JPH0811309B2 - Iridescent color processing method - Google Patents

Iridescent color processing method

Info

Publication number
JPH0811309B2
JPH0811309B2 JP5002782A JP278293A JPH0811309B2 JP H0811309 B2 JPH0811309 B2 JP H0811309B2 JP 5002782 A JP5002782 A JP 5002782A JP 278293 A JP278293 A JP 278293A JP H0811309 B2 JPH0811309 B2 JP H0811309B2
Authority
JP
Japan
Prior art keywords
laser light
irradiation
processing method
color processing
fine irregularities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5002782A
Other languages
Japanese (ja)
Other versions
JPH06198466A (en
Inventor
伍雄 永田
隆 中西
市郎 大島
時彦 大島
繁一 平田
良和 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKAPREFECTURAL GOVERNMENT
Osaka Fuji Corp
Original Assignee
OSAKAPREFECTURAL GOVERNMENT
Osaka Fuji Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKAPREFECTURAL GOVERNMENT, Osaka Fuji Corp filed Critical OSAKAPREFECTURAL GOVERNMENT
Priority to JP5002782A priority Critical patent/JPH0811309B2/en
Publication of JPH06198466A publication Critical patent/JPH06198466A/en
Publication of JPH0811309B2 publication Critical patent/JPH0811309B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)
  • Lasers (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属材料の表面に入射
光の角度や見る方向によって反射光沢の色合いが虹色様
に多彩に変化する模様ないし領域を形成する虹色発色加
工方法に関するものであり、例えば装飾品、家庭電化用
品、工業用品等の表面加飾手段として好適に利用され
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rainbow color forming method for forming a pattern or a region on a surface of a metal material, in which the hue of reflection gloss varies in a rainbow-like manner depending on the angle of incident light or the direction of viewing. And is preferably used as a surface decoration means for ornaments, household appliances, industrial articles, and the like.

【0002】[0002]

【従来の技術】金属等の材料表面に可視光の波長域に近
い1μm程度あるいはそれ以下といった微細な凹凸を密
に形成した場合、該表面が回折格子と同様に作用して入
射光を分光して反射するため、反射光沢の色合いが入射
光の方向や見る角度によって虹色様に多彩に変化するこ
とになる。従って、このような微細凹凸加工は、材料表
面に塗装や化学的着色では不可能な美麗な多色可変発色
を与える加飾手段として極めて有望である。
2. Description of the Related Art When fine irregularities of about 1 μm or less close to the wavelength range of visible light are densely formed on the surface of a material such as metal, the surface acts like a diffraction grating to disperse incident light. Since it is reflected by the reflected light, the hue of the reflected gloss changes in various colors like rainbow depending on the direction of the incident light and the viewing angle. Therefore, such fine concavo-convex processing is extremely promising as a decorating means for giving a beautiful multicolor variable coloring which cannot be achieved by painting or chemical coloring on the material surface.

【0003】しかるに、近年において金属を始めとする
各種材料の加工に多用されている通常のレーザ加工手段
では、一般に集光レンズにて収束可能な最小スポット径
が数μm〜10μm程度であるため、上述のような1μ
m以下といった微細な凹凸は形成不能である。また仮に
上記スポット径を1μm程度に絞り込めたとしても、一
回の走査で一本の溝を形成できるだけであるから、凹凸
部分を肉眼で見える幅あるいは面状に形成するには膨大
な加工時間を要することになる。
However, in the usual laser processing means which has been frequently used for processing various materials such as metal in recent years, the minimum spot diameter which can be converged by the condenser lens is generally several μm to 10 μm. 1μ as above
It is impossible to form fine irregularities of m or less. Even if the spot diameter is narrowed down to about 1 μm, one groove can be formed by one scanning, so it takes a huge amount of processing time to form the concave and convex portions in a width or a surface shape visible to the naked eye. Will be required.

【0004】そこで、本発明者らは先に、特開平2−2
63589号および特開平3−94986号として、レ
ーザの干渉光の照射によって金属表面に該干渉光の干渉
縞の強度分布に対応した微細凹凸を形成するという画期
的な手段を提案している。すなわち、これら提案手段に
よれば、レーザ光の強さを干渉縞の明部で金属が溶融、
蒸発するエネルギー密度に設定することにより、金属表
面に該明部を凹、暗部を凸とした凹凸が形成されるた
め、1回の走査で相互の間隔が1μm程度あるいはそれ
以下といった微細な数百本もの凹凸条を一挙に形成でき
る。
Therefore, the inventors of the present invention first disclosed in Japanese Patent Laid-Open No. 2-2
No. 63589 and Japanese Patent Laid-Open No. 3-94986 propose an epoch-making means of forming fine unevenness corresponding to the intensity distribution of the interference fringes of the interference light on the metal surface by irradiating the interference light of the laser. That is, according to these proposed means, the intensity of the laser light is melted in the bright part of the interference fringes,
By setting the energy density to evaporate, unevenness with concaves in the bright part and convexes in the dark part is formed on the metal surface. It is possible to form the concavo-convex stripes of a book at once.

【0005】[0005]

【発明が解決しようとする課題】ところが、上記の提案
手段では、レーザ光を干渉光として照射することから、
低次のマルチモードのレーザビームにおける明パターン
成分相互を重ねたり、単一のレーザビームより分割され
た複数本のビーム相互を重ねる(特願平1−84326
号)か、あるいはレーザビームの一部を横ずれ変位させ
て元のビーム成分に重ねる(特願平1−229567
号)必要があり、そのために使用するレーザ発振器の機
種や装置構成上の制約が大きい上、上記の分割や変位を
行うための光学系の調整が難しく、且つ可干渉性のよい
レーザ光を選択しても干渉パターンの明瞭性を充分に高
められず、虹色発色の鮮明度向上に限界があった。
However, in the above-mentioned proposed means, since the laser light is emitted as the interference light,
Bright pattern components in a low-order multimode laser beam are overlapped with each other, or a plurality of beams divided from a single laser beam are overlapped with each other (Japanese Patent Application No. 1-84326).
No.) or a part of the laser beam is laterally displaced and superimposed on the original beam component (Japanese Patent Application No. 1-229567).
No.), and the restrictions on the model and device configuration of the laser oscillator used for that purpose are large, and it is difficult to adjust the optical system to perform the above division and displacement, and a laser beam with good coherence is selected. However, the clarity of the interference pattern could not be sufficiently enhanced, and there was a limit to the improvement in the sharpness of the iridescent color.

【0006】しかるに、本発明者らの更に引き続く研究
の結果、予め干渉光としていないパルスレーザ光を用い
ても、その照射中に金属表面を特定の状態に変成するこ
とにより、照射面で干渉を生じさせることができ、最終
的に前記同様に干渉縞の明部を凹、暗部を凸とした微細
凹凸が形成され、しかもレーザ光の干渉性が極めて良好
であり、非常に鮮明な虹色発色を生じる加飾加工を施せ
ることを究明し、本発明をなすに至った。
However, as a result of further studies conducted by the present inventors, even if pulsed laser light which is not used as interference light in advance is used, the metal surface is transformed into a specific state during the irradiation, thereby causing interference on the irradiation surface. In the same way as the above, finally, fine irregularities with the bright portion of the interference fringes being concave and the dark portion being convex are formed, and the coherence of the laser light is extremely good, and a very vivid rainbow color is produced. It was clarified that a decoration process that causes the above can be applied, and the present invention was completed.

【0007】[0007]

【課題を解決するための手段】すなわち、本発明の請求
項1に係る虹色発色加工方法は、反応性ガス中におい
て、金属材料からなる被加工物Wの表面に、収束したパ
ルスレーザ光Lを同位置に多数回のパルスが当たるよう
に照射することにより、この照射の前段で被加工物Wの
表面にその金属成分と上記ガス成分との反応物からなる
薄膜Pを形成すると共に、該照射の後段で前記薄膜Pを
導波路として面方向に伝搬するレーザ光Laと照射レー
ザ光lとを干渉させ、その干渉縞の強度分布に対応した
微細凹凸Gを前記被加工物Wの表面に形成する構成を採
用したものである。
That is, the rainbow coloring processing method according to claim 1 of the present invention is such that the pulsed laser light L converged on the surface of a workpiece W made of a metal material in a reactive gas. By irradiating the same position with multiple pulses so that a thin film P made of a reaction product of the metal component and the gas component is formed on the surface of the workpiece W before the irradiation. After the irradiation, the laser beam La propagating in the surface direction using the thin film P as a waveguide and the irradiation laser beam l are caused to interfere with each other, and fine irregularities G corresponding to the intensity distribution of the interference fringes are formed on the surface of the workpiece W. It adopts the structure to be formed.

【0008】また本発明の請求項2は、上記請求項1の
虹色発色加工方法において、パルスレーザ光Lを収束手
段Sの焦点Fよりも深浅一方向にずれた位置で照射する
構成を採用したものである。
A second aspect of the present invention, in the iridescent color processing method according to the first aspect, employs a configuration in which the pulsed laser light L is irradiated at a position shallower than the focal point F of the converging means S in one direction. It was done.

【0009】本発明の請求項3は、上記請求項1又は2
の虹色発色加工方法において、被加工物Wが熱伝導率1
00W/m・K以下の金属材料である構成を採用したも
のである。
A third aspect of the present invention is the above-mentioned claim 1 or 2.
In the iridescent color processing method, the workpiece W has a thermal conductivity of 1
The structure is a metal material of 00 W / m · K or less.

【0010】本発明の請求項4は、上記請求項1〜3の
いずれかの虹色発色加工方法において、パルスレーザ光
Lがシングルモードのレーザビームからなる構成を採用
したものである。
According to a fourth aspect of the present invention, in the rainbow coloring processing method according to any one of the first to third aspects, the pulse laser light L is a single mode laser beam.

【0011】本発明の請求項5は、上記請求項1〜4の
いずれかの虹色発色加工方法において、パルスレーザ光
Lを走査しつつ連続的に微細凹凸Gを形成する構成を採
用したものである。
According to a fifth aspect of the present invention, in the iridescent color processing method according to any one of the first to fourth aspects, a configuration is adopted in which the fine irregularities G are continuously formed while scanning the pulsed laser light L. Is.

【0012】本発明の請求項6は、上記請求項5の走査
方式による虹色発色加工方法において、レーザ光Lの光
路にシリンドリカルレンズSLを介在させることによ
り、該レーザ光Lの円形ビームをビーム走査方向に対し
て直交する方向に長いビームパターンに変換する構成を
採用したものである。
According to a sixth aspect of the present invention, in the iridescent coloring method by the scanning method according to the fifth aspect, a circular lens of the laser light L is beamed by interposing a cylindrical lens SL in the optical path of the laser light L. This is a structure in which a beam pattern that is long in the direction orthogonal to the scanning direction is used.

【0013】[0013]

【発明の細部構成と作用】反応性ガス中において、金属
材料からなる被加工物Wの表面に収束したパルスレーザ
光Lを同位置に多数回のパルスが当たるように照射する
と、その照射の前段で熱せられた被加工物Wの金属成分
と上記ガス成分とが反応し、図1(A)で示すように、
その反応物の被膜Pが該被加工物Wの表面に形成され
る。しかして、この被膜Pの屈折率が両側の物質つまり
被加工物Wの素材金属及び雰囲気ガスの屈折率よりも高
い場合、この被膜Pは、言わば光ファイバーのコア部を
平面化(板状化)したものに相当し、導波路として作用
することになる。
Detailed Configuration and Operation of the Invention When the pulsed laser light L focused on the surface of the workpiece W made of a metal material is irradiated in a reactive gas so that a large number of pulses hit the same position, the irradiation is performed before the irradiation. As shown in FIG. 1 (A), the metal component of the workpiece W heated by
A film P of the reactant is formed on the surface of the workpiece W. Then, when the refractive index of the coating P is higher than the refractive index of the material on both sides, that is, the material metal of the workpiece W and the atmospheric gas, the coating P is, so to speak, flattened (plate-shaped) in the core portion of the optical fiber. It corresponds to the one described above and acts as a waveguide.

【0014】しかして、上記被膜Pが形成された面に更
にパルスレーザ光Lが照射されると、同図(B)の矢印
で示すようにそのレーザ光の一部Laが該薄膜Pの微小
な傷や結晶粒界から当該薄膜P内に侵入して面方向に進
み、この面方向に進むレーザ光Laと照射しているレー
ザ光Lとが干渉して被加工物Wの表面で干渉縞を生じ
る。このとき、レーザ光Lの強さを干渉縞の明部で表面
の溶融・蒸発するに充分なパワー密度に設定することに
より、図1(C)で示すように、被加工物Wの表面に干
渉縞の明部を凹、暗部を凸とした微細凹凸Gが形成され
る。
When the surface on which the film P has been formed is further irradiated with the pulsed laser light L, a part La of the laser light is minute as shown by the arrow in FIG. From the scratches and crystal grain boundaries into the thin film P and travels in the surface direction, and the laser light La that travels in the surface direction interferes with the radiated laser light L to cause interference fringes on the surface of the workpiece W. Cause At this time, the intensity of the laser light L is set to a power density sufficient to melt and evaporate the surface in the bright portion of the interference fringes, so that the surface of the workpiece W is exposed as shown in FIG. Fine irregularities G are formed in which the bright portion of the interference fringe is concave and the dark portion is convex.

【0015】なお、図2に示すように実際には面方向に
伝搬するレーザ光Laの殆どが薄膜Pをはみ出して進む
が、薄膜Pが存在しない場合は言うまでもなく照射した
レーザ光Lの非吸収分は単にスネルの法則にしたがって
反射するだけであり、面方向へ伝搬しないために干渉を
生じない。
It should be noted that, as shown in FIG. 2, most of the laser light La propagating in the in-plane direction actually travels out of the thin film P. Needless to say, when the thin film P does not exist, the irradiated laser light L is not absorbed. Minutes simply reflect according to Snell's law, and do not propagate in the plane direction, so no interference occurs.

【0016】形成された微細凹凸Gの溝間隔Δxは、共
に波長λのレーザ光LとLaが角度θで交差して干渉す
るとすれば、Δx=λ/sinθで与えられ、この場合
の交差角度θは90度であるからsinθ=1となり、
Δx=λ、つまり照射レーザ光の波長と同じとなる。従
って、この微細凹凸Gは可視光の波長域に近い1μm程
度あるいはそれ以下といった非常に細かいピッチの凹凸
条より構成されることになり、回折格子として入射光を
分光して反射し、反射光沢の色合いが入射光の方向や見
る角度によって多彩に変化する虹色発色を生じることに
なる。
The groove spacing Δx of the formed fine concavities and convexities G is given by Δx = λ / sin θ, assuming that the laser beams L and La having the wavelength λ intersect at an angle θ and interfere with each other. Since θ is 90 degrees, sin θ = 1,
Δx = λ, that is, the same as the wavelength of the irradiation laser beam. Therefore, the fine irregularities G are composed of irregular stripes having an extremely fine pitch of about 1 μm or less, which is close to the wavelength range of visible light. The iridescent color whose color shade changes variously depending on the direction of incident light and the viewing angle is generated.

【0017】しかして、上記の面方向に進むレーザ光L
aと照射しているレーザ光Lとはレーザ光源から干渉位
置までの光路差(距離差)が殆どないために極めて干渉
性がよい上、形成初期の微細凹凸Gがグレーティングカ
プラとして導波路の薄膜P中へのレーザ光Laの導入効
率を高めるように作用し、しかもシングルモードのレー
ザビームを使用できるので、照射スポット全体に非常に
明瞭な干渉縞を生じさせることが可能となり、形成され
る微細凹凸Gは鮮明度の高い虹色発色が得られるものと
なる。
Therefore, the laser light L traveling in the above-mentioned plane direction
Since there is almost no optical path difference (distance difference) from the laser light source to the interference position between the laser light L and the irradiating laser light L, the microscopic unevenness G at the initial stage of formation serves as a grating coupler and is a thin film of the waveguide. Since it acts so as to enhance the efficiency of introducing the laser light La into P, and a single mode laser beam can be used, it is possible to generate very clear interference fringes in the entire irradiation spot, and to form a fine pattern. The unevenness G provides a highly vivid rainbow color.

【0018】なお、理論的には薄膜Pを伝搬するレーザ
光Laが干渉縞の1ピッチ分さえ面方向に進行すれば照
射レーザ光Lと干渉を生じることになり、この1ピッチ
は1μm程度あるいはそれ以下といった短い幅であるか
ら、この幅内では通常不透明とされる殆どの物質が透光
性として振る舞う。従って導波路となる薄膜Pは、通常
の概念でいう透明性物質である必要はないが、当然に照
射レーザ光Lと導波路を進むレーザ光Laの強度比が
1:1の場合に最も強い干渉を生じることになるから、
あまりに光減衰の大きい物質では良好な干渉縞が得られ
ない。
Theoretically, if the laser light La propagating through the thin film P travels in the surface direction even for one pitch of the interference fringes, it will interfere with the irradiation laser light L. This one pitch is about 1 μm or Since the width is shorter than that, most substances that are normally opaque within this width behave as transparent. Therefore, the thin film P serving as the waveguide does not have to be a transparent substance in the general concept, but naturally, it is strongest when the intensity ratio of the irradiation laser light L and the laser light La traveling through the waveguide is 1: 1. It will cause interference,
Good interference fringes cannot be obtained with substances that have too much light attenuation.

【0019】このような虹色発色加工は、レーザ光Lの
照射位置を変えずに照射スポットの範囲毎に微細凹凸G
を形成する方式でもよいが、レーザ光を走査(スキャ
ン)しつつ連続的に微細凹凸を形成する走査方式がより
好適である。すなわち、この走査方式では、レーザ光L
のパルスが被加工物の同位置に多数回当たるように走査
速度を設定するが、図3に示すように、移動する照射ス
ポットの進行方向の前半部分で導波路の薄膜Pが形成さ
れ、後半部分で干渉縞に対応した溶融・蒸発により微細
凹凸Gが仕上がる。この場合、薄膜Pを伝搬するレーザ
光Laは、微小な傷や結晶粒界から薄膜Pへ潜り込まな
くても、後半部分で既に出来上がった微細凹凸Gをグレ
ーティングカプラとして非常に効率よく該薄膜P内に入
り込めるため、照射スポットを停止した状態で加工する
方式よりも照射レーザ光Lとの干渉が強くなり、より明
瞭な微細凹凸Gを形成できる。
In such an iridescent coloring process, fine unevenness G is obtained for each range of the irradiation spot without changing the irradiation position of the laser beam L.
However, a scanning method in which fine irregularities are continuously formed while scanning with laser light is more preferable. That is, in this scanning method, the laser light L
The scanning speed is set so that the pulse of # 1 hits the same position on the workpiece a number of times, but as shown in FIG. 3, the thin film P of the waveguide is formed in the first half of the moving direction of the moving irradiation spot, Fine irregularities G are finished by melting and evaporation corresponding to the interference fringes at the part. In this case, the laser light La propagating through the thin film P is very efficient in the thin film P by using the fine unevenness G already formed in the latter half portion as a grating coupler even if it does not penetrate into the thin film P from minute scratches or crystal grain boundaries. Since it can enter, the interference with the irradiation laser beam L becomes stronger than that in the method of processing with the irradiation spot stopped, and a clearer fine unevenness G can be formed.

【0020】しかして、照射するパルスレーザ光Lはレ
ーザ発振器より出射したレーザビームを凸レンズや凹面
鏡等の収束手段を介して収束した形で用いるが、一般的
な金属加工用のレーザ加工装置を用いた場合、照射面を
収束手段の焦点近傍に位置させると通常の溝切り加工の
ように照射スポットの領域全体が一様に溶融・蒸発して
しまうため、干渉縞に対応した明瞭な微細凹凸Gを形成
するには上記焦点よりも深浅一方向にずれた位置で照射
されるように設定する必要がある。図4は上記の加工条
件を例示したもので、パルスレーザ光Lを収束するレン
ズSの焦点Fを含むZ0 の範囲がダメージ領域であり、
その上下に好適な加工領域Z1 ,Z2 がある。
As the pulsed laser light L to be applied, the laser beam emitted from the laser oscillator is used by being converged through a converging means such as a convex lens or a concave mirror, but a general laser processing device for metal processing is used. In this case, if the irradiation surface is located near the focus of the converging means, the entire area of the irradiation spot will be melted and evaporated uniformly as in the ordinary groove cutting process, so that clear fine irregularities G corresponding to the interference fringes will be formed. In order to form the laser beam, it is necessary to set the irradiation so that the irradiation is performed at a position deviated from the focal point in one direction at a shallow depth. FIG. 4 exemplifies the above-mentioned processing conditions. The range of Z 0 including the focal point F of the lens S that converges the pulsed laser light L is the damaged area,
Above and below that are suitable processing areas Z 1 and Z 2 .

【0021】ところで、レーザ発振器より出射されるレ
ーザ光Lは一般に円形断面のビームパターンであるた
め、走査方式の加工においては、加工ラインの中央部ほ
どレーザ光が広い幅で当たりつつ通過するので、中央部
と両側部では溝形成条件が異なることになり、ビーム強
度が強い場合は加工ライン中央部の微細凹凸がエネルギ
ー過多により潰れ易くなる一方、ビーム強度が弱い場合
は加工ライン周辺部の微細凹凸がエネルギー不足により
不明瞭になる傾向があり、加工ライン全体に均一な微細
凹凸を形成しにくい。しかるに、図5の如く、レーザ光
Lの光路にシリンドリカルレンズSLを、その長手方向
がビーム走査方向と直交する形で介在させれば、円形の
ビームパターンが走査方向に対して直交する方向に長い
ビームパターンに変換されるから、加工ラインの中央部
と両側部とで照射スポットの走査方向に沿う幅の差が小
さくなり、ライン幅方向の照射エネルギーが均等化する
と共に、照射スポット全体としても走査方向に沿う幅が
狭いため、走査中に形成された微細凹凸に必要以上のレ
ーザ光が当たるのを防止でき、もって加工ラインの幅全
体に均一で且つ明瞭な微細凹凸Gを形成することが可能
となる。
By the way, since the laser light L emitted from the laser oscillator is generally a beam pattern having a circular cross section, in the processing of the scanning system, the laser light passes with a wider width toward the central portion of the processing line. The groove formation conditions are different between the central part and both sides, and when the beam intensity is strong, the fine irregularities in the central part of the processing line are easily collapsed due to excess energy, while when the beam intensity is weak, the fine irregularities in the peripheral part of the processing line Tends to become unclear due to lack of energy, and it is difficult to form uniform fine irregularities on the entire processing line. However, as shown in FIG. 5, if the cylindrical lens SL is interposed in the optical path of the laser light L such that the longitudinal direction thereof is orthogonal to the beam scanning direction, the circular beam pattern is long in the direction orthogonal to the scanning direction. Since it is converted into a beam pattern, the difference in the width of the irradiation spot along the scanning direction between the central part and both sides of the processing line becomes small, the irradiation energy in the line width direction is equalized, and the irradiation spot is scanned as a whole. Since the width along the direction is narrow, it is possible to prevent more than necessary laser light from hitting the fine unevenness formed during scanning, and thus it is possible to form uniform and clear fine unevenness G over the entire width of the processing line. Becomes

【0022】なお、図5中のDPはレーザ光の光路中に
介在させたドーペプリズムであり、その回転により偏光
面を回転させずに透過像を2倍の角度で回転させる機能
を持つ。しかして、上記シリンドリカルレンズSLを介
在させて走査方式で微細凹凸Gを形成する際、レーザビ
ームのX−Y方向の移動指令に基づいて移動のベクトル
方向を演算し、これに基づいてドーペプリズムDPを回
転制御することにより、シリンドリカルレンズSLによ
る長いビームパターンの長径方向が走査方向と常に直交
するように調整することができる。
Incidentally, DP in FIG. 5 is a Dope prism interposed in the optical path of the laser beam, and has the function of rotating the transmitted image at a double angle without rotating the plane of polarization by the rotation thereof. Therefore, when the fine irregularities G are formed by the scanning method with the cylindrical lens SL interposed, the vector direction of movement is calculated based on the movement command in the XY directions of the laser beam, and the dope prism DP is set based on this. By controlling the rotation, it is possible to adjust such that the major axis direction of the long beam pattern formed by the cylindrical lens SL is always orthogonal to the scanning direction.

【0023】被加工物Wの金属材料としては、特に制限
はなく、レーザ光照射による加熱下での種々の気相反応
により導波路となる高屈折率の被膜を生成し得るもので
あればよいが、熱伝導率の低いものがより好適である。
すなわち、この虹色発色加工では、レーザ光Lを照射し
た表面を干渉縞のパターン通りに、つまり干渉縞の明部
を凹、暗部を凸とする状態に溶融・蒸発させ、その微細
凹凸状態を表面に残すため、加工中の素材が急速加熱・
急速冷却される必要があり、従って熱伝導率の低い方が
良好な微細凹凸Gを形成し易い。
The metal material of the workpiece W is not particularly limited as long as it can form a film of high refractive index to serve as a waveguide by various gas phase reactions under heating by laser light irradiation. However, those having a low thermal conductivity are more preferable.
That is, in this iridescent color processing, the surface irradiated with the laser light L is melted and evaporated according to the pattern of the interference fringes, that is, the bright portions of the interference fringes are concave and the dark portions are convex, and the fine irregularities are formed. Because it is left on the surface, the material being processed is heated rapidly.
It needs to be rapidly cooled, and therefore the lower the thermal conductivity is, the better the fine irregularities G are likely to be formed.

【0024】しかして、パルス幅50〜200程度の一
般的なレーザ光を用いる場合の好適な金属材料として
は、熱伝導率〔W/m・K〕を( )内に付記して、例
えばニクロム合金(13)、ステンレス(Cr18−N
i8で15)、チタン(20)、けい素鋼(25)、N
i−Cr鋼(Ni3.6−Cr0.8で33)、白金イ
リジウム(Pt90−Ir10で31)、白金ロジウム
(Pt90−Rh10で46)、炭素鋼(C0.8−M
n0.3で50)、白金(72)、クロム(87)、ニ
ッケル(94)等の熱伝導率〔W/m・K〕100以下
のものが挙げられ、これらの中でも特に該熱伝導率50
以下のものが好適である。ただし、レーザ光のパルス幅
が短いほど急速加熱・急速冷却を生じ易いため、使用す
るレーザの種類によって適用し得る金属材料の熱伝導率
の上限に差があり、例えばパルス幅が10ns以下のレ
ーザ光を用いる場合は上記熱伝導率が数百程度の金属材
料でも加工可能となる。
However, as a suitable metal material when using a general laser beam having a pulse width of about 50 to 200, the thermal conductivity [W / m · K] is added in parentheses, for example, nichrome. Alloy (13), stainless steel (Cr18-N
i8 15), titanium (20), silicon steel (25), N
i-Cr steel (33 with Ni3.6-Cr0.8), platinum iridium (31 with Pt90-Ir10), platinum rhodium (46 with Pt90-Rh10), carbon steel (C0.8-M).
n is 50), platinum (72), chromium (87), nickel (94) and the like having a thermal conductivity [W / m · K] of 100 or less. Among these, the thermal conductivity is particularly 50.
The following are preferred: However, the shorter the pulse width of the laser light, the easier the rapid heating / cooling is likely to occur. Therefore, there is a difference in the upper limit of the thermal conductivity of the applicable metal material depending on the type of laser used. For example, a laser having a pulse width of 10 ns or less When light is used, it is possible to process even a metal material having the thermal conductivity of about several hundreds.

【0025】一方、使用するパルスレーザー光の条件と
しては、上記の急速加熱・急速冷却のためにパルス幅が
短いこと、描画速度面よりパルスの繰り返しが速いこ
と、シングルモード(TEM00)であって特にレーザ光
の強度分布がガウス分布よりも台形モードに近いこと等
が挙げられる。現在のところ、このような条件を満たす
レーザとして、Qスイッチ付きのCW(連続発振)励起
YAGレーザ(パルス幅100ns程度、繰り返し数K
Hz、発振波長1.06μm)、ポッケセルによりパル
ス発振可能としたパルス励起YAGレーザ(パルス幅1
0ns以下、繰り返し500Hz程度)、パルス励起炭
酸ガスレーザ(繰り返し1KHz程度、発振波長10.
6μm)、エキシマレーザ(パルス幅2〜50ns、繰
り返し1KHz程度、発振波長=紫外、ArF=0.1
93μm、KrF=0.249μm、XeCl=0.3
08μm、XeF=0.351μm)、ルビーレーザ
(繰り返し500Hz程度、発振波長0.6943μ
m)、チタン・サファイヤレーザ(発振波長0.68〜
1.1μmまで可変)等が挙げられる。しかして、これ
らの中でも、特にQスイッチ付きのCW(連続発振)励
起YAGレーザは、繰り返しが速く、発振波長及びパル
ス幅も適度でなることから推奨される。
On the other hand, the conditions of the pulsed laser light used are that the pulse width is short due to the rapid heating / cooling described above, the repetition of the pulse is faster than the drawing speed, and the single mode (TEM 00 ). In particular, the intensity distribution of laser light is closer to a trapezoidal mode than a Gaussian distribution. At present, as a laser satisfying such conditions, a CW (continuous oscillation) pumped YAG laser with a Q switch (pulse width of about 100 ns, repetition rate K) is used.
Hz, oscillation wavelength 1.06 μm), pulse excitation YAG laser (pulse width 1
0 ns or less, repetition about 500 Hz), pulse excitation carbon dioxide laser (repetition about 1 KHz, oscillation wavelength 10.
6 μm), excimer laser (pulse width 2 to 50 ns, repetition of about 1 KHz, oscillation wavelength = ultraviolet, ArF = 0.1
93 μm, KrF = 0.249 μm, XeCl = 0.3
08 μm, XeF = 0.351 μm), ruby laser (repeating about 500 Hz, oscillation wavelength 0.6943 μ)
m), titanium sapphire laser (oscillation wavelength 0.68 ~
Variable up to 1.1 μm) and the like. Of these, a CW (continuous oscillation) pumped YAG laser with a Q switch is particularly recommended because it repeats quickly and has an appropriate oscillation wavelength and pulse width.

【0026】[0026]

【実施例】実施例1 直線偏光のQスイッチNd:YAGレーザ(シングルモ
ード、波長1.06μm、パルス幅100ns、レーザ
出力0.5mJ)のパルスレーザ光をスイッチ操作によ
り1パルスずつ照射できるように構成すると共に、照射
位置を対物レンズの焦点よりも上方8mmに設定し、こ
のパルスレーザー光を照射位置でのパワー密度が22M
W/cm2 となるように集光して、鏡面研磨した18−
8ステンレス鋼板の表面の同位置に空気中で1パルスず
つ照射を重ねていったところ、照射スポット内の表面が
次第に酸化され、導波路となるCr2 3 を主体(Ni
Oを含む)とした酸化被膜が形成され、照射回数34回
で干渉縞の明部に対応する微小な溝の集団が浅く形成さ
れ始め、照射回数を増すごとに溝の深さが増し、照射回
数約100回で約90μm径のスポット全面に一様に良
好な微細凹凸が形成された。この微細凹凸は、溝幅約
0.5μm、溝深さ0.03〜0.04μm、ピッチ約
1μmであり、非常に鮮明な虹色発色を生じるものであ
った。しかるに、更にパルスレーザー光の照射を重ねる
と、照射スポットの中央部より溝が消滅し、この消滅領
域が次第に周辺へ拡大した。
Example 1 A pulsed laser beam of a linearly polarized Q-switched Nd: YAG laser (single mode, wavelength 1.06 μm, pulse width 100 ns, laser output 0.5 mJ) can be irradiated by pulse by pulse operation. With the configuration, the irradiation position is set to 8 mm above the focal point of the objective lens, and the power density of this pulsed laser light at the irradiation position is 22M.
Concentrated to W / cm 2 and mirror-polished 18-
When one pulse was repeatedly irradiated in air at the same position on the surface of the 8 stainless steel plate, the surface in the irradiation spot was gradually oxidized, and Cr 2 O 3 serving as a waveguide was mainly used (Ni
An oxide film containing O) is formed, and a group of minute grooves corresponding to the bright part of the interference fringes starts to be shallowly formed after 34 times of irradiation, and the depth of the groove increases as the number of times of irradiation increases. After about 100 times, good fine irregularities were uniformly formed on the entire surface of the spot having a diameter of about 90 μm. The fine irregularities had a groove width of about 0.5 μm, a groove depth of 0.03 to 0.04 μm, and a pitch of about 1 μm, and produced a very clear iridescent color. However, when the pulsed laser light was further irradiated, the groove disappeared from the center of the irradiation spot, and this disappeared region gradually expanded to the periphery.

【0027】なお、パルスレーザー光のパワー密度を2
8MW/cm2 として同様に加工した場合は、照射回数
34回で溝集団が形成され始め、照射回数約70回で約
110μm径の大きさに微細凹凸が形成されたが、スポ
ット中心部の凹凸はやや不鮮明になった。またパワー密
度を18MW/cm2 とし場合は、照射回数100回ま
では表面の酸化被膜による着色が濃くなるだけであった
が、以降の照射で急に照射スポットの中心部に完成した
深い溝集団が生じ、この溝集団が照射回数と共に急速に
拡大したが、170回を越えると照射スポットの中央部
より次第に溝が消滅する傾向を示した。
The power density of the pulsed laser light is set to 2
When processed in the same manner with 8 MW / cm 2 , a groove group started to be formed after 34 times of irradiation, and fine unevenness was formed in a size of about 110 μm after about 70 times of irradiation. It became slightly blurred. Further, when the power density was set to 18 MW / cm 2 , the coloring due to the oxide film on the surface was only darkened up to 100 times of irradiation, but the deep groove group that was suddenly completed in the center of the irradiation spot in the subsequent irradiation. This groove group rapidly expanded with the number of irradiations, but when it exceeded 170 times, the grooves tended to disappear gradually from the central portion of the irradiation spot.

【0028】実施例2 実施例1におけるステンレス鋼板に代えて鏡面研磨した
金属チタン板を用い、加工雰囲気を窒素ガス中(1気
圧)とし、照射位置でのパワー密度が28MW/cm2
となるように設定した以外は、実施例1と同様にして該
金属チタン板の表面の同位置に1パルスずつ照射を重ね
ていったところ、照射スポット内の表面が次第に窒化さ
れ、導波路となるTiNの窒化被膜が形成され、照射回
数45回で干渉縞の明部に対応する微小な溝の集団が浅
く形成され始め、照射回数を増すごとに溝の深さが増
し、照射回数約100回で約90μm径のスポット全面
に一様に良好な微細凹凸が形成された。この微細凹凸
は、溝幅約0.5μm、溝深さ0.03〜0.04μ
m、ピッチ約1μmであり、非常に鮮明な虹色発色を生
じるものであった。
Example 2 A mirror-polished metallic titanium plate was used in place of the stainless steel plate used in Example 1, the processing atmosphere was nitrogen gas (1 atm), and the power density at the irradiation position was 28 MW / cm 2.
When the irradiation was repeated one pulse at a time on the same position on the surface of the metal titanium plate except that the setting was made so that the surface inside the irradiation spot was gradually nitrided and A TiN nitride film is formed, and a group of fine grooves corresponding to the bright part of the interference fringes starts to be shallowly formed by the irradiation number of 45 times, and the groove depth increases as the irradiation number increases, and the irradiation number of about 100 Good fine irregularities were uniformly formed on the entire surface of the spot having a diameter of about 90 μm. The fine irregularities have a groove width of about 0.5 μm and a groove depth of 0.03 to 0.04 μ.
m, pitch about 1 μm, and very vivid iridescent color was produced.

【0029】実施例3 実施例1と同様のQスイッチNd:YAGレーザを用
い、照射位置を対物レンズの焦点よりも上方8mm、パ
ワー密度を22MW/cm2 にそれぞれ設定し、空気中
において集光したパルスレーザー光(繰り返し2KH
z)を、空気中において鏡面研磨した18−8ステンレ
ス鋼板の同位置にパルスが約100回当たる速度で走査
しつつ連続的に照射し、所定パターンの線画を描いたと
ころ、約90μmのライン幅全体に幅約0.5μmの溝
がピッチ約1μmで密に集合した微細凹凸が形成され
た。この線画は、太陽光及び室内照明光の何れの照明下
でも、虹色の多彩な反射光沢を示すラインより構成さ
れ、しかも該反射光沢の色合いが照明方向及び見る角度
によって様々に変化するものであった。
Example 3 The same Q-switched Nd: YAG laser as in Example 1 was used, the irradiation position was set to 8 mm above the focal point of the objective lens, and the power density was set to 22 MW / cm 2, and the light was condensed in air. Pulsed laser light (repeated 2KH
z) was continuously irradiated to the same position of a mirror-polished 18-8 stainless steel plate in the air at a speed at which a pulse hits about 100 times, and a line image of a predetermined pattern was drawn. Fine irregularities in which grooves having a width of about 0.5 μm were densely aggregated at a pitch of about 1 μm were formed on the entire surface. This line drawing is composed of lines showing a variety of iridescent reflection gloss under both sunlight and indoor illumination light, and the shade of the reflection gloss changes variously depending on the illumination direction and the viewing angle. there were.

【0030】実施例4 実施例1と同じQスイッチNd:YAGレーザを用い、
そのレーザ光の光路中に図5の如くシリンドリカルレン
ズSL及びドーペプリズムDPを介在させた構成とし、
鏡面研磨したステンレス鋼板の表面に実施例3と同条件
でパルスレーザ光を走査しつつ照射する際、制御装置に
より上記ドーペプリズムを回転制御して長楕円形の照射
ビームパターンの長軸方向が常に走査方向に直交するよ
うに走査し、所定パターンの線画を描いた。その結果、
約0.3mmのライン幅全体に幅約0.5μmの溝が全
てライン幅方向に略平行にピッチ約1μmで密に集合し
た溝集団からなる微細凹凸が形成され、実施例3よりも
更に鮮明な虹色に変化する反射光沢を示すラインより構
成された線画が得られた。
Example 4 Using the same Q-switched Nd: YAG laser as in Example 1,
As shown in FIG. 5, a cylindrical lens SL and a dope prism DP are interposed in the optical path of the laser light,
When the surface of the mirror-polished stainless steel plate is irradiated with the pulsed laser beam while scanning it under the same conditions as in Example 3, the controller controls the rotation of the Dope prism to constantly scan the major axis direction of the elliptical irradiation beam pattern. Scanning was performed so as to be orthogonal to the direction, and a line drawing having a predetermined pattern was drawn. as a result,
Finer concavities and convexities are formed over the entire line width of about 0.3 mm, in which grooves with a width of about 0.5 μm are densely gathered at a pitch of about 1 μm substantially in parallel with the line width direction. A line drawing composed of lines showing a reflection gloss that changes to a different rainbow color was obtained.

【0031】実施例5 実施例1と同様のQスイッチNd:YAGレーザを用
い、照射位置を対物レンズの焦点よりも上方7mm、パ
ワー密度を28MW/cm2 にそれぞれ設定し、窒素ガ
ス中(1気圧)において集光したパルスレーザー光(繰
り返し2KHz)を、鏡面研磨した金属チタン板の同位
置にパルスが約100回当たる速度で走査しつつ連続的
に照射し、所定パターンの線画を描いたところ、約90
μmのライン幅全体に幅約0.5μmの溝がピッチ約1
μmで密に集合した微細凹凸が形成された。この線画
は、太陽光及び室内照明光の何れの照明下でも、虹色の
多彩な反射光沢を示すラインより構成され、しかも該反
射光沢の色合いが照明方向及び見る角度によって様々に
変化するものであった。
Example 5 The same Q-switched Nd: YAG laser as in Example 1 was used, the irradiation position was set to 7 mm above the focal point of the objective lens, and the power density was set to 28 MW / cm 2 , respectively. Pulsed laser light (repeated 2 KHz) focused at atmospheric pressure) was continuously irradiated while scanning the same position of the mirror-polished metal titanium plate at a speed at which the pulse hits about 100 times, and a line drawing of a predetermined pattern was drawn. , About 90
Grooves with a width of about 0.5 μm have a pitch of about 1 in the entire line width of
The fine asperities densely gathered at μm were formed. This line drawing is composed of lines showing a variety of iridescent reflection gloss under both sunlight and indoor illumination light, and the shade of the reflection gloss changes variously depending on the illumination direction and the viewing angle. there were.

【0032】なお、本発明は、上記実施例に限定される
ものではなく、これら実施例で用いた以外の金属材料も
加工対象とできると共に、微細凹凸形成用として例示し
たQスイッチNd:YAGレーザ以外の種々のパルスレ
ーザ発振器(好ましくはパルス幅の小さいもの)を使用
できることは言うまでもない。
The present invention is not limited to the above-mentioned embodiments, and metal materials other than those used in these embodiments can be processed and the Q-switched Nd: YAG laser exemplified for forming fine irregularities can be used. It is needless to say that various pulse laser oscillators other than those (preferably those having a small pulse width) can be used.

【0033】[0033]

【発明の効果】請求項1の虹色発色加工方法によれば、
被加工物の表面にレーザ光の干渉縞に対応した相互間隔
1μm程度あるいはそれ以下といった微細で密な溝の集
合からなる凹凸を容易に形成可能であり、この微細凹凸
に基づき反射光沢が入射光の方向や見る角度によって虹
色様に多彩に変化する線や面からなる美麗な装飾を有す
る加工品を安価に提供できる。また、この加工方法で
は、パルスレーザ光の照射の前段で被加工物表面に形成
される導波路により、該照射の後段において照射レーザ
光の一部を面方向に伝搬させ、この伝搬するレーザ光と
照射レーザ光との干渉により、その干渉縞の強度分布に
対応した微細凹凸を形成することから、レーザ光の光路
やレーザ発振器自体に格別な干渉機構を介在させる必要
がなく、レーザ加工の装置構成が簡素になる上、干渉性
が高く、形成される微細凹凸が非常に鮮明度の高い虹色
発色を生じるものとなるという利点がある。
According to the iridescent color processing method of claim 1,
It is possible to easily form irregularities consisting of fine and dense grooves with a mutual interval of about 1 μm or less corresponding to the interference fringes of laser light on the surface of the work piece, and the reflection gloss causes the incident light to be incident on the basis of the fine irregularities. It is possible to inexpensively provide a processed product having a beautiful decoration that is composed of lines and surfaces that change in a rainbow-like manner depending on the direction and viewing angle. Further, in this processing method, a part of the irradiation laser light is propagated in the surface direction in the subsequent stage of the irradiation by the waveguide formed on the surface of the workpiece before the irradiation of the pulsed laser light, and the propagating laser light is propagated. And the irradiation laser light interfere with each other to form fine irregularities corresponding to the intensity distribution of the interference fringes, so there is no need to intervene a special interference mechanism in the optical path of the laser light or the laser oscillator itself, and the laser processing device In addition to the simple structure, there is an advantage that the interference is high and the fine irregularities to be formed cause iridescent color development with extremely high definition.

【0034】請求項2の虹色発色加工方法によれば、パ
ルスレーザ光の照射スポット内の溶融による一様化を回
避して、干渉縞に対応した良好な微細凹凸を形成できる
という利点がある。
According to the iridescent color processing method of the second aspect, there is an advantage that it is possible to avoid the uniformization due to melting in the irradiation spot of the pulsed laser light and to form fine fine irregularities corresponding to the interference fringes. .

【0035】請求項3及び請求項4の虹色発色加工方法
によれば、より明瞭な微細凹凸を形成し易いという利点
がある。
According to the iridescent color processing method of the third and fourth aspects, there is an advantage that it is easy to form clearer fine irregularities.

【0036】請求項5の虹色発色加工方法によれば、レ
ーザ光の走査によって被加工物の表面に微細凹凸面より
構成された任意パターンのラインを描くことができ、且
つ該微細凹凸が照射スポットを停止した状態で加工する
方式よりも明瞭となり、もって金属表面に非常に鮮明な
虹色発色を生じる線画や文字等の装飾を容易に施せると
いう利点がある。
According to the iridescent color processing method of claim 5, it is possible to draw a line of an arbitrary pattern composed of a fine uneven surface on the surface of the workpiece by scanning the laser beam, and the fine unevenness is irradiated. It has the advantage that it becomes clearer than the method of processing with the spot stopped, and that it is easy to decorate the metal surface with line drawings, characters, etc. that produce a very vivid rainbow color.

【0037】請求項6の虹色発色加工方法によれば、特
に走査方式により連続的に微細凹凸を形成する場合に、
加工ラインの幅方向の照射エネルギーが均等化されると
共に、走査中に形成された微細凹凸に必要以上のレーザ
光が当たるのを防止でき、もって加工ラインの幅全体に
一様に明瞭な微細凹凸を形成して、より鮮明な虹色発色
を生じる線画や文字等の装飾を施せるという利点があ
る。
According to the iridescent color processing method of claim 6, particularly when fine irregularities are continuously formed by a scanning method,
Irradiation energy in the width direction of the processing line is equalized, and it is possible to prevent more than necessary laser light from striking the fine irregularities formed during scanning, so that the entire fine width of the processing line is evenly and clearly defined. Is formed, and there is an advantage that decorations such as line drawings and characters that generate more vivid rainbow colors can be applied.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の虹色発色加工方法における微細凹凸
の形成機構をA〜Cの工程順に説明する概略縦断面図。
FIG. 1 is a schematic vertical cross-sectional view for explaining a mechanism of forming fine irregularities in the iridescent color processing method of the present invention in the order of steps A to C.

【図2】 同加工方法における微細凹凸の走査方式によ
る形成工程を示す概略縦断面図。
FIG. 2 is a schematic vertical cross-sectional view showing a forming process of a fine unevenness by a scanning method in the processing method.

【図3】 同加工方法における導波路によるレーザ光の
伝搬状態を示す概略縦断面図。
FIG. 3 is a schematic vertical sectional view showing a propagation state of laser light through a waveguide in the same processing method.

【図4】 同加工方法における微細凹凸の形成に用いる
レーザ光の加工領域を示す模式図。
FIG. 4 is a schematic diagram showing a processing region of laser light used for forming fine irregularities in the processing method.

【図5】 同加工方法における微細凹凸の形成にシリン
ドリカルレンズを利用した例を示す概略正面図。
FIG. 5 is a schematic front view showing an example in which a cylindrical lens is used to form fine unevenness in the processing method.

【符号の説明】[Explanation of symbols]

W 被加工物 P レーザ光の導波路となる薄膜 L 照射レーザ光 La 導波路を伝搬するレーザ光 S レンズ(収束手段) F 焦点 G 微細凹凸 SL シリンドリカルレンズ W Workpiece P Thin film used as waveguide of laser light L Irradiated laser light La Laser light propagating in waveguide S lens (converging means) F focus G fine unevenness SL cylindrical lens

フロントページの続き (72)発明者 大島 時彦 兵庫県尼崎市常光寺1丁目9番1号 大阪 富士工業株式会社内 (72)発明者 平田 繁一 兵庫県尼崎市常光寺1丁目9番1号 大阪 富士工業株式会社内 (72)発明者 岡野 良和 兵庫県尼崎市常光寺1丁目9番1号 大阪 富士工業株式会社内Front page continuation (72) Inventor Tokihiko Oshima 1-9-1, Jokoji, Amagasaki City, Hyogo Prefecture Osaka Fuji Kogyo Co., Ltd. (72) Inventor Shigeichi Hirata 1-9-1, Jokoji, Amagasaki, Hyogo Prefecture Incorporated (72) Inventor Yoshikazu Okano 1-9-1, Jokoji Temple, Amagasaki City, Hyogo Prefecture Osaka Fuji Industry Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 反応性ガス中において、金属材料からな
る被加工物の表面に、収束したパルスレーザ光を同位置
に多数回のパルスが当たるように照射することにより、
この照射の前段で被加工物の表面にその金属成分と上記
ガス成分との反応物からなる薄膜を形成すると共に、該
照射の後段で前記薄膜を導波路として面方向に伝搬する
レーザ光と照射レーザ光とを干渉させ、その干渉縞の強
度分布に対応した微細凹凸を前記被加工物の表面に形成
することを特徴とする虹色発色加工方法。
1. By irradiating a surface of an object to be processed made of a metal material with a focused pulsed laser light so that a large number of pulses hit the same position in a reactive gas,
Before the irradiation, a thin film made of a reaction product of the metal component and the gas component is formed on the surface of the workpiece, and at the latter stage of the irradiation, laser light propagating in the surface direction is used as the thin film as a waveguide. A method for iridescent coloring, which comprises causing interference with laser light to form fine irregularities corresponding to the intensity distribution of the interference fringes on the surface of the workpiece.
【請求項2】 パルスレーザ光を収束手段の焦点よりも
深浅一方向にずれた位置で照射する請求項1記載の虹色
発色加工方法。
2. The rainbow color developing method according to claim 1, wherein the pulsed laser light is applied at a position shifted in one direction in a depth direction from a focus of the converging means.
【請求項3】 被加工物が熱伝導率100W/m・K以
下の金属材料である請求項1又は2に記載の虹色発色加
工方法。
3. The iridescent color processing method according to claim 1, wherein the workpiece is a metal material having a thermal conductivity of 100 W / m · K or less.
【請求項4】 パルスレーザ光がシングルモードのレー
ザビームからなる請求項1〜3のいずれかに記載の虹色
発色加工方法。
4. The iridescent color processing method according to claim 1, wherein the pulsed laser light is a single-mode laser beam.
【請求項5】 パルスレーザ光を走査しつつ連続的に微
細凹凸を形成する請求項1〜4のいずれかに記載の虹色
発色加工方法。
5. The iridescent color processing method according to claim 1, wherein fine irregularities are continuously formed while scanning with a pulsed laser beam.
【請求項6】 レーザ光の光路にシリンドリカルレンズ
を介在させることにより、該レーザ光の円形ビームをビ
ーム走査方向に対して直交する方向に長いビームパター
ンに変換する請求項5記載の虹色発色加工方法。
6. The iridescent color processing according to claim 5, wherein the circular beam of the laser light is converted into a long beam pattern in a direction orthogonal to the beam scanning direction by interposing a cylindrical lens in the optical path of the laser light. Method.
JP5002782A 1993-01-11 1993-01-11 Iridescent color processing method Expired - Lifetime JPH0811309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5002782A JPH0811309B2 (en) 1993-01-11 1993-01-11 Iridescent color processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5002782A JPH0811309B2 (en) 1993-01-11 1993-01-11 Iridescent color processing method

Publications (2)

Publication Number Publication Date
JPH06198466A JPH06198466A (en) 1994-07-19
JPH0811309B2 true JPH0811309B2 (en) 1996-02-07

Family

ID=11538916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5002782A Expired - Lifetime JPH0811309B2 (en) 1993-01-11 1993-01-11 Iridescent color processing method

Country Status (1)

Country Link
JP (1) JPH0811309B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004035255A1 (en) * 2002-09-27 2004-04-29 Nec Machinery Corporation Cyclic structure formation method and surface treatment method
JP4791745B2 (en) * 2005-03-28 2011-10-12 パナソニック電工株式会社 Method of processing light incident / exit part of optical medium
JP5146948B2 (en) * 2007-05-09 2013-02-20 独立行政法人産業技術総合研究所 Metal surface processing method
US8558137B2 (en) 2008-05-07 2013-10-15 Toyo Seikan Kaisha, Ltd. Structure, method of forming structure, and method of laser processing objects
CN113811419B (en) * 2019-04-16 2023-09-19 艾普伦 Method for producing iridescence effect on material surface and device for implementing said method

Also Published As

Publication number Publication date
JPH06198466A (en) 1994-07-19

Similar Documents

Publication Publication Date Title
US6768081B2 (en) Method and laser system for production of high quality laser-induced damage images by using material processing made before and after image creation
EP1016634B1 (en) A laser processing method for a glass substrate, and a microlens array obtained thereby
US5637244A (en) Method and apparatus for creating an image by a pulsed laser beam inside a transparent material
US4606747A (en) Process for the contact-less removal of material from the surface of a glass object
US5103073A (en) Device for laser treatment of an object
TWI221102B (en) Laser material processing method and processing device
US5886318A (en) Method for laser-assisted image formation in transparent objects
JPH09311237A (en) Optical waveguide and its manufacture
US6727460B2 (en) System for high-speed production of high quality laser-induced damage images inside transparent materials
JPH04229821A (en) Region shaping method for surface of optical member using aberration of excimer laser light
JPH06212451A (en) Method for ornamenting metallic surface
JPH0747232B2 (en) Laser processing method for metal surface
US20030111446A1 (en) Method for production of laser-induced damage images with special characteristics by creating damages of special space shape
KR100723935B1 (en) Laser pattern device
EP0624421A2 (en) Method and apparatus for creating an image by a pulsed laser beam inside a transparent material
Zhao et al. High-efficiency-and-quality nanostructuring of molybdenum surfaces by orthogonally polarized blue femtosecond lasers
JPH0811309B2 (en) Iridescent color processing method
WO2023052549A2 (en) Cutting a substrate or preparing a substrate for cleaving
JPH07148583A (en) Laser beam processing method of metallic surface
JPH07102470B2 (en) Laser processing method for metal surface
JP2003201149A (en) Method of coloring glass
JP2815240B2 (en) Laser processing method for metal surface
JPH0825045B2 (en) Iridescent color processing method
JPH11216578A (en) Glass substrate laser processing method, diffraction grating and microlens array obtained therefrom
JPH0323273B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960820

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110207

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110207

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120207

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120207

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130207

Year of fee payment: 17

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130207

Year of fee payment: 17

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130207

Year of fee payment: 17

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term