JPH08112530A - Production of catalyst for purification of exhaust gas - Google Patents

Production of catalyst for purification of exhaust gas

Info

Publication number
JPH08112530A
JPH08112530A JP6251960A JP25196094A JPH08112530A JP H08112530 A JPH08112530 A JP H08112530A JP 6251960 A JP6251960 A JP 6251960A JP 25196094 A JP25196094 A JP 25196094A JP H08112530 A JPH08112530 A JP H08112530A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
zeolite
oxygen
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6251960A
Other languages
Japanese (ja)
Inventor
Kenichi Haga
健一 羽賀
Hiroaki Hidaka
宏昭 樋高
Yoshiharu Toida
良晴 戸井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP6251960A priority Critical patent/JPH08112530A/en
Publication of JPH08112530A publication Critical patent/JPH08112530A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To shift the temp. at which a catalyst has NOx removal activity to the high temp. side by heat-treating a Pt carried zeolite in a specified temp. range in the presence of oxygen. CONSTITUTION: A zeolite such as ferrierite or mordenite is immersed in a soln. prepd. by dissolving a Pt salt in a solvent such as water and Pt is carried on the zeolite by ion exchange or other method. The resultant Pt carried zeolite is heat-treated at 700-1,100 deg.C, preferably 750-1,050 deg.C, especially preferably 800- -1,000 deg.C in the presence of oxygen to obtain the objective Pt carried zeolite catalyst having activity at high temp. When this catalyst is used, exhaust gas is efficiently purified at about 250-300 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は排気ガス浄化触媒に関
し、さらに詳しくは、酸素過剰の排気ガス、即ち、排気
ガス中に含まれる一酸化炭素、水素及び炭化水素等の還
元性物質を完全に酸化させるのに必要な量より過剰な量
の酸素が含まれている排気ガス中の窒素酸化物(NO
x)を効率よく浄化する排気ガス浄化触媒の製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst, and more particularly, to an exhaust gas in excess of oxygen, that is, to completely reduce reducing substances such as carbon monoxide, hydrogen and hydrocarbons contained in the exhaust gas. Nitrogen oxides (NO) in exhaust gas containing oxygen in excess of that required for oxidation.
The present invention relates to a method for manufacturing an exhaust gas purification catalyst that efficiently purifies x).

【0002】[0002]

【従来の技術】従来、自動車などの内燃機関や工場プラ
ントなどの排気ガス浄化用触媒として、排気ガス中の一
酸化炭素(CO)及び炭化水素(HC)等の酸化と、窒
素酸化物(NOx)の還元とを同時に行なって、排気ガ
スを浄化する触媒が数多く知られている。近年、リーン
バーンエンジン、ディーゼルエンジン等のCOやHC等
の還元性物質を完全に酸化させるのに必要な量より過剰
な量の酸素が含まれている排気ガス中のNOxを効率よ
く除去する排気ガス浄化用触媒が望まれている。
2. Description of the Related Art Conventionally, as an exhaust gas purifying catalyst for internal combustion engines such as automobiles and factory plants, oxidation of carbon monoxide (CO) and hydrocarbons (HC) in exhaust gas and nitrogen oxides (NOx) have been performed. There are many known catalysts that purify exhaust gas by simultaneously performing reduction of). In recent years, exhaust gas that efficiently removes NOx in exhaust gas that contains an excess amount of oxygen that is necessary to completely oxidize reducing substances such as CO and HC in lean burn engines and diesel engines. Gas purification catalysts are desired.

【0003】このような酸化雰囲気下でNOxを除去す
る触媒としては、例えばCu、Co等をゼオライト担体
に担持した触媒が知られている。しかしながらCuおよ
びCo等をゼオライト担体に担持した触媒は350℃以
上においてNOx除去活性が発現するものの、高温耐久
性に乏しいという問題を有する。一方、Pt等の貴金属
を前記ゼオライト担体やアルミナ担体に担持した触媒
は、前記、Cu、Co等をゼオライトに担持した触媒に
比べて、比較的高温耐久性があることが知られている。
As a catalyst for removing NOx under such an oxidizing atmosphere, for example, a catalyst in which Cu, Co or the like is supported on a zeolite carrier is known. However, although a catalyst in which Cu, Co, etc. are supported on a zeolite carrier exhibits NOx removal activity at 350 ° C. or higher, it has a problem of poor high-temperature durability. On the other hand, it is known that a catalyst in which a precious metal such as Pt is supported on the zeolite carrier or alumina carrier has relatively high temperature durability as compared with the above-described catalyst in which Cu, Co, etc. are supported on the zeolite.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、Pt等
の貴金属をアルミナ等の酸化物に担持した触媒は、Pt
粒子の凝集および担体の表面積低下等により活性が低下
する等、十分な高温耐久性が得られない等の問題点があ
る。例えば、特開平4−267946号公報においてP
t/アルミナ触媒を大気中800℃で熱処理することで
200〜350℃のNOx除去活性が消失してしまうこ
とが記載されている。
However, a catalyst in which a noble metal such as Pt is supported on an oxide such as alumina is Pt.
There is a problem that sufficient high temperature durability cannot be obtained, such as a decrease in activity due to agglomeration of particles and a decrease in surface area of the carrier. For example, in Japanese Patent Laid-Open No. 4-267946, P
It is described that heat-treating a t / alumina catalyst at 800 ° C. in the atmosphere causes the NOx removal activity at 200 to 350 ° C. to disappear.

【0005】貴金属をゼオライトにイオン交換した触媒
を高温で熱処理することに関しては、例えば、特開平5
−57183号公報において、Pdをイオン交換したZ
SM−5ゼオライトを高温で焼成した触媒に関して、炭
化水素の吸着性能の検討が知られている。しかしなが
ら、これら処理による酸素過剰下における排気ガス中の
NOx除去性能の影響に関しては全く不明である。
Regarding the heat treatment of a catalyst in which a noble metal is ion-exchanged with zeolite at a high temperature, for example, Japanese Patent Laid-Open Publication No. Hei 5 (1999) -53977 is used.
JP-A-57183, Z containing ion exchanged Pd
Regarding the catalyst obtained by calcining SM-5 zeolite at a high temperature, studies on the adsorption performance of hydrocarbons are known. However, it is completely unknown about the influence of these treatments on the NOx removal performance in exhaust gas under excess oxygen.

【0006】従来技術では、Ptをゼオライトに担持し
た触媒はNOx除去活性温度は200℃前後であり、そ
れ以上の温度では十分な活性が得られないという問題点
がある。
In the prior art, the catalyst supporting Pt on zeolite has a NOx removal activity temperature of about 200 ° C., and there is a problem that sufficient activity cannot be obtained at temperatures higher than that.

【0007】この酸素過剰下における排気ガス中のNO
x除去のために調製されたPt/ゼオライト触媒の焼成
処理温度は、従来600℃以下であった。
NO in the exhaust gas under this oxygen excess
The calcination temperature of the Pt / zeolite catalyst prepared for removing x was conventionally 600 ° C. or lower.

【0008】[0008]

【課題を解決するための手段】上記のようなPtをゼオ
ライトに担持した触媒の問題を解決する方法に関して本
発明者らは詳細に検討した。その結果、Ptをゼオライ
トに担持した触媒を、酸素存在下において温度700〜
1100℃で熱処理することで、触媒のNOx除去活性
の温度を高温にシフトさせることができる新規な事実を
見いだし本発明を完成するに到った。
DISCLOSURE OF THE INVENTION The inventors of the present invention have made detailed studies on a method for solving the problem of the catalyst in which Pt is supported on zeolite as described above. As a result, the catalyst in which Pt is supported on zeolite is heated to 700 to 700 ° C in the presence of oxygen.
The present invention has been completed by discovering the novel fact that the temperature of NOx removal activity of the catalyst can be shifted to a high temperature by heat treatment at 1100 ° C.

【0009】すなわち、本発明は、Ptを担持したゼオ
ライトを酸素存在下において温度700〜1100℃で
熱処理してなる排気ガス浄化用触媒の製造方法に関す
る。
That is, the present invention relates to a method for producing an exhaust gas purifying catalyst obtained by heat-treating Pt-supported zeolite at a temperature of 700 to 1100 ° C. in the presence of oxygen.

【0010】以下に本発明をさらに詳細に説明する。The present invention will be described in more detail below.

【0011】本発明で用いられるゼオライトは、一般的
に xM2/nO・Al23・ySiO2・zH2O (ただしnは陽イオンMの原子価、xは0.8〜2の範
囲の数、yは2以上の数、zは0以上の数である)の組
成を有するものである。このうち、SiO2/Al23
モル比が15以上であることがゼオライト自体の耐熱
性、耐久性の点から好ましく、通常15〜2200程度
のものが用いられる。また、MとしてはLi、Na、K
等のアルカリ金属等が挙げられる。
[0011] Zeolite to be used in the present invention are generally xM 2 / n O · Al 2 O 3 · ySiO 2 · zH 2 O ( where n is the valence of the cation M, x is the 0.8 to 2 The number of ranges, y is a number of 2 or more, and z is a number of 0 or more). Of these, SiO 2 / Al 2 O 3
A molar ratio of 15 or more is preferable from the viewpoint of heat resistance and durability of the zeolite itself, and a zeolite having a molar ratio of about 15 to 2200 is usually used. Also, as M, Li, Na, K
Alkali metals and the like.

【0012】本発明の触媒を構成するゼオライトは天然
品、合成品のいずれであってもよく、これらゼオライト
の製造方法は特に限定されるものではないが、代表的に
はフェリエライト、モルデナイト、Y、ZSM−5、Z
SM−11、ZSM−12、ZSM−20等のゼオライ
トが使用できる。また、これらのゼオライトは、そのま
まあるいはアンモニウム塩、鉱酸等で処理してNH4
あるいはH型にイオン交換してから本発明の触媒として
使用することもできる。
The zeolite constituting the catalyst of the present invention may be either a natural product or a synthetic product, and the manufacturing method of these zeolites is not particularly limited, but typically, it is ferrierite, mordenite, Y. , ZSM-5, Z
Zeolites such as SM-11, ZSM-12 and ZSM-20 can be used. Further, these zeolites can be used as the catalyst of the present invention as they are or after being treated with an ammonium salt, a mineral acid or the like and subjected to ion exchange into NH 4 type or H type.

【0013】本発明においては、Ptを担持したゼオラ
イトを触媒として用いる。Ptの担持方法は、特に限定
はされず、イオン交換法、含浸法等の公知の方法を用い
ることができる。その際、Ptがその塩の溶液の形で使
用される。Ptの塩としては、特に制限はないが、通
常、その硝酸塩類、硫酸塩類、炭酸塩類、塩酸、臭酸塩
類(ハロゲン化物)などの各種Ptの無機塩類、酢酸塩
類等の有機酸塩類、水酸化物、酸化物等が挙げられ、ま
た上記各種の化合物のアンミン錯体、アミン錯体、ハロ
ゲノ錯体(例えばヘキサクロロ白金酸)や、これらのナ
トリウム塩、カリウム塩類、シアノ錯体、アセチルアセ
トナト錯体等の有機錯体または無機錯体類を挙げること
ができる。これらPtの塩は一種単独で使用してもよい
し、2種以上を混合物や複合化合物として併用してもよ
い。
In the present invention, Pt-supported zeolite is used as a catalyst. The method for supporting Pt is not particularly limited, and a known method such as an ion exchange method or an impregnation method can be used. Pt is then used in the form of its salt solution. The salt of Pt is not particularly limited, but is usually various inorganic salts of Pt such as nitrates, sulfates, carbonates, hydrochloric acid, bromates (halides), organic acid salts such as acetates, water, etc. Oxides, oxides, and the like. Ammine complexes, amine complexes, halogeno complexes (for example, hexachloroplatinic acid) of the above various compounds, and their organic salts such as sodium salts, potassium salts, cyano complexes, and acetylacetonato complexes. Mention may be made of complexes or inorganic complexes. These Pt salts may be used alone or in combination of two or more as a mixture or complex compound.

【0014】これらPtの塩を溶液にするに際しては溶
媒を用いる。このとき用いる溶媒には特に制限はない
が、通常、水あるいはアルコール、カルボニル化合物等
の有機物を用いることができる。これら溶媒は一種単独
で用いてもよいし、2種以上を混合して使用してもよ
い。
A solvent is used when these Pt salts are made into a solution. The solvent used at this time is not particularly limited, but usually water or an organic substance such as an alcohol or a carbonyl compound can be used. These solvents may be used alone or in combination of two or more.

【0015】本発明においてPtの担持量は特に制限は
ないが、通常、触媒全体の重量に対して貴金属を0.0
05〜10重量%担持すればよい。
In the present invention, the amount of Pt supported is not particularly limited, but usually 0.0% of noble metal is added to the total weight of the catalyst.
It may be carried in an amount of from 05 to 10% by weight.

【0016】本発明では、調製方法は、例えばイオン交
換法の場合、Ptの塩を水等の溶媒に溶解し調製したP
t溶液中にゼオライトを浸積しイオン交換処理を行な
い、固液分離、洗浄、乾燥して触媒調製を行なう。ま
た、含浸法の場合、Ptの塩を溶媒に溶解し調製したP
t溶液中にゼオライトを浸積し、溶媒を蒸発除去、乾燥
して触媒調製を行なう。
In the present invention, in the case of the ion exchange method, for example, the Pt salt prepared by dissolving a salt of Pt in a solvent such as water is used.
The catalyst is prepared by immersing zeolite in a solution of t to perform ion exchange treatment, solid-liquid separation, washing and drying. In the case of the impregnation method, P prepared by dissolving a Pt salt in a solvent is used.
The catalyst is prepared by immersing zeolite in the solution t, removing the solvent by evaporation, and drying.

【0017】さらに本発明においては、Ptを担持した
ゼオライトを酸素存在下で700〜1100℃、好まし
くは750〜1050℃、さらに好ましくは800〜1
000℃で熱処理することを必須とする。この処理温度
は、ゼオライト自身の耐熱性や、触媒活性温度や触媒活
性維持の点から800〜1000℃が好ましい。
Further, in the present invention, Pt-supported zeolite in the presence of oxygen is 700 to 1100 ° C., preferably 750 to 1050 ° C., more preferably 800 to 1 ° C.
It is essential to perform heat treatment at 000 ° C. The treatment temperature is preferably 800 to 1000 ° C. from the viewpoint of the heat resistance of the zeolite itself, the catalyst activation temperature and the maintenance of the catalyst activity.

【0018】熱処理の雰囲気は特に制限はないが、通
常、窒素、二酸化炭素、ヘリウム、アルゴン、水蒸気等
の不活性ガスで酸素を希釈して用いることができる。ま
た、空気をそのまま用いることができる。これらのうち
経済的な観点から、空気が好ましい。また、酸素の存在
方法は、大気中あるいはガス流通下の処理のいずれでも
よい。
The atmosphere for the heat treatment is not particularly limited, but normally, oxygen can be diluted with an inert gas such as nitrogen, carbon dioxide, helium, argon, or steam before use. Further, air can be used as it is. Of these, air is preferable from the economical viewpoint. Further, the method of existence of oxygen may be either treatment in air or under gas flow.

【0019】本発明において、酸素存在下における触媒
の処理時間は特に制限はないが、通常、2〜10時間で
十分であり、又、熱処理中に温度を段階的に変化させて
もよい。
In the present invention, the treatment time of the catalyst in the presence of oxygen is not particularly limited, but usually 2 to 10 hours is sufficient, and the temperature may be changed stepwise during the heat treatment.

【0020】本発明において得られる触媒と酸化雰囲気
の排気ガスとを接触させることにより、排気ガス中のH
CやNOx等の有害な物質を浄化することができる。
By bringing the catalyst obtained in the present invention into contact with the exhaust gas in an oxidizing atmosphere, the H in the exhaust gas is reduced.
It is possible to purify harmful substances such as C and NOx.

【0021】ここで「酸化雰囲気の排気ガス」とは、排
気ガス中に含まれるCO、水素およびHC等の還元性物
質を完全に酸化して水と炭酸ガスに変換するのに必要な
酸素量よりも過剰な量の酸素が含まれている排気ガスを
いう。すなわち、排気ガス中に含まれるCO、水素およ
びHC等の還元性物質を完全に酸化して水と炭酸ガスに
変換するのに必要な酸素濃度をA、排気ガス中の酸素濃
度をBとした場合、B/Aは1より大きな値であり、本
発明における排気ガスでは、通常B/A=2〜800と
なる。例えば、自動車等の内燃機関から排気ガスの場合
には、空燃比(A/F)が17〜23と大きい状態(燃
料のリーン領域)で排出される排気ガスである。
Here, "exhaust gas in an oxidizing atmosphere" means the amount of oxygen required to completely oxidize reducing substances such as CO, hydrogen and HC contained in the exhaust gas to convert them into water and carbon dioxide. Exhaust gas containing an excessive amount of oxygen. That is, the oxygen concentration required to completely oxidize reducing substances such as CO, hydrogen and HC contained in the exhaust gas to convert them into water and carbon dioxide gas was A, and the oxygen concentration in the exhaust gas was B. In this case, B / A is a value larger than 1, and in the exhaust gas of the present invention, B / A is usually 2 to 800. For example, in the case of exhaust gas from an internal combustion engine such as an automobile, the exhaust gas is exhausted in a large air-fuel ratio (A / F) of 17 to 23 (fuel lean region).

【0022】本発明において得られる触媒は、排気ガス
中のHCとNOxとの反応を促進させることによりNO
xの浄化を行うことができる。通常、排気ガス中に残存
するHCを用いてNOxの浄化をおこなうことができる
が、NOxの浄化が不十分である場合、外部よりHCを
補充してもよい。この場合、HCに特に制限はないが、
HCの必要量としては、NOxに対して0.1〜20倍
が好ましい。
The catalyst obtained in the present invention is NO by promoting the reaction between HC and NOx in the exhaust gas.
x can be purified. Normally, HC remaining in the exhaust gas can be used to purify NOx, but if purification of NOx is insufficient, HC may be supplemented from the outside. In this case, the HC is not particularly limited,
The required amount of HC is preferably 0.1 to 20 times that of NOx.

【0023】具体的には、反応器内に前記触媒を配置
し、その反応器内に排気ガスを導入して前記触媒と排気
ガスを接触させて窒素酸化物を還元浄化し、その後、浄
化された排気ガスを反応器より排出させることにより実
施すればよい。また、本発明の触媒は公知の触媒と併用
することによりさらに浄化効果を高めることも可能であ
る。
Specifically, the catalyst is placed in a reactor, and exhaust gas is introduced into the reactor to bring the catalyst into contact with the exhaust gas to reduce and purify nitrogen oxides, and then purify the nitrogen oxides. The exhaust gas may be discharged from the reactor. Further, the purifying effect can be further enhanced by using the catalyst of the present invention in combination with a known catalyst.

【0024】本発明において、浄化時の触媒層の反応温
度としては、通常150〜800℃の範囲の温度をとる
ことができる。
In the present invention, the reaction temperature of the catalyst layer at the time of purification can be usually in the range of 150 to 800 ° C.

【0025】また、排気ガスを触媒層に導入する際、空
間速度(SV)は特に制限はないが、例えば、1,00
0〜550,000/時間の範囲が活性を維持するため
に好ましい。
When introducing the exhaust gas into the catalyst layer, the space velocity (SV) is not particularly limited.
The range of 0-550,000 / hour is preferable for maintaining the activity.

【0026】[0026]

【作用】本発明の特定の処理を行ったPtを担持したゼ
オライト触媒は、活性温度が高温であり、250〜30
0℃における排気ガスの浄化を、従来のPtを担持した
ゼオライト触媒よりも効率よく行うことができる。
The Pt-supported zeolite catalyst subjected to the specific treatment of the present invention has a high activation temperature of 250 to 30
The exhaust gas at 0 ° C. can be purified more efficiently than the conventional Pt-supported zeolite catalyst.

【0027】[0027]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明は、以下の実施例に限定されるものではな
い。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples.

【0028】参考例(Pt担持ゼオライトの調製) シリカ/アルミナ比が40のNa型ZSM−5:15g
を、テトラアンミンジクロロ白金塩1水和物(Pt(N
34Cl2・H2O)がゼオライト中のアルミナ(Al
23)のモル数と等しい量だけ溶解した水溶液135g
に室温で投入し、20時間かくはんすることによりイオ
ン交換処理を行った。処理終了後、固体をろ別し、さら
に固体を純水で充分洗浄した。乾燥器で110℃/12
時間乾燥することによりPt担持ゼオライト触媒を得
た。
Reference Example (Preparation of Pt-supported zeolite) Na-type ZSM-5 with silica / alumina ratio of 40: 15 g
Tetraammine dichloroplatinum salt monohydrate (Pt (N
H 3 ) 4 Cl 2 · H 2 O) is the alumina (Al
135 g of an aqueous solution dissolved in an amount equal to the number of moles of 2 O 3 )
Was charged at room temperature and stirred for 20 hours to perform ion exchange treatment. After the treatment was completed, the solid was filtered off and the solid was thoroughly washed with pure water. 110 ° C / 12 with a dryer
A Pt-supported zeolite catalyst was obtained by drying for an hour.

【0029】化学分析の結果、このPt担持ゼオライト
触媒におけるPtの含有量は、触媒に対して7重量%、
Pt/Al23=0.91(モル比)であった。
As a result of chemical analysis, the Pt content in this Pt-supported zeolite catalyst was 7% by weight based on the catalyst.
It was Pt / Al 2 O 3 = 0.91 (molar ratio).

【0030】実施例1(触媒1の調製) 参考例で調製した、Pt担持ゼオライト触媒を、電気炉
を用いて、大気中で、200℃/2時間ついで600℃
/3時間さらに800℃/3時間で熱処理を行い、触媒
1を調製した。
Example 1 (Preparation of Catalyst 1) The Pt-supported zeolite catalyst prepared in Reference Example was heated to 200 ° C./2 hours and then to 600 ° C. in the air using an electric furnace.
The catalyst 1 was prepared by heat treatment at 800 ° C. for 3 hours and further at 3 hours.

【0031】実施例2(触媒2の調製) 参考例で調製した、Pt担持ゼオライト触媒を、電気炉
を用いて、大気中で、200℃/2時間ついで600℃
/3時間さらに1000℃/3時間で熱処理を行い、触
媒2を調製した。
Example 2 (Preparation of Catalyst 2) The Pt-supported zeolite catalyst prepared in Reference Example was heated to 200 ° C./2 hours and then to 600 ° C. in the air using an electric furnace.
The catalyst 2 was prepared by performing heat treatment at 1000 ° C. for 3 hours and further at 1000 ° C. for 3 hours.

【0032】比較例1(比較触媒の調製) 参考例で調製した、Pt担持ゼオライト触媒を、電気炉
を用いて、大気中で、200℃/2時間ついで650℃
/3時間で熱処理をおこない、これを比較触媒とした。
Comparative Example 1 (Preparation of Comparative Catalyst) The Pt-supported zeolite catalyst prepared in Reference Example was heated to 200 ° C./2 hours and then 650 ° C. in the atmosphere using an electric furnace.
Heat treatment was performed for / 3 hours, and this was used as a comparative catalyst.

【0033】実施例3(触媒の活性評価) 触媒1を各々プレス成形後粉砕して12〜20メッシュ
に整粒し、その0.5ccを常圧固定床反応管に充填し
た。表1に示す組成のガス(以下、反応ガスという)を
166.6ml/分で流通しながら、600℃まで昇温
し、その後、20分保持した後に、降温し、触媒活性測
定温度毎に温度を一定に保ち、各温度における触媒活性
を測定した。触媒2および比較触媒についても同様の方
法で活性を測定した。各々の触媒における各反応温度で
の初期のNOx浄化率およびNOx浄化率が最高になる
ときの反応温度を表2に示す。なお、NOx浄化率と
は、次式により求めた値である。
Example 3 (Evaluation of activity of catalyst) Catalyst 1 was press-molded and then pulverized to be sized to 12 to 20 mesh, and 0.5 cc of the crushed catalyst was filled in a fixed pressure reaction tube at atmospheric pressure. A gas having a composition shown in Table 1 (hereinafter, referred to as a reaction gas) was heated to 600 ° C. while flowing at a rate of 166.6 ml / min, and then held for 20 minutes and then cooled, and the temperature was measured at each catalyst activity measurement temperature. Was kept constant and the catalyst activity at each temperature was measured. The activity of the catalyst 2 and the comparative catalyst was measured by the same method. Table 2 shows the initial NOx purification rate at each reaction temperature of each catalyst and the reaction temperature when the NOx purification rate becomes the highest. The NOx purification rate is a value obtained by the following equation.

【0034】NOx浄化率(%)=100×(NOou
t)/NOin NOin : 反応ガス組成中のNO濃度 NOout: 常圧固定床反応管の出口におけるN2
度とN2O濃度とをたしあわせたものを2倍したガス濃
NOx purification rate (%) = 100 × (NOou
t) / NOin NOin: NO concentration in the reaction gas composition NOout: Gas concentration obtained by doubling the sum of the N 2 concentration and the N 2 O concentration at the outlet of the atmospheric pressure fixed bed reaction tube

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【発明の効果】本発明によれば、Ptを担持したゼオラ
イトに特定の処理を行うことにより、酸素過剰雰囲気の
排気ガスの炭化水素、窒素酸化物等の有害な物質の同時
除去が、従来のPtを担持したゼオライト触媒が有効で
ない温度領域でも行うことができる。本発明は、自動車
等の内燃機関のみならず、硝酸製造工場、各種燃焼設備
などの窒素酸化物を含有する排気ガスの浄化に利用で
き、産業上極めて有意義なものである。
According to the present invention, the Pt-supported zeolite is subjected to a specific treatment to simultaneously remove harmful substances such as hydrocarbons and nitrogen oxides in exhaust gas in an oxygen excess atmosphere. It can also be carried out in a temperature range in which the zeolite catalyst supporting Pt is not effective. INDUSTRIAL APPLICABILITY The present invention can be applied not only to internal combustion engines such as automobiles but also to purification of exhaust gas containing nitrogen oxides such as a nitric acid manufacturing plant and various combustion facilities, and is industrially very significant.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 29/44 ZAB A 37/08 ZAB B01D 53/36 104 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication location B01J 29/44 ZAB A 37/08 ZAB B01D 53/36 104 A

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Ptを担持したゼオライトを酸素存在下
において温度700〜1100℃で熱処理してなる排気
ガス浄化用触媒の製造方法。
1. A method for producing an exhaust gas purifying catalyst, which comprises heat-treating zeolite carrying Pt at a temperature of 700 to 1100 ° C. in the presence of oxygen.
JP6251960A 1994-10-18 1994-10-18 Production of catalyst for purification of exhaust gas Pending JPH08112530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6251960A JPH08112530A (en) 1994-10-18 1994-10-18 Production of catalyst for purification of exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6251960A JPH08112530A (en) 1994-10-18 1994-10-18 Production of catalyst for purification of exhaust gas

Publications (1)

Publication Number Publication Date
JPH08112530A true JPH08112530A (en) 1996-05-07

Family

ID=17230553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6251960A Pending JPH08112530A (en) 1994-10-18 1994-10-18 Production of catalyst for purification of exhaust gas

Country Status (1)

Country Link
JP (1) JPH08112530A (en)

Similar Documents

Publication Publication Date Title
JP2909553B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
KR101091705B1 (en) Preparation method of zeolite catalyst having iron ions for single reduction of nitrous oxide or simultaneous reduction of nitrous oxide and nitrogen monoxide by ammonia reductant and single reduction of nitrous oxide or simultaneous reduction of nitrous oxide, zeolite catalyst by using the method and nitrogen monoxide by using the method
JPH07328440A (en) Catalyst for decomposition of ammonia
JPH08112530A (en) Production of catalyst for purification of exhaust gas
JPH0516886B2 (en)
JP2605956B2 (en) Exhaust gas purification catalyst
JP3436419B2 (en) Method for producing high heat resistant nitrogen oxide purifying catalyst
JPH06170166A (en) Removal of nitrogen oxide
JP3111491B2 (en) Exhaust gas purification catalyst
JPH04235743A (en) Preparation of catalyst for purifying exhaust gas
JP3257686B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP3395219B2 (en) Nitrogen oxide removal method
JP3362401B2 (en) Exhaust gas purification catalyst
JPH0386213A (en) Method for catalytically decomposing nitrogen oxide
JPH08117558A (en) Formation of nitrogen dioxide
JP2661383B2 (en) Exhaust gas purification catalyst
JP3482658B2 (en) Nitrogen oxide removal method
JPH07251077A (en) Production of catalyst for purifying nox-containing discharge gas
KR100321471B1 (en) METHOD FOR FABRICATING DeNOx CATALYST
JP3395221B2 (en) Nitrogen oxide removal method
JP2601018B2 (en) Exhaust gas purification catalyst
JPH09168724A (en) Removing method for nitrogen oxide
KR100349451B1 (en) FABRICATION METHOD OF DeNOx CATALYST
JPH04243545A (en) Catalyst for exhaust gas purification
JPH04367724A (en) Catalyst and method for removing nitrogen oxide