JPH0811273B2 - Mold making method - Google Patents

Mold making method

Info

Publication number
JPH0811273B2
JPH0811273B2 JP2166890A JP16689090A JPH0811273B2 JP H0811273 B2 JPH0811273 B2 JP H0811273B2 JP 2166890 A JP2166890 A JP 2166890A JP 16689090 A JP16689090 A JP 16689090A JP H0811273 B2 JPH0811273 B2 JP H0811273B2
Authority
JP
Japan
Prior art keywords
mold
inorganic binder
binder
drying
making method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2166890A
Other languages
Japanese (ja)
Other versions
JPH0459148A (en
Inventor
俊夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2166890A priority Critical patent/JPH0811273B2/en
Publication of JPH0459148A publication Critical patent/JPH0459148A/en
Publication of JPH0811273B2 publication Critical patent/JPH0811273B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、鋳型造型法に関し、さらに詳しくは、生産
性に優れ、溶湯注入後の砂落ち性が良いと共に、鋳肌外
観に優れた鋳型造型法に関する。
TECHNICAL FIELD The present invention relates to a mold making method, and more specifically, to a mold having excellent productivity, good sand removal after pouring molten metal, and excellent appearance of casting surface. Regarding the molding method.

〔従来の技術〕[Conventional technology]

鋳物の生産性を上げるため、有機系バインダーを使用
した鋳型造型プロセスが有るが(シエルモールド法、コ
ールドボックス法など)、これらの造型法によって作ら
れた鋳型は、特に中子として使用された場合、有機物に
よりガス欠陥が発生し易い問題がある。一方、無機系バ
インダーによる鋳型を使用すれば、生産性が非常に悪
く、溶湯注入後の砂落ちが非常に悪いという問題があ
る。
There are mold making processes that use organic binders to improve the productivity of castings (shell mold method, cold box method, etc.), but the molds made by these molding methods are especially used when used as a core. However, there is a problem that gas defects are likely to occur due to organic substances. On the other hand, if a mold made of an inorganic binder is used, there is a problem that productivity is very poor, and sand dropping after pouring the molten metal is very poor.

従って、生産性が良く、鋳型からのガス発生が少な
く、溶湯注入後の砂落ち性が良い鋳型造型法を開発する
ことが望まれている。
Therefore, it is desired to develop a mold molding method which has good productivity, generates little gas from the mold, and has good sand removal property after pouring molten metal.

ところで、有機系バインダーと無機系バインダーの両
方を利用する方法は既に提案されている(特公昭51-312
09号、特開昭63-242439号及び特開平1-148438号)。特
に、特公昭51-31209号公報及び特開平1-148438号公報に
は、耐火砂に有機質粘結剤を加えて成形し、一旦焼成し
た多孔質の中子基体にコロイダルシリカ溶液(特公昭51
-31209号)又はコロイダルシリカとアミン系有機物とか
らなる結合剤(特開平1-148438号)を含浸させてなる精
密鋳造用中子が記載されている。しかしながら、これら
の中子は、ロストワックス法等による精密鋳造用として
使用される精密鋳造用中子であり、高温に加熱して鋳湯
した場合における高い抗折力を得ることを狙いとするも
のである。従って、高温での結合強度維持には富むが、
冷却時の抗折力は特開平1-148438号の実施例で報告され
ているように2〜12kg/cm2とかなり低い。これはコロイ
ダルシリカを含浸させたことに起因するものであり、常
温での抗折力を30〜100kg/cm2程度必要とする通常の鋳
型としては用いることができない。
By the way, a method using both an organic binder and an inorganic binder has already been proposed (Japanese Patent Publication No. 51-312).
09, JP-A-63-242439 and JP-A-1-148438). In particular, JP-B-51-31209 and JP-A-1-148438 disclose that a colloidal silica solution is added to a porous core substrate which is formed by adding an organic binder to refractory sand and then fired (JP-B-51-51).
-31209) or a binder for colloidal silica and an amine-based organic substance (JP-A-1-148438). However, these cores are precision casting cores used for precision casting by the lost wax method or the like, and aim at obtaining a high bending strength when casting at a high temperature by casting. It is. Therefore, although it is rich in maintaining the bond strength at high temperatures,
The transverse rupture strength during cooling is as low as 2 to 12 kg / cm 2 as reported in the examples of JP-A-1-148438. This is because it is impregnated with colloidal silica, and it cannot be used as a normal mold that requires a bending strength of 30 to 100 kg / cm 2 at room temperature.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明者は、上記ロストワックス法等による精密鋳造
用とは異なり、常温において充分な強度を有すると共
に、生産性が良く、鋳型からのガス発生が少なく、溶湯
注入後の砂落ち性が良い鋳型造型法を開発し、既に特許
出願している(特願平2-40953号)。すなわち、この鋳
型造型法は、鋳物砂に有機質粘結剤を加えて造型した鋳
型に、無機粘結剤を含浸させ、乾燥後、大気中高温下で
有機物を燃焼させ、無機粘結剤で鋳型形状を保持するよ
うにした鋳型造型法であって、上記乾燥を減圧マイクロ
波乾燥によるか、あるいは珪酸(SiO2)とアルカリ(Na
2O、K2O、Li2O)のモル比が4.5〜6.0の無機粘結剤を
用いることを特徴とするものである。
The present inventor, unlike precision casting by the lost wax method or the like, has sufficient strength at room temperature, has good productivity, generates little gas from the mold, and has good sand removal properties after pouring molten metal. We have developed a molding method and have already applied for a patent (Japanese Patent Application No. 2-40953). That is, this mold molding method is a mold formed by adding an organic binder to foundry sand, impregnated with an inorganic binder, dried, and then burned with an organic material under high temperature in the atmosphere to mold with the inorganic binder. It is a mold molding method that maintains the shape, and the drying is performed by vacuum microwave drying, or by silicic acid (SiO 2 ) and alkali (Na
It is characterized by using an inorganic binder having a molar ratio of 2 O, K 2 O, Li 2 O) of 4.5 to 6.0.

この鋳型造型法によって前記したような効果は得られ
るが、この方法によって作製された鋳物の鋳肌は、従来
の有機系バインダーあるいは無機系バインダーを用いた
鋳型による鋳肌と同程度で、50〜40S程度である。
Although the effect as described above can be obtained by this mold making method, the casting surface of the casting produced by this method is similar to the casting surface by the mold using the conventional organic binder or the inorganic binder, 50 to It is about 40S.

従って、本発明の目的は、本発明者の開発した上記鋳
型造型法によって作られる鋳物の鋳肌をさらに改善でき
る方法を提供することにある。
Therefore, an object of the present invention is to provide a method capable of further improving the casting surface of a casting produced by the above-described mold making method developed by the present inventor.

〔課題を解決するための手段〕[Means for solving the problem]

本発明によれば、前記目的を達成するために、鋳物砂
に有機質粘結剤を加えて造型した鋳型に無機粘結剤を含
浸させた後、上記鋳型表面の砂粒間隙に入り込む大きさ
の微粒状耐火物を骨材として含む表面コーティング材を
塗布し、その後乾燥した後、大気中高温下で有機物を燃
焼させ、無機粘結剤で鋳型形状を保持するようにしたこ
とを特徴とする鋳型造型法が提供される。
According to the present invention, in order to achieve the above-mentioned object, after impregnating an inorganic binder into a mold produced by adding an organic binder to foundry sand, fine particles of a size that enters the sand grain gap on the mold surface. Mold coating characterized by applying a surface coating material containing aggregate refractory as an aggregate, drying it, then burning organic matter in the atmosphere at high temperature and holding the mold shape with an inorganic binder Law is provided.

〔発明の作用及び態様〕[Operation and Mode of Invention]

まず、本発明の鋳型造型法について概説すると、シェ
ルモールド法、コールドボックス法、フラン法等、従来
公知の造型法により鋳物砂と有機質粘結剤(バインダ
ー)を混練し、鋳型造型を行う。以下、このようにして
造型された鋳型を、焼成する型の元になるものであるこ
とから元鋳型と称する。次いで、無機粘結剤を含浸させ
た後、上記元鋳型表面の砂粒間隙に入り込む大きさの微
粒状耐火物を骨材として含む表面コーティング材を浸
漬、はけ塗り、スプレー等の方法により塗布し、乾燥
後、大気中高温下で有機物を燃焼させ、無機粘結剤で鋳
型形状を保持させる。すなわち、「元鋳型製作」→「無
機粘結剤含浸」→「表面コーティング」→「乾燥」→
「焼成」という工程から成る。
First, the mold molding method of the present invention will be briefly described. Molding is carried out by kneading a molding sand and an organic binder (binder) by a conventionally known molding method such as a shell mold method, a cold box method and a furan method. Hereinafter, the mold thus formed is referred to as an original mold because it is a base of a mold to be fired. Then, after impregnating with an inorganic binder, a surface coating material containing fine particulate refractory having a size to enter the sand grain gap on the surface of the original mold as an aggregate is dipped, brushed, applied by a method such as spraying. After drying, the organic matter is burned at a high temperature in the air, and the mold shape is maintained by the inorganic binder. That is, "former mold making" → "inorganic binder impregnation" → "surface coating" → "drying" →
It consists of a process called "firing".

上記のように、無機粘結剤含浸工程と乾燥工程の間に
表面コーティング工程を採用することにより、第1図に
示すように、元鋳型の砂粒1,1,…の間隙に表面コーティ
ング材に含まれる微粒状耐火物2,2,…が入り込み、表面
部が滑らかになり、その結果、製造される鋳物の鋳肌を
改善することができる。また、その後の焼成によって、
有機物は熱分解して焼失するのでガス欠陥防止が図られ
ると共に、無機粘結剤のSiO2が結晶化し、耐火度が高め
られる。なお、表面コーティング材の塗布により、元鋳
型の通気度は1/100程度に低下するが、その後の焼成に
より1/10位(10倍)に通気度が回復するので、通気度に
ついては実用上問題はない。
As described above, by adopting the surface coating step between the inorganic binder impregnation step and the drying step, as shown in FIG. 1, the surface coating material is provided in the gap between the sand grains 1, 1, ... of the original mold. The fine-grained refractory material 2, 2, ... contained therein enters and the surface portion becomes smooth, and as a result, the casting surface of the manufactured casting can be improved. Also, by the subsequent firing,
Since organic substances are thermally decomposed and burned off, gas defects can be prevented, and SiO 2 as an inorganic binder is crystallized to improve fire resistance. Although the air permeability of the original mold is reduced to about 1/100 by applying the surface coating material, the air permeability is restored to about 1/10 (10 times) by the subsequent firing. No problem.

上記作用説明から明らかなように、製造される鋳物の
鋳肌は元鋳型の元砂の粒度によって変るが、その表面部
の砂粒間隙に粒度の小さな微粒状耐火物が入り込むこと
によって改善される。従って、使用される微粒状耐火物
の大きさは元鋳型の元砂の粒度に応じて適宜選定される
が、好適には、44μ以上のものが5%以下である微粒状
耐火物が用いられる。また、表面コーティング材に含ま
れるバインダーとしては、有機系バインダー及び無機系
バインダーのいずれも使用可能であるが、元鋳型表面へ
の付着性等の点から、元鋳型に含浸させる無機粘結剤と
同じものを用いることが望ましい。
As is clear from the above description of the operation, the casting surface of the casting to be produced changes depending on the grain size of the original sand of the original mold, but it is improved by the inclusion of fine grain refractory having a small grain size in the sand grain gaps of the surface portion. Therefore, the size of the fine particulate refractory to be used is appropriately selected according to the grain size of the original sand of the original mold, but it is preferable to use the fine particulate refractory having a particle size of 44 μ or more and 5% or less. . As the binder contained in the surface coating material, either an organic binder or an inorganic binder can be used, but in terms of adhesion to the surface of the original mold, an inorganic binder to be impregnated in the original mold and It is desirable to use the same one.

本発明の好適な態様においては、含浸させる無機粘結
剤として、珪酸(SiO2)とアルカリ(Na2O、K2O、Li2
O)のモル比(以下、代表的にSiO2/Na2Oモル比と称
する)が4.5〜6.0の無機粘結剤が用いられる。本発明者
の研究によれば、用いる無機粘結剤のSiO2/Na2Oモル
比が4.5〜6.0の範囲に設定されれば、常温において30〜
100kg/cm2の抗折力が得られ、しかも砂落ち性にも優れ
ることが見い出された。従来用いられているコロイダル
シリカ(商品名スノーテックスとして市販されている)
は強い浸透性を持ち、乾燥するとゲル化して無機高分子
系粘結剤として働くが、SiO2含有率が極めて高いため、
これによって鋳型形状を保持しようとしても、前記した
ように常温における抗折力が極めて低く、鋳型として用
いることができない。一方、水ガラス(SiO2/Na2Oモ
ル比約4.3)やケイ酸ソーダ(約2.4〜3.3)を用いた場
合、抗折力が高くなり過ぎ、崩壊性の点で問題がある。
本発明の第一態様は、無機粘結剤のSiO2/Na2Oモル比
を4.5〜6.0の範囲に設定することにより、常温下での抗
折力及び砂落ち性の両方を満足させたものである。
In a preferred embodiment of the present invention, as the inorganic binder to be impregnated, silicic acid (SiO 2 ) and alkali (Na 2 O, K 2 O, Li 2
An inorganic binder having a molar ratio of O) (hereinafter typically referred to as SiO 2 / Na 2 O molar ratio) of 4.5 to 6.0 is used. According to the study of the present inventor, if the SiO 2 / Na 2 O molar ratio of the inorganic binder used is set in the range of 4.5 to 6.0, it is 30 to 30 at room temperature.
It was found that a bending strength of 100 kg / cm 2 was obtained and that it was also excellent in sand removal. Conventionally used colloidal silica (commercially available as Snowtex)
Has strong penetrability and gels when dried to act as an inorganic polymer binder, but due to its extremely high SiO 2 content,
As a result, even if an attempt is made to maintain the shape of the mold, the transverse rupture strength at room temperature is extremely low and it cannot be used as a mold. On the other hand, in the case of using water glass (SiO 2 / Na 2 O molar ratio of about 4.3) and sodium silicate (about 2.4 to 3.3), too high transverse rupture strength, there is a problem in terms of disintegration properties.
In the first aspect of the present invention, by setting the SiO 2 / Na 2 O molar ratio of the inorganic binder in the range of 4.5 to 6.0, both the transverse rupture strength and the sand removal property at room temperature are satisfied. It is a thing.

このような特定のSiO2/Na2Oモル比の無機粘結剤
は、コロイダルシリカに不純物を添加したり、あるいは
水ガラスにコロイダルシリカを添加したりする方法によ
って容易に製造することができる。なお、本発明の第一
態様による鋳型造型法においては、表面コーティング剤
塗布後の乾燥は、自然乾燥(放置乾燥)、50〜150℃で
の低温乾燥又は減圧マイクロ波乾燥のいずれの方法でも
よい。
Such an inorganic binder having a specific SiO 2 / Na 2 O molar ratio can be easily produced by a method of adding impurities to colloidal silica or adding colloidal silica to water glass. In the mold making method according to the first aspect of the present invention, the drying after applying the surface coating agent may be any of natural drying (leaving dry), low temperature drying at 50 to 150 ° C, or reduced pressure microwave drying. .

本発明の第二態様による鋳型造型法においては、表面
コーティング剤塗布後の乾燥を減圧マイクロ波乾燥によ
り行うものであり、この場合、無機粘結剤としては上記
特定のSiO2/Na2Oモル比の無機粘結剤の他、コロイダ
ルシリカなど他の無機粘結剤も用いることができる。す
なわち、無機粘結剤含浸及び表面コーティング剤塗布後
に減圧マイクロ波乾燥を行うことにより、含浸した無機
粘結剤が表面層近くに滲み出し、水分のみが飛んでしま
い、表面近くに粘結剤が多く析出するため、焼成後に表
面強度が高くなると共に、中央部は結合力が小さくなる
ため、砂落ち性も良い。また、水溶液系の無機粘結剤は
減圧により沸点が低くなるため、短時間の処理で充分で
あるという利点も得られる。また、減圧マイクロ波乾燥
を行うので、高温乾燥の場合の泡が生成して表面があば
た状になるというようなこともない。
In the mold making method according to the second aspect of the present invention, the drying after applying the surface coating agent is performed by vacuum microwave drying. In this case, as the inorganic binder, the above specific SiO 2 / Na 2 O mol is used. In addition to the ratio of inorganic binders, other inorganic binders such as colloidal silica can also be used. That is, by performing the reduced pressure microwave drying after impregnation of the inorganic binder and application of the surface coating agent, the impregnated inorganic binder oozes out near the surface layer and only the water is blown off, and the binder remains near the surface. Since a large amount is deposited, the surface strength is increased after firing, and the central part has a small bonding force, so that the sand removal property is also good. Further, since the boiling point of the aqueous binder is lowered by the reduced pressure, the advantage that a short treatment is sufficient is also obtained. Further, since the reduced pressure microwave drying is performed, there is no possibility that bubbles are generated in the case of high temperature drying and the surface becomes fluffy.

なお、無機粘結剤としてコロイダルシリカを用いる場
合には、前記したように常温において鋳型の強度が出に
くいので、乾燥後の焼成は前記特殊無機粘結剤を用いる
場合に比べて高温で行うことが望ましい。
When colloidal silica is used as the inorganic binder, the strength of the mold is difficult to come out at room temperature as described above, so baking after drying should be performed at a higher temperature than when using the special inorganic binder. Is desirable.

また、上記いずれの態様においても、無機粘結剤の含
浸層の厚さは、無機粘結剤の含浸を真空減圧下で行い、
圧力と含浸時間により含浸層の厚さを調整するか、ある
いは無機粘結剤に浸透剤(界面活性剤)を添加したもの
を用いて行ない、含浸時間により含浸層の厚さを調整す
ることができる。
Further, in any of the above embodiments, the thickness of the impregnated layer of the inorganic binder is such that the impregnation of the inorganic binder is performed under reduced pressure in a vacuum,
The thickness of the impregnated layer can be adjusted by adjusting the pressure and impregnation time, or by using an inorganic binder with a penetrant (surfactant) added to adjust the thickness of the impregnated layer. it can.

〔実施例〕〔Example〕

以下、実施例を示して本発明について具体的に説明す
るが、本発明が下記実施例により限定されるものでない
ことはもとよりである。
Hereinafter, the present invention will be specifically described with reference to examples, but it goes without saying that the present invention is not limited to the examples.

実施例1,2及び比較例1〜3 第2図に示す粒度分布を有する元砂耐火物ムライトを
使用し、シェルモールド法によりφ28×50Hmmの試験片
を製作し、第1表に示す条件で無機粘結剤含浸、表面コ
ーティング、乾燥及び焼成の各処理を施した。なお、表
面コーティング材の組成は第2表に示すとおりである。
Examples 1 and 2 and Comparative Examples 1 to 3 Using the original sand refractory mullite having the particle size distribution shown in FIG. 2, test pieces of φ28 × 50 H mm were manufactured by the shell molding method, and shown in Table 1. Treatments such as impregnation with an inorganic binder, surface coating, drying and firing were performed under the conditions. The composition of the surface coating material is as shown in Table 2.

上記のようにして得られた各試験片4(φ28×50H
を4個、第3図及び第4図に示すようにCO2型5の底部
にセットし、湯道6から鋳鋼の注入(1580℃注入、35k
g)を行った。
Each test piece 4 (φ28 × 50 H ) obtained as described above
Set 4 pieces on the bottom of CO 2 type 5 as shown in Fig. 3 and Fig. 4, and inject cast steel from runner 6 (injection at 1580 ℃, 35k
g).

得られた鋳物の鋳肌は、比較例1(Aの粒度)の場合
60S、比較例2(Bの粒度)の場合40Sであった。これに
対して、微粒状耐火物を骨材として含む表面コーティン
グ材を塗布し試作した鋳物の鋳肌は、実施例1及び2共
に20Sであり、かなり改善された。また、得られた各鋳
物の鋳肌について、触針式の粗さ試験機で測定した結果
を第5図に示す。
The casting surface of the obtained casting is the case of Comparative Example 1 (grain size of A).
It was 60S, and in the case of Comparative Example 2 (particle size of B), it was 40S. On the other hand, the casting surface of the castings produced by applying the surface coating material containing the fine-grained refractory as an aggregate was 20S in both Examples 1 and 2, which was a considerable improvement. Further, the results obtained by measuring the casting surface of each of the obtained castings with a stylus type roughness tester are shown in FIG.

なお、試験片から約120mm離間して配置されたノズル
から空気圧4kg/cm2で吹き付けてサンドブラスト処理す
る方法により、砂が落ちる状況を調べた結果、いずれの
場合も焼付きもなく、良好な砂落ち性を示した。
In addition, as a result of investigating the state of sand falling by a method of spraying air at a pressure of 4 kg / cm 2 from a nozzle arranged at a distance of about 120 mm from the test piece, there was no seizure in all cases, and good sand It showed a falling property.

〔発明の効果〕〔The invention's effect〕

以上のように、本発明の鋳型造型法は、元鋳型造型、
無機粘結剤含浸の後に、元鋳型の砂粒間隙に入り込む大
きさの微粒状耐火物を骨材として含む表面コーティング
材を塗布し、その後、乾燥、焼成するものであるため、
得られる鋳型の表面部が滑らかになり、鋳肌の粗さを大
巾に改善することができる。また、本発明においては、
上記一連の工程からなる鋳型造型法において、無機粘結
剤としてSiO2/Na2Oモル比が4.5〜6.0の無機粘結剤を
用いるか、あるいは上記乾燥を減圧マイクロ波乾燥によ
り行うことにより、得られる鋳型は常温において充分な
強度を有すると共に、焼付きもなく、溶湯注入後の砂落
ち性も良い。また、有機系バインダー使用におけるよう
な鋳型からのガス発生も少なく、上記一連の工程により
生産性よく鋳型造型を行うことができ、さらに減圧マイ
クロ波乾燥を行うことにより乾燥時間を短縮することも
できる。
As described above, the mold molding method of the present invention, the original mold molding,
After impregnating with an inorganic binder, a surface coating material containing a fine-grained refractory having a size that enters the sand grain gap of the original mold as an aggregate is applied, and then dried and fired,
The surface of the obtained mold becomes smooth, and the roughness of the casting surface can be greatly improved. Further, in the present invention,
In the mold making method consisting of the above series of steps, as an inorganic binder, SiO 2 / Na 2 O molar ratio of 4.5 to 6.0 is used, or by performing the drying by reduced pressure microwave drying, The obtained mold has sufficient strength at room temperature, has no seizure, and has good sand removal property after pouring the melt. In addition, there is little gas generation from the mold as in the case of using an organic binder, mold molding can be performed with good productivity by the above series of steps, and drying time can also be shortened by performing reduced pressure microwave drying. .

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の鋳型造型法による鋳型表面部の概略説
明図、第2図は実施例及び比較例で用いた元砂の粒度分
布を示すグラフ、第3図は実施例及び比較例で行った注
入テストの装置の平面図、第4図はその縦断面図、第5
図は実施例及び比較例で得られた鋳肌の面粗度測定結果
を示すグラフである。 1は元鋳型の砂粒、2は微粒状耐火物。
FIG. 1 is a schematic explanatory view of a mold surface portion by a molding method of the present invention, FIG. 2 is a graph showing a particle size distribution of original sand used in Examples and Comparative Examples, and FIG. 3 is Examples and Comparative Examples. FIG. 4 is a plan view of the apparatus for the injection test performed, FIG.
The figure is a graph showing the surface roughness measurement results of casting surfaces obtained in Examples and Comparative Examples. 1 is a sand grain of the original mold, 2 is a fine refractory material.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】鋳物砂に有機質粘結剤を加えて造型した鋳
型に無機粘結剤を含浸させた後、上記鋳型表面の砂粒間
隙に入り込む大きさの微粒状耐火物を骨材として含む表
面コーティング材を塗布し、その後乾燥した後、大気中
高温下で有機物を燃焼させ、無機粘結剤で鋳型形状を保
持するようにしたことを特徴とする鋳型造型法。
1. A surface containing, as an aggregate, a fine-grained refractory having a size capable of entering a sand grain gap on the surface of the mold after impregnating a mold made by adding an organic binder to foundry sand and impregnating the mold with the inorganic binder. A mold making method, characterized in that a coating material is applied and then dried, and then an organic substance is burned at a high temperature in the atmosphere to maintain the shape of the mold with an inorganic binder.
【請求項2】無機粘結剤が水ガラス系無機高分子系粘結
剤であることを特徴とする請求項1記載の鋳型造型法。
2. The mold making method according to claim 1, wherein the inorganic binder is a water glass-based inorganic polymer binder.
【請求項3】表面コーティング材の塗布を浸漬、はけ塗
り、またはスプレーにより行うことを特徴とする請求項
1記載の鋳型造型法。
3. The mold making method according to claim 1, wherein the surface coating material is applied by dipping, brushing or spraying.
【請求項4】乾燥を自然乾燥、低温乾燥または減圧マイ
クロ波乾燥により行うことを特徴とする請求項1乃至3
のいずれかに記載の鋳型造型法。
4. Drying is carried out by natural drying, low temperature drying or reduced pressure microwave drying.
The molding method according to any one of the above.
【請求項5】含浸させる無機粘結剤が、珪酸(SiO2)と
アルカリ(Na2O、K2O、Li2O)のモル比が4.5〜6.0の
無機粘結剤であることを特徴とする請求項1乃至4のい
ずれかに記載の鋳型造型法。
5. The inorganic binder to be impregnated is an inorganic binder having a molar ratio of silicic acid (SiO 2 ) and alkali (Na 2 O, K 2 O, Li 2 O) of 4.5 to 6.0. The mold making method according to any one of claims 1 to 4.
JP2166890A 1990-06-27 1990-06-27 Mold making method Expired - Lifetime JPH0811273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2166890A JPH0811273B2 (en) 1990-06-27 1990-06-27 Mold making method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2166890A JPH0811273B2 (en) 1990-06-27 1990-06-27 Mold making method

Publications (2)

Publication Number Publication Date
JPH0459148A JPH0459148A (en) 1992-02-26
JPH0811273B2 true JPH0811273B2 (en) 1996-02-07

Family

ID=15839525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2166890A Expired - Lifetime JPH0811273B2 (en) 1990-06-27 1990-06-27 Mold making method

Country Status (1)

Country Link
JP (1) JPH0811273B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104907488A (en) * 2015-06-25 2015-09-16 苏州明志科技有限公司 Anti-crack sand mold coating

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5048715B2 (en) * 2009-05-25 2012-10-17 旭有機材工業株式会社 Synthetic mullite sand and mold
CN103909226A (en) * 2014-04-04 2014-07-09 含山县荣盛机械铸造有限公司 Processing process for bearing seat
JP7121580B2 (en) * 2018-08-07 2022-08-18 群栄化学工業株式会社 Mold manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104907488A (en) * 2015-06-25 2015-09-16 苏州明志科技有限公司 Anti-crack sand mold coating

Also Published As

Publication number Publication date
JPH0459148A (en) 1992-02-26

Similar Documents

Publication Publication Date Title
CN1033147C (en) Mold core for investment casting and process thereof
US4530722A (en) Binder and refractory compositions and methods
JP2020514078A (en) Compositions and methods for casting cores in high pressure die castings
US2948935A (en) Process of making refractory shell for casting metal
JPH01293939A (en) Manufacture of mold for investment casting
EP0020373B1 (en) Method of making and using a ceramic shell mold
US4602667A (en) Method for making investment casting molds
US4223716A (en) Method of making and using a ceramic shell mold
JPH0811273B2 (en) Mold making method
US3583468A (en) Precision metal casting molds
US4664948A (en) Method for coating refractory molds
GB2155484A (en) Binder and refractory compositions
JP2763970B2 (en) Manufacturing method of ceramic shell mold
US3420644A (en) Method for molding of glass and ceramic materials
JP2579825B2 (en) Mold making method
JPS63140740A (en) Mold for casting active metal of high melting point
JPH08332547A (en) Casting method and mold and its production
JPS61137646A (en) Manufacture of casting mold
JP4421466B2 (en) Slurry for casting mold and mold obtained using the same
RU2673872C1 (en) Method of manufacturing easy-clean casting ceramic forms, obtained by investment patterns
JPH05208241A (en) Casting mold for precision casting of titanium or titanium alloy
RU2043825C1 (en) Method of manufacturing moulds according to melted patterns
JP3761414B2 (en) Casting mold and manufacturing method thereof
SU599910A1 (en) Solution for strengthening ceramic shell moulds
JPS63194841A (en) Core, its production and production of mold for investment casting