JPH08111975A - Dc power unit - Google Patents

Dc power unit

Info

Publication number
JPH08111975A
JPH08111975A JP6245526A JP24552694A JPH08111975A JP H08111975 A JPH08111975 A JP H08111975A JP 6245526 A JP6245526 A JP 6245526A JP 24552694 A JP24552694 A JP 24552694A JP H08111975 A JPH08111975 A JP H08111975A
Authority
JP
Japan
Prior art keywords
load
circuit
power
voltage
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6245526A
Other languages
Japanese (ja)
Other versions
JP3517849B2 (en
Inventor
Koichi Morita
浩一 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP24552694A priority Critical patent/JP3517849B2/en
Publication of JPH08111975A publication Critical patent/JPH08111975A/en
Application granted granted Critical
Publication of JP3517849B2 publication Critical patent/JP3517849B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

PURPOSE: To reduce the power consumption of a DC power unit and improve the efficiency of the power unit when the load of the unit is light. CONSTITUTION: When the voltage drop across the ternary winding 7c of an output transformer 7 in case the load of a DC power unit is light is detected by means of the resistors 32 and 33 of a loaded state detecting means 29 and a Zener diode 36, transistors 30 and 31 are turned off and power supply to a first control circuit 11 from the winding 7c is stopped. As a result, the turning on/off operation of a first MOSFET 4 is stopped, because the operation of the control circuit 11 is stopped and the supply of a control signal to the gate terminal of the MOSFET 4 is stopped. Therefore, the operation of a power factor improving circuit 27 can be stopped when the load is light. Accordingly, the power consumption of a DC power source unit can be reduced and the efficiency of the unit can be improved when the load is light, because the power consumption of the circuit 27 becomes zero.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は直流電源装置、特に力率
改善回路を有しかつ軽負荷時における消費電力の削減及
び効率の向上を図ることができる直流電源装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a direct current power supply device, and more particularly to a direct current power supply device having a power factor correction circuit and capable of reducing power consumption and improving efficiency at a light load.

【0002】[0002]

【従来の技術】従来の直流電源装置は、例えば図2に示
すように、商用周波数の交流電圧を発生する交流電源1
に接続されるダイオードブリッジ回路2と、ダイオード
ブリッジ回路2の出力端に接続されたリアクトル3と第
1のMOS-FET4との直列回路と、第1のMOS-F
ET4と並列に接続された還流用ダイオード5とコンデ
ンサ6との直列回路と、1次〜3次巻線7a〜7cを有す
る出力トランス7と、コンデンサ6及び出力トランス7
の1次巻線7aと直列に接続されたスイッチング手段と
しての第2のMOS-FET8と、出力トランス7の2
次巻線7bに整流平滑回路9を介して接続された負荷1
0と、第1のMOS-FET4のゲート端子(制御端
子)に制御パルス信号を付与して第1のMOS-FET
4をオン・オフ制御する第1の制御回路11と、第2の
MOS-FET8のゲート端子に制御パルス信号を付与
して第2のMOS-FET8をオン・オフ制御する第2
の制御回路12とを備えている。ダイオードブリッジ回
路2、リアクトル3、第1のMOS-FET4、還流用
ダイオード5、コンデンサ6及び第1の制御回路11は
力率改善回路27を構成する。出力トランス7、第2の
MOS-FET8、整流平滑回路9及び第2の制御回路
12は直流−直流変換回路28を構成する。出力トラン
ス7の3次巻線7cは、制御電源用ダイオード13、1
4及び制御電源用コンデンサ15、16を介して第1及
び第2の制御回路11、12の電源端子VCCに直流電圧
を供給する。また、図2において、17は起動用抵抗、
18、19は整流ダイオード、20は平滑リアクトル、
21は平滑コンデンサ、22はオペアンプ(演算増幅
器)、23は基準電源、24〜26はフォトカプラを構
成する発光ダイオード及び受光トランジスタを示す。
2. Description of the Related Art A conventional DC power supply device, for example, as shown in FIG. 2, is an AC power supply 1 for generating an AC voltage having a commercial frequency.
To the diode bridge circuit 2, a series circuit of the reactor 3 and the first MOS-FET 4 connected to the output end of the diode bridge circuit 2, and a first MOS-F
A series circuit of a free wheeling diode 5 and a capacitor 6 connected in parallel with ET4, an output transformer 7 having primary to tertiary windings 7a to 7c, a capacitor 6 and an output transformer 7
2 of the output transformer 7 and the second MOS-FET 8 as switching means connected in series with the primary winding 7a of
Load 1 connected to secondary winding 7b via rectifying / smoothing circuit 9
0 and a control pulse signal is applied to the gate terminal (control terminal) of the first MOS-FET 4
A first control circuit 11 for controlling ON / OFF of No. 4 and a second control circuit 11 for applying a control pulse signal to the gate terminal of the second MOS-FET 8 to control ON / OFF of the second MOS-FET 8.
The control circuit 12 of FIG. The diode bridge circuit 2, the reactor 3, the first MOS-FET 4, the free wheeling diode 5, the capacitor 6 and the first control circuit 11 constitute a power factor correction circuit 27. The output transformer 7, the second MOS-FET 8, the rectifying / smoothing circuit 9, and the second control circuit 12 form a DC-DC conversion circuit 28. The tertiary winding 7c of the output transformer 7 has the control power supply diodes 13, 1
A DC voltage is supplied to the power supply terminals V CC of the first and second control circuits 11 and 12 via the capacitor 4 and the capacitors 15 and 16 for control power supply. Further, in FIG. 2, 17 is a starting resistor,
18 and 19 are rectifying diodes, 20 is a smoothing reactor,
Reference numeral 21 is a smoothing capacitor, 22 is an operational amplifier (operational amplifier), 23 is a reference power source, and 24 to 26 are light emitting diodes and light receiving transistors which constitute a photocoupler.

【0003】上記の構成において、交流電源1にて発生
した商用周波数の交流電圧は、力率改善回路27のダイ
オードブリッジ回路2により全波整流された直流電圧に
変換される。全波整流された直流電圧は、リアクトル3
及び還流用ダイオード5を介してコンデンサ6に印加さ
れかつ平滑される。この平滑された直流電圧は、起動用
抵抗17を介して直流−直流変換回路28の第2の制御
回路12の電源端子VCCに印加され、第2の制御回路1
2が起動される。これにより、第2の制御回路12から
第2のMOS-FET8のゲート端子に制御パルス信号
が付与されて第2のMOS-FET8がオン・オフ動作
を開始し、出力トランス7の1次巻線7aに平滑された
直流電圧を断続的に印加して交流電圧を発生する。出力
トランス7の1次巻線7aに発生した交流電圧により、
2次巻線7bに降圧又は昇圧された交流電圧が誘起され
ると共に3次巻線7cにも交流電圧が誘起される。出力
トランス7の3次巻線7cに誘起された交流電圧は、制
御電源用ダイオード14及び制御電源用コンデンサ16
により整流及び平滑され、第2の制御回路12の電源端
子VCCに直流電圧が供給される。これと共に、第1の制
御回路11の電源端子VCCにも制御電源用ダイオード1
3及び制御電源用コンデンサ15により整流及び平滑さ
れた直流電圧が供給される。これにより、第1の制御回
路11が起動され、第1の制御回路11から第1のMO
S-FET4のゲート端子に制御パルス信号が付与され
て第1のMOS-FET4がオン・オフ動作を開始し、
力率改善回路27が駆動される。出力トランス7の2次
巻線7bに誘起された交流電圧は、整流平滑回路9の整
流ダイオード18、19、平滑リアクトル20及び平滑
コンデンサ21により整流及び平滑され、負荷10に降
圧又は昇圧された直流電圧が供給される。オペアンプ2
2は、負荷10に供給される直流電圧を基準電源23の
電圧VREFと比較し、その比較出力に応じてフォトカプ
ラの発光ダイオード24を発光させる。これにより、フ
ォトカプラの受光トランジスタ25、26に各々制御電
流が流れ、受光トランジスタ25、26の各出力により
第1及び第2の制御回路11、12は第1及び第2のM
OS-FET4、8の各ゲート端子に付与する制御パル
ス信号のパルス幅を制御する。以上により、負荷10に
供給される直流電圧が一定に保持されると共に力率改善
回路27によりコンデンサ6に流れる充電電流を制御し
て力率を向上することができる。
In the above structure, the AC voltage of the commercial frequency generated by the AC power source 1 is converted into the DC voltage which is full-wave rectified by the diode bridge circuit 2 of the power factor correction circuit 27. The full-wave rectified DC voltage is applied to the reactor 3
And is applied to the capacitor 6 via the freewheeling diode 5 and smoothed. This smoothed DC voltage is applied to the power supply terminal V CC of the second control circuit 12 of the DC-DC conversion circuit 28 via the starting resistor 17, and the second control circuit 1
2 is activated. As a result, a control pulse signal is applied from the second control circuit 12 to the gate terminal of the second MOS-FET 8 to start the on / off operation of the second MOS-FET 8 and the primary winding of the output transformer 7. The smoothed DC voltage is intermittently applied to 7a to generate an AC voltage. By the AC voltage generated in the primary winding 7a of the output transformer 7,
An AC voltage that has been stepped down or boosted is induced in the secondary winding 7b, and an AC voltage is also induced in the tertiary winding 7c. The AC voltage induced in the tertiary winding 7c of the output transformer 7 is controlled by the control power supply diode 14 and the control power supply capacitor 16.
Is rectified and smoothed by, and a DC voltage is supplied to the power supply terminal V CC of the second control circuit 12. At the same time, the power supply terminal V CC of the first control circuit 11 is also connected to the control power supply diode 1
A rectified and smoothed DC voltage is supplied by the capacitor 3 and the control power supply capacitor 15. As a result, the first control circuit 11 is activated, and the first control circuit 11 causes the first MO
A control pulse signal is given to the gate terminal of the S-FET 4, and the first MOS-FET 4 starts the on / off operation,
The power factor correction circuit 27 is driven. The AC voltage induced in the secondary winding 7b of the output transformer 7 is rectified and smoothed by the rectifying diodes 18, 19 of the rectifying / smoothing circuit 9, the smoothing reactor 20 and the smoothing capacitor 21, and is stepped down or boosted by the load 10. Voltage is supplied. Operational amplifier 2
Reference numeral 2 compares the DC voltage supplied to the load 10 with the voltage V REF of the reference power source 23, and causes the light emitting diode 24 of the photocoupler to emit light in accordance with the comparison output. As a result, a control current flows through the light receiving transistors 25 and 26 of the photocoupler, and the respective outputs of the light receiving transistors 25 and 26 cause the first and second control circuits 11 and 12 to output the first and second M
The pulse width of the control pulse signal applied to each gate terminal of the OS-FETs 4 and 8 is controlled. As described above, the DC voltage supplied to the load 10 is kept constant, and the power factor can be improved by controlling the charging current flowing through the capacitor 6 by the power factor correction circuit 27.

【0004】なお、力率改善回路27は図3に示すよう
に構成されることもある。即ち、図3の力率改善回路2
7は、交流電源1の入力交流電圧VACの正負の各半波期
間において2つの絶縁ゲート型トランジスタ4a、4bを
交互にオン・オフ制御することにより、各コンデンサ6
a、6bを充電して直流出力端子間に昇圧された直流出力
電圧VDCを得るものである。図3の回路では、直流出力
電圧VDCを出力電圧検出回路50にて検出し、その検出
出力Vdcをオペアンプ51により基準電源52の基準電
圧Vrと比較し、その比較出力Veと入力交流電圧VAC
を乗算器53により乗算して基準電流値Irとして出力
し、基準電流値Irと入力電流検出手段54にて検出さ
れた入力電流IACとをオペアンプ55により比較し、そ
の比較出力Vfと三角波発生回路56の三角波出力Vt
をオペアンプ57により比較し、その比較出力Vpによ
って第1の制御回路11から出力される2つの制御パル
ス信号Vg1、Vg2の周波数又はパルス幅を制御する。こ
れにより、入力電流IACの最大値を入力交流電圧VAC
波形に追従させて2つの絶縁ゲート型トランジスタ4
a、4bを交互にオン・オフ制御することができるので、
入力交流電圧VACと入力電流IACとの位相差を0に近づ
けて力率を改善することができる。
The power factor correction circuit 27 may be constructed as shown in FIG. That is, the power factor correction circuit 2 of FIG.
Reference numeral 7 indicates each capacitor 6 by alternately controlling ON / OFF of the two insulated gate transistors 4a and 4b in each of the positive and negative half-wave periods of the input AC voltage V AC of the AC power supply 1.
By charging a and 6b, a boosted DC output voltage V DC is obtained between the DC output terminals. In the circuit of FIG. 3, the DC output voltage V DC is detected by the output voltage detection circuit 50, the detected output V dc is compared with the reference voltage V r of the reference power supply 52 by the operational amplifier 51, and the comparison output V e is input. and outputs as a reference current value I r and the AC voltage V AC is multiplied by the multiplier 53, and a detected input current I AC at the reference current value I r and the input current detecting means 54 is compared by the operational amplifier 55, The comparison output V f and the triangular wave output V t of the triangular wave generating circuit 56 are compared by the operational amplifier 57, and the two control pulse signals V g1 and V g2 output from the first control circuit 11 by the comparison output V p . Control frequency or pulse width. As a result, the maximum value of the input current I AC is made to follow the waveform of the input AC voltage V AC and the two insulated gate transistors 4 are connected.
Since on and off can be controlled alternately for a and 4b,
The phase difference between the input AC voltage V AC and the input current I AC can be brought close to 0 to improve the power factor.

【0005】[0005]

【発明が解決しようとする課題】ところで、図2の直流
電源装置において、負荷10が軽負荷状態の時(例え
ば、テレビのリモート信号受信回路等の電源として使用
した場合はリモート信号受信待機時)は消費電力が極め
て少ないため、力率の低下による影響をあまり受けな
い。そのため、力率改善回路27を動作させる必要はな
い。しかしながら、図2の直流電源装置では負荷10が
軽負荷状態の時でも第1の制御回路11が駆動されて力
率改善回路27が動作されるので、無用な電力を消費す
る。したがって、軽負荷時における直流電源装置の消費
電力が増大しかつ効率が低下する欠点があった。
By the way, in the DC power supply device of FIG. 2, when the load 10 is in a light load state (for example, when the load 10 is used as a power source for a remote signal receiving circuit of a television or the like, it stands by for remote signal reception). Consumes very little power and is not significantly affected by the reduction in power factor. Therefore, it is not necessary to operate the power factor correction circuit 27. However, in the DC power supply device of FIG. 2, even when the load 10 is in the light load state, the first control circuit 11 is driven and the power factor correction circuit 27 is operated, so that unnecessary power is consumed. Therefore, there is a drawback that the power consumption of the DC power supply device increases and the efficiency decreases when the load is light.

【0006】そこで、本発明では軽負荷時における消費
電力を削減しかつ効率を向上できる直流電源装置を提供
することを目的とする。
Therefore, it is an object of the present invention to provide a DC power supply device which can reduce power consumption and improve efficiency at a light load.

【0007】[0007]

【課題を解決するための手段】本発明による直流電源装
置は、交流電源に接続されかつ直流出力を発生する力率
改善回路と、該力率改善回路の出力端子に接続されかつ
前記力率改善回路の前記直流出力とは異なる電圧の直流
出力を発生する直流−直流変換回路と、該直流−直流変
換回路の出力端子に接続された負荷とを備えている。こ
の直流電源装置では、前記負荷の状態を検出する負荷状
態検出手段と、該負荷状態検出手段が前記負荷の軽負荷
状態を検出したときに前記力率改善回路の作動を停止さ
せる力率改善回路停止手段とを設けている。
A DC power supply device according to the present invention is connected to an AC power supply and generates a DC output, and a power factor correction circuit connected to an output terminal of the power factor correction circuit. The circuit includes a DC-DC conversion circuit that generates a DC output having a voltage different from the DC output of the circuit, and a load connected to an output terminal of the DC-DC conversion circuit. In this DC power supply device, a load state detecting means for detecting a state of the load, and a power factor improving circuit for stopping the operation of the power factor improving circuit when the load state detecting means detects a light load state of the load. Stop means are provided.

【0008】図示の実施例では、前記直流−直流変換回
路は1次〜3次巻線を有する出力トランスと、該出力ト
ランスの前記1次巻線に接続されるスイッチング手段と
を備え、前記負荷状態検出手段は前記3次巻線の電圧を
検出することにより前記負荷の状態を検出する。
In the illustrated embodiment, the DC-DC conversion circuit comprises an output transformer having primary to tertiary windings, and switching means connected to the primary winding of the output transformer, The state detecting means detects the state of the load by detecting the voltage of the tertiary winding.

【0009】また、図示以外の実施例では、前記直流−
直流変換回路は1次巻線及び2次巻線を有する出力トラ
ンスと、該出力トランスの前記1次巻線に接続されるス
イッチング手段とを備え、前記直流−直流変換回路のス
イッチング手段に流れる電流を該電流に対応した電圧と
して検出する電流検出手段が前記スイッチング手段と直
列に接続され、前記負荷状態検出手段は前記電流検出手
段の前記電圧を検出することにより前記負荷の状態を検
出する。
In an embodiment other than the one shown, the DC-
The DC conversion circuit includes an output transformer having a primary winding and a secondary winding, and switching means connected to the primary winding of the output transformer, and a current flowing through the switching means of the DC-DC conversion circuit. Is connected in series with the switching means, and the load state detecting means detects the state of the load by detecting the voltage of the current detecting means.

【0010】[0010]

【作用】負荷状態検出手段が負荷の軽負荷状態を検出し
たとき、力率改善回路停止手段が作動され、力率改善回
路の作動が停止される。このため、軽負荷時における力
率改善回路の消費電力が零となるので、直流電源装置の
軽負荷時における消費電力を削減しかつ効率を向上させ
ることができる。
When the load state detecting means detects the light load state of the load, the power factor improving circuit stopping means is operated and the operation of the power factor improving circuit is stopped. Therefore, the power consumption of the power factor correction circuit at the time of light load becomes zero, so that the power consumption at the time of light load of the DC power supply device can be reduced and the efficiency can be improved.

【0011】[0011]

【実施例】以下、本発明による直流電源装置の実施例を
図1に基づいて説明する。但し、図1では図2に示す箇
所と同一の部分には同一の符号を付し、その説明を省略
する。本実施例の直流電源装置は、図1に示すように、
図2の回路の制御電源用コンデンサ15と第1の制御回
路11の電源端子VCCとの間に、負荷10の状態を検出
する負荷状態検出手段29と、負荷状態検出手段29が
負荷10の軽負荷状態を検出したときにオフ状態となり
第1の制御回路11の作動を停止させる力率改善回路停
止手段としてのトランジスタ30、31を設けたもので
ある。負荷状態検出手段29は、抵抗32〜35及びツ
ェナダイオード36で構成され、出力トランス7の3次
巻線7cの電圧を抵抗32及び33で検出することによ
り、負荷10の状態を検出する。その他の構成は図2の
回路と同一である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a DC power supply device according to the present invention will be described below with reference to FIG. However, in FIG. 1, the same parts as those shown in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted. As shown in FIG. 1, the DC power supply device of the present embodiment is
Between the capacitor 15 for control power supply of the circuit of FIG. 2 and the power supply terminal V CC of the first control circuit 11, the load state detection means 29 for detecting the state of the load 10 and the load state detection means 29 are provided. Transistors 30 and 31 are provided as a power factor correction circuit stopping means for turning off the first control circuit 11 when a light load state is detected and stopping the operation of the first control circuit 11. The load state detecting means 29 is composed of resistors 32 to 35 and a Zener diode 36, and detects the state of the load 10 by detecting the voltage of the tertiary winding 7c of the output transformer 7 with the resistors 32 and 33. The other configuration is the same as the circuit of FIG.

【0012】上記の構成において、負荷10が軽負荷状
態になると負荷10の両端の電圧が上昇するので、第2
の制御回路12から出力される制御パルス信号のパルス
幅が狭くなり、出力トランス7の1次巻線7aの両端の
電圧が減少する。このため、出力トランス7の3次巻線
7cに誘起される電圧が低下し、それに従って抵抗32
及び33の接続点の電圧がツェナダイオード36の電圧
よりも低くなるので、トランジスタ30がオフ状態とな
る。これと共に、トランジスタ31もオフ状態となり、
第1の制御回路11の電源端子VCCへの直流電圧の供給
が停止される。これにより、第1の制御回路11の動作
が停止して第1のMOS-FET4のゲート端子への制
御パルス信号の付与が停止され、第1のMOS-FET
4のオン・オフ動作が停止する。このとき、ダイオード
ブリッジ回路2の全波整流電圧がリアクトル3及び還流
用ダイオード5及びコンデンサ6を介して出力トランス
7の1次巻線7a及び第2のMOS-FET8に直接供給
される。したがって、軽負荷時において力率改善回路2
7の動作を停止させることができる。そのため、軽負荷
時における力率改善回路27の消費電力が零となるか
ら、直流電源装置の軽負荷時における消費電力を削減し
かつ効率を向上させることができる。なお、通常負荷時
の動作及び直流出力の負荷10への供給動作について
は、前述の図2の回路動作と基本的に同一であるので、
説明は省略する。
In the above configuration, when the load 10 is in a light load state, the voltage across the load 10 increases, so
The pulse width of the control pulse signal output from the control circuit 12 becomes narrower, and the voltage across the primary winding 7a of the output transformer 7 decreases. For this reason, the voltage induced in the tertiary winding 7c of the output transformer 7 decreases, and accordingly the resistor 32
Since the voltage at the connection point of the transistors 33 and 33 becomes lower than the voltage of the Zener diode 36, the transistor 30 is turned off. Along with this, the transistor 31 is also turned off,
The supply of the DC voltage to the power supply terminal V CC of the first control circuit 11 is stopped. As a result, the operation of the first control circuit 11 is stopped, the application of the control pulse signal to the gate terminal of the first MOS-FET 4 is stopped, and the first MOS-FET 4 is stopped.
The on / off operation of 4 stops. At this time, the full-wave rectified voltage of the diode bridge circuit 2 is directly supplied to the primary winding 7a of the output transformer 7 and the second MOS-FET 8 via the reactor 3, the free wheeling diode 5 and the capacitor 6. Therefore, when the load is light, the power factor correction circuit 2
The operation of 7 can be stopped. Therefore, the power consumption of the power factor correction circuit 27 at the time of light load becomes zero, so that the power consumption at the time of light load of the DC power supply device can be reduced and the efficiency can be improved. The operation under normal load and the operation for supplying DC output to the load 10 are basically the same as the circuit operation shown in FIG.
Description is omitted.

【0013】本発明の実施態様は前記の実施例に限定さ
れず種々の変更が可能である。例えば、上記の実施例で
は力率改善回路27及び直流−直流変換回路28のスイ
ッチング手段11、12としてMOS-FETを使用し
た例を示したが、バイポーラ形トランジスタ、J-FE
T(接合形電界効果トランジスタ)、SCR(逆阻止3
端子サイリスタ)等の他のスイッチング素子も使用可能
である。また、上記の実施例では軽負荷時における出力
トランス7の3次巻線7cの電圧の低下を負荷状態検出
手段29の抵抗32、33及びツェナダイオード36に
より検出し、トランジスタ30、31をオフ状態にして
3次巻線7cから第1の制御回路11への電力供給を停
止させることにより第1のMOS-FET4のオン・オ
フ動作を停止させる例を示したが、第2のMOS-FE
T8に流れる電流を該電流に対応した電圧として検出す
る電流検出手段(例えば電流検出用抵抗)を第2のMO
S-FET8と直列に接続し、軽負荷時における電流検
出手段の前記電圧の低下を負荷状態検出手段により検出
したときに力率改善回路停止手段(例えばトランジス
タ、スイッチリレー等)をオフ状態にして第1の制御回
路11の動作を停止させることにより第1のMOS-F
ET4のオン・オフ動作を停止させてもよい。また、軽
負荷時において、第1の制御回路11の動作を停止させ
る代わりに、第1の制御回路11の制御信号出力端子及
び第1のMOS-FET4のゲート端子間に力率改善回
路停止手段(例えばトランジスタ、スイッチリレー等)
を設けて第1の制御回路11からの制御パルス信号を遮
断する構成にしてもよい。更に、図1の回路における力
率改善回路27の代わりに、図3に示す力率改善回路2
7を使用することもできる。なお、上記の実施例では第
2のMOS-FET8がオン期間中のとき整流ダイオー
ド18がオン状態であるフォワード型のコンバータへの
適用例を示したが、第2のMOS-FET8がオン期間
中のとき整流ダイオード18がオフ状態であるフライバ
ック型のコンバータにも適用が可能である。
The embodiment of the present invention is not limited to the above-mentioned embodiment, and various modifications can be made. For example, in the above-described embodiment, an example in which MOS-FETs are used as the switching means 11 and 12 of the power factor correction circuit 27 and the DC-DC conversion circuit 28 is shown, but a bipolar transistor, J-FE is used.
T (junction field effect transistor), SCR (reverse blocking 3)
Other switching elements such as terminal thyristors) can also be used. In the above embodiment, the voltage drop of the tertiary winding 7c of the output transformer 7 at the time of light load is detected by the resistors 32 and 33 and the zener diode 36 of the load state detecting means 29 to turn off the transistors 30 and 31. Although the example in which the on / off operation of the first MOS-FET 4 is stopped by stopping the power supply from the tertiary winding 7c to the first control circuit 11, the second MOS-FE is described.
The current detecting means (for example, a current detecting resistor) that detects the current flowing through T8 as a voltage corresponding to the current is connected to the second MO.
It is connected in series with the S-FET 8 and turns off the power factor correction circuit stopping means (eg, transistor, switch relay, etc.) when the load state detecting means detects the voltage drop of the current detecting means under light load. By stopping the operation of the first control circuit 11, the first MOS-F
The on / off operation of the ET4 may be stopped. Further, when the load is light, instead of stopping the operation of the first control circuit 11, a power factor correction circuit stopping means is provided between the control signal output terminal of the first control circuit 11 and the gate terminal of the first MOS-FET 4. (For example, transistor, switch relay, etc.)
May be provided to cut off the control pulse signal from the first control circuit 11. Further, instead of the power factor correction circuit 27 in the circuit of FIG. 1, the power factor correction circuit 2 shown in FIG.
It is also possible to use 7. In the above embodiment, the application example to the forward type converter in which the rectifier diode 18 is in the ON state when the second MOS-FET 8 is in the ON period has been shown, but the second MOS-FET 8 is in the ON period. It is also applicable to a flyback type converter in which the rectifying diode 18 is in the off state.

【0014】[0014]

【発明の効果】本発明によれば、軽負荷時において力率
改善回路の動作を停止させることができるので、直流電
源装置の軽負荷時における消費電力を削減しかつ効率を
向上させることが可能である。したがって、例えばテレ
ビのリモート信号受信回路等の電源として使用した場合
は、リモート信号受信待機時における消費電力を削減で
きるので、テレビの非稼動時の消費電力を抑制できる利
点がある。
According to the present invention, since the operation of the power factor correction circuit can be stopped at the time of light load, it is possible to reduce the power consumption of the DC power supply device at the time of light load and improve the efficiency. Is. Therefore, when it is used as a power source for a remote signal receiving circuit of a television, for example, it is possible to reduce power consumption during standby for remote signal reception, which has an advantage of reducing power consumption when the television is not operating.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による直流電源装置の実施例を示す電
気回路図
FIG. 1 is an electric circuit diagram showing an embodiment of a DC power supply device according to the present invention.

【図2】 従来の直流電源装置を示す電気回路図FIG. 2 is an electric circuit diagram showing a conventional DC power supply device.

【図3】 力率改善回路の他の例を示す電気回路図FIG. 3 is an electric circuit diagram showing another example of the power factor correction circuit.

【符号の説明】[Explanation of symbols]

1...交流電源、2...ダイオードブリッジ回路、
3...リアクトル、4...第1のMOS-FET、
5...還流用ダイオード、6...コンデンサ、
7...出力トランス、7a...1次巻線、7b...
2次巻線、7c...3次巻線、8...第2のMOS-
FET(スイッチング手段)、9...整流平滑回路、
10...負荷、11...第1の制御回路、1
2...第2の制御回路、27...力率改善回路、2
8...直流−直流変換回路、29...負荷状態検出
手段、30,31...トランジスタ(力率改善回路停
止手段)
1. . . AC power supply, 2. . . Diode bridge circuit,
3. . . Reactor, 4. . . First MOS-FET,
5. . . Reflux diode, 6. . . Capacitors,
7. . . Output transformer, 7a. . . Primary winding, 7b. . .
Secondary winding, 7c. . . Third winding, 8. . . Second MOS-
FET (switching means), 9. . . Rectifying and smoothing circuit,
10. . . Load, 11. . . First control circuit, 1
2. . . Second control circuit, 27. . . Power factor correction circuit, 2
8. . . DC-DC conversion circuit, 29. . . Load state detection means, 30, 31. . . Transistor (power factor correction circuit stopping means)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 交流電源に接続されかつ直流出力を発生
する力率改善回路と、該力率改善回路の出力端子に接続
されかつ前記力率改善回路の前記直流出力とは異なる電
圧の直流出力を発生する直流−直流変換回路と、該直流
−直流変換回路の出力端子に接続された負荷とを備えた
直流電源装置において、 前記負荷の状態を検出する負荷状態検出手段と、該負荷
状態検出手段が前記負荷の軽負荷状態を検出したときに
前記力率改善回路の作動を停止させる力率改善回路停止
手段とを設けたことを特徴とする直流電源装置。
1. A power factor correction circuit connected to an AC power source and generating a DC output, and a DC output connected to an output terminal of the power factor correction circuit and having a voltage different from the DC output of the power factor correction circuit. In a DC power supply device comprising a DC-DC converting circuit for generating a load, and a load connected to an output terminal of the DC-DC converting circuit, a load state detecting means for detecting a state of the load, and the load state detecting A DC power supply device comprising: a power factor correction circuit stopping unit that stops the operation of the power factor correction circuit when the unit detects a light load state of the load.
【請求項2】 前記直流−直流変換回路は、1次〜3次
巻線を有する出力トランスと、該出力トランスの前記1
次巻線に接続されるスイッチング手段とを備え、 前記負荷状態検出手段は、前記3次巻線の電圧を検出す
ることにより前記負荷の状態を検出する「請求項1」に
記載の直流電源装置。
2. The DC-DC converter circuit includes an output transformer having primary to tertiary windings, and the output transformer having the output transformer.
The DC power supply device according to claim 1, further comprising a switching unit connected to a secondary winding, wherein the load state detecting unit detects a state of the load by detecting a voltage of the tertiary winding. .
【請求項3】 前記直流−直流変換回路は、1次巻線及
び2次巻線を有する出力トランスと、該出力トランスの
前記1次巻線に接続されるスイッチング手段とを備え、 前記直流−直流変換回路のスイッチング手段に流れる電
流を該電流に対応した電圧として検出する電流検出手段
が前記スイッチング手段と直列に接続され、 前記負荷状態検出手段は、前記電流検出手段の前記電圧
を検出することにより前記負荷の状態を検出する「請求
項1」に記載の直流電源装置。
3. The DC-DC conversion circuit includes an output transformer having a primary winding and a secondary winding, and switching means connected to the primary winding of the output transformer, Current detecting means for detecting a current flowing through the switching means of the direct current conversion circuit as a voltage corresponding to the current is connected in series with the switching means, and the load state detecting means detects the voltage of the current detecting means. The DC power supply device according to claim 1, wherein the state of the load is detected by means of.
JP24552694A 1994-10-11 1994-10-11 DC power supply Expired - Fee Related JP3517849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24552694A JP3517849B2 (en) 1994-10-11 1994-10-11 DC power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24552694A JP3517849B2 (en) 1994-10-11 1994-10-11 DC power supply

Publications (2)

Publication Number Publication Date
JPH08111975A true JPH08111975A (en) 1996-04-30
JP3517849B2 JP3517849B2 (en) 2004-04-12

Family

ID=17135003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24552694A Expired - Fee Related JP3517849B2 (en) 1994-10-11 1994-10-11 DC power supply

Country Status (1)

Country Link
JP (1) JP3517849B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004059822A1 (en) * 2002-12-24 2004-07-15 Sanken Electric Co., Ltd. Switching power supply device, and method for controlling switching power supply device
WO2005013469A1 (en) * 2003-08-01 2005-02-10 Fujitsu Access Limited Dc power supply
WO2006129795A1 (en) * 2005-06-02 2006-12-07 Matsushita Electric Industrial Co., Ltd. Induction heating apparatus
US7176660B2 (en) 2004-06-04 2007-02-13 Sanken Electric Co., Ltd. Switching power source apparatus and power factor corrector
CN100373736C (en) * 2005-03-31 2008-03-05 国际整流器公司 Current sense method for bridgeless boost (BLB) PFC circuit using single current transformer
KR101030357B1 (en) * 2008-12-19 2011-04-20 삼성전기주식회사 Switching mode power supply for reducing standby power
US20130215648A1 (en) * 2012-02-17 2013-08-22 Tdk Corporation Switching power supply device
JPWO2012104980A1 (en) * 2011-01-31 2014-07-03 富士通株式会社 Power supply device and electronic device system
CN105375789A (en) * 2014-08-28 2016-03-02 三垦电气株式会社 AC-to-DC converter
EP3261240A1 (en) * 2016-06-21 2017-12-27 Delta Electronics, Inc. Power delivery device and control method thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100685241B1 (en) * 2002-12-24 2007-02-22 산켄덴키 가부시키가이샤 Switching power supply device, and method for controlling switching power supply device
US7272018B2 (en) 2002-12-24 2007-09-18 Sanken Electric Co., Ltd. Switching power supply device and method for controlling switching power supply device
WO2004059822A1 (en) * 2002-12-24 2004-07-15 Sanken Electric Co., Ltd. Switching power supply device, and method for controlling switching power supply device
WO2005013469A1 (en) * 2003-08-01 2005-02-10 Fujitsu Access Limited Dc power supply
US7176660B2 (en) 2004-06-04 2007-02-13 Sanken Electric Co., Ltd. Switching power source apparatus and power factor corrector
CN100373736C (en) * 2005-03-31 2008-03-05 国际整流器公司 Current sense method for bridgeless boost (BLB) PFC circuit using single current transformer
JP4865699B2 (en) * 2005-06-02 2012-02-01 パナソニック株式会社 Induction heating device
WO2006129795A1 (en) * 2005-06-02 2006-12-07 Matsushita Electric Industrial Co., Ltd. Induction heating apparatus
US7420828B2 (en) 2005-06-02 2008-09-02 Matsushita Electric Industrial Co., Ltd. Induction heating apparatus
KR101030357B1 (en) * 2008-12-19 2011-04-20 삼성전기주식회사 Switching mode power supply for reducing standby power
JPWO2012104980A1 (en) * 2011-01-31 2014-07-03 富士通株式会社 Power supply device and electronic device system
US20130215648A1 (en) * 2012-02-17 2013-08-22 Tdk Corporation Switching power supply device
US9136768B2 (en) * 2012-02-17 2015-09-15 Tdk Corporation Switching power supply device
CN105375789A (en) * 2014-08-28 2016-03-02 三垦电气株式会社 AC-to-DC converter
EP3261240A1 (en) * 2016-06-21 2017-12-27 Delta Electronics, Inc. Power delivery device and control method thereof
US10044275B2 (en) 2016-06-21 2018-08-07 Delta Electronics, Inc. Power delivery device and control method thereof
US10630185B2 (en) 2016-06-21 2020-04-21 Delta Electronics, Inc. Power delivery device and control method thereof

Also Published As

Publication number Publication date
JP3517849B2 (en) 2004-04-12

Similar Documents

Publication Publication Date Title
US6690586B2 (en) Switching power source device
JP3236587B2 (en) Switching power supply
US7251146B2 (en) Direct-current converter having active clamp circuit
JP3517849B2 (en) DC power supply
JPH10150769A (en) Forward type dc-dc converter
JPH05176533A (en) Transformer system dc-dc converter
JPH10178775A (en) Switching power supply
JP3584606B2 (en) RCC switching system power supply circuit
JP3475415B2 (en) DC-DC converter
JPH07312871A (en) D.c. power supply
JP3456833B2 (en) Switching power supply
JPH09182425A (en) Dc-dc converter
JPH05336747A (en) Switching power supply
JPH0353597Y2 (en)
JPH11225474A (en) Dc-dc converter
JPH028552Y2 (en)
JP2795229B2 (en) DC-DC converter
JP2002136110A (en) Non-isolated chopper converter
JPH118974A (en) Parallel operation switching power supply
JPH03851Y2 (en)
JPH06311737A (en) Dc/dc converter
JPH11164553A (en) Ac-dc converter
JPH0638524A (en) Dc/dc converter
JPH04299061A (en) Power supply
JPH10174432A (en) Switching power supply unit

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees