JPH0376693B2 - - Google Patents

Info

Publication number
JPH0376693B2
JPH0376693B2 JP58101495A JP10149583A JPH0376693B2 JP H0376693 B2 JPH0376693 B2 JP H0376693B2 JP 58101495 A JP58101495 A JP 58101495A JP 10149583 A JP10149583 A JP 10149583A JP H0376693 B2 JPH0376693 B2 JP H0376693B2
Authority
JP
Japan
Prior art keywords
optical
light
optical fiber
light receiving
waveguides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58101495A
Other languages
Japanese (ja)
Other versions
JPS59226832A (en
Inventor
Akira Oote
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP58101495A priority Critical patent/JPS59226832A/en
Publication of JPS59226832A publication Critical patent/JPS59226832A/en
Publication of JPH0376693B2 publication Critical patent/JPH0376693B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35303Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using a reference fibre, e.g. interferometric devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Measuring Magnetic Variables (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、光IC素子を利用して温度や歪、磁
界等の各種物理量を検出する光ICセンサに関す
るものである。更に詳しくは、本発明はLiNbO3
などの光学結晶にTiなどを拡散した光導波路を
形成した光IC素子を用い、光導波路を通る光の
強度や位相等が、被測定物理量に応じて変化する
ことを利用した光ICセンサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to an optical IC sensor that detects various physical quantities such as temperature, strain, and magnetic field using an optical IC element. More specifically, the present invention provides LiNbO 3
An optical IC sensor that utilizes the fact that the intensity, phase, etc. of light passing through the optical waveguide changes depending on the physical quantity to be measured, using an optical IC element in which an optical waveguide is formed by diffusing Ti or the like in an optical crystal such as It is.

〔従来技術〕[Prior art]

第1図は、従来公知の光ICを利用したセンサ
の一例を示す構成ブロツク図である。この装置
は、光源1からの光を、光フアイバ21を介して
光IC素子3に供給し、ここからの信号光を光フ
アイバ22を介して受光素子4に伝送するように
構成されている。光IC素子3には2本の光導波
路31,32が形成されるとともに、一方の光導
波路31に物理量変化が与えられるもので、受光
素子4で検出される光の強さ、又は位相変化から
物理量を知ることができる。
FIG. 1 is a block diagram showing an example of a sensor using a conventionally known optical IC. This device is configured to supply light from a light source 1 to an optical IC element 3 via an optical fiber 21, and to transmit signal light from there to a light receiving element 4 via an optical fiber 22. Two optical waveguides 31 and 32 are formed in the optical IC element 3, and a physical quantity change is given to one of the optical waveguides 31, and a physical quantity change is applied to one of the optical waveguides 31 based on the intensity or phase change of the light detected by the light receiving element 4. You can know physical quantities.

このような構成の従来装置においては、光を供
給する光フアイバ21と、信号光を伝送する光フ
アイバ22との2本の光フアイバを必要とし、検
出端であるところの光IC素子を遠隔地に設置す
る場合、取扱いが煩しいうえに、計装コストが高
くなる等の問題点があつた。
A conventional device with such a configuration requires two optical fibers, the optical fiber 21 that supplies light and the optical fiber 22 that transmits signal light, and the optical IC element that is the detection end is connected to a remote location. When installing the system, there were problems such as cumbersome handling and high instrumentation costs.

〔本発明の目的〕[Object of the present invention]

ここにおいて、本発明は従来技術における問題
点を解決するためになされたもので、光IC素子
との間が1本の光フアイバで結合される装置を実
現しようとするものである。
The present invention has been made to solve the problems in the prior art, and is intended to realize a device that is coupled to an optical IC element using a single optical fiber.

〔本発明の概要〕[Summary of the invention]

本発明に係る装置は、光学結晶に光導波路を作
るとともにこの光導波路に反射部を設け、被測定
物理量に応じて変化する光路差変化を光の干渉に
より検出する光IC素子と、この光IC素子に一端
が結合し光の供給と信号光の伝送を行なう1本の
光フアイバと、この光フアイバの他端に光学的に
結合する光源及び受光素子とで構成される。
The device according to the present invention includes an optical IC element that creates an optical waveguide in an optical crystal, provides a reflecting part in the optical waveguide, and detects a change in optical path difference that changes depending on a physical quantity to be measured by interference of light, It consists of an optical fiber whose one end is coupled to an element for supplying light and transmitting signal light, and a light source and a light receiving element which are optically coupled to the other end of this optical fiber.

〔実施例の説明〕[Explanation of Examples]

第2図は本発明に係る装置の一例を示す構成説
明図である。この図において、1はコヒーレント
光を出射する光源、4は受光素子、5は、光源1
と受光素子4にそれぞれ結合する2つの光導波路
51,52が形成された光分岐結合素子である。
3は被測定物理量を検出する検出端に設置した光
IC素子である。この光IC素子3は、例えばニオ
ブ酸リチウム等の光学結晶基板30に、例えば
Ti等を拡散して第1、第2の光導波路31,3
2を形成するとともに、各光導波路の他端に反射
板34をそれぞれ設けて構成されている。また、
第1の光導波路31には、被測定物理量33が与
えられ、その長さあるいは屈折率が被測定物理量
に応じて変化するようになつている。2は光分岐
結合素子5と光IC素子3とを結ぶ光フアイバで、
光源1からの光を光IC素子3の各光導波路31,
32に導びくとともに、ここからの反射光を受光
素子4に導びく。
FIG. 2 is a configuration explanatory diagram showing an example of the apparatus according to the present invention. In this figure, 1 is a light source that emits coherent light, 4 is a light receiving element, and 5 is a light source 1
This is an optical branching/coupling element in which two optical waveguides 51 and 52 are formed, which are coupled to the light receiving element 4 and the light receiving element 4, respectively.
3 is the light installed at the detection end to detect the physical quantity to be measured
It is an IC element. This optical IC element 3 is mounted on an optical crystal substrate 30 made of, for example, lithium niobate.
The first and second optical waveguides 31 and 3 are formed by diffusing Ti, etc.
2, and a reflecting plate 34 is provided at the other end of each optical waveguide. Also,
A physical quantity to be measured 33 is provided to the first optical waveguide 31, and its length or refractive index changes depending on the physical quantity to be measured. 2 is an optical fiber connecting the optical branching/coupling element 5 and the optical IC element 3;
The light from the light source 1 is transmitted through each optical waveguide 31 of the optical IC element 3,
32, and the reflected light from here is also guided to the light receiving element 4.

このように構成した装置の動作は次の通りであ
る。光源1からの光は、光分岐結合素子5の光導
波路51及び光フアイバ2を通つて、光IC素子
3の第1、第2の光導波路31,32に導びかれ
る。ここで、第1、第2の光導波路31,32の
光路長をそれぞれL1,L2、屈折率をそれぞれN1
N2とすると、第1の光導波路31にのみ被測定
物理量33が与えられているので、L1及び又は
N1のみが、この被測定物理量に応じて変化する
こととなる。各光導波路31,32の他端に導び
かれた光は、反射板34で反射し、同じ光導波路
31,32を戻り、ひとつの光導波路の部分で干
渉し、これが信号光として、光フアイバ2を通
り、受光素子4側に伝送される。よつて、受光素
子4で検出される信号光の強度Pは、(1)式で表わ
すことができる。
The operation of the device configured as described above is as follows. Light from the light source 1 passes through the optical waveguide 51 of the optical branching/coupling element 5 and the optical fiber 2, and is guided to the first and second optical waveguides 31 and 32 of the optical IC element 3. Here, the optical path lengths of the first and second optical waveguides 31 and 32 are L 1 and L 2 , respectively, and the refractive indexes are N 1 and N 1 , respectively.
If N 2 , since the physical quantity to be measured 33 is given only to the first optical waveguide 31, L 1 and or
Only N 1 changes depending on this physical quantity to be measured. The light guided to the other end of each optical waveguide 31, 32 is reflected by the reflection plate 34, returns through the same optical waveguide 31, 32, and interferes at a portion of one optical waveguide, and this light is transmitted as signal light to the optical fiber. 2 and is transmitted to the light receiving element 4 side. Therefore, the intensity P of the signal light detected by the light receiving element 4 can be expressed by equation (1).

P=P0(1+cosΔφ) (1) ただし、 Δφ=2π/λ0(2N1L1−2N2L2) P0:Δφ=0のときの光強度 λ0:光源1の波長 (1)式から明らかな様に、受光素子4で検出され
る信号光の強度Pは、第1、第2の光導波路3
1,32の光路長変化または屈折率変化に対応す
るもので、これから、第1の光導波路31に与え
られている被測定物理量を知ることができる。
P=P 0 (1+cosΔφ) (1) However, Δφ=2π/λ 0 (2N 1 L 1 −2N 2 L 2 ) P 0 : Light intensity when Δφ=0 λ 0 : Wavelength of light source 1 (1) As is clear from the equation, the intensity P of the signal light detected by the light receiving element 4 is
This corresponds to the optical path length change or refractive index change of 1 and 32, and from this, the measured physical quantity given to the first optical waveguide 31 can be known.

第3図は本発明の第2の実施例を示す構成説明
図である。この実施例においては、波長λ1,λ2
2種の光を、光源11,12から光IC素子3側
に供給するとともに、光IC素子3に波長λ2の光
を導びく第3、第4の光導波路36,37を形成
させ、この光IC素子3から光フアイバ2を通つ
て戻つてくる信号光を、波長λ1,λ2をそれぞれ通
過させるフイルタ55,56を介して受光素子4
1,42で検出するようにしたものである。光
IC素子3において、第1、第2の光導波路31,
32には、波長λ1の光がそれぞれ導びかれ、第1
の光導波路31に被測定物理量33が与えられて
いる。38,39は、波長λ1,λ2を通過させるフ
イルタである。
FIG. 3 is a configuration explanatory diagram showing a second embodiment of the present invention. In this embodiment, two types of light with wavelengths λ 1 and λ 2 are supplied from light sources 11 and 12 to the optical IC element 3 side, and a third type of light, which guides light with wavelength λ 2 to the optical IC element 3, is supplied to the optical IC element 3 side. Fourth optical waveguides 36 and 37 are formed, and the signal light returning from the optical IC element 3 through the optical fiber 2 is passed through filters 55 and 56 that pass wavelengths λ 1 and λ 2, respectively, to the light receiving element. 4
1 and 42 for detection. light
In the IC element 3, the first and second optical waveguides 31,
32, the light of wavelength λ 1 is guided respectively, and the first
A physical quantity to be measured 33 is given to the optical waveguide 31 . 38 and 39 are filters that allow wavelengths λ 1 and λ 2 to pass.

この実施例においては、受光素子41で検出さ
れる波長λ1の信号光の強度Pは、被測定物理量及
び、光フアイバ2の伝送条件等の変化に応じて変
化する。一方、受光素子42で検出される波長λ2
の信号光の強度は、被測定物理量とは無関係で、
光フアイバ2の伝送条件等の影響を受けて変化す
る。従つて、各受光素子41,42から得られる
信号を利用し、例えば除算演算等の処理を行なう
ことによつて、光フアイバ2の伝送条件等の影響
を受けず、被測定物理量を知ることができる。
In this embodiment, the intensity P of the signal light having the wavelength λ 1 detected by the light receiving element 41 changes depending on changes in the physical quantity to be measured, the transmission conditions of the optical fiber 2, and the like. On the other hand, the wavelength λ 2 detected by the light receiving element 42
The intensity of the signal light is independent of the physical quantity to be measured,
It changes depending on the transmission conditions of the optical fiber 2, etc. Therefore, by using the signals obtained from each of the light receiving elements 41 and 42 and performing processing such as a division operation, it is possible to know the physical quantity to be measured without being affected by the transmission conditions of the optical fiber 2, etc. can.

なお、被測定物理量としては、熱、力、輻射、
磁気変化、湿度などが考えられ、これらの測定物
理量に応じて、光IC素子3や第1の光導波路3
1の構造が適当に選定される。例えば、輻射を測
定する場合には、第1の光導波路付近に黒体を塗
り、磁気変化測定の場合には、磁性材料を設置
し、また、湿度変化測定の場合には、吸湿剤を用
いるなど、構造上の工夫がなされる。
The physical quantities to be measured include heat, force, radiation,
Magnetic changes, humidity, etc. are considered, and depending on these measured physical quantities, the optical IC element 3 and the first optical waveguide 3
1 structure is appropriately selected. For example, when measuring radiation, a black body is painted near the first optical waveguide, when measuring magnetic changes, a magnetic material is installed, and when measuring humidity changes, a moisture absorbent is used. Structural improvements have been made, such as:

〔本発明の効果〕[Effects of the present invention]

以上説明したように、本発明によれば検出端と
なる光IC素子には1本の光フアイバが結合する
もで、取扱いが簡単で、計装コストが安価な光
ICセンサが実現できる。また、本発明の第2の
実施例によれば、光フアイバの伝送条件の変化に
よる影響を受けない装置が実現できる。
As explained above, according to the present invention, a single optical fiber is coupled to the optical IC element serving as the detection end, and the optical IC element is easy to handle and has low instrumentation cost.
IC sensor can be realized. Furthermore, according to the second embodiment of the present invention, it is possible to realize a device that is not affected by changes in optical fiber transmission conditions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来技術の一例を示す構成ブロツク
図、第2図及び第3図は本発明に係る装置の一例
を示す構成説明図である。 1,11,12……光源、4,41,42……
受光素子、2……光フアイバ、3……光IC素子、
31,32……第1、第2の光導波路、33……
被測定物理量、34……反射板、5……光分岐結
合素子。
FIG. 1 is a configuration block diagram showing an example of a conventional technique, and FIGS. 2 and 3 are configuration explanatory diagrams showing an example of an apparatus according to the present invention. 1, 11, 12... light source, 4, 41, 42...
Light receiving element, 2... optical fiber, 3... optical IC element,
31, 32...first and second optical waveguides, 33...
Physical quantity to be measured, 34... Reflection plate, 5... Optical branching and coupling element.

Claims (1)

【特許請求の範囲】 1 コヒーレント光を出射する光源、受光素子、
前記光源と受光素子に光学的に結合する光分岐結
合素子、この光分岐結合素子に結合する1本の光
フアイバ、この光フアイバを通つた光が導びかれ
る第1、第2の光導波路とこれら第1、第2の光
導波路を通つた光をそれぞれ反射させる反射部と
を有する光IC素子、前記第1の光導波路に被測
定物理量を与える手段を具備し、前記光IC素子
からの光を前記光フアイバを介して受光素子で検
出するようにした光ICセンサ。 2 波長λ1,λ2のコヒーレント光を出射する光
源、波長λ1,λ2の光を受光する第1、第2の受光
素子、前記光源と前記第1、第2の受光素子に光
学的に結合する光分岐結合素子、この光分岐結合
素子に結合する1本の光フアイバ、この光フアイ
バを通つた光であつて波長λ1の光が導びかれる第
1、第2の光導波路と波長λ2の光が導びかれる第
3、第4の光導波路と第1〜第4の光導波路を通
つた光をそれそれぞれ反射させる反射部とを有す
る光IC素子、前記第1の光導波路に被測定物理
量を与える手段を具備し、前記光IC素子からの
光を前記光フアイバを介して前記第1、第2の受
光素子で検出し、各受光素子から得られる信号を
演算処理するようにした光ICセンサ。
[Claims] 1. A light source that emits coherent light, a light receiving element,
an optical branching/coupling element optically coupled to the light source and the light receiving element; an optical fiber coupled to the optical branching/coupling element; first and second optical waveguides through which light passing through the optical fiber is guided; An optical IC element having a reflecting part that reflects the light passing through the first and second optical waveguides, a means for applying a physical quantity to be measured to the first optical waveguide, and a light from the optical IC element. An optical IC sensor in which the light is detected by a light-receiving element via the optical fiber. 2. A light source that emits coherent light with wavelengths λ 1 and λ 2 , first and second light receiving elements that receive light with wavelengths λ 1 and λ 2 , and an optical link between the light source and the first and second light receiving elements. an optical branching/coupling element coupled to the optical branching/coupling element, an optical fiber coupled to the optical branching/coupling element, first and second optical waveguides through which light having a wavelength λ 1 passing through the optical fiber is guided; an optical IC element having third and fourth optical waveguides to which light with a wavelength λ 2 is guided, and reflecting portions that respectively reflect the light that has passed through the first to fourth optical waveguides, the first optical waveguide; means for giving a physical quantity to be measured to the optical IC element, the light from the optical IC element is detected by the first and second light receiving elements via the optical fiber, and the signals obtained from each light receiving element are subjected to arithmetic processing. optical IC sensor.
JP58101495A 1983-06-07 1983-06-07 Optical ic sensor Granted JPS59226832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58101495A JPS59226832A (en) 1983-06-07 1983-06-07 Optical ic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58101495A JPS59226832A (en) 1983-06-07 1983-06-07 Optical ic sensor

Publications (2)

Publication Number Publication Date
JPS59226832A JPS59226832A (en) 1984-12-20
JPH0376693B2 true JPH0376693B2 (en) 1991-12-06

Family

ID=14302235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58101495A Granted JPS59226832A (en) 1983-06-07 1983-06-07 Optical ic sensor

Country Status (1)

Country Link
JP (1) JPS59226832A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150192174A1 (en) * 2012-09-19 2015-07-09 Ntn Corporation Wind/tidal power generation bearing

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61182541A (en) * 1985-02-08 1986-08-15 Hamamatsu Photonics Kk Infrared-ray detector
JPS6319572A (en) * 1986-07-12 1988-01-27 Fujikura Ltd Magnetic sensor
EP0768516A1 (en) * 1995-10-16 1997-04-16 European Community Interferometer optical transducer and relative fabrication method
GB9713018D0 (en) 1997-06-20 1997-08-27 Secr Defence Optical fibre bend sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150192174A1 (en) * 2012-09-19 2015-07-09 Ntn Corporation Wind/tidal power generation bearing

Also Published As

Publication number Publication date
JPS59226832A (en) 1984-12-20

Similar Documents

Publication Publication Date Title
US4356396A (en) Fiber optical measuring device with compensating properties
US4759627A (en) Fibre-optic interferometer
US4740081A (en) Optical measuring apparatus
KR860006690A (en) Coherent Distribution Detector and Method Using Short Interference Length Source
US4818071A (en) Fiber optic doppler anemometer
US4531092A (en) Optoelectronic system for measuring electric or magnetic quantities utilizing a dual light beam of different wavelengths
JPH02116716A (en) Fiber optical sensor
US6285182B1 (en) Electro-optic voltage sensor
US4380394A (en) Fiber optic interferometer
JP5684398B2 (en) Electromagnetic wave detection device
US20240044731A1 (en) Method and system for interrogating a birefringent fiber bragg grating sensor, employing heterodyne optical detection
US6329648B1 (en) Phase locked loop fiber optic sensor system
US8730481B2 (en) Sagnac optical ingredient-measuring apparatus with circular polarizers in parallel
US4436422A (en) Sensor which is sensitive to pressure, tension, torsion and heat and a process of operation
JPH0376693B2 (en)
Toda et al. Integrated-optic heterodyne interferometer for displacement measurement
RU2762530C1 (en) Interferometric fiber-optic gyroscope
JPH0740048B2 (en) Optical fiber type voltage sensor
JPH02118416A (en) Optical sensor
US6495999B1 (en) Method and device for measuring a magnetic field with the aid of the faraday effect
US5486921A (en) Optimum coupler configuration for fiber optic rate gyroscope using [3×] coupler
JPS59166873A (en) Optical applied voltage and electric field sensor
JPH09113557A (en) Operating point adjusting method for electric field sensor and electric field sensor
JPH0376845B2 (en)
JP3458291B2 (en) Pressure fluctuation detector