JPH0376845B2 - - Google Patents

Info

Publication number
JPH0376845B2
JPH0376845B2 JP60167287A JP16728785A JPH0376845B2 JP H0376845 B2 JPH0376845 B2 JP H0376845B2 JP 60167287 A JP60167287 A JP 60167287A JP 16728785 A JP16728785 A JP 16728785A JP H0376845 B2 JPH0376845 B2 JP H0376845B2
Authority
JP
Japan
Prior art keywords
light
measured
polarization
electro
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60167287A
Other languages
Japanese (ja)
Other versions
JPS6227603A (en
Inventor
Toshio Akatsu
Sadao Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60167287A priority Critical patent/JPS6227603A/en
Publication of JPS6227603A publication Critical patent/JPS6227603A/en
Publication of JPH0376845B2 publication Critical patent/JPH0376845B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は測定対象物に光を当ててその測定対象
物の移動変位量を光学的に測定する装置に係り、
特に光フアイバによつて光を被測定物まで導くよ
うにした光学的測定装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a device for optically measuring the amount of displacement of a measurement target by shining light onto the measurement target.
In particular, the present invention relates to an optical measuring device in which light is guided to an object to be measured using an optical fiber.

〔従来の技術〕[Conventional technology]

この種の従来の技術は、第4図に示されてお
り、レーザ発振器1から出射したレーザ光bをビ
ームスプリツタ2によつて2つの光b1とb2とに分
け、光b1は反射面3で反射されて光検出器4に入
射し、一方ビームスプリツタ2を透過した光b2
レンズ5、光フアイバ6、レンズ7を経て被測定
物8の表面で反射して再びレンズ7、光フアイバ
6、レンズ5を経てビームスプリツタ2によつて
光検出器4に入射されるようになつている。光検
出器4では光b1とb2とが干渉し、干渉光の明るさ
は被測定物8の変位量によつて変化するので、こ
の干渉光の明るさを光検出器4によつて電気信号
に変換したのち、測定回路9で測定し、これによ
つて被測定物8の変位量を知ることができるよう
になつている。なお符号10はデイスプレーで、
第5図に示されるような信号が表示され、この信
号の波の数nから被測定物8の変位量δ(δ=
nλ)が測定されるようになつている。
This type of conventional technology is shown in FIG. 4, in which a laser beam b emitted from a laser oscillator 1 is divided into two beams b 1 and b 2 by a beam splitter 2, and the beam b 1 is divided into two beams b 1 and b 2 . The light b2 is reflected by the reflective surface 3 and enters the photodetector 4, while the light b2 transmitted through the beam splitter 2 passes through the lens 5, the optical fiber 6, and the lens 7, and is reflected by the surface of the object to be measured 8 and returns to the lens. 7, an optical fiber 6, a lens 5, and a beam splitter 2 to input the light into a photodetector 4. The light b 1 and b 2 interfere with each other in the photodetector 4 , and the brightness of the interference light changes depending on the amount of displacement of the object to be measured 8 . After converting it into an electrical signal, it is measured by a measuring circuit 9, thereby making it possible to know the amount of displacement of the object to be measured 8. The code 10 is the display.
A signal as shown in FIG. 5 is displayed, and from the number n of waves of this signal, the displacement δ of the object to be measured 8 (δ=
nλ) is now being measured.

また特開昭58−151509号公報に示されるよう
に、表面粗さの光学的測定方法であつて、光路途
中に1/4波長板を複数備えた技術も知られている。
Furthermore, as shown in Japanese Patent Application Laid-Open No. 151509/1983, a technique for optically measuring surface roughness in which a plurality of quarter-wave plates are provided in the middle of the optical path is also known.

〔発明の解決しようとする問題点〕[Problem to be solved by the invention]

前記した2つの従来の技術では、光路を異にす
る二つの光の一方の光だけが光フアイバ内を通る
ようになつている。そのため光フアイバの周囲の
温度変化、気圧変化あるいは光フアイバに与えら
れる振動などによつて光フアイバの屈折率が変化
し、このため測定回路9によつて検出される被測
定物8の変位量に測定誤差として表われるという
問題点があつた。
In the two conventional techniques described above, only one of the two lights having different optical paths passes through the optical fiber. Therefore, the refractive index of the optical fiber changes due to changes in the temperature around the optical fiber, changes in atmospheric pressure, or vibrations applied to the optical fiber. There was a problem that this appeared as a measurement error.

また第4図に示す従来の技術では、被測定物8
の変位に応じて第5図に示すような信号が表われ
るが、被測定物8の変位方向までも判別できるよ
うにはなつておらず、これがため変位量は知れて
もどちらの方向に変位したかを検出することはで
きなかつた。
Furthermore, in the conventional technique shown in FIG.
Although a signal as shown in Fig. 5 appears in response to the displacement of the object to be measured 8, it is not possible to determine even the direction of displacement of the object to be measured 8, so even if the amount of displacement is known, it is difficult to determine in which direction the displacement occurs. It was not possible to detect what had happened.

この種の従来例を示すものとしては、さらに、
特開昭59−72005号および特開昭60−100002号が
ある。
Conventional examples of this type include:
There are JP-A-59-72005 and JP-A-60-100002.

特開昭59−72005号においては、伝送用光フア
イバの種類を開示していない。かりにマルチモー
ドフアイバとすると、半透鏡に入射する光は可干
渉光ではなくなる。したがつて、半透鏡と反射鏡
とからの反射光同士は干渉しない。
JP-A-59-72005 does not disclose the type of transmission optical fiber. If a multimode fiber is used, the light incident on the semi-transparent mirror will no longer be coherent light. Therefore, the reflected lights from the semi-transparent mirror and the reflecting mirror do not interfere with each other.

そこで、シングルモードフアイバとすれば、半
透鏡と反射鏡とからの反射光同士は干渉するが、
センサ用光フアイバ内で発生する位相変化の符号
を求めることはできず、変位の方向までも測定す
ることが不可能であつた。
Therefore, if we use a single mode fiber, the reflected light from the semi-transparent mirror and the reflecting mirror will interfere with each other, but
It was not possible to determine the sign of the phase change occurring within the sensor optical fiber, and it was also impossible to measure the direction of displacement.

また、干渉光の強度は、半透鏡と反射鏡とから
の反射光強度によつても変化するから、測定精度
が低下する問題があつた。
Furthermore, since the intensity of the interference light changes depending on the intensity of the reflected light from the semi-transparent mirror and the reflecting mirror, there is a problem in that the measurement accuracy decreases.

さらに、伝送用光フアイバに温度変化や力等の
外乱が加わると、この伝送用光フアイバを伝播中
のレーザ光の偏波面が変化する。したがつて、セ
ンサ用フアイバ内で本来の検出対象の電流により
光の偏波面が変化したのか、伝送用フアイバ内で
外乱により偏波面が変化したのか、区別できなか
つた。
Furthermore, when a disturbance such as a temperature change or a force is applied to the transmission optical fiber, the polarization plane of the laser beam propagating through the transmission optical fiber changes. Therefore, it was not possible to distinguish whether the polarization plane of the light had changed in the sensor fiber due to the current to be detected, or whether the polarization plane had changed due to disturbance in the transmission fiber.

一方、特開昭60−100002号においては、伝送用
光フアイバの先端に設ける検出部が複雑になると
ともに、受光・表示器と検出部との間をさらに別
のフアイバで連結しなければならない欠点があつ
た。
On the other hand, in JP-A No. 60-100002, the detection section provided at the tip of the transmission optical fiber is complicated, and the light receiver/display device and the detection section must be connected with another fiber. It was hot.

また、直線偏光の光を入射させても、光フアイ
バを伝播中にこの光フアイバに外乱が作用する
と、出射するときは楕円偏光となる。すなわち、
光フアイバからの出射光は、偏光面が直交し位相
差の異なる2つの直線偏光が合成された光とな
る。その後偏光ビームスプリツタで反射光と透過
光とに2分割されるが、反射光の中では前記2つ
の直線偏光の成分が干渉して光の強度が変化す
る。同様に、透過光の強度も変化する。したがつ
て、参照光と測定光とを干渉させても、その強度
は外乱によつても変化するから、測定精度が低下
する。
Furthermore, even if linearly polarized light is input, if a disturbance acts on the optical fiber while it is propagating through the optical fiber, it will be emitted as elliptically polarized light. That is,
The light emitted from the optical fiber is a combination of two linearly polarized lights with orthogonal polarization planes and different phase differences. Thereafter, the light is split into two by a polarizing beam splitter into reflected light and transmitted light, but in the reflected light, the two linearly polarized light components interfere and the intensity of the light changes. Similarly, the intensity of transmitted light also changes. Therefore, even if the reference light and measurement light are made to interfere, the intensity of the interference will also change due to disturbances, resulting in a decrease in measurement accuracy.

この場合も、被測定量の符号を求めることがで
きず、変位の方向までも測定することが不可能で
あつた。
In this case as well, it was not possible to determine the sign of the measured quantity, and it was also impossible to measure the direction of displacement.

本発明の目的は、光フアイバの屈折率が各種外
乱によつて変化したとしても、その影響を受ける
ことがなく、被測定物の変位量とともに変位の方
向も測定可能な変位の光学的測定装置を提供する
ことである。
An object of the present invention is to provide an optical displacement measuring device that is not affected by changes in the refractive index of an optical fiber due to various disturbances and is capable of measuring not only the amount of displacement but also the direction of displacement of an object to be measured. The goal is to provide the following.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記目的を達成するために、直線偏
光を発するレーザ発振器と、電圧によつて駆動さ
れレーザ発振器から出た光の位相を変調する電気
光学結晶と、電気光学結晶から入射された光の偏
光面を保持しつつ被測定物側に出射するととも
に、被測定物側から戻つてきた反射光の偏光面を
保持しつつ電気光学結晶側に出射する偏光面保存
光フアイバと、偏光面保存光フアイバの被測定物
側端部と被測定物との間に位置し、測定基準面と
なる入射表面上で透過光と反射光とに分離し、透
過光が偏光方向を変えずに逆方向から入射すると
光の偏光方向を90゜変える1/4波長板と、偏光面保
存光フアイバの電気光学結晶側端部から出射され
た反射光を偏光面によつて2分割する偏光ビーム
スプリツタと、偏光ビームスプリツタで分割され
たそれぞれの光の明るさが最大又は最小となると
きの電気光学結晶への印加電圧を検出し、この印
加電圧およびその差から被測定物の変位方向およ
び変位量を算出する測定部とを備えた変位の光学
的測定装置を提案するものである。
In order to achieve the above object, the present invention provides a laser oscillator that emits linearly polarized light, an electro-optic crystal that is driven by a voltage and modulates the phase of light emitted from the laser oscillator, and an electro-optic crystal that modulates the phase of light emitted from the electro-optic crystal. A polarization-preserving optical fiber that outputs light to the object to be measured while maintaining its polarization plane, and a polarization-preserving optical fiber that outputs the reflected light from the object to the electro-optic crystal while maintaining its polarization plane. It is located between the end of the optical fiber on the side of the object to be measured and the object to be measured, and separates the transmitted light and reflected light on the incident surface that serves as the measurement reference surface, and the transmitted light is polarized in the opposite direction without changing the polarization direction. A quarter-wave plate that changes the polarization direction of light by 90 degrees when it enters the fiber, and a polarizing beam splitter that splits the reflected light emitted from the electro-optic crystal side end of the polarization-preserving optical fiber into two parts according to the polarization plane. , detect the voltage applied to the electro-optic crystal when the brightness of each light split by the polarizing beam splitter is maximum or minimum, and determine the direction and amount of displacement of the object to be measured from this applied voltage and the difference between them. The present invention proposes an optical displacement measuring device equipped with a measuring section that calculates displacement.

〔作用〕[Effect]

次に、本発明の実施例の全体構成を示す第1図
を参照して、本発明の作用を説明する。
Next, the operation of the present invention will be explained with reference to FIG. 1 showing the overall configuration of an embodiment of the present invention.

偏光面保存光フアイバ16の出射端であるフア
イバ端部16Fの前方に測定基準面22を設け
る。この基準面22での反射光も被測定物18の
表面での反射光と同様に光フアイバ16内を通る
ので、偏光ビームスプリツタ26で分離された二
つの光I1、I2の光路差に光フアイバ16の存在が
影響を与えなくなる。その結果、光フアイバ16
の屈折率の変化によつて測定誤差が生ずることが
なくなる。
A measurement reference plane 22 is provided in front of the fiber end 16F, which is the output end of the polarization preserving optical fiber 16. Since the light reflected from the reference surface 22 also passes through the optical fiber 16 in the same way as the light reflected from the surface of the object to be measured 18, there is an optical path difference between the two lights I 1 and I 2 separated by the polarizing beam splitter 26. The presence of optical fiber 16 has no effect on this. As a result, the optical fiber 16
Measurement errors are no longer caused by changes in the refractive index of.

また、測定部においては、偏光ビームスプリツ
タで分割されたそれぞれの光の明るさが最大又は
最小となるときの電気光学結晶への印加電圧を検
出し、この印加電圧およびその差から被測定物の
変位方向および変位量を算出することから、変位
量のみならず、変位の方向も正確に把握できる。
In addition, the measurement section detects the voltage applied to the electro-optic crystal when the brightness of each light split by the polarizing beam splitter is maximum or minimum, and uses this applied voltage and the difference between the two to detect the measurement target. By calculating the direction and amount of displacement, it is possible to accurately grasp not only the amount of displacement but also the direction of displacement.

〔実施例〕〔Example〕

次に本発明の実施例を説明する。 Next, embodiments of the present invention will be described.

第1図は本発明の実施例の全体概要図であり、
この図において、符号11はレーザ発振器で、こ
のレーザ発振器11によつて出射されるレーザ光
の光軸上には、高周波電源13によつて駆動さ
れ、入射光の位相を変調するための電気光学結晶
12が設置されている。電気光学結晶12を経た
光の光軸上には光の一部を反射し、一部を透過さ
せるビームスプリツタ14が配置されている。ビ
ームスプリツタ14の透過光Bの光軸上には、入
射光の偏光面をそのままの状態で光を導く偏光面
保存光フアイバ16の一端16Eが配置され、透
過光Bはこの光フアイバ16に導かれてフアイバ
他端部16Fから被測定物18に向つて出射され
るようになつている。偏光面保存光フアイバ16
は、第3図に示されるように、中央のコア16
A、その外周にあるクラツド16B、その外周の
楕円ジヤケツト16C、最外周にあるサポート管
16Dから構成されており、コア16Aに集光さ
れた光はクラツド16Bとの境界面で全反射をく
り返しながらコア16Aの中を進行するようにな
つている。
FIG. 1 is an overall schematic diagram of an embodiment of the present invention,
In this figure, reference numeral 11 denotes a laser oscillator, and on the optical axis of the laser beam emitted by this laser oscillator 11, there is an electro-optical device driven by a high-frequency power source 13 for modulating the phase of the incident light. A crystal 12 is installed. A beam splitter 14 is arranged on the optical axis of the light that has passed through the electro-optic crystal 12 to reflect part of the light and to transmit part of the light. On the optical axis of the transmitted light B of the beam splitter 14, one end 16E of a polarization preserving optical fiber 16 is arranged, which guides the incident light with its polarization plane unchanged. The light is guided and emitted from the other end 16F of the fiber toward the object to be measured 18. Polarization preserving optical fiber 16
is the center core 16 as shown in FIG.
A, it is composed of a cladding 16B on its outer periphery, an elliptical jacket 16C on its outer periphery, and a support tube 16D on its outermost periphery, and the light focused on the core 16A is repeatedly totally reflected at the interface with the cladding 16B. It is adapted to proceed through the core 16A.

光フアイバ16の両端部16E,16F近傍に
はレンズ20(20A,20B)が配置されてお
り、光フアイバ16の入射端への集光および光フ
アイバ16からの出射光の平行化をおこなうよう
になつている。レンズ20Bの前方には測定基準
面22となる表面上で入射光Bを反射光B1と透
過光B2とに分離し、透過光B2が偏光方向を変え
ずに逆方向から入射すると光の偏波面を入射した
時点と90゜変える作用のある1/4波長板24が設置
されており、この1/4波長板24表面の測定基準
面22で反射した光B1および1/4波長板24を透
過して被測定物18表面で反射し、1/4波長板を
透過した光B2は光フアイバ16を通つて再びビ
ームスプリツタ14に入射されるようになつてい
る。
Lenses 20 (20A, 20B) are arranged near both ends 16E, 16F of the optical fiber 16 to condense light to the input end of the optical fiber 16 and to collimate the light emitted from the optical fiber 16. It's summery. In front of the lens 20B, the incident light B is separated into reflected light B1 and transmitted light B2 on the surface that becomes the measurement reference surface 22, and when the transmitted light B2 enters from the opposite direction without changing the polarization direction, it becomes light. A 1/4 wavelength plate 24 is installed which has the effect of changing the plane of polarization by 90 degrees from the point of incidence. The light B 2 transmitted through the plate 24, reflected on the surface of the object to be measured 18, and transmitted through the quarter-wave plate passes through the optical fiber 16 and enters the beam splitter 14 again.

ビームスプリツタ14によつて分離される反射
光Iの光軸上には偏光面の違いによつて二つの光
I1、I2に分離する偏光ビームスプリツタ26が設
けられており、この偏光ビームスプリツタ26で
分離された光I1、I2のそれぞれの光軸上には光電
変換によつて光を電気信号に変換する光検出器2
8,29、これらの光検出器28,29によつて
検出される電気信号の最大値(又は最小値)を検
出する極大(又は極小)検出回路30,31、こ
れらの検出回路30,31によつて検出された極
大(又は極小)値を示すときの電気光学結晶12
への印加電圧を捕捉し、そのときの電圧値を記憶
するサンプルホールド回路32,33が順次設け
られており、サンプルホールド回路32,33は
引算回路34に続されて、サンプルホールド回路
32,33でそれぞれ記憶された電圧V1,V2
差を算出するようになつている。すなわち光検出
器28,29、極大(又は極小)検出回路30,
31、サンプルホールド回路32,33、引算回
路34によつて偏光ビームスプリツタ26で分離
された2つの光I1、I2の明るさの最大(又は最
小)値の差から被測定物18の変位量を測定する
測定部40が構成されている。
On the optical axis of the reflected light I separated by the beam splitter 14, two lights are separated due to the difference in the plane of polarization.
A polarizing beam splitter 26 is provided to separate the lights I 1 and I 2 , and the lights I 1 and I 2 separated by the polarizing beam splitter 26 are placed on their respective optical axes by photoelectric conversion. Photodetector 2 that converts into electrical signals
8, 29, local maximum (or minimum) detection circuits 30, 31 for detecting the maximum value (or minimum value) of the electrical signals detected by these photodetectors 28, 29; Electro-optic crystal 12 when indicating the detected maximum (or minimum) value
Sample and hold circuits 32 and 33 are sequentially provided to capture the voltage applied to the voltage and store the voltage value at that time, and the sample and hold circuits 32 and 33 are connected to a subtraction circuit 34, 33, the difference between the stored voltages V 1 and V 2 is calculated. That is, the photodetectors 28, 29, the maximum (or minimum) detection circuit 30,
31. The sample and hold circuits 32 and 33 and the subtraction circuit 34 calculate the difference between the maximum (or minimum) brightness values of the two lights I 1 and I 2 separated by the polarizing beam splitter 26 to determine the object to be measured 18 A measuring section 40 is configured to measure the amount of displacement.

さらに、本実施例による被測定物18の変位測
定について説明する。
Furthermore, displacement measurement of the object to be measured 18 according to this embodiment will be explained.

電気光学結晶12は第2図に示すような直交3
軸X、Y、Zを有し、光Iの入射方向にlcなる長
さを有している。いまXZ平面に平行な面を偏光
面とする直線偏光IxがZ方向に進行するときの結
晶の屈折率をnx、同様にYZ面に平行な面を偏光
面とする直線偏光IyがZ方向に進行するときの結
晶の屈折率をnyとすると、nx、nyは次式で示され
る。
The electro-optic crystal 12 has an orthogonal structure 3 as shown in FIG.
It has axes X, Y, and Z, and has a length l c in the direction of incidence of light I. Now, when linearly polarized light I x whose polarization plane is parallel to the XZ plane travels in the Z direction, the refractive index of the crystal is n x , and similarly, linearly polarized light I y whose polarization plane is parallel to the YZ plane is When the refractive index of the crystal when traveling in the Z direction is n y , n x and n y are expressed by the following formula.

nx=nx0+KxV ……(1) ny=ny0+KyV ……(2) 但し、Vは電気光学結晶12への印加電圧、
Kx、Kyは電気光学結晶の種類によつて定まる定
数、nx0、ny0は結晶への印加電圧が0のときの屈
折率である。
n x = n x0 +K x V...(1) n y = n y0 +K y V...(2) However, V is the voltage applied to the electro-optic crystal 12,
K x and K y are constants determined depending on the type of electro-optic crystal, and n x0 and n y0 are refractive indices when the voltage applied to the crystal is zero.

屈折率nxとnyとの差をΔnとすると、 Δn=ny−nx =ny0−nx0+(Ky−Kx)V ……(3) レーザ光の偏光面は電気光学結晶12のX軸に
対して45゜傾斜したX′Z面に平行となるように電気
光学結晶が設置されており、レーザ光は電気光学
結晶のXZ面に平行な偏光面を持つ光IxとYZ面に
平行な偏光面を持つ光Iyとに分解される。ここで
IX、IYがそれぞれ電気光学結晶12を出射すると
きの位相をφXC、φYCとすると次式が得られる。
If the difference between the refractive index n x and n y is Δn, then Δn = ny − n x = ny0 − n x0 + (K y − K x ) V …… ( 3) The polarization plane of the laser beam is electro-optic. The electro-optic crystal is installed so that it is parallel to the X'Z plane that is inclined at 45 degrees to the X-axis of the crystal 12, and the laser beam is a light I x whose polarization plane is parallel to the XZ plane of the electro-optic crystal. and light I y with a plane of polarization parallel to the YZ plane. here
Letting φ XC and φ YC be the phases when I X and I Y exit the electro-optic crystal 12, respectively, the following equation is obtained.

φXC=2π/λnxlc ……(4) φYC=2π/λnylc ……(5) 但し、lcは電気光学結晶の長さ、λはレーザ発
振器11から発せられるレーザ光の波長である。
φ _ _ _ _ _ _ wavelength.

ビームスプリツタ12を通過した光IX、IYは偏
光面保存光フアイバ16に集光(符号Bで示す)
されるが、光フアイバ16は、第3図に示される
ように、第2図に示す電気光学結晶12のX軸と
光フアイバ16のX軸とが一致するように配置さ
れており、光フアイバ16に入射される光IXの偏
光面は第3図XZ面、光IYの偏光面は第3図YZ面
にそれぞれ平行な面となつている。このとき、光
IX、IYが光フアイバ16中を進行することによる
位相の変化φxF、φyFは次式で示される。ここで
φxF、φyFはそれぞれ光IX、IYが受ける位相の変化
である。
The lights I X and I Y that have passed through the beam splitter 12 are focused on a polarization preserving optical fiber 16 (indicated by symbol B).
However, as shown in FIG. 3, the optical fiber 16 is arranged so that the X-axis of the electro-optic crystal 12 shown in FIG. The plane of polarization of the light IX incident on 16 is parallel to the XZ plane in FIG. 3, and the plane of polarization of the light IY is parallel to the YZ plane in FIG. At this time, the light
Phase changes φ xF and φ yF caused by I X and I Y traveling through the optical fiber 16 are expressed by the following equations. Here, φ xF and φ yF are changes in phase that the lights I X and I Y receive, respectively.

φxF=2πnxF/λlF ……(6) φyF=2πnyF/λlF ……(7) 但し、nxFは光フアイバ16の光IYに対する屈
折率、nxFは光フアイバ16の光IXに対する屈折
率、lFは光フアイバの長さである。
φ xF = 2πn xF / λl F ... (6) φ yF = 2πn yF / λl F ... (7) However, n xF is the refractive index of the optical fiber 16 with respect to the light I The refractive index for IX , lF is the length of the optical fiber.

光フアイバ16を出射した光はレンズ20Bを
経て1/4波長板24表面に形成されている測定基
準面22に入射する。1/4波長板24と光フアイ
バ16の出射端16Aとの配置関係は、光フアイ
バ16のX−Y軸と1/4波長板24の結晶軸X−
Y軸とが相対的に45゜傾斜した状態となるように
配置されている。すなわち、光フアイバ16から
の出射光IXの偏光面が1/4波長板の結晶軸Xと45゜
傾斜した状態となるように光フアイバ16と1/4
波長板24とが配置されている。レンズ20Bを
出た光Bの一部は、第1図符号B1で示されるよ
うに、基準面24で反射され、残りは符号B2
示されるように1/4波長板24を透過して被測定
物18の表面で反射する。すなわち基準面22へ
の2種類の入射光IXとIYがそれぞれ基準面22と
被測定物18の表面で反射し、基準面22からレ
ンズ20Bに向う光は4種類の反射光となつてい
る。この4種類の反射光の偏光面を考えると、 (1) 光IXの一部は基準面22で反射するが、この
反射光の偏光面は変化せず、光IXの偏光面と同
じである。この光をI(X
The light emitted from the optical fiber 16 passes through the lens 20B and enters the measurement reference plane 22 formed on the surface of the 1/4 wavelength plate 24. The arrangement relationship between the 1/4 wavelength plate 24 and the output end 16A of the optical fiber 16 is such that the X-Y axis of the optical fiber 16 and the crystal axis X-
It is arranged so that it is inclined at 45 degrees relative to the Y axis. In other words, the optical fiber 16 and the quarter-wave plate are arranged so that the polarization plane of the light I
A wavelength plate 24 is arranged. A part of the light B exiting the lens 20B is reflected by the reference surface 24 , as shown by the symbol B1 in FIG. 1, and the rest is transmitted through the quarter-wave plate 24, as shown by the symbol B2 . and is reflected on the surface of the object to be measured 18. In other words, two types of incident light I There is. Considering the polarization planes of these four types of reflected light, (1) A part of the light I It is. This light I (X

Claims (1)

【特許請求の範囲】 1 直線偏光を発するレーザ発振器と、 電圧によつて駆動され前記レーザ発振器から出
た光の位相を変調する電気光学結晶と、 前記電気光学結晶から入射された光の偏光面を
保持しつつ被測定物側に出射するとともに、被測
定物側から戻つてきた反射光の偏光面を保持しつ
つ前記電気光学結晶側に出射する偏光面保存光フ
アイバと、 前記偏光面保存光フアイバの被測定物側端部と
被測定物との間に位置し、測定基準面となる入射
表面上で透過光と反射光とに分離し、透過光が偏
光方向を変えずに逆方向から入射すると光の偏光
方向を90゜変える1/4波長板と、 前記偏光面保存光フアイバの前記電気光学結晶
側端部から出射された反射光を偏光面によつて2
分割する偏光ビームスプリツタと、 前記偏光ビームスプリツタで分割されたそれぞ
れの光の明るさが最大又は最小となるときの前記
電気光学結晶への印加電圧を検出し、この印加電
圧およびその差から被測定物の変位方向および変
位量を算出する測定部と を備えたことを特徴とする変位の光学的測定装
置。
[Scope of Claims] 1. A laser oscillator that emits linearly polarized light; an electro-optic crystal that is driven by a voltage and modulates the phase of the light emitted from the laser oscillator; and a polarization plane of the light incident from the electro-optic crystal. a polarization-preserving optical fiber that outputs the reflected light to the object to be measured while maintaining the polarization plane thereof, and outputs the reflected light to the electro-optic crystal side while maintaining the polarization plane of the reflected light returned from the object to be measured; The fiber is located between the end of the fiber to be measured and the object to be measured, and is separated into transmitted light and reflected light on the incident surface that serves as the measurement reference surface, and the transmitted light is transmitted from the opposite direction without changing the polarization direction. a 1/4 wavelength plate that changes the polarization direction of light by 90 degrees when it enters; and a quarter-wave plate that changes the polarization direction of the light by 90 degrees;
A polarizing beam splitter to be split and a voltage applied to the electro-optic crystal when the brightness of each light split by the polarizing beam splitter is maximum or minimum are detected, and from this applied voltage and the difference therebetween, What is claimed is: 1. An optical displacement measuring device comprising: a measuring section that calculates a displacement direction and a displacement amount of an object to be measured.
JP60167287A 1985-07-29 1985-07-29 Optical measuring apparatus of displacement Granted JPS6227603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60167287A JPS6227603A (en) 1985-07-29 1985-07-29 Optical measuring apparatus of displacement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60167287A JPS6227603A (en) 1985-07-29 1985-07-29 Optical measuring apparatus of displacement

Publications (2)

Publication Number Publication Date
JPS6227603A JPS6227603A (en) 1987-02-05
JPH0376845B2 true JPH0376845B2 (en) 1991-12-06

Family

ID=15846955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60167287A Granted JPS6227603A (en) 1985-07-29 1985-07-29 Optical measuring apparatus of displacement

Country Status (1)

Country Link
JP (1) JPS6227603A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2792657B2 (en) * 1988-12-26 1998-09-03 浜松ホトニクス株式会社 Scanning optical microscope
JP3044880B2 (en) * 1991-11-22 2000-05-22 トヨタ自動車株式会社 Drive control device for series hybrid vehicles
JPH0829128A (en) * 1994-07-12 1996-02-02 Hitachi Ltd Physical-quantity measuring apparatus, and measuring instrument thereof
JP4939765B2 (en) 2005-03-28 2012-05-30 株式会社日立製作所 Displacement measuring method and apparatus
JP5093220B2 (en) * 2009-12-28 2012-12-12 株式会社日立製作所 Displacement measuring method and apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5972005A (en) * 1982-10-18 1984-04-23 Nec Corp Light interference type optical fiber sensor
JPS59116007A (en) * 1982-12-20 1984-07-04 インタ−ナシヨナル ビジネス マシ−ンズ コ−ポレ−シヨン Method of measuring surface
JPS60100002A (en) * 1983-11-04 1985-06-03 Hitachi Cable Ltd Optical interferometer using optical fiber maintaining plane of polarization

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5972005A (en) * 1982-10-18 1984-04-23 Nec Corp Light interference type optical fiber sensor
JPS59116007A (en) * 1982-12-20 1984-07-04 インタ−ナシヨナル ビジネス マシ−ンズ コ−ポレ−シヨン Method of measuring surface
JPS60100002A (en) * 1983-11-04 1985-06-03 Hitachi Cable Ltd Optical interferometer using optical fiber maintaining plane of polarization

Also Published As

Publication number Publication date
JPS6227603A (en) 1987-02-05

Similar Documents

Publication Publication Date Title
JP3677314B2 (en) Method and apparatus for optically determining physical quantities
EP0793079B1 (en) Fiber coupled interferometric displacement sensor
US6798523B2 (en) Sensor and method for detecting fiber optic faults
EP0168458B1 (en) Polarimetric fiber sensor
EP0260894A1 (en) Optical fibre measuring system
JPH03180704A (en) Laser interference gauge
US8730481B2 (en) Sagnac optical ingredient-measuring apparatus with circular polarizers in parallel
US4283144A (en) Method of fiber interferometry zero fringe shift referencing using passive optical couplers
EP0078931B1 (en) Angular rate sensor
JPH0829128A (en) Physical-quantity measuring apparatus, and measuring instrument thereof
JPH0376845B2 (en)
EP0190184B1 (en) Interferometric sensor
JPS6356924B2 (en)
JPH02118416A (en) Optical sensor
Bock et al. Characterization of highly birefringent optical fibers using interferometric techniques
JPH076862B2 (en) Optical fiber pressure sensor
JP3357734B2 (en) Optical sensor
JPS59166873A (en) Optical applied voltage and electric field sensor
RU2036419C1 (en) Fibre-optical indicator of outside action
JPH05264687A (en) Optical magnetic field sensor
SU1182288A1 (en) Optical fibre piezooptical transducer
JPH0684884B2 (en) Waveguide optical displacement sensor
JPH01313703A (en) Disturbance elimination type heterodyne interference method optical fiber sensor
JP2863273B2 (en) Displacement measuring device
JPS60111112A (en) Optical detecting method of information to be measured