrate provided with an optical waveguide is attached to an object to be strained to cause a strain in the optical waveguide, and this strain causes a change in refractive index caused by a photoelastic effect. There is provided a strain detecting method characterized in that a change is detected by a change in light passing through the optical waveguide to detect the strain of the strained object.

【0006】また,本発明によれば,一端が光源に他端
が光電変換器に接続された光ファイバの央部を2つに分
け,少なくとも一方の光フアイバの一部を基板に光導波
路を形成した光導波路素子で置き換え,該光導波路素子
を歪受容体とし,他方の光ファイバもしくはその一部に
置き換えられた光導波路素子を基準体として,前記歪受
容体を通った光と前記基準体を通った光とを結合して前
記光電変換器に送出するように構成したことを特徴とす
る分岐干渉型の歪センサが得られる。
Further, according to the present invention, the central part of the optical fiber whose one end is connected to the light source and the other end is connected to the photoelectric converter is divided into two parts, and at least a part of one of the optical fibers is provided with the optical waveguide on the substrate. By replacing the formed optical waveguide element with the optical waveguide element as a strain receptor and the optical waveguide element replaced with the other optical fiber or a part thereof as a reference body, the light passing through the strain receptor and the reference body A branch interference type strain sensor is obtained which is configured so as to combine with the light that has passed therethrough and send it to the photoelectric converter.

【0007】また,本発明によれば,横方向に段差を有
する単一の基板のいずれか一方の主面に,長さ方向の両
端部でそれぞれ結合する2つの光導波路が設けられ,結
合された2つの光導波路の一方の端は光源に通じる光フ
ァイバが接続され,他方の端は光電変換器に通じる光フ
ァイバが接続され,前記2つの光導波路の内で基板の薄
い方の側に形成された光導波路を歪受容体の光導波路と
し,基体の厚い方の側に形成された光導波路を基準体の
光導波路としたことを特徴とする分岐干渉型の歪センサ
が得られる。
Further, according to the present invention, two optical waveguides, which are respectively coupled at both ends in the length direction, are provided on one of the main surfaces of a single substrate having a step in the lateral direction, and are coupled. Further, one end of each of the two optical waveguides is connected to an optical fiber leading to a light source, and the other end is connected to an optical fiber leading to a photoelectric converter, which is formed on the thin side of the substrate among the two optical waveguides. A branch interference type strain sensor is obtained in which the formed optical waveguide is the optical waveguide of the strain receptor and the optical waveguide formed on the thicker side of the substrate is the optical waveguide of the reference body.

【0008】また,本発明によれば,基板の主面に,長
さ方向の両端部でそれぞれ結合する2つの光導波路が設
けられ,結合された光導波路の一方の端部は光源に通じ
る光ファイバに接続され,他方の端部は光電変換器に通
じる光ファイバに接続され,前記2つの光導波路素子の
少なくとも一方の光導波路の上に弾性板を設置し,他方
の光導波路の上には,前記一方の光導波路の上の弾性板
と異なる厚さの弾性板を設置し,前記一方の側の光導波
路を基準体の光導波路とし,前記他方の側の光導波路を
歪受容体の光導波路としたことを特徴とする分岐干渉型
の歪センサが得られる。ここで,本発明において,前記
弾性板は導波光の吸収の少ない非金属製の材料,例え
ば,弾性樹脂からなることが好ましい。
Further, according to the present invention, the main surface of the substrate is provided with two optical waveguides which are respectively coupled at both ends in the longitudinal direction, and one end of the coupled optical waveguides is connected to the light source which leads to the light source. The other end is connected to an optical fiber leading to a photoelectric converter, an elastic plate is installed on at least one optical waveguide of the two optical waveguide devices, and the other optical waveguide is installed on the other optical waveguide. , An elastic plate having a thickness different from that of the elastic plate on the one optical waveguide is installed, the optical waveguide on the one side serves as an optical waveguide of a reference body, and the optical waveguide on the other side forms an optical waveguide of a strain receptor. A branch interference type strain sensor having a waveguide is obtained. Here, in the present invention, it is preferable that the elastic plate is made of a non-metallic material, such as an elastic resin, that absorbs less guided light.

【0009】また,本発明によれば,基板の主面に,長
さ方向の両端部でそれぞれ結合する2つの光導波路が設
けられ,光導波路の結合した部分の一方の外方の端部は
光源に通じる光ファイバが接続され,他方の端部は光電
変換器に通じる光ファイバが接続され,而して前記基板
は,前記2つの光導波路の中間の部分が,いずれか一方
の光導波路に歪を印加しても他方の光導波路の側に実質
的な影響を及ぼさない程度まで彫り込みもしくは除去し
た基板であり,いずれの光導波路を歪受容体の光導波路
としても使用可能であることを特徴とする分岐干渉型の
歪センサが得られる。
Further, according to the present invention, two optical waveguides which are respectively coupled at both ends in the length direction are provided on the main surface of the substrate, and one outer end of the coupled portion of the optical waveguides is provided. An optical fiber leading to a light source is connected, and an optical fiber leading to a photoelectric converter is connected to the other end of the substrate, and thus, in the substrate, an intermediate portion of the two optical waveguides is connected to one of the optical waveguides. It is a substrate that is engraved or removed to the extent that it does not substantially affect the other optical waveguide side even if strain is applied, and any optical waveguide can be used as the optical waveguide of the strain receptor. A branch interference type strain sensor is obtained.

【0010】また,本発明によれば,基板上に,一端が
全反射膜に接し他端が半透明膜を介して光ファイバに接
続される光導波路を設け,該光導波路を歪受容体の光導
波路とし,前記基板を歪測定対象物に貼り付けることに
よって,該光導波路に生じる歪を前記半透明膜から入射
され前記全反射膜で反射し再び前記半透明膜に出射する
光の強度変化として検出するように構成したことを特徴
とする歪センサが得られる。
Further, according to the present invention, an optical waveguide having one end in contact with the total reflection film and the other end connected to the optical fiber through the semitransparent film is provided on the substrate, and the optical waveguide is connected to the strain receptor. By changing the intensity of the light incident on the semi-transparent film, reflected by the total reflection film, and emitted again to the semi-transparent film, the strain generated in the optical waveguide is used as an optical waveguide and the substrate is attached to the strain measurement target. As a result, a strain sensor characterized by being configured to detect

【0011】また,本発明によれば,前記歪センサー
と,光源と,光電変換器と,前記光源からの光を光ファ
イバに入射すると共に該光ファイバからの光を前記光電
変換器へ出射するサーキュレーターと,前記光電変換器
の出力を計測する計測器とを有することを特徴とする歪
検出装置が得られる。
Further, according to the present invention, the strain sensor, the light source, the photoelectric converter, the light from the light source is incident on the optical fiber, and the light from the optical fiber is emitted to the photoelectric converter. A strain detection device having a circulator and a measuring device for measuring the output of the photoelectric converter is obtained.

【0012】さらに,本発明の前記したいずれかの歪セ
ンサの前記歪受容体部分に振動板を機械的に結合して構
成したことを特徴とする音圧センサが得られる。ここ
で,本発明において,前記基板は,光の吸収の少ない透
明の結晶基板であることが好ましい。
Further, there is provided a sound pressure sensor characterized in that a vibration plate is mechanically coupled to the strain receptor portion of any one of the strain sensors of the present invention. Here, in the present invention, the substrate is preferably a transparent crystal substrate that absorbs little light.

【0013】[0013]

【作用】本発明は,光導波路に生じた歪のために光弾性
効果によって屈折率が変化する現象にもとずく。個々の
基板上に構築した光導波路を光ファイバによって結合
し,あるいは同一基板上で二つの光導波路に分岐した後
再び結合する分岐干渉型光導波路が,干渉計を構成し,
これを歪センサとする。このような構成において,一方
の光導波路が応力を受けて歪が生じたとき,屈折率が局
部的に変化し,二つの導波路の透過光に位相差が生じ,
光強度の変化としてとらえられる。
The present invention is based on the phenomenon that the refractive index changes due to the photoelastic effect due to the strain generated in the optical waveguide. An interferometer is composed of a branching interference type optical waveguide that combines optical waveguides constructed on individual substrates with optical fibers, or branches into two optical waveguides on the same substrate and then combines them again.
This is called a strain sensor. In such a configuration, when one optical waveguide receives stress and is distorted, the refractive index locally changes and a phase difference occurs in the transmitted light of the two waveguides.
Perceived as a change in light intensity.

【0014】この方式においては歪を光の強度変化に変
換して検出し,光ファイバによって光電変換器に伝送
し,ここで初めて電気信号として計測器に伝達される。
分岐後の片方の導波路に歪を与えると,その歪が基板に
伝わり,もう片方の導波路にまで影響を与え歪センサと
して感度に問題を生じる。ここで,分岐後の導波路間に
隙間を設けることで片方に加わった歪みが基板を伝わり
もう片方の導波路に殆ど伝わらないために,感度の良い
歪センサとして動作する。それゆえ光ファイバを使った
この伝送線路系におけるノイズの発信・受信はなく,ま
た磁界の影響を受けることもないため,信頼性の高い検
出を可能とする。なお前記歪隙間の原理は,空中あるい
は液中における音圧の検出にも適用することができる。
In this method, distortion is converted into a change in light intensity, which is detected and transmitted to an optical / electrical converter by an optical fiber, where it is first transmitted as an electric signal to a measuring instrument.
When strain is applied to one waveguide after branching, the strain is transmitted to the substrate and affects the other waveguide as well, causing a problem in sensitivity as a strain sensor. Here, by providing a gap between the waveguides after branching, the strain applied to one side is transmitted through the substrate and hardly transmitted to the other side waveguide, so that it operates as a strain sensor with high sensitivity. Therefore, noise is not transmitted or received in this transmission line system that uses an optical fiber, and it is not affected by the magnetic field, which enables highly reliable detection. The principle of the strain gap can be applied to detection of sound pressure in air or liquid.

【0015】[0015]

【実施例】以下,本発明の実施例について,図面を参照
して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0016】図1は,本発明の一実施例である歪センサ
を含む歪検査装置の概略構成を示す図である。図1に示
すように,基板1a,1b上に光導波路2a,2bをそ
れぞれ構築した2つの光導波路素子4a,4bに,光フ
ァイバ10,11を接続して干渉計を構成し,歪センサ
6とした。歪受容体となる一方の光導波路素子4aを図
示してない測定対象物に貼り付け,他の光導波路素子4
bは歪を受けない環境におき,これを基準体とした。光
源12から光ファイバ10を介して歪センサ6に入射し
た光波は2つに分かれ,一方の歪受容体側の光導波路2
aに入った光波は,センサ6が受けた歪に応じた光強度
をもって透過する。他方の光波は基準体側の光導波路2
bに入った光波は,強度を変えないで通過する。2つの
光波は歪センサ内で結合し,透過側光ファイバ11を介
して光変換器14に入り,計測器16で計測され,記録
計17に記録される。
FIG. 1 is a diagram showing a schematic configuration of a strain inspection apparatus including a strain sensor according to an embodiment of the present invention. As shown in FIG. 1, optical fibers 10 and 11 are connected to two optical waveguide elements 4a and 4b, respectively, on which optical waveguides 2a and 2b are respectively constructed on substrates 1a and 1b, to construct an interferometer. And One of the optical waveguide elements 4a, which serves as a strain receptor, is attached to a measurement target (not shown), and the other optical waveguide element 4a is attached.
b was placed in an environment that was not subjected to strain, and this was used as a reference body. The light wave that is incident on the strain sensor 6 from the light source 12 through the optical fiber 10 is divided into two, and the optical waveguide 2 on the side of one strain receptor is
The light wave entering a passes through with a light intensity corresponding to the strain received by the sensor 6. The other light wave is the optical waveguide 2 on the reference body side.
The light wave entering b passes without changing the intensity. The two light waves are combined in the strain sensor, enter the optical converter 14 via the transmission side optical fiber 11, are measured by the measuring device 16, and are recorded in the recorder 17.

【0017】なお,ここで基準体をなす光導波路素子4
bは,ファイバに置き換えても実用的に構わない。その
際,ファイバの分岐は,カプラーで行い,位相が等しく
強度1/2となるように分岐する。一方,ファイバの結
合は,同様に合波で強度が夫々の入力の強度の2倍とな
るように構成される。
The optical waveguide element 4 serving as a reference body here
b may be replaced with a fiber for practical purposes. At this time, the fiber is branched by a coupler and branched so that the phases are equal and the intensity is 1/2. On the other hand, the fiber coupling is similarly constructed so that upon combining, the strength is twice the strength of the respective inputs.

【0018】図2は第2の実施例の構成を示す図で,分
岐干渉型光導波路を形成する二つの光導波路が構築され
るガラス製の基板1の厚さをほぼ2分して一方を厚く他
方を薄くしたものである。光導波路2a,2bは基板1
の平面側に形成され,その面全体または少なくとも肉厚
が小さい部分を測定対象物に貼り付け,肉厚が小さい部
分の光導波路を歪受容体とし,基板の肉厚が大きい部分
は歪を受け難くこれを基準体とする。
FIG. 2 is a diagram showing the configuration of the second embodiment, in which the thickness of a glass substrate 1 on which two optical waveguides forming a branching interference type optical waveguide are constructed is roughly divided into two and one is One is thick and the other is thin. The optical waveguides 2a and 2b are the substrate 1
Is formed on the flat side of the substrate, and the entire surface or at least the part with a small thickness is attached to the object to be measured, the optical waveguide of the part with a small thickness is used as a strain receptor, and the part with a large thickness of the substrate is subject to strain. It is difficult to use this as the reference body.

【0019】図3は図2の光導波路を用いた歪センサの
原理の説明に供する図である。図3(a)に示すような
分岐手前の入射光31を図3(b)に示すように,強度
Po,位相のずれを0に調整しておくと,分岐された2
つの入射光32,33は,図3(c)の(ア)及び
(イ)に示されるように,位相のずれ0で強度Po/2
の光となる。導波路の一方は,歪を加えられており,こ
れによって出力光34は,図3(d)の(ウ)に示され
るように,加えられた歪に対応した位相差τだけずれた
出力光となる。また,導波路の他方は,歪を加えられて
おらず,出力光は図3(d)の(エ)に示すように,そ
の強度及び位相ともに変化しない。
FIG. 3 is a diagram for explaining the principle of the strain sensor using the optical waveguide of FIG. When the incident light 31 before branching as shown in FIG. 3A is adjusted to have an intensity Po and a phase shift of 0 as shown in FIG.
As shown in (a) and (a) of FIG. 3C, the two incident lights 32 and 33 have an intensity Po / 2 with a phase shift of 0.
It becomes the light of. One of the waveguides is distorted, so that the output light 34 is shifted by the phase difference τ corresponding to the applied distortion as shown in (c) of FIG. Becomes Further, the other of the waveguides is not distorted, and the output light does not change its intensity and phase, as shown in (d) of FIG. 3 (d).

【0020】従って,図3(d)の(ウ)と(エ)との
合成波である出力光36は,図3(e)に示すように,
位相差が生じ,強度Poよりも小さい強度Peが図示し
ない検出器によって検出される。この強度は,歪みの大
きさに比例しており,従って,強度Peから,歪の大き
さを検出することができる。
Therefore, the output light 36 which is a composite wave of (c) and (d) in FIG. 3 (d) is as shown in FIG. 3 (e).
A phase difference occurs, and an intensity Pe smaller than the intensity Po is detected by a detector (not shown). This intensity is proportional to the magnitude of strain, and therefore the magnitude of strain can be detected from the intensity Pe.

【0021】図4に示す歪センサ6も,図2に示す歪セ
ンサと同様に二つの光導波路2a,2bにかかる透光性
の樹脂からなる基板1の厚さを相違させたものである。
光導波路2aと2は基板1の肉厚の違いのために段違い
に形成されており,その裏面全体(または少なくもと肉
厚が小さい部分)を測定対象物に貼り付けると,基板の
肉厚が大きい部分は歪が生じにくくこれが基準体となり
歪を検出する。
The strain sensor 6 shown in FIG. 4 is similar to the strain sensor shown in FIG. 2 except that the thickness of the substrate 1 made of a translucent resin applied to the two optical waveguides 2a and 2b is different.
The optical waveguides 2a and 2 are formed in different steps due to the difference in the thickness of the substrate 1, and when the entire back surface (or at least the small thickness portion) is attached to the measurement object, the thickness of the substrate is increased. Distortion is less likely to occur in the area where is large, and this serves as a reference body to detect distortion.

【0022】図5に示す歪センサ6は,肉厚が一様な透
光性の樹脂からなる基板1に光導波路2a,2bを構築
して分岐干渉型の歪センサを構成したものである。この
歪センサ6は,二つの光導波路2の上に互いに異なった
厚さの樹脂膜7a,7bを付加したもので,二つの光導
波路に生じる歪の差を検出する。樹脂膜7bはなくても
よいものである。なおこの場合,どちらの側を歪受容体
とするか,どちらの側の樹脂膜を省略するかは特に限定
されない。
A strain sensor 6 shown in FIG. 5 is a branch interference type strain sensor in which optical waveguides 2a and 2b are constructed on a substrate 1 made of a transparent resin having a uniform thickness. The strain sensor 6 has resin films 7a and 7b having different thicknesses added on the two optical waveguides 2 and detects a difference in strain generated between the two optical waveguides. The resin film 7b may be omitted. In this case, it is not particularly limited which side is used as the strain receptor or which side the resin film is omitted.

【0023】図6に示す歪センサ6は肉厚が一様なニオ
ブ酸リチウム単結晶からなる基板1に光導波路2a,2
bを構築して分岐干渉型の歪センサを構成したものであ
る。この歪センサ6は,基板1の二つの光導波路の中間
の部分を除去してあり,一方の光導波路2aが歪受容体
となり,これに生じた歪は,基準体となる他の一方の光
導波路2bには直接影響を及ぼさない構造をしている。
基板を除去した部分を隔てた歪受容体側の裏面を測定対
象物に貼り付けて歪を検出する。いうまでもないことで
あるが,どちらの側を歪受容体にするかは自由である。
The strain sensor 6 shown in FIG. 6 has optical waveguides 2a, 2 on a substrate 1 made of lithium niobate single crystal having a uniform thickness.
b is constructed to construct a branch interference type strain sensor. In this strain sensor 6, the middle part of the two optical waveguides of the substrate 1 is removed, one optical waveguide 2a serves as a strain receptor, and the strain generated in this one optical waveguide 2a serves as a reference body. It has a structure that does not directly affect the waveguide 2b.
The back surface of the strain receptor side, which is separated from the portion where the substrate is removed, is attached to the measurement target to detect the strain. Needless to say, which side is the strain receptor is free.

【0024】図7は,本発明による歪検出方法の別の実
施例の装置の概略構成を示す図である。図7に示すよう
に,本実施例では歪センサ6は反射型とした。歪センサ
の構造は,ガラス製の基板1に構築した光導波路2の入
射端面に半透過膜8を付して光ファイバ11からの入射
光を一部反射させ,かつその光導波路2の他の端面に全
反射膜9を付して全反射させ,前記二つの反射光が前記
入射端面から同一の光ファイバ11を通して再び伝搬す
るものである。この歪センサ6を測定対象物に貼り付け
ることにより,光導波路に生じる歪の大きさに依存して
反射光の強度が変化する。装置は,光源12と,入射光
と反射光が同一線路を伝搬する光ファイバ18として偏
波保持ファイバを用い,反射光をサーキュレータ15を
通して受光する光電変換器14,および光電変換器14
からの電気信号を計測および表示する計測器16,及び
記録する記録計17によって構成されている。
FIG. 7 is a view showing the schematic arrangement of an apparatus of another embodiment of the strain detecting method according to the present invention. As shown in FIG. 7, the strain sensor 6 is a reflective type in this embodiment. The structure of the strain sensor is such that a semi-transmissive film 8 is attached to the incident end face of the optical waveguide 2 constructed on the glass substrate 1 to partially reflect the incident light from the optical fiber 11 and A total reflection film 9 is attached to the end face for total reflection, and the two reflected lights propagate again from the incident end face through the same optical fiber 11. By attaching the strain sensor 6 to the measurement target, the intensity of the reflected light changes depending on the magnitude of strain generated in the optical waveguide. The device uses a light source 12, a polarization-maintaining fiber as an optical fiber 18 in which incident light and reflected light propagate in the same line, and receives a reflected light through a circulator 15, and a photoelectric converter 14
It is composed of a measuring device 16 for measuring and displaying an electric signal from the recording device 17 and a recorder 17 for recording the electric signal.

【0025】図7に示す装置の構成のもとに,歪センサ
を高圧反応容器の外壁に貼り付け,高圧化学反応による
反応容器の微小な歪を,隔離した場所において,検出・
モニタすることができることを確認した。
Based on the configuration of the apparatus shown in FIG. 7, a strain sensor is attached to the outer wall of the high-pressure reaction vessel to detect a minute strain of the reaction vessel due to a high-pressure chemical reaction in an isolated place.
Confirmed that it can be monitored.

【0026】図8は,歪センサを空中または液中におけ
る音圧検出に適用し,音圧センサ24を構成したもので
ある。振動板21に連動したカンチレバー22が歪セン
サ6に機械的に結合している。振動板21による振動が
歪センサ6に伝達され,透過光または反射光の強度とし
て情報が変換される。なお,振動板に歪センサを貼り付
けて検出する方法も可能なことは言うまでもない。
FIG. 8 shows a sound pressure sensor 24 constructed by applying a strain sensor to the sound pressure detection in air or in liquid. A cantilever 22 interlocked with the diaphragm 21 is mechanically coupled to the strain sensor 6. The vibration of the diaphragm 21 is transmitted to the strain sensor 6, and information is converted as the intensity of transmitted light or reflected light. Needless to say, a method in which a strain sensor is attached to the diaphragm for detection is also possible.

【0027】以上の実施例においては,分岐後から合波
までの分岐光路の長さが等しい例について説明したが,
互いに分岐光路の長さが異なるもので構成してもよく,
その場合,結合時い位相変調が生じるため,出力光強度
が見掛け上小さくなり,バイアス変動を導くことができ
る。
In the above embodiment, an example in which the lengths of the branched optical paths from the branching to the combining are equal has been described.
It may be composed of different branched optical paths,
In that case, since phase modulation occurs at the time of coupling, the output light intensity is apparently reduced, and bias fluctuation can be introduced.

【0028】[0028]

【発明の効果】従来多く使われてきた電気的方法による
物体の歪検出手段に対比して,本発明による歪検出方法
は,基板に光導波路を形成しこの光導波路に生じる歪を
光波を用いて測定するので,導体ケーブルを通した電気
的ノイズの誘導がなく,周囲にノイズを放射することも
ない。また磁界の影響を受けることがない。したがって
この方法は,例えば引火性あるいは誘爆性の環境でも安
全な測定を可能とする小型のセンサの実現と相まって,
信頼性の高い結果が得られる歪検出方法として有用であ
る。
In contrast to the conventional method for detecting the strain of an object by the electrical method, the strain detecting method according to the present invention forms an optical waveguide on a substrate and uses the optical wave as the strain generated in the optical waveguide. Since it is measured by means of electrical measurement, there is no induction of electrical noise through the conductor cable and no noise is emitted to the surroundings. Moreover, it is not affected by the magnetic field. Therefore, this method is combined with the realization of a small sensor that enables safe measurements in flammable or explosive environments, for example.
It is useful as a distortion detection method that can obtain highly reliable results.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による歪検出方法を示す装置の構成であ
る。
FIG. 1 is a configuration of an apparatus showing a distortion detection method according to the present invention.

【図2】分岐干渉型導波路素子による歪センサの斜視図
である。
FIG. 2 is a perspective view of a strain sensor including a branch interference type waveguide device.

【図3】(a)乃至(e)は図2の歪センサの測定原理
を説明するための図である。
3A to 3E are diagrams for explaining the measurement principle of the strain sensor of FIG.

【図4】本発明の分岐干渉型光導波路素子による歪セン
サの他の例を示す斜視図である。
FIG. 4 is a perspective view showing another example of the strain sensor using the branch interference type optical waveguide device of the present invention.

【図5】本発明の分岐干渉型光導波路素子による歪セン
サのさらに他の例を示す斜視図である。
FIG. 5 is a perspective view showing still another example of the strain sensor using the branch interference type optical waveguide device of the present invention.

【図6】本発明の分岐干渉型光導波路素子による歪セン
サの別の例を示す斜視図である。
FIG. 6 is a perspective view showing another example of a strain sensor using the branch interference type optical waveguide device of the present invention.

【図7】本発明による歪検出方法を示す装置の構成図で
ある。
FIG. 7 is a configuration diagram of an apparatus showing a distortion detection method according to the present invention.

【図8】音圧検出方法にかかるセンサの断面図である。FIG. 8 is a sectional view of a sensor according to a sound pressure detecting method.

【符号の説明】[Explanation of symbols]

1,1a,1b 基板 2 光導波路 2a 光導波路(歪受容体) 2b 光導波路(基準体) 4a 光導波路素子(歪受容体) 4b 光導波路素子(基準体) 6 歪センサ 7a,7b 樹脂膜 8 半透過膜 9 全反射膜 10,11 光ファイバ 12 光源 13 レンズ 14 光電変換器 15 サーキュレータ 16 計測器 17 記録計 21 振動板 22 カンチレバー 23 フレーム 24 音圧センサ 1, 1a, 1b Substrate 2 Optical waveguide 2a Optical waveguide (strain receptor) 2b Optical waveguide (reference body) 4a Optical waveguide element (strain receptor) 4b Optical waveguide element (reference body) 6 Strain sensor 7a, 7b Resin film 8 Semi-transmissive film 9 Total reflection film 10, 11 Optical fiber 12 Light source 13 Lens 14 Photoelectric converter 15 Circulator 16 Measuring instrument 17 Recorder 21 Vibration plate 22 Cantilever 23 Frame 24 Sound pressure sensor

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 光導波路を設けた基板を被歪測定物に貼
り付けて該光導波路に歪を生じさせ,この歪によって光
弾性効果により生じる屈折率の変化を,該光導波路を通
る光の変化により検知して前記被歪測定物の歪みを検出
することを特徴とする歪検出方法。
1. A substrate provided with an optical waveguide is attached to an object to be strained to generate a strain in the optical waveguide, and a change in the refractive index caused by a photoelastic effect due to the strain is caused by a change in the light passing through the optical waveguide. A strain detection method comprising detecting the strain of the strained object by detecting the change.
【請求項2】 一端が光源に他端が光電変換器に接続さ
れた光ファイバの央部を2つに分け,少なくとも一方の
光フアイバの一部を基板に光導波路を形成した光導波路
素子で置き換え,該光導波路素子を歪受容体とし,他方
の光ファイバもしくはその一部に置き換えられた光導波
路素子を基準体として,前記歪受容体を通った光と前記
基準体を通った光とを結合して前記光電変換器に送出す
るように構成したことを特徴とする分岐干渉型の歪セン
サ。
2. An optical waveguide element in which an optical fiber whose one end is connected to a light source and the other end is connected to a photoelectric converter is divided into two parts, and at least one of the optical fibers is formed with an optical waveguide on a substrate. By replacing the optical waveguide element as a strain receptor and the optical waveguide element replaced by the other optical fiber or a part thereof as a reference body, the light passing through the strain receptor and the light passing through the reference body are combined. A branch interference type strain sensor, characterized in that the strain sensor is combined and sent to the photoelectric converter.
【請求項3】 横方向に段差を有する単一の基板のいず
れか一方の主面に,長さ方向の両端部でそれぞれ結合す
る2つの光導波路が設けられ,結合された2つの光導波
路の一方の端は光源に通じる光ファイバが接続され,他
方の端は光電変換器に通じる光ファイバが接続され,前
記2つの光導波路の内で基板の薄い方の側に形成された
光導波路を歪受容体の光導波路とし,基体の厚い方の側
に形成された光導波路を基準体の光導波路としたことを
特徴とする分岐干渉型の歪センサ。
3. A single substrate having a step in the lateral direction is provided with two optical waveguides which are respectively coupled at both ends in the longitudinal direction on one main surface of the single substrate, and the two optical waveguides are coupled. An optical fiber leading to a light source is connected to one end, an optical fiber leading to a photoelectric converter is connected to the other end, and the optical waveguide formed on the thinner side of the substrate of the two optical waveguides is distorted. A branch interference type strain sensor characterized in that it is used as an optical waveguide of a receptor, and the optical waveguide formed on the thicker side of the substrate is used as a reference optical waveguide.
【請求項4】 基板の主面に,長さ方向の両端部でそれ
ぞれ結合する2つの光導波路が設けられ,結合された光
導波路の一方の端部は光源に通じる光ファイバに接続さ
れ,他方の端部は光電変換器に通じる光ファイバに接続
され,前記2つの光導波路素子の少なくとも一方の光導
波路の上に弾性板を設置し,他方の光導波路の上には,
前記一方の光導波路の上の弾性板と異なる厚さの弾性板
を設置し,前記一方の側の光導波路を基準体の光導波路
とし,前記他方の側の光導波路を歪受容体の光導波路と
したことを特徴とする分岐干渉型の歪センサ。
4. A main surface of a substrate is provided with two optical waveguides which are respectively coupled at both ends in a length direction, one end of the coupled optical waveguides is connected to an optical fiber leading to a light source, and the other is connected to the other. Is connected to an optical fiber leading to a photoelectric converter, an elastic plate is installed on at least one optical waveguide of the two optical waveguide elements, and on the other optical waveguide,
An elastic plate having a thickness different from that of the elastic plate on the one optical waveguide is installed, the optical waveguide on the one side is used as a reference optical waveguide, and the optical waveguide on the other side is used as a strain receiving optical waveguide. A branch interference type strain sensor characterized in that
【請求項5】 基板の主面に,長さ方向の両端部でそれ
ぞれ結合する2つの光導波路が設けられ,光導波路の結
合した部分の一方の外方の端部は光源に通じる光ファイ
バが接続され,他方の端部は光電変換器に通じる光ファ
イバが接続され,而して前記基板は,前記2つの光導波
路の中間の部分が,いずれか一方の光導波路に歪を印加
しても他方の光導波路の側に実質的な影響を及ぼさない
程度まで彫り込みもしくは除去した基板であり,いずれ
の光導波路を歪受容体の光導波路としても使用可能であ
ることを特徴とする分岐干渉型の歪センサ。
5. The main surface of the substrate is provided with two optical waveguides that are coupled at both ends in the length direction, and one outer end of the coupled portion of the optical waveguides is provided with an optical fiber leading to a light source. An optical fiber leading to a photoelectric converter is connected to the other end of the substrate, and thus, in the substrate, even if an intermediate portion of the two optical waveguides applies a strain to one of the optical waveguides. It is a substrate that is engraved or removed to the extent that it does not substantially affect the other optical waveguide side, and any optical waveguide can be used as the optical waveguide of the strain receptor. Strain sensor.
【請求項6】 基板上に,一端が全反射膜に接し他端が
半透明膜を介して光ファイバに接続される光導波路を設
け,該光導波路を歪受容体の光導波路とし,前記基板を
歪測定対象物に貼り付けることによって,該光導波路に
生じる歪を前記半透明膜から入射され前記全反射膜で反
射し再び前記半透明膜に出射する光の強度変化として検
出するように構成したことを特徴とする歪センサ。
6. An optical waveguide, one end of which is in contact with a total reflection film and the other end of which is connected to an optical fiber through a semitransparent film, is provided on the substrate, and the optical waveguide is used as a strain receptor optical waveguide. Is attached to the strain measurement object, and the strain generated in the optical waveguide is detected as a change in the intensity of light that is incident from the semitransparent film, reflected by the total reflection film, and emitted again to the semitransparent film. A strain sensor characterized in that
【請求項7】 請求項7記載の歪センサーと,光源と,
光電変換器と,前記光源からの光を光ファイバに入射す
ると共に該光ファイバからの光を前記光電変換器へ出射
するサーキュレーターと,前記光電変換器の出力を計測
する計測器とを有することを特徴とする歪検出装置。
7. The strain sensor according to claim 7, a light source,
A photoelectric converter, a circulator that allows light from the light source to enter an optical fiber and emits light from the optical fiber to the photoelectric converter, and a measuring device that measures the output of the photoelectric converter. Characteristic strain detection device.
【請求項8】 請求項2乃至6の内のいずれかに記載の
歪センサの前記歪受容体部分に振動板を機械的に結合し
て構成したことを特徴とする音圧センサ。
8. A sound pressure sensor comprising a strain sensor according to claim 2, wherein a vibration plate is mechanically coupled to the strain receptor portion.
JP6251794A 1994-10-18 1994-10-18 Strain detecting method and strain sensor Withdrawn JPH08114424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6251794A JPH08114424A (en) 1994-10-18 1994-10-18 Strain detecting method and strain sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6251794A JPH08114424A (en) 1994-10-18 1994-10-18 Strain detecting method and strain sensor

Publications (1)

Publication Number Publication Date
JPH08114424A true JPH08114424A (en) 1996-05-07

Family

ID=17228037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6251794A Withdrawn JPH08114424A (en) 1994-10-18 1994-10-18 Strain detecting method and strain sensor

Country Status (1)

Country Link
JP (1) JPH08114424A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009014561A (en) * 2007-07-05 2009-01-22 Mitsubishi Electric Corp Simple strain measuring tool and inspection device
JP2009270859A (en) * 2008-05-01 2009-11-19 Yazaki Corp Distortion measuring device of optical waveguide means
JP2012058241A (en) * 2010-09-07 2012-03-22 Krohne Messtechnik Gmbh Deflection measuring device using interferometric principle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009014561A (en) * 2007-07-05 2009-01-22 Mitsubishi Electric Corp Simple strain measuring tool and inspection device
JP2009270859A (en) * 2008-05-01 2009-11-19 Yazaki Corp Distortion measuring device of optical waveguide means
JP2012058241A (en) * 2010-09-07 2012-03-22 Krohne Messtechnik Gmbh Deflection measuring device using interferometric principle
CN102538662A (en) * 2010-09-07 2012-07-04 克洛纳测量技术有限公司 Deflection measuring device according to the interferometer principle

Similar Documents

Publication Publication Date Title
US4297887A (en) High-sensitivity, low-noise, remote optical fiber
Fidanboylu et al. Fiber optic sensors and their applications
US4442350A (en) Fiber optic sensor with enhanced immunity to random environmental perturbations
JP4340718B2 (en) Optical fiber thermometer and temperature compensated optical fiber sensor
EP0064789B1 (en) Interferometer transmitting the useful phase information through optical fibres
EP0321252B1 (en) Optical fiber sensor
JP4751118B2 (en) Optical detection sensor
JPH05215628A (en) Temperature compensation self-reference fiber optics microbending pressure trans- ducer
US4893931A (en) Method for the detection of polarization couplings in a birefringent optical system and application of this method to the assembling of the components of an optical system
JPH02116716A (en) Fiber optical sensor
US20210325237A1 (en) Polymer-coated high-index waveguide for acoustic sensing
US4943714A (en) Method of continuous measurement of damping in an elongated light wave conductor-sensor having only one accessible end
JPH08114424A (en) Strain detecting method and strain sensor
JP5065182B2 (en) Optical fiber sensor
JP2005351663A (en) Fbg humidity sensor and humidity measuring method using the fbg humidity sensor
US6320992B1 (en) Integrated optic accelerometer and method
US4607162A (en) Sensing apparatus for measuring a physical quantity
US6434283B2 (en) In-line fiber-optic polarizer
JP3458291B2 (en) Pressure fluctuation detector
JPS62285027A (en) Optical hydrophone
JPH02181707A (en) Optical fiber for detecting liquid, gas or the like
JPS62257037A (en) Optical fiber pressure sensor
CN108761432A (en) A kind of novel fiber grating Mach Zehnder optical interference circuit optical fiber water listens sensor
JPS59148832A (en) Optical fiber type underwater sound detector
JPH0376693B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020115