JPH0811187B2 - Preparation of catalysts for the production of methacrolein and methacrylic acid - Google Patents

Preparation of catalysts for the production of methacrolein and methacrylic acid

Info

Publication number
JPH0811187B2
JPH0811187B2 JP61255401A JP25540186A JPH0811187B2 JP H0811187 B2 JPH0811187 B2 JP H0811187B2 JP 61255401 A JP61255401 A JP 61255401A JP 25540186 A JP25540186 A JP 25540186A JP H0811187 B2 JPH0811187 B2 JP H0811187B2
Authority
JP
Japan
Prior art keywords
catalyst
methacrylic acid
methacrolein
reaction
isobutylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61255401A
Other languages
Japanese (ja)
Other versions
JPS63107745A (en
Inventor
求 大北
芳行 谷口
正明 加藤
雅夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP61255401A priority Critical patent/JPH0811187B2/en
Publication of JPS63107745A publication Critical patent/JPS63107745A/en
Publication of JPH0811187B2 publication Critical patent/JPH0811187B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、イソブチレンまたはターシヤリーブタノー
ルを気相接触酸化してメタクロレイン及びメタクリル酸
を製造する際に使用する触媒の調製法に関する。
TECHNICAL FIELD The present invention relates to a method for preparing a catalyst to be used for producing methacrolein and methacrylic acid by vapor phase catalytic oxidation of isobutylene or tert-butanol.

〔従来の技術〕 イソブチレンまたはターシヤリーブタノールを気相接
触酸化してメタクロレイン及びメタクリル酸を製造する
際に、モリブデン−ビスマス−鉄−アンチモンを含有す
る触媒を用いる方法が、特公昭47-32049号をはじめとし
て数多く提案されている。
(Prior Art) A method of using a catalyst containing molybdenum-bismuth-iron-antimony in producing methacrolein and methacrylic acid by vapor-phase catalytic oxidation of isobutylene or tert-butanol, is disclosed in JP-B-47-32049. Has been proposed a lot.

また、モリブデン−ビスマス−アンチモン含有触媒を
製造する際に原料の三酸化アンチモンの粒径に注目した
発明として特開昭58-64134号がある。
JP-A-58-64134 is an invention that pays attention to the particle size of the raw material antimony trioxide when producing a molybdenum-bismuth-antimony-containing catalyst.

この発明では平均粒径3μ以下の三酸化アンチモンを
用いると、特にプロピレンのアンモ酸化によるアクリロ
ニトリルの製造に効果の大きい触媒が得られると報告し
ている。
In this invention, it is reported that the use of antimony trioxide having an average particle size of 3 μm or less makes it possible to obtain a catalyst which is particularly effective in the production of acrylonitrile by ammoxidation of propylene.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

数多く知られている触媒のいずれもが反応成績が不充
分であったり、触媒活性の経時低下を引起したり、或は
反応温度が高すぎたり、種々の欠点を有しており、工業
用触媒としては更に改良が望まれている。
All of the many known catalysts have various drawbacks such as insufficient reaction results, deterioration of catalytic activity over time, or too high reaction temperature. However, further improvement is desired.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、イソブチレンまたはターシヤリーブタノー
ルを分子状酸素を用いて気相接触酸化し、メタクロレイ
ン及びメタクリル酸を製造する際に使用する触媒組成中
に少なくともモリブデン、ビスマス、鉄及びアンチモン
を含む多成分系触媒を調製するにあたり、出発原料とし
て三酸化アンチモンの平均粒径が0.2μ以下のものを使
用することを特徴とするメタクロレイン及びメタクリル
酸の製造用触媒の調製法である。
The present invention is a multi-component containing at least molybdenum, bismuth, iron and antimony in a catalyst composition used for producing methacrolein and methacrylic acid by gas phase catalytic oxidation of isobutylene or tert-butanol with molecular oxygen. A method for preparing a catalyst for producing methacrolein and methacrylic acid, which comprises using, as a starting material, an antimony trioxide having an average particle size of 0.2 μm or less when preparing a system catalyst.

本発明においては出発原料として平均粒径0.2μ以下
の三酸化アンチモンを用いることが必要である。
In the present invention, it is necessary to use antimony trioxide having an average particle size of 0.2 μ or less as a starting material.

現在粒子の超微粒子化技術が発達し、超微粒子化する
と従来知られていない新たな効果の発現することがある
ことが知られている。例えば宇田雅廣の論文「反応性プ
ラズマガスによる超微粒子化技術」(表面24巻6月号第
7〜16頁)には塊状物質を超微粒子化することによって
同一物質でも磁気特性、光学特性、電気特性、化学反応
性、焼結性などに関して塊状状態にはみられない性質が
発現することを報告している。
It is known that ultrafine particle technology for particles has been developed at present and that new effects, which have not been heretofore known, may be exhibited when the particles are made into ultrafine particles. For example, in the article by Masahiro Uda, "Ultrafine Particle Technology Using Reactive Plasma Gas" (Volume 24, June issue, pp. 7 to 16), even if the same substance is made into ultrafine particles, magnetic properties, optical properties, It has been reported that properties that are not found in the lump state, such as electrical properties, chemical reactivity, and sinterability, appear.

三酸化アンチモンの場合、通常の乾式ボールミル粉砕
法では約1μの微粒子迄が限界であり、湿式粉砕法を用
いても約0.4μ迄の微粒子化が限界であることが知られ
ている。
In the case of antimony trioxide, it is known that the limit of fine particles up to about 1 μ is obtained by the usual dry ball milling method, and the limit of fine particles down to about 0.4 μ is obtained even by using the wet milling method.

三酸化アンチモンとして、現在商業的に利用可能な多
くのものは、平均粒子径は0.5〜7μ程度のものである
が、本発明においては0.2μ以下の超微粒子三酸化アン
チモンが用いられ、特に好ましい粒径は0.1〜0.01μの
ものである。
Many of the commercially available antimony trioxides have an average particle size of about 0.5 to 7 μ, but ultrafine particles of antimony trioxide of 0.2 μ or less are used in the present invention, and are particularly preferable. The particle size is 0.1-0.01μ.

このような超微粒子を得るにはアンチモン金属の蒸発
による方法が好ましい。また市販品を再微粉化して、こ
れから0.2μ以下のものを分級して使用することも勿論
可能であるが、再微粉化が困難なため比較的能率の悪い
方法となる。平均粒径は電子顕微鏡写真法やBET吸着法
によって容易に測定できる。
In order to obtain such ultrafine particles, a method by evaporation of antimony metal is preferable. It is of course possible to re-pulverize a commercially available product and classify the product having a particle size of 0.2 μ or less from this, but it is relatively inefficient because re-pulverization is difficult. The average particle size can be easily measured by an electron micrograph or BET adsorption method.

本発明方法により得られる触媒の組成は限定的なもの
ではないが、好ましい触媒組成は次の一般式で表わされ
る範囲に入るものである。
The composition of the catalyst obtained by the method of the present invention is not limited, but the preferred catalyst composition is within the range represented by the following general formula.

MoaBibFecSbdAeBfCgDhOi ここで、式中Mo,Bi,Fe,Sb及びOはそれぞれモリブデ
ン,ビスマス,鉄,アンチモン及び酸素を示し、Aはタ
ングステン,タンタル及びニオブからなる群より選ばれ
た少なくとも1種以上の元素を示し、Bはコバルト及び
ニツケルからなる群より選ばれた少なくとも1種以上の
元素を示し、Cはイオウ,テルル,セレン,セリウム,
ゲルマニウム,マグネシウム,マンガン,亜鉛,シリ
カ,クロム,銀,スズ,バリウム及びアルミニウムから
なる群より選ばれた少なくとも1種以上の元素を示し、
Dはカリウム,ルビジウム,セシウム及びタリウムから
なる群より選ばれた少なくとも1種以上の元素を示す。
Mo a Bi b Fe c Sb d A e B f C g D h O i where Mo, Bi, Fe, Sb and O represent molybdenum, bismuth, iron, antimony and oxygen, respectively, and A is tungsten, At least one element selected from the group consisting of tantalum and niobium is shown, B is at least one element selected from the group consisting of cobalt and nickel, and C is sulfur, tellurium, selenium, cerium,
Represents at least one element selected from the group consisting of germanium, magnesium, manganese, zinc, silica, chromium, silver, tin, barium and aluminum,
D represents at least one element selected from the group consisting of potassium, rubidium, cesium and thallium.

ただし、a,b,c,d,e,f,g,h及びiは各元素の原子比率
を表わし、a=12のとき b=0.01〜3(好ましくはb=0.1〜2) c=0.1〜5(好ましくはc=0.5〜4) d=0.1〜5(好ましくはd=0.3〜3) e=0〜3 (好ましくはe=0〜2) f=1〜14 (好ましくはf=3〜10) g=0〜10 (好ましくはg=0〜8) h=0.01〜3(好ましくはh=0.1〜2) であり、iは上記各成分の原子価を満足するのに必要な
酸素原子数でる。
However, a, b, c, d, e, f, g, h and i represent the atomic ratio of each element, and when a = 12, b = 0.01 to 3 (preferably b = 0.1 to 2) c = 0.1 To 5 (preferably c = 0.5 to 4) d = 0.1 to 5 (preferably d = 0.3 to 3) e = 0 to 3 (preferably e = 0 to 2) f = 1 to 14 (preferably f = 3) To 10) g = 0 to 10 (preferably g = 0 to 8) h = 0.01 to 3 (preferably h = 0.1 to 2), and i is oxygen necessary to satisfy the valences of the above components. It is the number of atoms.

触媒調製に用いられる原料化合物としては各元素の硝
酸塩、アンモニウム塩、ハロゲン化物、酸化物などがあ
げられる。
Examples of raw material compounds used for catalyst preparation include nitrates, ammonium salts, halides and oxides of each element.

本発明を実施するに際しては、まず三酸化アンチモン
を除いた触媒原料を水に溶解または分散する。この原料
混合液を加熱して水を除去したのち三酸化アンチモンを
加えてもよいが、原料混合液に三酸化アンチモンを加
え、よく攪拌したのち加熱して水を除去することが好ま
しい。こうして得られた固形物を空気流通下に熱処理す
ると目的の触媒が得られる。
In carrying out the present invention, first, the catalyst raw material excluding antimony trioxide is dissolved or dispersed in water. Although this raw material mixed solution may be heated to remove water and then antimony trioxide may be added, it is preferable to add antimony trioxide to the raw material mixed solution, stir well and then heat to remove water. When the solid thus obtained is heat-treated under air flow, the desired catalyst is obtained.

本発明方法で得られる触媒はシリカ、アルミナ、シリ
カ・アルミナ、シリコーンカーバイト等の不活性担体に
担持させるか、あるいはこれらで希釈して用いることが
できる。
The catalyst obtained by the method of the present invention can be used by supporting it on an inert carrier such as silica, alumina, silica-alumina or silicone carbide, or by diluting it with these.

本発明を実施するに際しては、原料のイソブチレンま
たはターシヤリーブタノールに分子状酵素を加え、前記
の触媒の存在下に気相接触酸化を行う。イソブチレンま
たはターシヤリーブタノール対酸素のモル比は1:0.5〜
3が好ましい。原料ガスは不活性ガスで希釈して用いる
ことが好ましい。酸化に用いられる分子状酸素は純酸素
ガスでも空気でもよいが、工業的には空気が有利であ
る。反応圧力は常圧ないし数気圧まで用いられる。反応
温度は250〜450℃の範囲が好ましく、反応は流動床でも
固定床でも実施できる。
In carrying out the present invention, a molecular enzyme is added to isobutylene or tert-butanol as a raw material, and gas phase catalytic oxidation is carried out in the presence of the above catalyst. The molar ratio of isobutylene or tert-butanol to oxygen is 1: 0.5-
3 is preferable. The raw material gas is preferably diluted with an inert gas before use. The molecular oxygen used for the oxidation may be pure oxygen gas or air, but air is industrially advantageous. The reaction pressure is from normal pressure to several atmospheres. The reaction temperature is preferably in the range of 250 to 450 ° C., and the reaction can be carried out in a fluidized bed or a fixed bed.

〔実施例〕〔Example〕

下記実施例及び比較例中の部は重量部を意味し、分析
はガスクロマトグラフイーにより行った。またイソブチ
レンまたはターシヤリーブタノールの反応率、生成され
るメタクロレイン及びメタクリル酸の選択率、単流収率
は下記のように定義される。
Parts in the following examples and comparative examples mean parts by weight, and analysis was performed by gas chromatography. Moreover, the reaction rate of isobutylene or tert-butanol, the selectivity of methacrolein and methacrylic acid to be formed, and the single-flow yield are defined as follows.

イソブチレンまたはターシヤリーブタノールの 実施例1 水1000部にモリブデン酸アンモニウム500部及び硝酸
セシウム32.2部を加え加熱攪拌した(A液)。
Of isobutylene or tertiary butanol Example 1 To 1000 parts of water, 500 parts of ammonium molybdate and 32.2 parts of cesium nitrate were added and stirred with heating (solution A).

別に水850部に60%硝酸250部を加え均一にしたのち、
硝酸ビスマス114.5部を加え溶解した。これに硝酸第二
鉄286.0部及び硝酸コバルト480.7部を順次加え溶解した
(B液)。
Separately, add 250 parts of 60% nitric acid to 850 parts of water and homogenize it.
114.5 parts of bismuth nitrate was added and dissolved. To this, 286.0 parts of ferric nitrate and 480.7 parts of cobalt nitrate were sequentially added and dissolved (solution B).

A液にB液を加えスラリー状としたのち、平均粒径0.
03μの三酸化アンチモン51.6部を加え加熱攪拌し、水の
大部分を蒸発させた。
Solution B is added to solution A to form a slurry, and the average particle size is 0.
51.6 parts of antimony trioxide (03μ) was added and the mixture was heated with stirring to evaporate most of the water.

得られたケーキ状物質を120℃で乾燥させたのち、500
℃で10時間焼成し成形した。
After drying the obtained cake-like substance at 120 ° C, 500
It was baked at 10 ° C for 10 hours and molded.

こうして得られた触媒の組成はMo12Bi1Fe3Sb1.5Co7Cs
0.7Oxで示される。
The composition of the catalyst thus obtained is Mo 12 Bi 1 Fe 3 Sb 1.5 Co 7 Cs
Shown at 0.7 Ox.

酸素の原子比xは他の元素の原子価により自然に決ま
る値であり、以下の表示においては省略する。
The atomic ratio x of oxygen is a value naturally determined by the valences of other elements, and is omitted in the following display.

この触媒をステンレス製反応管に充填し、イソブチレ
ン5%、酸素12%、水蒸気10%及び窒素73%の原料混合
ガスを接触時間2秒で触媒層を通過させ、360℃で反応
させた。
This catalyst was filled in a stainless steel reaction tube, and a raw material mixed gas of 5% isobutylene, 12% oxygen, 10% steam and 73% nitrogen was passed through the catalyst layer for a contact time of 2 seconds and reacted at 360 ° C.

その結果、イソブチレンの反応率93.0%、メタクロレ
イン及びメタクリル酸の選択率88.0%、メタクロレイン
及びメタクリル酸の単流収率81.8%であった。
As a result, the reaction rate of isobutylene was 93.0%, the selectivity of methacrolein and methacrylic acid was 88.0%, and the yield of methacrolein and methacrylic acid was 81.8%.

比較例1 平均粒径3μの三酸化アンチモンを用い、その他は実
施例1と同様にして、同じ組成の触媒を調製した。この
触媒を用い、実施例1と同様な反応条件で反応を行った
ところ、イソブチレンの反応率90.0%、メタクロレイン
及びメタクリル酸の選択率87.7%、メタクロレイン及び
メタクリル酸の単流収率78.9%であった。
Comparative Example 1 A catalyst having the same composition was prepared in the same manner as in Example 1 except that antimony trioxide having an average particle size of 3 μ was used. Using this catalyst, a reaction was carried out under the same reaction conditions as in Example 1. As a result, the conversion of isobutylene was 90.0%, the selectivity of methacrolein and methacrylic acid was 87.7%, and the yield of methacrolein and methacrylic acid was 78.9%. Met.

実施例2 平均粒径0.05μの三酸化アンチモン用い、実施例1と
同様にして次の組成の触媒を調製した。この触媒の組成
はMo12Bi1Fe2.5Sb1.5Ni8Cr1Rb0.8であった。この触媒を
用い、実施例1と同様な反応条件で反応を行ったとこ
ろ、イソブチレンの反応率93.1%、メタクロレイン及び
メタクリル酸の選択率91.6%、メタクロレイン及びメタ
クリル酸の単流収率85.3%であった。
Example 2 A catalyst having the following composition was prepared in the same manner as in Example 1, except that antimony trioxide having an average particle size of 0.05 μ was used. The composition of this catalyst was Mo 12 Bi 1 Fe 2.5 Sb 1.5 Ni 8 Cr 1 Rb 0.8 . Using this catalyst, a reaction was carried out under the same reaction conditions as in Example 1. As a result, the conversion of isobutylene was 93.1%, the selectivity of methacrolein and methacrylic acid was 91.6%, and the yield of methacrolein and methacrylic acid was 85.3%. Met.

比較例2 平均粒径5μの三酸化アンチモンを用い、その他は実
施例2と同様にして同じ組成の触媒を調製した。この触
媒を用い、実施例1と同様な反応条件で反応を行ったと
ころ、イソブチレンの反応率92.0%、メタクロレイン及
びメタクリル酸の選択率90.2%、メタクロレイン及びメ
タクリル酸の単流収率83.0%であった。
Comparative Example 2 A catalyst having the same composition was prepared in the same manner as in Example 2, except that antimony trioxide having an average particle size of 5 μ was used. Using this catalyst, a reaction was conducted under the same reaction conditions as in Example 1. The reaction rate of isobutylene was 92.0%, the selectivity of methacrolein and methacrylic acid was 90.2%, and the yield of methacrolein and methacrylic acid was 83.0%. Met.

実施例3 実施例2の触媒を用いて原料としてターシヤリーブタ
ノールを用いた他は実施例2と同様の条件で反応を行っ
たところ、ターシヤリーブタノールの反応率100%、メ
タクロレイン及びメタクリル酸の選択率86.2%、メタク
ロレイン及びメタクリル酸の単流収率86.2%であった。
Example 3 A reaction was carried out under the same conditions as in Example 2 except that tert-butanol was used as a raw material using the catalyst of Example 2, and the reaction rate of tert-butanol was 100% and methacrolein and methacrylic acid were The selectivity was 86.2%, and the single-flow yields of methacrolein and methacrylic acid were 86.2%.

比較例3 比較例2の触媒を用いて原料としてターシヤリーブタ
ノールを用いた他は実施例2と同様の条件で反応を行っ
たところ、ターシヤリーブタノールの反応率100%、メ
タクロレイン及びメタクリル酸の選択率83.3%、メタク
ロレイン及びメタクリル酸の単流収率83.3%であった。
Comparative Example 3 A reaction was carried out under the same conditions as in Example 2 except that tert-butanol was used as a raw material using the catalyst of Comparative Example 2. The reaction rate of tert-butanol was 100%, and methacrolein and methacrylic acid were The selectivity was 83.3%, and the single-flow yields of methacrolein and methacrylic acid were 83.3%.

実施例4 平均粒径0.02μの三酸化アンチモンを用い、実施例1
と同様にして触媒を調製した。この触媒の組成はMo12Bi
1Fe3Sb1.5Ni7Co1Ag0.1Cs0.7であった。この触媒を用
い、反応温度355℃で実施例1と同様な反応条件で反応
を行ったところ、イソブチレンの反応率94.2%、メタク
ロレイン及びメタクリル酸の選択率91.1%、メタクロレ
イン及びメタクリル酸の単流収率85.8%であった。
Example 4 Example 1 using antimony trioxide having an average particle size of 0.02μ
A catalyst was prepared in the same manner as in. The composition of this catalyst is Mo 12 Bi.
It was 1 Fe 3 Sb 1.5 Ni 7 Co 1 Ag 0.1 Cs 0.7 . Using this catalyst, a reaction was carried out at a reaction temperature of 355 ° C. under the same reaction conditions as in Example 1. As a result, the conversion of isobutylene was 94.2%, the selectivity of methacrolein and methacrylic acid was 91.1%, and the methacrolein and methacrylic acid were simple. The flow yield was 85.8%.

比較例4 平均粒径3μの三酸化アンチモンを用い、その他は実
施例4と同様にして同じ組成の触媒を調製した。この触
媒を用い、反応温度355℃で実施例1と同様な反応条件
で反応を行ったところ、イソブチレンの反応率92.1%、
メタクロレイン及びメタクリル酸の選択率89.7%、メタ
クロレイン及びメタクリル酸の単流収率82.6%であっ
た。
Comparative Example 4 A catalyst having the same composition was prepared in the same manner as in Example 4, except that antimony trioxide having an average particle size of 3 μ was used. Using this catalyst, at a reaction temperature of 355 ° C. and under the same reaction conditions as in Example 1, a reaction rate of isobutylene of 92.1%,
The selectivity of methacrolein and methacrylic acid was 89.7%, and the single-flow yield of methacrolein and methacrylic acid was 82.6%.

実施例5 平均粒径0.1μの三酸化アンチモンを用い、実施例1
と同様にして触媒を調製した。この触媒の組成はMo12Bi
1Fe3Sb1Ni7Sn1S0.3Tl0.2であった。この触媒を用い、反
応温度355℃で実施例1と同様な反応条件で反応を行っ
たところ、イソブチレンの反応率91.0%、メタクロレイ
ン及びメタクリル酸の選択率92.0%、メタクロレイン及
びメタクリル酸の単流収率83.7%であった。
Example 5 Example 1 using antimony trioxide having an average particle size of 0.1 μ
A catalyst was prepared in the same manner as in. The composition of this catalyst is Mo 12 Bi.
It was 1 Fe 3 Sb 1 Ni 7 Sn 1 S 0.3 Tl 0.2 . Using this catalyst, a reaction was carried out at a reaction temperature of 355 ° C. under the same reaction conditions as in Example 1. As a result, the conversion of isobutylene was 91.0%, the selectivity of methacrolein and methacrylic acid was 92.0%, and the methacrolein and methacrylic acid were simple. The flow yield was 83.7%.

比較例5 平均粒径2μの三酸化アンチモンを用い、その他は実
施例5と同様にして同じ組成の触媒を調製した。この触
媒を用い、反応温度355℃で実施例1と同様な反応条件
で反応を行ったところ、イソブチレンの反応率90.0%、
メタクロレイン及びメタクリル酸の選択率91.4%、メタ
クロレイン及びメタクリル酸の単流収率82.3%であっ
た。
Comparative Example 5 A catalyst having the same composition was prepared in the same manner as in Example 5, except that antimony trioxide having an average particle size of 2 μ was used. Using this catalyst, at a reaction temperature of 355 ° C. and under the same reaction conditions as in Example 1, a reaction rate of isobutylene of 90.0%,
The selectivity of methacrolein and methacrylic acid was 91.4%, and the single-flow yield of methacrolein and methacrylic acid was 82.3%.

実施例6 平均粒径0.02μの三酸化アンチモンを用い、実施例1
と同様にして触媒を調製した。この触媒の組成はMo12Bi
0.5Fe2.5Sb1Ni7Te0.5Si1K0.2Cs0.4であった。この触媒
を用い、反応温度355℃で実施例1と同様な反応条件で
反応を行ったところ、イソブチレンの反応率93.3%、メ
タクロレイン及びメタクリル酸の選択率91.6%、メタク
ロレイン及びメタクリル酸の単流収率85.5%であった。
Example 6 Example 1 was performed using antimony trioxide having an average particle size of 0.02μ.
A catalyst was prepared in the same manner as in. The composition of this catalyst is Mo 12 Bi.
It was 0.5 Fe 2.5 Sb 1 Ni 7 Te 0.5 Si 1 K 0.2 Cs 0.4 . Using this catalyst, at a reaction temperature of 355 ° C. and under the same reaction conditions as in Example 1, a reaction rate of isobutylene of 93.3%, a selectivity of methacrolein and methacrylic acid of 91.6%, and a simple reaction of methacrolein and methacrylic acid were obtained. The flow yield was 85.5%.

比較例6 平均粒径0.7μの三酸化アンチモンを用い、その他は
実施例6と同様にして同じ組成の触媒を調製した。この
触媒を用い、反応温度355℃で実施例1と同様な反応条
件で反応を行ったところ、イソブチレンの反応率91.2
%、メタクロレイン及びメタクリル酸の選択率91.3%、
メタクロレイン及びメタクリル酸の単流収率83.3%であ
った。
Comparative Example 6 A catalyst having the same composition as in Example 6 was prepared except that antimony trioxide having an average particle size of 0.7 μm was used. When a reaction was carried out using this catalyst at a reaction temperature of 355 ° C. under the same reaction conditions as in Example 1, the reaction rate of isobutylene was 91.2
%, Methacrolein and methacrylic acid selectivity 91.3%,
The single-flow yield of methacrolein and methacrylic acid was 83.3%.

実施例7 平均粒径0.03μの三酸化アンチモンを用い、実施例1
と同様にして触媒を調製した。この触媒の組成はMo12Bi
1Fe2Sb1W0.3Co7Mg2Tl0.2であった。この触媒を用い、反
応温度350℃で実施例1と同様な反応条件で反応を行っ
たところ、イソブチレンの反応率95.0%、メタクロレイ
ン及びメタクリル酸の選択率92.6%、メタクロレイン及
びメタクリル酸の単流収率88.0%であった。
Example 7 Example 1 was performed using antimony trioxide having an average particle size of 0.03μ.
A catalyst was prepared in the same manner as in. The composition of this catalyst is Mo 12 Bi.
It was 1 Fe 2 Sb 1 W 0.3 Co 7 Mg 2 Tl 0.2 . Using this catalyst, a reaction was carried out at a reaction temperature of 350 ° C. under the same reaction conditions as in Example 1. As a result, the conversion of isobutylene was 95.0%, the selectivity of methacrolein and methacrylic acid was 92.6%, and the methacrolein and methacrylic acid were simple. The flow yield was 88.0%.

比較例7 平均粒径0.9μの三酸化アンチモンを用い、その他は
実施例7と同様にして同じ組成の触媒を調製した。この
触媒を用い、反応温度350℃で実施例1と同様な反応条
件で反応を行ったところ、イソブチレンの反応率93.0
%、メタクロレイン及びメタクリル酸の選択率92.3%、
メタクロレイン及びメタクリル酸の単流収率85.8%であ
った。
Comparative Example 7 A catalyst having the same composition as in Example 7 was prepared except that antimony trioxide having an average particle size of 0.9 μ was used. Using this catalyst and conducting a reaction at a reaction temperature of 350 ° C. under the same reaction conditions as in Example 1, the reaction rate of isobutylene was 93.0.
%, Selectivity of methacrolein and methacrylic acid 92.3%,
The single-flow yield of methacrolein and methacrylic acid was 85.8%.

実施例8 実施例7の触媒を用いて原料としてターシヤリーブタ
ノールを用いた他は実施例7と同様の条件で反応を行っ
たところ、ターシヤリーブタノールの反応率100%、メ
タクロレイン及びメタクリル酸の選択率89.3%、メタク
ロレイン及びメタクリル酸の単流収率89.3%であった。
Example 8 A reaction was carried out under the same conditions as in Example 7 except that tert-butanol was used as a raw material using the catalyst of Example 7, and the reaction rate of tert-butanol was 100% and methacrolein and methacrylic acid were The selectivity was 89.3%, and the single-flow yields of methacrolein and methacrylic acid were 89.3%.

比較例8 比較例7の触媒を用いて原料としてターシヤリーブタ
ノールを用いた他は実施例7と同様の条件で反応を行っ
たところ、ターシヤリーブタノールの反応率100%、メ
タクロレイン及びメタクリル酸の選択率86.5%、メタク
ロレイン及びメタクリル酸の単流収率86.5%であった。
Comparative Example 8 The reaction was carried out under the same conditions as in Example 7 except that tert-butanol was used as the raw material using the catalyst of Comparative Example 7, and the reaction rate of tert-butanol was 100% and methacrolein and methacrylic acid were The selectivity was 86.5%, and the single-flow yields of methacrolein and methacrylic acid were 86.5%.

実施例9 平均粒径0.03μの三酸化アンチモンを用い、実施例1
と同様にして触媒を調製した。この触媒の組成はMo12Bi
0.7Fe2.5Sb1.2Ta0.2Ni7Se1Al1Cs0.7であった。この触媒
を用い、反応温度350℃で実施例1と同様な反応条件で
反応を行ったところ、イソブチレンの反応率94.1%、メ
タクロレイン及びメタクリル酸の選択率93.1%、メタク
ロレイン及びメタクリル酸の単流収率87.6%であった。
Example 9 Example 1 was performed using antimony trioxide having an average particle size of 0.03μ.
A catalyst was prepared in the same manner as in. The composition of this catalyst is Mo 12 Bi.
It was 0.7 Fe 2.5 Sb 1.2 Ta 0.2 Ni 7 Se 1 Al 1 Cs 0.7 . Using this catalyst and conducting a reaction at a reaction temperature of 350 ° C. under the same reaction conditions as in Example 1, the conversion of isobutylene was 94.1%, the selectivity of methacrolein and methacrylic acid was 93.1%, and the methacrolein and methacrylic acid were the only monomers. The flow yield was 87.6%.

比較例9 平均粒径4μの三酸化アンチモンを用い、その他は実
施例9と同様にして同じ組成の触媒を調製した。この触
媒を用い、反応温度350℃で実施例1と同様な反応条件
で反応を行ったところ、イソブチレンの反応率92.1%、
メタクロレイン及びメタクリル酸の選択率92.4%、メタ
クロレイン及びメタクリル酸の単流収率85.1%であっ
た。
Comparative Example 9 A catalyst having the same composition as in Example 9 was prepared except that antimony trioxide having an average particle size of 4 μm was used. Using this catalyst and conducting a reaction at a reaction temperature of 350 ° C. under the same reaction conditions as in Example 1, the reaction rate of isobutylene was 92.1%,
The selectivity of methacrolein and methacrylic acid was 92.4%, and the single-flow yield of methacrolein and methacrylic acid was 85.1%.

実施例10 平均粒径0.05μの三酸化アンチモンを用い、実施例1
と同様にして触媒を調製した。この触媒の組成はMo12Bi
0.9Fe2Sb1.5W0.3Nb0.1Co8Ce0.5Ba1Cs0.5であった。この
触媒を用い、反応温度350℃で実施例1と同様な反応条
件で反応を行ったところ、イソブチレンの反応率95.3
%、メタクロレイン及びメタクリル酸の選択率94.0%、
メタクロレイン及びメタクリル酸の単流収率89.6%であ
った。
Example 10 Example 1 using antimony trioxide having an average particle size of 0.05μ
A catalyst was prepared in the same manner as in. The composition of this catalyst is Mo 12 Bi.
It was 0.9 Fe 2 Sb 1.5 W 0.3 Nb 0.1 Co 8 Ce 0.5 Ba 1 Cs 0.5 . Using this catalyst and conducting a reaction at a reaction temperature of 350 ° C. under the same reaction conditions as in Example 1, the reaction rate of isobutylene was 95.3.
%, Selectivity of methacrolein and methacrylic acid 94.0%,
The single-flow yield of methacrolein and methacrylic acid was 89.6%.

比較例10 平均粒径3μの三酸化アンチモンを用い、その他は実
施例10と同様にして同じ組成の触媒を調製した。この触
媒を用い、反応温度350℃で実施例1と同様な反応条件
で反応を行ったところ、イソブチレンの反応率93.1%、
メタクロレイン及びメタクリル酸の選択率93.0%、メタ
クロレイン及びメタクリル酸の単流収率86.6%であっ
た。
Comparative Example 10 A catalyst having the same composition was prepared in the same manner as in Example 10, except that antimony trioxide having an average particle size of 3 μ was used. Using this catalyst, a reaction was carried out at a reaction temperature of 350 ° C. under the same reaction conditions as in Example 1. The reaction rate of isobutylene was 93.1%,
The selectivity of methacrolein and methacrylic acid was 93.0% and the single-flow yield of methacrolein and methacrylic acid was 86.6%.

実施例11 平均粒径0.08μの三酸化アンチモンを用い、実施例1
と同様にして触媒を調製した。この触媒の組成はMo12Bi
0.6Fe3Sb1Ta0.5Co8Zn1Mn0.1Ge0.3Rb0.8であった。この
触媒を用い、反応温度350℃で実施例1と同様な反応条
件で反応を行ったところ、イソブチレンの反応率95.0
%、メタクロレイン及びメタクリル酸の選択率93.2%、
メタクロレイン及びメタクリル酸の単流収率88.5%であ
った。
Example 11 Example 1 using antimony trioxide having an average particle size of 0.08μ
A catalyst was prepared in the same manner as in. The composition of this catalyst is Mo 12 Bi.
It was 0.6 Fe 3 Sb 1 Ta 0.5 Co 8 Zn 1 Mn 0.1 Ge 0.3 Rb 0.8 . When a reaction was carried out using this catalyst at a reaction temperature of 350 ° C. under the same reaction conditions as in Example 1, the reaction rate of isobutylene was 95.0.
%, Methacrolein and methacrylic acid selectivity 93.2%,
The single-flow yield of methacrolein and methacrylic acid was 88.5%.

比較例11 平均粒径1μの三酸化アンチモンを用い、その他は実
施例11と同様にして同じ組成の触媒を調製した。この触
媒を用い、反応温度350℃で実施例1と同様な反応条件
で反応を行ったところ、イソブチレンの反応率93.0%、
メタクロレイン及びメタクリル酸の選択率92.4%、メタ
クロレイン及びメタクリル酸の単流収率85.9%であっ
た。
Comparative Example 11 A catalyst having the same composition as in Example 11 was prepared except that antimony trioxide having an average particle size of 1 μm was used. Using this catalyst, at a reaction temperature of 350 ° C. and under the same reaction conditions as in Example 1, a reaction rate of isobutylene was 93.0%,
The selectivity of methacrolein and methacrylic acid was 92.4%, and the single-flow yield of methacrolein and methacrylic acid was 85.9%.

実施例12 実施例11の触媒を用いて原料としてターシヤリーブタ
ノールを用いた他は実施例11と同様の条件で反応を行っ
たところ、ターシヤリーブタノールの反応率100%、メ
タクロレイン及びメタクリル酸の選択率89.0%、メタク
ロレイン及びメタクリル酸の単流収率89.0%であった。
Example 12 When the reaction was performed under the same conditions as in Example 11 except that tert-butanol was used as a raw material using the catalyst of Example 11, the reaction rate of tert-butanol was 100%, and methacrolein and methacrylic acid The selectivity was 89.0%, and the single-flow yields of methacrolein and methacrylic acid were 89.0%.

比較例12 比較例11の触媒を用いて原料としてターシヤリーブタ
ノールを用いた他は実施例11と同様の条件で反応を行っ
たところ、ターシヤリーブタノールの反応率100%、メ
タクロレイン及びメタクリル酸の選択率86.8%、メタク
ロレイン及びメタクリル酸の単流収率86.8%であった。
Comparative Example 12 When the reaction was carried out under the same conditions as in Example 11 except that tert-butanol was used as the raw material using the catalyst of Comparative Example 11, the reaction rate of tert-butanol was 100%, and methacrolein and methacrylic acid The selectivity was 86.8%, and the single-flow yields of methacrolein and methacrylic acid were 86.8%.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C07B 61/00 300 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location // C07B 61/00 300

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】イソブチレンまたはターシヤリーブタノー
ルを分子状酸素を用いて気相接触酸化し、メタクロレイ
ン及びメタクリル酸を製造する際に使用する触媒組成中
に少なくともモリブデン、ビスマス、鉄及びアンチモン
を含む多成分系触媒を調製するにあたり、出発原料とし
て三酸化アンチモンの平均粒径が0.2μ以下のものを使
用することを特徴とするメタクロレイン及びメタクリル
酸の製造用触媒の調製法。
1. A catalyst composition containing at least molybdenum, bismuth, iron and antimony in a catalyst composition used for producing methacrolein and methacrylic acid by vapor-phase catalytic oxidation of isobutylene or tert-butanol with molecular oxygen. A method for preparing a catalyst for producing methacrolein and methacrylic acid, which comprises using, as a starting material, an antimony trioxide having an average particle size of 0.2 μ or less in preparing a component catalyst.
JP61255401A 1986-10-27 1986-10-27 Preparation of catalysts for the production of methacrolein and methacrylic acid Expired - Lifetime JPH0811187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61255401A JPH0811187B2 (en) 1986-10-27 1986-10-27 Preparation of catalysts for the production of methacrolein and methacrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61255401A JPH0811187B2 (en) 1986-10-27 1986-10-27 Preparation of catalysts for the production of methacrolein and methacrylic acid

Publications (2)

Publication Number Publication Date
JPS63107745A JPS63107745A (en) 1988-05-12
JPH0811187B2 true JPH0811187B2 (en) 1996-02-07

Family

ID=17278250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61255401A Expired - Lifetime JPH0811187B2 (en) 1986-10-27 1986-10-27 Preparation of catalysts for the production of methacrolein and methacrylic acid

Country Status (1)

Country Link
JP (1) JPH0811187B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0767161B1 (en) * 1994-06-22 1999-11-03 Asahi Kasei Kogyo Kabushiki Kaisha Process for producing methacrolein
RU2713201C1 (en) * 2016-08-12 2020-02-04 Асахи Касеи Кабусики Кайся Method of producing oxide catalyst and method of producing unsaturated nitrile and unsaturated acid

Also Published As

Publication number Publication date
JPS63107745A (en) 1988-05-12

Similar Documents

Publication Publication Date Title
JP2974826B2 (en) Preparation of catalysts for the production of methacrolein and methacrylic acid
JPH0550489B2 (en)
JP2001162173A (en) Multiple oxide catalyst and method of producing acrylic acid
JPS63122642A (en) Production of methacrolein and methacrylic acid
JPH03238051A (en) Preparation of catalyst for preparing methacrylic acid
JPH03109943A (en) Preparation of catalyst for production of methacrolein and methacylic acid
JPH0753686B2 (en) Method for producing methacrylic acid
JP4081824B2 (en) Acrylic acid production method
JP2657693B2 (en) Preparation of catalysts for the production of methacrolein and methacrylic acid
JPH0811187B2 (en) Preparation of catalysts for the production of methacrolein and methacrylic acid
JP3209778B2 (en) Preparation of catalyst for methacrylic acid production
JP3370589B2 (en) Catalyst for producing methacrylic acid and method for producing methacrylic acid using the same
JPH0479697B2 (en)
JPH0662463B2 (en) Method for producing methacrolein and methacrylic acid
JP3347263B2 (en) Preparation of catalysts for the production of unsaturated aldehydes and unsaturated carboxylic acids
JPH05293389A (en) Preparation of catalyst for production of acrolein and acrylic acid
JPH10114689A (en) Production of metacrolein, methacrilic acid and 1,3-butadiene
JPH0699335B2 (en) Method for producing methacrolein and methacrylic acid
JPH05253480A (en) Production of catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JPH0597761A (en) Production of methacrolein and catalyst used for producing methacrolein
JP2747941B2 (en) Method for producing acrolein and acrylic acid
JP3490133B2 (en) Method for producing hydrogen cyanide
JPH0420418B2 (en)
JPH11179206A (en) Production of catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JPH10244160A (en) Preparation of catalyst for production of methacrylic acid

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term