JPH0420418B2 - - Google Patents

Info

Publication number
JPH0420418B2
JPH0420418B2 JP61266549A JP26654986A JPH0420418B2 JP H0420418 B2 JPH0420418 B2 JP H0420418B2 JP 61266549 A JP61266549 A JP 61266549A JP 26654986 A JP26654986 A JP 26654986A JP H0420418 B2 JPH0420418 B2 JP H0420418B2
Authority
JP
Japan
Prior art keywords
methacrylic acid
group
element selected
oxygen
methacrolein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61266549A
Other languages
Japanese (ja)
Other versions
JPS63122641A (en
Inventor
Tooru Kuroda
Motomu Ookita
Masaaki Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP61266549A priority Critical patent/JPS63122641A/en
Publication of JPS63122641A publication Critical patent/JPS63122641A/en
Publication of JPH0420418B2 publication Critical patent/JPH0420418B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はイソブチレン又は三級ブタノールを分
子状酸素により気相接触酸化して、メタクロレイ
ン及びメタクリル酸を製造する方法に関する。 〔従来の技術〕 イソブチレン又は三級ブタノールを高温気相下
で接触酸化してメタクロレイン及びメタクリル酸
を製造する際に用いられる触媒に関して数多くの
提案がなされている。しかし、この反応に用いら
れる触媒は、一般に触媒活性、メタクロレイン及
びメタクリル酸の選択性、触媒寿命等の触媒性能
の点で工業的見地から改良が望まれている。 〔問題点を解決するための手段〕 本発明は、一般式 MoaBibSbcFedCreSefAgXhYiZjOk (式中Mo、Bi、Sb、Fe、Cr、Se及びOはそれ
ぞれモリブデン、ビスマス、アンチモン、鉄、ク
ロム、セレン及び酸素、Aはニツケル及びコバル
トからなる群より選ばれた少なくとも1種の元
素、Xはカリウム、ルビジウム、セシウム及びタ
リウムから成る群より選ばれた少なくとも1種の
元素、Yはマグネシウム、亜鉛、カドミウム、
鉛、バリウム及び錫からなる群より選ばれた少な
くとも1種の元素、Zはリン、硼素、タングステ
ン、硫黄、塩素、珪素及びセリウムからなる群よ
り選ばれた少なくとも1種の元素、a、b、c、
d、e、f、g、h、i、j及びkは各元素の原
子比率を示し、a=12のときb=0.01〜3、c=
0.01〜3、d=0.5〜4、e=0.01〜3、f=0.01
〜3、g=1〜12、h=0.01〜2、i=0.01〜
5、j=0〜7であり、kは前記各成分の原子価
を満足するのに必要な酸素原子数である)で表わ
される組成を有する触媒の存在下に、イソブチレ
ン又は三級ブタノールを分子状酸素を用いて気相
接触酸化することを特徴とする、メタクロレイン
及びメタクリル酸の製造法である。 本発明に用いられる触媒を調製する場合の元素
の原料としては、酸化物あるいは強熱することに
より酸化物になり得る塩化物、硫酸塩、硝酸塩、
炭酸塩又はそれらの混合物が好ましい。触媒の調
製に際しては、蒸発乾固法、沈殿法、酸化物混合
法等の既知の方法を用いることができる。触媒成
分は担体に担持させて用いることもできる。担体
としては、例えばシリカ、アルミナ、シリカーア
ルミナなどが用いられる。 本発明を実施するに際しては、原料のイソブチ
レン又は三級ブタノールに分子状酸素を加え、前
記の触媒の存在下に気相接触酸化を行う。イソブ
チレン又は三級ブタノール対酸素のモル比は1:
0.5〜3が好ましい。原料ガスは不活性ガスで希
釈して用いることが好ましい。酸化に用いられる
分子状酸素は純酸素ガスでも空気でもよいが、工
業的には空気が有利である。反応圧力は常圧ない
し数気圧まで用いられる。反応温度は250〜450℃
の範囲が好ましく、反応は流動床でも固定床でも
行うことができる。 〔発明の効果〕 本発明の方法によれば、イソブチレン又は三級
ブタノールからメタクロレイン及びメタクリル酸
を工業的に有利に得ることができる。 下記実施例及び比較例中の部は重量部を意味
し、分析はガスクロマトグラフイにより行つた。
またイソブチレン又は三級ブタノールの反応率、
生成されるメタクロレイン及びメタクリル酸の選
択率、単流収率は下記のように定義される。 イソブチレン又は三級ブタノールの反応率(%)=反
応したモル数/供給したモル数×100 メタクロレインの選択率(%)=生成したメタクロレ
インのモル数/反応したイソブチレン又は三級ブタノー
ルのモル数×100 メタクリル酸の選択率(%)=生成したメタクリル酸
のモル数/反応したイソブチレン又は三級ブタノールの
モル数×100 (メタクロレイン+メタクリル酸)の単流収率(%) =生成した(メタクロレイン+メタクリル酸)の
モル数/供給したイソブチレン又は三級ブタノールのモ
ル数×100 実施例 1 水1000部にモリブデン酸アンモニウム500部、
亜セレン酸9.1部及び硝酸セシウム23.0部を加え
加熱撹拌した(A液)。別に水850部に60%硝酸
250部を加え、均一にしたのち、硝酸ビスマス
57.2部を加え溶解した。これに硝酸第二鉄286.0
部、硝酸クロム9.4部、硝酸ニツケル411.8部及び
硝酸マグネシウム90.8部を順次加え溶解した(B
液)。A液にB液を加えスリラー状としたのち、
三酸化アンチモン34.4部を加え加熱撹拌し、水の
大部分を蒸発させた。 得られたケーキ状物質を120℃で乾燥させたの
ち、500℃で6時間焼成して成形した。こうして
得られた触媒の組成は次式 Mo12Bi0.5Sb1Fe3Cr0.1Se0.3Ni6Cs0.5Mg1.5Okで示
される。酸素の原子比率kは他の元素の原子価に
より自然に決まる値であるので以下省略する。 この触媒をステンレス製反応管に充填し、イソ
ブチレン5%、酸素12%、水蒸気10%及び窒素73
%の原料混合ガスを接触時間3.6秒で触媒層を通
過させ、360℃で反応させた。その結果、イソブ
チレンの反応率96%、メタクロレインの選択率
88.0%、メタクリル酸の選択率4.2%(メタクロ
レイン+メタクリル酸)の単流収率は88.5%であ
つた。 実施例 2〜9 実施例1に準じて下記の触媒を調製した。 実施例2:Mo12Bi0.5Sb1Fe3Cr0.1Se0.3Co6K0.4
Zn1.5 〃 3:Mo12Bi1Sb1Fe3Cr0.1Se0.3Ni4Co3K0.2
Cs0.2Cd0.5P0.08 〃 4:Mo12Bi1Sb1Fe3Cr0.3Se0.2Ni4Co3Rb0.4
Pb0.5B0.5 〃 5:Mo12Bi1Sb1Fe3Cr0.3Se0.4Ni6Tl0.2Ba0.3
W0.1S0.6 〃 6:Mo12Bi1Sb1Fe3Cr0.1Se0.3Ni4Co3Tl0.2
Sn0.5Cl0.4 〃 7:Mo12Bi1Sb1Fe3Cr0.1Se0.3Ni5Co2.5Tl0.2
Mg1.5Si5 〃 8:Mo12Bi1Sb1Fe3Cr0.1Se0.3Ni6Co2Tl0.2
Mg1.5W0.1Ce0.2 〃 9:Mo12Bi1Sb1Fe3Cr0.1Se0.3Co6Cs0.2Tl0.1
Mg1.5Zn0.5 これらの触媒を用いて反応温度を変え、その他
は実施例1と同様にして反応を行つた。その結果
を第1表に示す。
[Industrial Application Field] The present invention relates to a method for producing methacrolein and methacrylic acid by catalytically oxidizing isobutylene or tertiary butanol with molecular oxygen in the gas phase. [Prior Art] Many proposals have been made regarding catalysts used when producing methacrolein and methacrylic acid by catalytically oxidizing isobutylene or tertiary butanol in a high-temperature gas phase. However, the catalyst used in this reaction is generally desired to be improved from an industrial standpoint in terms of catalytic performance such as catalytic activity, selectivity for methacrolein and methacrylic acid, and catalyst life. [Means for Solving the Problems] The present invention provides a general formula Mo a Bi b Sb c Fe d Cr e Se f A g X h Y i Z j O k (where Mo, Bi, Sb, Fe, Cr , Se and O are molybdenum, bismuth, antimony, iron, chromium, selenium and oxygen, respectively, A is at least one element selected from the group consisting of nickel and cobalt, and X is a group consisting of potassium, rubidium, cesium and thallium. At least one element selected from Y is magnesium, zinc, cadmium,
At least one element selected from the group consisting of lead, barium, and tin; Z is at least one element selected from the group consisting of phosphorus, boron, tungsten, sulfur, chlorine, silicon, and cerium; a, b, c,
d, e, f, g, h, i, j and k indicate the atomic ratio of each element, when a=12, b=0.01~3, c=
0.01~3, d=0.5~4, e=0.01~3, f=0.01
~3, g=1~12, h=0.01~2, i=0.01~
5, j = 0 to 7, and k is the number of oxygen atoms necessary to satisfy the valence of each component. This is a method for producing methacrolein and methacrylic acid, which is characterized by gas phase catalytic oxidation using oxygen. Elemental raw materials for preparing the catalyst used in the present invention include oxides or chlorides, sulfates, nitrates that can be converted into oxides by ignition,
Carbonates or mixtures thereof are preferred. In preparing the catalyst, known methods such as evaporation to dryness method, precipitation method, oxide mixing method, etc. can be used. The catalyst component can also be supported on a carrier. As the carrier, for example, silica, alumina, silica alumina, etc. are used. In carrying out the present invention, molecular oxygen is added to isobutylene or tertiary butanol as a raw material, and gas phase catalytic oxidation is carried out in the presence of the above catalyst. The molar ratio of isobutylene or tertiary butanol to oxygen is 1:
0.5-3 is preferable. It is preferable to use the raw material gas after diluting it with an inert gas. The molecular oxygen used for oxidation may be pure oxygen gas or air, but air is industrially advantageous. The reaction pressure used is from normal pressure to several atmospheres. Reaction temperature is 250-450℃
The reaction can be carried out in either a fluidized bed or a fixed bed. [Effects of the Invention] According to the method of the present invention, methacrolein and methacrylic acid can be industrially advantageously obtained from isobutylene or tertiary butanol. In the Examples and Comparative Examples below, parts mean parts by weight, and the analysis was performed by gas chromatography.
Also, the reaction rate of isobutylene or tertiary butanol,
The selectivity and single flow yield of methacrolein and methacrylic acid produced are defined as follows. Reaction rate (%) of isobutylene or tertiary butanol = Number of moles reacted/Number of moles supplied x 100 Selectivity of methacrolein (%) = Number of moles of methacrolein produced/Number of moles of reacted isobutylene or tertiary butanol ×100 Selectivity of methacrylic acid (%) = Number of moles of methacrylic acid produced/Number of moles of reacted isobutylene or tertiary butanol × 100 Single flow yield (%) of (methacrylic acid + methacrylic acid) = Produced ( Number of moles of methacrolein + methacrylic acid)/Number of moles of supplied isobutylene or tertiary butanol x 100 Example 1 500 parts of ammonium molybdate in 1000 parts of water,
9.1 parts of selenite and 23.0 parts of cesium nitrate were added and stirred with heating (liquid A). Separately 60% nitric acid in 850 parts of water
After adding 250 parts and making it homogeneous, add bismuth nitrate.
57.2 parts were added and dissolved. In this, ferric nitrate 286.0
9.4 parts of chromium nitrate, 411.8 parts of nickel nitrate and 90.8 parts of magnesium nitrate were added and dissolved (B
liquid). After adding liquid B to liquid A to form a thriller,
34.4 parts of antimony trioxide was added and stirred with heating to evaporate most of the water. The resulting cake-like material was dried at 120°C, then baked at 500°C for 6 hours and shaped. The composition of the catalyst thus obtained is shown by the following formula: Mo 12 Bi 0.5 Sb 1 Fe 3 Cr 0.1 Se 0.3 Ni 6 Cs 0.5 Mg 1.5 Ok. Since the atomic ratio k of oxygen is a value naturally determined by the valences of other elements, it will be omitted below. This catalyst was packed into a stainless steel reaction tube, containing 5% isobutylene, 12% oxygen, 10% water vapor and 73% nitrogen.
% raw material mixed gas was passed through the catalyst layer with a contact time of 3.6 seconds and reacted at 360°C. As a result, the reaction rate of isobutylene was 96%, and the selectivity of methacrolein was 96%.
The single flow yield was 88.5% with a selectivity of methacrylic acid of 4.2% (methacrylic acid + methacrylic acid). Examples 2 to 9 The following catalysts were prepared according to Example 1. Example 2: Mo 12 Bi 0.5 Sb 1 Fe 3 Cr 0.1 Se 0.3 Co 6 K 0.4
Zn 1.5 3: Mo 12 Bi 1 Sb 1 Fe 3 Cr 0.1 Se 0.3 Ni 4 Co 3 K 0.2
Cs 0.2 Cd 0.5 P 0.08 4: Mo 12 Bi 1 Sb 1 Fe 3 Cr 0.3 Se 0.2 Ni 4 Co 3 Rb 0.4
Pb 0.5 B 0.5 〃 5: Mo 12 Bi 1 Sb 1 Fe 3 Cr 0.3 Se 0.4 Ni 6 Tl 0.2 Ba 0.3
W 0.1 S 0.6 〃 6: Mo 12 Bi 1 Sb 1 Fe 3 Cr 0.1 Se 0.3 Ni 4 Co 3 Tl 0.2
Sn 0.5 Cl 0.4 7: Mo 12 Bi 1 Sb 1 Fe 3 Cr 0.1 Se 0.3 Ni 5 Co 2.5 Tl 0.2
Mg 1.5 Si 5 〃 8: Mo 12 Bi 1 Sb 1 Fe 3 Cr 0.1 Se 0.3 Ni 6 Co 2 Tl 0.2
Mg 1.5 W 0.1 Ce 0.2 〃 9:Mo 12 Bi 1 Sb 1 Fe 3 Cr 0.1 Se 0.3 Co 6 Cs 0.2 Tl 0.1
Mg 1.5 Zn 0.5 A reaction was carried out in the same manner as in Example 1 except that the reaction temperature was changed using these catalysts. The results are shown in Table 1.

【表】 実施例 10〜12 それぞれ実施例1〜3の触媒を用い、原料を三
級ブタノールに変え、その他は実施例1と同様に
して反応を行つた。その結果を第2表に示す。
[Table] Examples 10 to 12 Reactions were carried out in the same manner as in Example 1 except that the catalysts of Examples 1 to 3 were used, and tertiary butanol was used as the raw material. The results are shown in Table 2.

【表】 比較例 1 亜セレン酸9.1部及び硝酸クロム9.4部を除き、
その他の実施例1と同様にして次式 Mo12Bi0.5Sb1Fe3Ni6Cs0.5Mg1.5 で表わされる組成の触媒を得た。この触媒を用
い、実施例1と同様にして反応を行つたところ、
イソブチレンの反応率90%、メタクロレインの選
択率86.5%、メタクリル酸の選択率5.7%、(メタ
クロレイン+メタクリル酸)の単流収率83.0%で
あつた。 比較例 2 比較例1の触媒を用い、実施例10と同様にして
反応を行つたところ、三級ブタノールの反応率
100%、メタクロレインの選択率79.5%、メタク
リル酸の選択率4.0%(メタクロレイン+メタク
リル酸)単流収率83.5%であつた。
[Table] Comparative Example 1 Except for 9.1 parts of selenite and 9.4 parts of chromium nitrate,
A catalyst having a composition represented by the following formula Mo 12 Bi 0.5 Sb 1 Fe 3 Ni 6 Cs 0.5 Mg 1.5 was obtained in the same manner as in Example 1. When a reaction was carried out in the same manner as in Example 1 using this catalyst,
The reaction rate of isobutylene was 90%, the selectivity of methacrolein was 86.5%, the selectivity of methacrylic acid was 5.7%, and the single flow yield of (methacrolein + methacrylic acid) was 83.0%. Comparative Example 2 When a reaction was carried out in the same manner as in Example 10 using the catalyst of Comparative Example 1, the reaction rate of tertiary butanol was
100%, methacrolein selectivity 79.5%, methacrylic acid selectivity 4.0% (methacrolein + methacrylic acid) single flow yield 83.5%.

Claims (1)

【特許請求の範囲】 1 一般式 MoaBibSbcFedCreSefAgXhYiZjOk (式中Mo、Bi、Sb、Fe、Cr、Se及びOはそれ
ぞれモリブデン、ビスマス、アンチモン、鉄、ク
ロム、セレン及び酸素、Aはニツケル及びコバル
トからなる群より選ばれた少なくとも1種の元
素、Xはカリウム、ルビジウム、セシウム及びタ
リウムからなる群より選ばれた少なくとも1種の
元素、Yはマグネシウム、亜鉛、カドミウム、
鉛、バリウム及び錫からなる群より選ばれた少な
くとも1種の元素、Zはリン、硼素、タングステ
ン、硫黄、塩素、珪素及びセリウムからなる群よ
り選ばれた少なくとも1種の元素、a、b、c、
d、e、f、g、h、i、j及びkは各元素の原
子比率を示し、a=12のときb=0.01〜3、c=
0.01〜3、d=0.5〜4、e=0.01〜3、f=0.01
〜3、g=1〜12、h=0.01〜2、i=0.01〜
5、j=0〜7であり、kは前記各成分の原子価
を満足するのに必要な酸素原子数である)で表わ
される組成を有する触媒の存在下に、イソブチレ
ン又は三級ブタノールを分子状酸素を用いて気相
接触酸化することを特徴とする、メタクロレイン
及びメタクリル酸の製造法。
[Claims] 1 General formula Mo a Bi b Sb c Fe d Cr e Se f A g X h Y i Z j O k (wherein Mo, Bi, Sb, Fe, Cr, Se and O each represent molybdenum , bismuth, antimony, iron, chromium, selenium and oxygen, A is at least one element selected from the group consisting of nickel and cobalt, and X is at least one element selected from the group consisting of potassium, rubidium, cesium and thallium. elements, Y is magnesium, zinc, cadmium,
At least one element selected from the group consisting of lead, barium, and tin; Z is at least one element selected from the group consisting of phosphorus, boron, tungsten, sulfur, chlorine, silicon, and cerium; a, b, c,
d, e, f, g, h, i, j and k indicate the atomic ratio of each element, when a=12, b=0.01~3, c=
0.01~3, d=0.5~4, e=0.01~3, f=0.01
~3, g=1~12, h=0.01~2, i=0.01~
5, j = 0 to 7, and k is the number of oxygen atoms necessary to satisfy the valence of each component. 1. A method for producing methacrolein and methacrylic acid, the method comprising gas phase catalytic oxidation using oxygen.
JP61266549A 1986-11-11 1986-11-11 Production of methacrolein and methacrylic acid Granted JPS63122641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61266549A JPS63122641A (en) 1986-11-11 1986-11-11 Production of methacrolein and methacrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61266549A JPS63122641A (en) 1986-11-11 1986-11-11 Production of methacrolein and methacrylic acid

Publications (2)

Publication Number Publication Date
JPS63122641A JPS63122641A (en) 1988-05-26
JPH0420418B2 true JPH0420418B2 (en) 1992-04-02

Family

ID=17432393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61266549A Granted JPS63122641A (en) 1986-11-11 1986-11-11 Production of methacrolein and methacrylic acid

Country Status (1)

Country Link
JP (1) JPS63122641A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100186659B1 (en) * 1994-06-22 1999-05-15 유미꾸라 레이이찌 Process for producing methacrolein
DE60239222D1 (en) 2001-12-21 2011-03-31 Asahi Kasei Chemicals Corp oxide catalyst

Also Published As

Publication number Publication date
JPS63122641A (en) 1988-05-26

Similar Documents

Publication Publication Date Title
JPH0550489B2 (en)
JPH0420419B2 (en)
US4985592A (en) Process for the preparation of unsaturated carboxylic acids
JPH03238051A (en) Preparation of catalyst for preparing methacrylic acid
JPH0813332B2 (en) Preparation of catalysts for the production of methacrolein and methacrylic acid
JPH0753686B2 (en) Method for producing methacrylic acid
US5208371A (en) Process for production of methacrolein and methacrylic acid
JP2720215B2 (en) Preparation of catalyst for methacrylic acid production
JP2657693B2 (en) Preparation of catalysts for the production of methacrolein and methacrylic acid
JP3209778B2 (en) Preparation of catalyst for methacrylic acid production
JPH0662463B2 (en) Method for producing methacrolein and methacrylic acid
JPH0420418B2 (en)
JPH0479697B2 (en)
JPH0699335B2 (en) Method for producing methacrolein and methacrylic acid
JPH10114689A (en) Production of metacrolein, methacrilic acid and 1,3-butadiene
JPH0459739A (en) Production of methacrolein and methacrylic acid
KR920003103B1 (en) Production of methacrolein and methacrylic acid
JPH1066874A (en) Preparation of catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid
JPH0596172A (en) Production of methacrylic acid
JP2747941B2 (en) Method for producing acrolein and acrylic acid
JPH0320237A (en) Production of methacrolein and methacrylic acid
JP2592325B2 (en) Method for producing unsaturated carboxylic acid
JPH0827089A (en) Method for producing acrylonitrile
JPH0358961A (en) Production of acrylonitrile by ammoxidation of propane
JPH11228487A (en) Production of methacrylic acid