JP2579825B2 - Mold making method - Google Patents

Mold making method

Info

Publication number
JP2579825B2
JP2579825B2 JP2040953A JP4095390A JP2579825B2 JP 2579825 B2 JP2579825 B2 JP 2579825B2 JP 2040953 A JP2040953 A JP 2040953A JP 4095390 A JP4095390 A JP 4095390A JP 2579825 B2 JP2579825 B2 JP 2579825B2
Authority
JP
Japan
Prior art keywords
inorganic binder
mold
binder
drying
impregnation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2040953A
Other languages
Japanese (ja)
Other versions
JPH03248740A (en
Inventor
俊夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2040953A priority Critical patent/JP2579825B2/en
Publication of JPH03248740A publication Critical patent/JPH03248740A/en
Application granted granted Critical
Publication of JP2579825B2 publication Critical patent/JP2579825B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、鋳型造型法に関し、さらに詳しくは生産性
に優れ、溶湯注入後の砂落ち性が良い鋳型造型法に関す
る。
Description: BACKGROUND OF THE INVENTION The present invention relates to a mold making method, and more particularly, to a mold making method which is excellent in productivity and has good sand-dropping property after molten metal injection.

〔従来の技術と発明が解決しようとする課題〕[Problems to be solved by conventional technology and invention]

鋳物の生産性を上げるため、有機系バインダーを使用
した鋳型造型プロセスが有るが(シエルモールド法、コ
ールドボックス法など)、これらの造型法によって作ら
れた鋳型は、特に中子として使用された場合、有機物に
よりガス欠陥が発生し易い問題がある。一方、無機系バ
インダーによる鋳型を使用すれば、生産性が非常に悪
く、溶湯注入後の砂落ちが非常に悪いという問題があ
る。
In order to increase the productivity of castings, there is a mold molding process using an organic binder (shell mold method, cold box method, etc.), but molds made by these molding methods are especially used as cores In addition, there is a problem that gas defects easily occur due to organic substances. On the other hand, if a mold made of an inorganic binder is used, there is a problem that productivity is very poor, and sand dropping after pouring the molten metal is very poor.

従って、本発明の目的は、生産性が良く、鋳型からの
ガス発生が少なく、溶湯注入後の砂落ち性が良い鋳型造
型法を提供することにある。
Accordingly, an object of the present invention is to provide a mold molding method which has good productivity, generates less gas from a mold, and has good sand-dropping property after molten metal injection.

ところで、有機系バインダーと無機系バインダーの両
方を利用する方法は提案されている(特公昭51−31209
号、特開昭63−242439号及び特開平1−148438号)。特
に、特公昭51−31209号公報及び特開平1−148438号公
報には、耐火砂に有機質粘結剤を加えて成形し、一旦焼
成した多孔質の中子基体にコロイダルシリカ溶液(特公
昭51−31209号)又はコロイダルシリカとアミン系有機
物とからなる結合剤(特開平1−148438号)を含浸させ
てなる精密鋳造用中子が記載されている。しかしなが
ら、これらの中子は、ロストワックス法等による精密鋳
造用として使用される精密鋳造用中子であり、高温に加
熱して鋳湯した場合における高い抗折力を得ることを狙
いとするものである。従って、高温での結合強度繊維に
は富むが、冷却時の抗折力は特開平1−148438号の実施
例で報告されているように2〜12kg/cm2とかなり低い。
これはコロイダルシリカを含浸させたことに起因するも
のであり、常温での低圧力を30〜100kg/cm2程度必要と
する通常の鋳型としては用いることができない。
By the way, a method using both an organic binder and an inorganic binder has been proposed (JP-B-51-31209).
JP-A-63-242439 and JP-A-1-148438). In particular, JP-B-51-31209 and JP-A-1-148438 disclose that a colloidal silica solution (Japanese Patent Publication No. 51-209) is prepared by adding an organic binder to refractory sand, molding the resultant, and then calcining the porous core substrate. No.-31209) or a core for precision casting which is impregnated with a binder comprising colloidal silica and an amine-based organic substance (JP-A-1-148438). However, these cores are precision casting cores used for precision casting by the lost wax method or the like, and aim at obtaining a high bending strength when casting at a high temperature by casting. It is. Accordingly, although the fiber is rich in bonding strength fibers at high temperatures, the transverse rupture strength upon cooling is considerably low at 2 to 12 kg / cm 2 as reported in the examples of JP-A-1-148438.
This is due to impregnation with colloidal silica, and cannot be used as a normal mold requiring a low pressure of about 30 to 100 kg / cm 2 at room temperature.

本発明は、上記ロストワックス法等による精密鋳造用
とは異なり、常温において充分な強度を有すると共に、
溶湯注入後の砂落ち性が良い鋳型を造型しようとするも
のである。
The present invention has a sufficient strength at room temperature, unlike the precision casting by the lost wax method or the like,
The purpose of this method is to make a mold with good sand-dropping properties after molten metal injection.

〔課題を解決するための手段〕[Means for solving the problem]

本発明によれば、上記目的を達成するため、特殊無機
粘結剤を用いることを特徴とする方法が提供される。
According to the present invention, there is provided a method for achieving the above-mentioned object, characterized by using a special inorganic binder.

すなわち、本発明によれば、鋳物砂に有機質粘結剤を
加えて造型した鋳型に、SiO2/Na2Oモル比が4.5〜6.0の
無機粘結剤を含浸させ、乾燥後、大気中高温下で有機物
を燃焼させ、無機粘結剤で鋳型形状を保持するようにし
たことを特徴とする鋳型造型法が提供される。この場
合、乾燥は自然乾燥、低温乾燥又は減圧マイクロ波乾燥
のいずれの方法によってもよい。
That is, according to the present invention, a mold formed by adding an organic binder to molding sand is impregnated with an inorganic binder having a SiO 2 / Na 2 O molar ratio of 4.5 to 6.0, dried, and then dried at a high temperature in the atmosphere. A mold molding method is provided, wherein an organic substance is burned below and an inorganic binder is used to maintain a mold shape. In this case, drying may be performed by any of natural drying, low-temperature drying and reduced-pressure microwave drying.

又、参考例によれば、鋳物砂に有機質粘結剤を加えて
造型した鋳型に無機粘結剤を含浸させ、減圧マイクロ波
乾燥を行なった後、大気中高温下で有機物を燃焼させ、
無機粘結剤で鋳型形状を保持するようにしたことを特徴
とする鋳型造型法が提供される。
According to the reference example, an inorganic binder is impregnated into a mold formed by adding an organic binder to molding sand, and after performing microwave drying under reduced pressure, the organic matter is burned at a high temperature in the atmosphere.
A mold molding method characterized by maintaining a mold shape with an inorganic binder.

なお、上記いずれの方法においても、無機粘結剤の含
浸層の厚さは、無機粘結剤の含浸を真空減圧下で行な
い、圧力と含浸時間により含浸層の厚さを調整するか、
あるいは無機粘結剤に界面活性剤を添加したものを用い
て行ない、含浸時間により含浸層の厚さを調整すること
ができる。
In any of the above methods, the thickness of the impregnated layer of the inorganic binder is adjusted by performing the impregnation of the inorganic binder under reduced pressure and adjusting the thickness of the impregnated layer by the pressure and the impregnation time,
Alternatively, the thickness of the impregnated layer can be adjusted by the impregnation time by using an inorganic binder to which a surfactant is added.

〔発明の作用及び態様〕 まず、本発明の鋳型造型法について概説すると、シェ
ルモールド法、コールドボックス法、フラン法等、従来
公知の造型法により鋳物砂と有機質粘結剤(バインダ
ー)を混練し、鋳型造型を行なう。次いで、無機粘結剤
を含浸させ、乾燥後、大気中高温下で有機物を燃焼さ
せ、無機粘結剤で鋳型形状を保持させる。すなわち、
「従来造型法による鋳型造型」→「無機粘結剤含浸」→
「乾燥」→「焼成」という工程から成る。無機粘結剤の
含浸層の厚さは、前記したように減圧含浸の圧力と時
間、又は、浸透剤(界面活性剤)添加により制御でき
る。
[Operation and Aspects of the Invention] First, an outline of the mold molding method of the present invention is as follows. A molding sand and an organic binder (binder) are kneaded by a conventionally known molding method such as a shell mold method, a cold box method and a furan method. Then, mold making is performed. Next, an inorganic binder is impregnated, and after drying, the organic matter is burned at a high temperature in the air, and the mold shape is held by the inorganic binder. That is,
"Mold molding by conventional molding method" → "Impregnation of inorganic binder" →
It consists of a process of “drying” → “firing”. As described above, the thickness of the impregnated layer of the inorganic binder can be controlled by the pressure and time of the impregnation under reduced pressure or by adding a penetrant (surfactant).

本発明によれば、含浸させる無機粘結剤として、SiO2
/Na2Oモル比が4.5〜6.0の無機粘結剤を用いることを特
徴としている。本発明者の研究によれば、用いる無機粘
結剤のSiO2/Na2Oモル比が4.5〜6.0の範囲に設定されれ
ば、常温において30〜100kg/cm2程度の抗折力が得ら
れ、しかも砂落ち性にも優れることが見い出された。従
来用いられているコロイダルシリカ(商品名スノーテッ
クスとして市販されている)は強い浸透性を持ち、乾燥
するとゲル化して無機高分子系粘結剤として働くが、Si
O2含有率が極めて高いため、これによって鋳型形状を保
持しようとしても、前記したように常温における抗折力
が極めて低く、鋳型として用いることができない。一
方、水ガラス(SiO2/Na2Oモル比約4.3)やケイ酸ソーダ
(約2.4〜3.3)を用いた場合、抗折力が高くなり過ぎ、
崩壊性の点で問題がある。本発明の第一発明は、無機粘
結剤のSiO2/Na2Oモル比を4.5〜6.0の範囲に設定するこ
とにより、常温下での抗折力及び砂落ち性の両方を満足
させたものである。
According to the present invention, as the inorganic binder to be impregnated, SiO 2
It is characterized in that an inorganic binder having a / Na 2 O molar ratio of 4.5 to 6.0 is used. According to the study of the present inventor, if the SiO 2 / Na 2 O molar ratio of the inorganic binder used is set in the range of 4.5 to 6.0, a transverse rupture force of about 30 to 100 kg / cm 2 is obtained at room temperature. It was also found that the sand removal property was excellent. Conventionally used colloidal silica (commercially available under the trade name Snowtex) has strong permeability, gels when dried, and acts as an inorganic polymer binder.
Since the O 2 content is extremely high, even if an attempt is made to maintain the shape of the mold by this, the transverse rupture strength at room temperature is extremely low as described above, and the mold cannot be used. On the other hand, in the case of using water glass (SiO 2 / Na 2 O molar ratio of about 4.3) and sodium silicate (about 2.4 to 3.3), transverse rupture strength increases too,
There is a problem in disintegration. The first invention of the present invention satisfies both the transverse rupture force and the sand removal property at normal temperature by setting the SiO 2 / Na 2 O molar ratio of the inorganic binder in the range of 4.5 to 6.0. Things.

このような特定のSiO2/Na2Oモル比の無機粘結剤は、
コロイダルシリカに不純物を添加したり、あるいは水ガ
ラスにコロイダルシリカを添加したりする方法によって
容易に製造することができる。なお、本発明の第一発明
による鋳型造型法においては、無機粘結剤含浸後の乾燥
は、前記したように自然乾燥(放置乾燥)、50〜150℃
での低温乾燥又は減圧マイクロ波乾燥のいずれの方法で
もよい。
Such a specific SiO 2 / Na 2 O molar ratio inorganic binder is
It can be easily produced by adding an impurity to colloidal silica or adding colloidal silica to water glass. In the mold making method according to the first invention of the present invention, the drying after the impregnation of the inorganic binder is carried out by natural drying (drying by standing) and 50 to 150 ° C. as described above.
Low-temperature drying or reduced-pressure microwave drying.

又、参考例による鋳型造型法においては、無機粘結剤
含浸後の乾燥を減圧マイクロ波乾燥により行なうもので
あり、この場合、無機粘結剤としては上記特定のSiO2/N
a2Oモル比の無機粘結剤の他、コロイダルシリカなど他
の無機粘結剤を用いることができる。すなわち、無機粘
結剤含浸後に減圧マイクロ波乾燥を行なうことにより、
含浸した無機粘結剤が表面層近くに滲み出し、水分のみ
が飛んでしまい、表面近くに粘結剤が多く析出するた
め、焼成後に表面強度が高くなると共に、中央部は結合
力が小さくなるため、砂落ち性も良い。また、水溶液系
の無機粘結剤は減圧により沸点が低くなるため、短時間
の処理で充分であるという利点も得られる。また、減圧
マイクロ波乾燥を行なうので、高温乾燥の場合の泡が生
成して表面があばた状になるというようなこともない。
In the mold making method according to the reference example, drying after impregnation of the inorganic binder is performed by microwave drying under reduced pressure. In this case, the specific binder SiO 2 / N is used as the inorganic binder.
Another a 2 O molar ratio of the inorganic binder, it is possible to use other inorganic binders such as colloidal silica. That is, by performing microwave drying under reduced pressure after impregnation of the inorganic binder,
The impregnated inorganic binder oozes out near the surface layer, and only water is blown off, and a large amount of the binder is deposited near the surface, so that the surface strength increases after firing and the bonding strength decreases in the center. Therefore, good sand removal. Further, since the boiling point of the aqueous binder is lowered by the reduced pressure, the advantage that a short treatment is sufficient is also obtained. In addition, since the microwave drying under reduced pressure is performed, there is no possibility that bubbles are generated in the case of high-temperature drying and the surface becomes pocked.

なお、無機粘結剤としてコロイダルシリカを用いる場
合には、前記したように常温において鋳型の強度が出に
くいので、乾燥後の焼成は前記特殊無機粘度剤を用いる
場合に比べて高温で行なうことが望ましい。
When using colloidal silica as the inorganic binder, the strength of the mold is hard to come out at normal temperature as described above, so that the firing after drying may be performed at a higher temperature than when using the special inorganic viscosity agent. desirable.

〔実 施 例〕〔Example〕

以下、実施例を示して本発明について具体的に説明す
るが、本発明が下記実施例により限定されるものでない
ことはもとよりである。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to Examples, but it is needless to say that the present invention is not limited to the following Examples.

実施例 耐火物ムライトを使用し、シェルモールド法によりφ
50×50Hmmの試験片を製作し、また鋳型強度を試験する
ために併せて抗折試験片10×10×60mmの試験片を製作
し、表−1に示す各種無機粘結剤を含浸させ、25〜30℃
で24時間放置して乾燥させ、次いで大気中1000℃×1時
間で焼成し、第1図に示す方法にて鋳鋼の注入(1580℃
注入)を行なった。すなわち、第1図に示すように型1
の底部に試験片2(φ50×50H)を4個セットし、湯道
3から注入することにより、焼付テストを行なった。ま
た、砂落ち性を見るために、第2図に示すように、試験
片2から約120mm離間して配置されたノズル4から空気
圧4kg/cm2で吹き付けてサンドブラスト処理する方法に
より、砂が落ちる状況を調べた結果、SiO2/Na2Oモル比
4.9の特殊無機粘結剤(No.4)を用いた場合には焼付き
もなく、3分のサンドブラスト処理で砂は落ちたが、他
の無機粘結剤を用いた場合には焼付きを生じ、砂をこさ
ぎ落すことも困難であった。10×10×60mmの試験片につ
いて抗折力を測定した結果を表−1に併せて示す。
Example Using refractory mullite, the shell mold method
A test piece of 50 × 50 H mm was produced, and a flexural test piece of 10 × 10 × 60 mm was also produced to test the strength of the mold, and impregnated with various inorganic binders shown in Table-1. Let 25-30 ° C
For 24 hours, and then fired in the air at 1000 ° C. for 1 hour, and cast steel (1580 ° C.) by the method shown in FIG.
Injection). That is, as shown in FIG.
And 4 pieces on the bottom specimen 2 (φ50 × 50 H) of, by injecting the runner 3, was subjected to baking test. In addition, as shown in FIG. 2 , sand is dropped by a method of sandblasting by spraying at a pressure of 4 kg / cm 2 from a nozzle 4 arranged at a distance of about 120 mm from the test piece 2 in order to check the sand falling property. As a result of examining the situation, the SiO 2 / Na 2 O molar ratio
When using the special inorganic binder of 4.9 (No.4), there was no seizure, and sand dropped by sandblasting for 3 minutes, but seizure occurred when other inorganic binder was used. It was difficult to remove the sand. Table 1 also shows the results of measuring the transverse rupture force of a 10 × 10 × 60 mm test piece.

参考例 耐火物ムライトを使用し、実施例と同条件にて試験片
を製作し、コロイダルシリカを含浸させた。試験片の乾
燥方法としては、自然乾燥48時間と減圧マイクロ波乾燥
をそれぞれ行ない、その後、大気中1500℃×1時間で焼
成し、実施例と同様にして鋳鋼を注入し、砂落ち性を調
べた結果、自然乾燥を48時間行なった場合には焼結し、
砂は落ちなかったのに対して、減圧マイクロ波乾燥を行
なった場合には、5分のサンドブラスト処理で内部の砂
が落ち、さらに5分処理した結果、表面の砂も落とすこ
とができた。これは、減圧マイクロ波乾燥では含浸した
無機粘結剤(コロイダルシリカ)が表面にしみ出し、水
分のみが飛んでしまい、表面付近に粘結剤が多く析出し
て表面強度は充分となるが、中央部は結合力が小さくな
り、その結果砂落ち性が良くなったためである。抗折力
を測定した結果を表−2に示す。
Reference Example A test piece was produced using refractory mullite under the same conditions as in the example, and was impregnated with colloidal silica. The test pieces were dried by air drying for 48 hours and microwave drying under reduced pressure, and then fired at 1500 ° C for 1 hour in the air. As a result, when air drying was performed for 48 hours, sintering was performed,
In contrast to the case where the sand did not fall, when the microwave drying under reduced pressure was performed, the sand inside was dropped by sandblasting for 5 minutes, and the sand on the surface was also dropped as a result of the treatment for 5 minutes. This is because the impregnated inorganic binder (colloidal silica) exudes to the surface in vacuum microwave drying and only water is blown off, and a large amount of the binder is deposited near the surface, and the surface strength is sufficient. The reason for this is that the bonding strength at the central portion is reduced, and as a result, the sand-dropping property is improved. Table 2 shows the results of measuring the transverse rupture force.

〔発明の効果〕 以上のように、本発明の鋳型造型法は、鋳型造型→無
機粘結剤含浸→乾燥→焼成という一連の工程からなる鋳
型造型法において、無機粘結剤としてSiO2/Na2Oモル比
が4.5〜6.0の無機粘結剤を用いるものであるため、得ら
れる鋳型は常温において充分な強度を有すると共に、焼
付きもなく、溶湯注入後の砂落ち性も良い。また、有機
系バインダー使用におけるような鋳型からのガス発生も
少なく、上記一連の工程により生産性よく鋳型造型を行
なうことができ、さらに減圧マイクロ波乾燥を行なうこ
とにより乾燥時間を短縮することもできる。
[Effects of the Invention] As described above, the mold molding method of the present invention is a mold molding method including a series of steps of mold molding → impregnation of an inorganic binder → drying → firing, wherein SiO 2 / Na is used as an inorganic binder. for 2 O molar ratio is to use an inorganic binder of 4.5 to 6.0, with the resulting mold has a sufficient strength at room temperature, burn without any may sand drop resistance after the molten metal injection. In addition, the generation of gas from the mold as in the case of using an organic binder is small, the mold can be formed with high productivity by the above-described series of steps, and the drying time can be reduced by performing microwave drying under reduced pressure. .

【図面の簡単な説明】[Brief description of the drawings]

第1図は実施例において行なった焼付テストの注入方式
を示す概略説明図であり、第1図(A)は焼付テスト装
置の平面図、第1図(B)はその縦断面図、第2図は砂
落ち評価の試験方法を示す概略説明図である。
FIG. 1 is a schematic explanatory view showing an injection system of a printing test performed in an embodiment. FIG. 1 (A) is a plan view of a printing test apparatus, FIG. 1 (B) is a longitudinal sectional view thereof, and FIG. The figure is a schematic explanatory view showing a test method for evaluating sandfall.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】鋳物砂に有機質粘結剤を加えて造型した鋳
型に、SiO2/Na2Oモル比が4.5〜6.0の無機粘結剤を含浸
させ、乾燥後、大気中高温下で有機物を燃焼させ、無機
粘結剤で鋳型形状を保持するようにしたことを特徴とす
る鋳型造型法。
A mold prepared by adding an organic binder to a molding sand is impregnated with an inorganic binder having a SiO 2 / Na 2 O molar ratio of 4.5 to 6.0, dried, and then dried at a high temperature in the atmosphere. Characterized in that the mold is burned and the shape of the mold is maintained with an inorganic binder.
【請求項2】無機粘結剤が水ガラス系無機高分子系粘結
剤であることを特徴とする請求項1記載の鋳型造型法。
2. A method according to claim 1, wherein the inorganic binder is a water glass-based inorganic polymer binder.
【請求項3】乾燥を自然乾燥、低温乾燥又は減圧マイク
ロ波乾燥により行なうことを特徴とする請求項1又は2
記載の鋳型造型法。
3. The method according to claim 1, wherein the drying is performed by natural drying, low-temperature drying, or microwave drying under reduced pressure.
The molding method according to the above.
【請求項4】無機粘結剤の含浸を真空減圧下で行ない、
圧力と含浸時間により含浸層の厚さを調整することを特
徴とする請求項1乃至3のいずれかに記載の鋳型造型
法。
4. Impregnation of an inorganic binder under reduced pressure under vacuum,
4. The method according to claim 1, wherein the thickness of the impregnated layer is adjusted by the pressure and the impregnation time.
【請求項5】無機粘結剤の含浸を、無機粘結剤に界面活
性剤を添加したものを用いて行ない、含浸時間により含
浸層の厚さを調整することを特徴とする請求項1乃至3
のいずれかに記載の鋳型造型法。
5. The method according to claim 1, wherein the impregnation of the inorganic binder is carried out using an inorganic binder to which a surfactant is added, and the thickness of the impregnated layer is adjusted by the impregnation time. 3
The molding method according to any one of the above.
JP2040953A 1990-02-23 1990-02-23 Mold making method Expired - Lifetime JP2579825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2040953A JP2579825B2 (en) 1990-02-23 1990-02-23 Mold making method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2040953A JP2579825B2 (en) 1990-02-23 1990-02-23 Mold making method

Publications (2)

Publication Number Publication Date
JPH03248740A JPH03248740A (en) 1991-11-06
JP2579825B2 true JP2579825B2 (en) 1997-02-12

Family

ID=12594862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2040953A Expired - Lifetime JP2579825B2 (en) 1990-02-23 1990-02-23 Mold making method

Country Status (1)

Country Link
JP (1) JP2579825B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101515572B1 (en) * 2015-01-20 2015-04-29 주식회사 디알액시온 Manufacturing method of core and casting product using inorganic binder

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5131209A (en) * 1974-09-10 1976-03-17 Matsushita Electric Ind Co Ltd JIKITEEPUHIKI DASHISOCHI
JPS52120225A (en) * 1976-04-03 1977-10-08 Nakata Giken Kk Mold manufacturing
JPH01148438A (en) * 1987-12-01 1989-06-09 Mazda Motor Corp Core for precision casting

Also Published As

Publication number Publication date
JPH03248740A (en) 1991-11-06

Similar Documents

Publication Publication Date Title
PT1339512E (en) MOLD FOR FOUNDATION BY INVOLVEMENT AND MANUFACTURING PROCESS
US3643728A (en) Process of casting nickel base alloys using water-soluble calcia cores
DE60131846T3 (en) FIRE-RESISTANT, POROUS MOLDED BODIES WITH HIGH ALUMINUM OXIDE CONTENT AND METHOD FOR THE PRODUCTION THEREOF
CN109365749B (en) Vacuum hot forming production process for precision manufacturing of fired mold
CN111995414B (en) Polyacrylonitrile-based carbon fiber reinforced ceramic core and preparation method thereof
JP2001073049A5 (en)
WO1996015866A1 (en) Ceramic core for investment casting and method for preparation of the same
JP3540842B2 (en) Method of manufacturing ceramic core for casting
US20060211567A1 (en) Method and slip for production of a moulded body from ceramic material ceramic moulded body and use of such a moulded body
JP2579825B2 (en) Mold making method
JPH0824996B2 (en) Water-soluble core and method for producing the same
JPH10265259A (en) Fused silica-based refractory and its production
CN110465627B (en) Method for manufacturing surface-layer compact internal loose ceramic core for precision casting of hollow turbine blade
CN114074177B (en) Preparation method of investment precision casting shell for brittle material
JPH0811273B2 (en) Mold making method
RU2674273C1 (en) Method of manufacturing a ceramic form for investment casting
CN111872316A (en) 3D printing sand additive and application thereof
JP2002254135A (en) Mold manufacturing method for casting
JPS63140740A (en) Mold for casting active metal of high melting point
JP3761414B2 (en) Casting mold and manufacturing method thereof
SU599910A1 (en) Solution for strengthening ceramic shell moulds
JP2002194456A (en) Method for manufacturing large-size thick-walled ceramics/metal composite material
SU801965A1 (en) Solution for removing fusable patterns from casting shell moulds
RU2108195C1 (en) Suspension for manufacture of shell molds by investment patterns
Kidalov et al. Forming of the structure of binder film in waterglass mixtures depending on the setting method