JPH08111518A - Hybrid optical integrated circuit, fabrication thereof and optical transmission module - Google Patents

Hybrid optical integrated circuit, fabrication thereof and optical transmission module

Info

Publication number
JPH08111518A
JPH08111518A JP24543894A JP24543894A JPH08111518A JP H08111518 A JPH08111518 A JP H08111518A JP 24543894 A JP24543894 A JP 24543894A JP 24543894 A JP24543894 A JP 24543894A JP H08111518 A JPH08111518 A JP H08111518A
Authority
JP
Japan
Prior art keywords
optical
substrate
mark
optical axis
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24543894A
Other languages
Japanese (ja)
Other versions
JP3208555B2 (en
Inventor
Hiroaki Okano
広明 岡野
Keiichi Higuchi
恵一 樋口
Naoto Uetsuka
尚登 上塚
Tatsuo Teraoka
達夫 寺岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP24543894A priority Critical patent/JP3208555B2/en
Publication of JPH08111518A publication Critical patent/JPH08111518A/en
Application granted granted Critical
Publication of JP3208555B2 publication Critical patent/JP3208555B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE: To secure an optical element and an optical waveguide element with high alignment accuracy by forming a mark for adjusting the optical axis with extremely high accuracy on an Si substrate. CONSTITUTION: The hybrid optical integrated circuit comprises optical elements mounted at a mounting pit part 29 on an Si substrate 20 provided with an optical waveguide element 30. The optical axis is aligned between the optical waveguide element 30 and the optical element by aligning a mark for adjusting the optical axis of the optical element with a mark 27 on the Si substrate 20. When the mark 27 is formed on the Si substrate 20, a core glass film 24 is formed on the Si substrate 20 and then a core 25 and a mark pattern 26 are formed simultaneously on the core glass film 24. An Si bench 21 is then partially etched using the core 25 and the mark pattern 26 as a mask thus forming the mark 27. Since the core 25 and the mark pattern 26 are formed simultaneously using a same mask for photolithography, relative positional accuracy is enhanced between the core 25 and the mark 27.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光導波路素子と光素子
とが同一Si基板上に集積化されたハイブリッド光集積
回路及びその製造方法並びに光伝送モジュールに係り、
特に光素子をSi基板上に高精度に位置決め固定するも
のに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hybrid optical integrated circuit in which an optical waveguide element and an optical element are integrated on the same Si substrate, a method of manufacturing the same, and an optical transmission module.
In particular, it relates to a device for positioning and fixing an optical element on a Si substrate with high accuracy.

【0002】[0002]

【従来の技術】石英系光導波路素子が形成されたSi基
板上に、半導体光源や半導体光検出器等の光素子や、さ
らに電子回路素子を搭載したハイブリッド光集積回路へ
の感心が高まっている。
2. Description of the Related Art There is a growing interest in hybrid optical integrated circuits in which optical elements such as semiconductor light sources and semiconductor photodetectors, and electronic circuit elements are further mounted on a Si substrate on which a quartz optical waveguide element is formed. .

【0003】ここで、高性能かつ低価格なハイブリッド
光集積回路を実現するためには、次の2点が重要な課題
となる。まず第1点として光素子とSi基板上に形成さ
れた石英系光導波路素子間での結合損失を最小とするた
めに、両者はサブミクロンの位置合せ(光軸合せ)精度
で固定する必要がある。第2点として低価格のハイブリ
ッド光集積回路を実現するためには、光素子とSi基板
上に形成された石英系光導波路素子をサブミクロンの位
置合せ精度を確保しつつ光素子をSi基板上に短時間で
固定する必要がある。
Here, in order to realize a high performance and low cost hybrid optical integrated circuit, the following two points are important issues. First, in order to minimize the coupling loss between the optical element and the silica-based optical waveguide element formed on the Si substrate, it is necessary to fix both with sub-micron alignment (optical axis alignment) accuracy. is there. Second, in order to realize a low-priced hybrid optical integrated circuit, the optical element and the silica-based optical waveguide element formed on the Si substrate should be aligned on the Si substrate while ensuring the submicron alignment accuracy. Need to be fixed in a short time.

【0004】従来、この要請に応えるために、Si基板
上に形成された石英系光導波路素子に光素子を位置決め
固定する一つの方法として、光素子に形成した光軸調整
用マークと、Si基板上に形成した光軸調整用マークと
を赤外線顕微鏡で各々検出し、基板ステージを移動させ
てこれらのマーク同士を位置合せをする方法が提案され
ている(1993年電子情報通信学会秋季大会(4−2
66ページ))。
Conventionally, in order to meet this demand, as one method for positioning and fixing the optical element to the silica-based optical waveguide element formed on the Si substrate, the optical axis adjusting mark formed on the optical element and the Si substrate are used. A method has been proposed in which the optical axis adjustment marks formed above are respectively detected by an infrared microscope, and the marks are aligned by moving the substrate stage (1993 Autumn Meeting of the Institute of Electronics, Information and Communication Engineers (4) -2
(P. 66)).

【0005】[0005]

【発明が解決しようとする課題】光軸調整用マークを利
用して光素子を石英系光導波路素子が形成されたSi基
板上に位置決め固定する上記提案に基づくこれまでの方
法は、まず、Si基板上に石英系光導波路素子を形成す
る前に、Si基板上に光軸調整用マークを形成する。こ
の光軸調整用マークの形成方法には、ホトリソグラフィ
で形成したパターンをもとにSi基板をエッチングして
形成するのが一般的である。次に、光軸調整用マークを
形成したSi基板のオリエンテーションフラット等を基
準にホトリソグラフィで光導波路素子のコアパターンを
形成する。
The conventional method based on the above proposal for positioning and fixing the optical element on the Si substrate on which the silica-based optical waveguide element is formed by using the optical axis adjusting mark is as follows. Before forming the quartz optical waveguide element on the substrate, the optical axis adjusting mark is formed on the Si substrate. In general, the optical axis adjusting mark is formed by etching a Si substrate based on a pattern formed by photolithography. Next, the core pattern of the optical waveguide element is formed by photolithography with reference to the orientation flat of the Si substrate on which the optical axis adjusting mark is formed.

【0006】このとき、最も重要なことは、既にSi基
板に形成された光軸調整用マークに対して光導波路素子
のコアパターンが所望の位置にパターンニングされるか
どうかである。すなわち、光軸調整用マークを利用して
光素子を石英系光導波路素子が形成されたSi基板上に
サブミクロンの高精度で位置決め固定するには、その位
置決め固定に先立って、Si基板上の光軸調整用マーク
と光導波路素子のコア(光軸)との相対位置精度が極め
て重要となるということであり、その相対位置精度は±
0.5μm以下が必要である。
At this time, what is most important is whether or not the core pattern of the optical waveguide element is patterned at a desired position with respect to the optical axis adjusting mark already formed on the Si substrate. That is, in order to position and fix the optical element on the Si substrate on which the silica-based optical waveguide element is formed with high accuracy of submicron using the optical axis adjustment mark, prior to the positioning and fixing, the Si element on the Si substrate is fixed. This means that the relative positional accuracy between the optical axis adjustment mark and the core (optical axis) of the optical waveguide element is extremely important.
0.5 μm or less is required.

【0007】しかし、現状の技術レベルでは、光導波路
素子のコアのパターニング精度は±1μmが限界であ
り、これ以下の精度でマスク合せをすることは極めて困
難である。したがって、Si基板上に光軸調整用マーク
を形成した後に、光導波路素子のコアパターンを形成す
るやり方では、Si基板上の光軸調整用マークと光導波
路素子の光軸との相対位置精度を±0.5μm以下とす
ることができない。
However, at the current level of technology, the patterning accuracy of the core of the optical waveguide device is limited to ± 1 μm, and it is extremely difficult to perform mask alignment with accuracy less than this. Therefore, in the method of forming the core pattern of the optical waveguide element after forming the optical axis adjustment mark on the Si substrate, the relative positional accuracy between the optical axis adjustment mark on the Si substrate and the optical axis of the optical waveguide element is improved. It cannot be less than ± 0.5 μm.

【0008】本発明の目的は、前記した従来技術の欠点
を解消し、Si基板上に形成する光軸調整用マークを極
めて高い精度で形成して、光素子と光導波路素子とを高
い位置合せ精度で固定することが可能なハイブリッド光
集積回路及びその製造方法並びに光伝送モジュールを提
供することにある。
An object of the present invention is to solve the above-mentioned drawbacks of the prior art and to form an optical axis adjusting mark formed on a Si substrate with extremely high accuracy to achieve high alignment between an optical element and an optical waveguide element. An object of the present invention is to provide a hybrid optical integrated circuit that can be fixed with precision, a method of manufacturing the same, and an optical transmission module.

【0009】[0009]

【課題を解決するための手段】本発明のハイブリッド光
集積回路は、光導波路素子を設けたSi基板上にSi基
板側光軸調整用マークを形成し、該Si基板側光軸調整
用マークと光素子に形成した光素子側光軸調整用マーク
とを合せることによって、Si基板上に前記光導波路素
子と光軸結合する光素子を搭載したハイブリッド光集積
回路において、前記Si基板上に形成したSi基板側光
軸調整用マークと光導波路素子の光軸との相対位置精度
が±0.5μm以下であるものである。
In the hybrid optical integrated circuit of the present invention, a Si substrate side optical axis adjusting mark is formed on a Si substrate provided with an optical waveguide element, and the Si substrate side optical axis adjusting mark and the Si substrate side optical axis adjusting mark are formed. In the hybrid optical integrated circuit in which the optical element for optical axis coupling with the optical waveguide element is mounted on the Si substrate by aligning with the optical element side optical axis adjusting mark formed on the optical element, the hybrid optical integrated circuit is formed on the Si substrate. The relative positional accuracy between the Si substrate side optical axis adjusting mark and the optical axis of the optical waveguide element is ± 0.5 μm or less.

【0010】本発明のハイブリッド光集積回路の製造方
法は、光導波路素子のコアをSi基板上に形成するため
のコアパターニング工程と、前記Si基板上に光素子を
位置合せして搭載するためのSi基板側光軸調整用マー
クのパターンを形成するためのマークパターニング工程
とを備え、前記Si基板上に前記光素子を搭載する際、
該光素子に形成した光素子側光軸調整用マークと前記S
i基板上に形成したSi基板側光軸調整マークとを位置
合せすることによって、前記光素子と前記光導波路素子
のコアとを光軸結合させるハイブリッド光集積回路の製
造方法であって、前記Si基板上にSi基板側光軸調整
用マークを形成するためのマークパターニング工程と、
前記コアを形成するためのコアパターニング工程とを同
時に行うようにしたものである。
A method of manufacturing a hybrid optical integrated circuit according to the present invention comprises a core patterning step for forming a core of an optical waveguide element on a Si substrate, and a step of aligning and mounting the optical element on the Si substrate. A mark patterning step for forming a pattern of a Si substrate side optical axis adjusting mark, and when mounting the optical element on the Si substrate,
The optical element side optical axis adjustment mark formed on the optical element and the S
A method for manufacturing a hybrid optical integrated circuit, wherein the optical element and the core of the optical waveguide element are optically axis-coupled by aligning the Si substrate side optical axis adjustment mark formed on the i substrate. A mark patterning step for forming a Si substrate side optical axis adjusting mark on the substrate;
The core patterning process for forming the core is simultaneously performed.

【0011】この場合において、Si基板上に形成する
前記光軸調整用マークパターンと前記コアパターンと
が、同一ホトリソグラフィ用マスクに描画されているこ
とが好ましい。また、前記光素子に形成した光軸調整用
マークと、Si基板上に形成した光軸調整用マークとの
位置合せには公知の画像処理技術を使ることができる
が、特に赤外線顕微鏡を使用してそれぞれのマークを検
出して位置合せを行えば、光素子と光導波路素子との光
軸結合が短時間で容易に行える。
In this case, it is preferable that the optical axis adjusting mark pattern and the core pattern formed on the Si substrate are drawn on the same photolithography mask. A known image processing technique can be used for aligning the optical axis adjusting mark formed on the optical element and the optical axis adjusting mark formed on the Si substrate, but an infrared microscope is particularly used. Then, if each mark is detected and aligned, the optical axis and the optical waveguide element can be easily coupled in a short time.

【0012】本発明の光伝送モジュールは、上記ハイブ
リッド光集積回路において、光集積回路端部に光ファイ
バをさらに接続したものである。
The optical transmission module of the present invention is the above hybrid optical integrated circuit, further comprising an optical fiber connected to the end of the optical integrated circuit.

【0013】[0013]

【作用】Si基板上にSi基板側光軸調整用マークを形
成するためのマークパターンニングを、コアを形成する
ためのコアパターニングと同時に行うようにすると、相
前後してパターニングする場合に比して、コアとマーク
パターンとの相対位置関係をより高精度にパターニング
でき、これに基づくコアと光軸調整用マークとの相対位
置精度をサブミクロン以下にすることができる。したが
って、このSi基板側光軸調整用マークに位置合せして
Si基板上に搭載する光素子は、光導波路素子のコアに
高精度に光軸結合させることができる。
When the mark patterning for forming the Si substrate side optical axis adjusting mark on the Si substrate is performed at the same time as the core patterning for forming the core, as compared with the case where the patterning is performed successively. Thus, the relative positional relationship between the core and the mark pattern can be patterned with higher accuracy, and the relative positional accuracy between the core and the optical axis adjusting mark based on this can be made submicron or less. Therefore, the optical element which is aligned with the optical axis adjusting mark on the Si substrate and mounted on the Si substrate can be accurately coupled to the core of the optical waveguide element by the optical axis.

【0014】[0014]

【実施例】以下、本発明の実施例を説明する。図3は本
発明の実施例によるハイブリッド光集積回路の組立て斜
視図である。ハイブッド光集積回路は、光導波路素子1
0が形成されたSi基板1上に、半導体光源や半導体光
検出器等の光素子2を搭載したものである。光導波路素
子10は、Si基板1上に設けたバッファ層6と、この
上に設けたコア4と、コア4を含むバッファ層6上に設
けたクラッド層7とから構成される。光素子2を搭載す
るために、図示するようにSi基板1の一部に、Si基
板表面を露出させてSiベンチ7を形成してある。
Embodiments of the present invention will be described below. FIG. 3 is an assembled perspective view of a hybrid optical integrated circuit according to an embodiment of the present invention. The hybrid optical integrated circuit includes an optical waveguide device 1
An optical element 2 such as a semiconductor light source or a semiconductor photodetector is mounted on a Si substrate 1 on which 0 is formed. The optical waveguide device 10 includes a buffer layer 6 provided on the Si substrate 1, a core 4 provided on the buffer layer 6, and a cladding layer 7 provided on the buffer layer 6 including the core 4. In order to mount the optical element 2, the Si bench 7 is formed on a part of the Si substrate 1 by exposing the surface of the Si substrate as shown in the figure.

【0015】Siベンチ7には、光素子2を光導波路素
子10のコア4と位置合せするための複数のSi基板側
光軸調整用マーク5が形成される。複数形成してあるの
は、位置合せ時のずれ角をなくすためである。このSi
基板側光軸調整用マーク5と光導波路素子10のコア4
との相対位置精度は±0.5μm以下に設定されてい
る。
A plurality of Si substrate side optical axis adjusting marks 5 for aligning the optical element 2 with the core 4 of the optical waveguide element 10 are formed on the Si bench 7. The reason for forming a plurality is to eliminate the misalignment angle during alignment. This Si
Substrate side optical axis adjustment mark 5 and core 4 of the optical waveguide device 10
The relative position accuracy with respect to is set to ± 0.5 μm or less.

【0016】光素子2の裏面には、Si基板1上に形成
されたSi基板側光軸調整用マーク5と対応する複数の
光素子側光軸調整用マーク3が形成される。この光素子
2の裏面に形成した光素子側光軸調整用マーク3と、S
i基板1上に形成したSi基板側光軸調整用マーク5と
を合せて光素子2と光導波路素子10のコア4との位置
合せをする。この位置合せは公知の画像処理技術を使っ
て行う。Si基板側光軸調整用マーク5と光導波路素子
10のコア4との相対位置精度は上述したように±0.
5μm以下に設定されているので、Si基板1上にサブ
ミクロンの高精度で光素子2を位置決め固定できる。し
たがって、高精度のハイブリッド光集積回路が得られ
る。
A plurality of optical element side optical axis adjusting marks 3 corresponding to the Si substrate side optical axis adjusting marks 5 formed on the Si substrate 1 are formed on the back surface of the optical element 2. An optical element side optical axis adjusting mark 3 formed on the back surface of the optical element 2;
The optical element 2 and the core 4 of the optical waveguide element 10 are aligned with the Si substrate side optical axis adjusting mark 5 formed on the i substrate 1. This alignment is performed using a known image processing technique. As described above, the relative positional accuracy between the Si substrate side optical axis adjusting mark 5 and the core 4 of the optical waveguide element 10 is ± 0.
Since the thickness is set to 5 μm or less, the optical element 2 can be positioned and fixed on the Si substrate 1 with high accuracy of submicron. Therefore, a highly accurate hybrid optical integrated circuit can be obtained.

【0017】次に、上述したハイブリッド光集積回路の
製造方法を図1を用いて説明する。
Next, a method for manufacturing the above hybrid optical integrated circuit will be described with reference to FIG.

【0018】まず、外径3インチ、両面に酸化膜(Si
2 )1μmが形成された厚さ1mmのSi基板20(図
1(a))上にレジストを塗布後マスクアライナでSi
ベンチ21用のパターンを転写し、反応性イオンエッチ
ング(RIE)あるいはフッ酸を用いて不要な酸化膜を
除去する。除去後、残された酸化膜をマスク材としてS
i基板20のエッチングを行ってSi基板20上に凸状
のSiベンチ21を形成する(図1(b))。エッチャ
ントは濃度40重量%、温度40℃の水酸化カリウム
(KOH)の水溶液を用い、深さ25μmのエッチング
を行ってSiベンチ21を形成する。
First, an outer diameter of 3 inches and an oxide film (Si
O 2 ). 1 μm thick Si substrate 20 (FIG. 1A) having a thickness of 1 μm is coated with a resist and then Si is formed by a mask aligner.
The pattern for the bench 21 is transferred, and the unnecessary oxide film is removed using reactive ion etching (RIE) or hydrofluoric acid. After removal, the remaining oxide film is used as a mask material for S
The i substrate 20 is etched to form a convex Si bench 21 on the Si substrate 20 (FIG. 1B). The etchant is an aqueous solution of potassium hydroxide (KOH) having a concentration of 40% by weight and a temperature of 40 ° C., and etching is performed to a depth of 25 μm to form the Si bench 21.

【0019】次に、Siベンチ21上にSiO2 のガラ
ス膜22を電子ビーム蒸着法や火炎堆積法で25μm堆
積させる(図1(c))。さらに、研磨等の手段を用い
てSiベンチ21上の不要なSiO2 のガラス膜22を
削り取り、残ったガラス膜をバッファ層23とする(図
1(d))。バッファ層23の屈折率n0 は、Metr
ion社製のプリズム・カプラ(PC−2010)で測
定したところ、n0 =1.4576であった。
Next, a glass film 22 of SiO 2 is deposited on the Si bench 21 to a thickness of 25 μm by an electron beam evaporation method or a flame deposition method (FIG. 1 (c)). Further, the unnecessary glass film 22 of SiO 2 on the Si bench 21 is scraped off by means of polishing or the like, and the remaining glass film is used as the buffer layer 23 (FIG. 1 (d)). The refractive index n 0 of the buffer layer 23 is Metr
When measured with a prism coupler (PC-2010) manufactured by Ion Co., n 0 = 1.4576.

【0020】次に、バッファ層23が埋め込まれた格好
になったSi基板20上の全面に、屈折率n1 を有する
コアガラス膜24を電子ビーム蒸着法で8μm形成する
(図1(e))。屈折率n1 はプリズム・カプラで測定
したところn1 =1.4620であった。
Next, a core glass film 24 having a refractive index n 1 is formed to a thickness of 8 μm on the entire surface of the dressed Si substrate 20 in which the buffer layer 23 is embedded (FIG. 1 (e)). ). The refractive index n 1 was n 1 = 1.4620 when measured with a prism coupler.

【0021】次に、コアガラス膜24の表面上に、マグ
ネトロン・スパッタリング方によりWSi膜(図示せ
ず)を1μm形成した。さらに、レジスト(図示せず)
を塗布後、マスクアライナでコア25とSi基板側光軸
調整用マークのパターン26とを形成するためのパター
ンを転写し、反応性イオンエッチング(RIE)でコア
ガラス膜24をエッチングして、コア25と光軸調整用
マークのパターン26とを同時に形成した(図1
(f))。ここで重要なことは、Si基板20上にSi
基板側光軸調整用マーク27を形成するためのマークパ
ターニングと、コア25を形成するためのコアパターニ
ングとが同時に行われること、すなわち、Si基板20
上に形成する光軸調整用マークパターンとコアパターン
とが、同一のホトリソグラフィ用マスクに描画されてい
ることである。これによって、Si基板20上の光軸調
整用マークのパターン26、すなわち光軸調整用マーク
27とコア25との相対位置精度は、±1μmが限界で
あるコアのパターニング精度よりも高いホトリソグラフ
ィグラフィ用マスクの描画精度に転嫁させることがで
き、その結果、相対位置精度を±0.5μm以下とする
ことができる。
Next, a WSi film (not shown) having a thickness of 1 μm was formed on the surface of the core glass film 24 by magnetron sputtering. Further, a resist (not shown)
After coating, a pattern for forming the core 25 and the Si substrate side optical axis adjusting mark pattern 26 is transferred by a mask aligner, and the core glass film 24 is etched by reactive ion etching (RIE) to 25 and the optical axis adjustment mark pattern 26 are formed at the same time (see FIG. 1).
(F)). What is important here is that Si on the Si substrate 20 is
The mark patterning for forming the substrate side optical axis adjusting mark 27 and the core patterning for forming the core 25 are performed simultaneously, that is, the Si substrate 20.
That is, the optical axis adjusting mark pattern and the core pattern formed above are drawn on the same photolithography mask. As a result, the pattern 26 of the optical axis adjusting mark on the Si substrate 20, that is, the relative positional accuracy between the optical axis adjusting mark 27 and the core 25 is higher than the patterning accuracy of the core whose limit is ± 1 μm. It can be passed on to the drawing accuracy of the mask for use, and as a result, the relative position accuracy can be set to ± 0.5 μm or less.

【0022】次に、Si基板側光軸調整用マークのパタ
ーン26が形成されたSi基板20を、濃度40重量
%、温度40℃の水酸化カリウム(KOH)の水溶液に
入れ、コア25とSi基板側光軸調整用マークのパター
ン26とをマスク材としてSiベンチ21の一部をエッ
チングし、凹状の光軸調整用マーク27をSiベンチ2
1上に形成する(図1(g))。
Next, the Si substrate 20 on which the Si substrate side optical axis adjusting mark pattern 26 is formed is put into an aqueous solution of potassium hydroxide (KOH) having a concentration of 40% by weight and a temperature of 40 ° C. to form the core 25 and the Si. A part of the Si bench 21 is etched using the substrate side optical axis adjusting mark pattern 26 as a mask material to form a concave optical axis adjusting mark 27.
1 (FIG. 1 (g)).

【0023】次に、コア25及びSi基板側光軸調整用
マーク27が形成されたSi基板20を加熱したターン
テーブルに置き、火炎堆積法を用いて、まず、SiO2
−B2 3 −P2 5 系の多孔質ガラス層を300μm
形成する。その後、これを電気炉内の石英ガラス炉心管
内に位置させ、Heガス雰囲気で1330℃の温度で1
1時間保持することにより多孔質ガラス層を透明ガラス
化して、クラッド層28を厚さ30μm形成した(図1
(h))。このクラッド層28の屈折率n0 は1.45
76であり、バッファ層23と同じであることを確認し
た。またコア25の幅及び高さは共に8μm、コア2
5、バッファ層23、クラッド層28間の比屈折率差は
0.3%である。
Next, the Si substrate 20 on which the core 25 and the Si substrate side optical axis adjusting mark 27 are formed is placed on a heated turntable, and SiO 2 is first deposited by a flame deposition method.
-B 2 O 3 -P 2 O 5 based porous glass layer 300 μm
Form. After that, this was placed in a quartz glass furnace tube in an electric furnace, and the temperature was set to 1,330 ° C. in a He gas atmosphere for 1 hour.
The porous glass layer was made transparent by holding it for 1 hour to form a clad layer 28 having a thickness of 30 μm (FIG. 1).
(H)). The refractive index n 0 of the clad layer 28 is 1.45.
It was confirmed to be 76, which is the same as the buffer layer 23. The width and height of the core 25 are both 8 μm, and the core 2
5, the relative refractive index difference between the buffer layer 23 and the cladding layer 28 is 0.3%.

【0024】次に、クラッド層28の表面上にマグネト
ロン・スパッタリング法により、WSi膜(図示せず)
を3μm形成した。さらに、レジスト(図示せず)を塗
布後、マスクアライナで光素子を搭載するためのピット
部パターンを転写し、反応性イオンエッチング(RI
E)でクラッド層28の一部をエッチングし、一段低く
なった光素子搭載用ピット部29、及び一段高くなった
光導波路素子30を形成した(図1(i))。
Next, a WSi film (not shown) is formed on the surface of the clad layer 28 by magnetron sputtering.
Of 3 μm was formed. Further, after applying a resist (not shown), a mask aligner is used to transfer a pit pattern for mounting an optical element, and reactive ion etching (RI) is performed.
Part of the clad layer 28 was etched in step E) to form an optical element mounting pit portion 29 having a further lowered height and an optical waveguide element 30 having a further raised height (FIG. 1 (i)).

【0025】図2に、上述した製造方法により製造した
光導波路30と光軸調整用マーク27とを備えるSi基
板20の平面図を示す。
FIG. 2 shows a plan view of the Si substrate 20 provided with the optical waveguide 30 and the optical axis adjusting mark 27 manufactured by the manufacturing method described above.

【0026】最後に、図3に示したように、光素子2の
裏面に形成した光素子側光軸調整用マーク3と、Si基
板1上に形成したSi基板側光軸調整用マーク7とを合
せて光素子2と光導波路素子10のコア4との位置合せ
をする。この位置合せの方法は、図示しない基板ステー
ジ上に光導波路素子付きSi基板1を載せた上で、赤外
線顕微鏡を使用し、これにより両光軸調整用マーク3、
7を各々検出し、基板ステージを移動させてこれらのマ
ーク同士を高精度に位置合せすることによって行う。位
置合せと同時に、光素子2をSiベンチ8上に固定し
た。その結果、光素子2と光導波路素子10との光軸位
置ずれ量は0.1μm以下となった。
Finally, as shown in FIG. 3, the optical element side optical axis adjusting mark 3 formed on the back surface of the optical element 2 and the Si substrate side optical axis adjusting mark 7 formed on the Si substrate 1. Then, the optical element 2 and the core 4 of the optical waveguide element 10 are aligned with each other. This alignment method is performed by placing an Si substrate 1 with an optical waveguide element on a substrate stage (not shown) and using an infrared microscope, whereby the optical axis adjustment marks 3,
7 is detected and the substrate stage is moved to align these marks with high accuracy. Simultaneously with the alignment, the optical element 2 was fixed on the Si bench 8. As a result, the optical axis position shift amount between the optical element 2 and the optical waveguide element 10 was 0.1 μm or less.

【0027】上記実施例のハイブリッド光集積回路の製
造方法によれば、Si基板側光軸調整用マークを形成す
るためのマークパターニングと、コアを形成するための
コアパターニングとを同一のホトリソグラフィ用マスク
を用いて同時に行うようにしたので、相前後してSi基
板上に光導波路と光軸調整用マークとを形成する従来方
法に比べ、約1/10の光軸ずれ量で光素子をSi基板
上に固定することができた。
According to the hybrid optical integrated circuit manufacturing method of the above-described embodiment, the mark patterning for forming the Si substrate side optical axis adjusting mark and the core patterning for forming the core are the same for photolithography. Since the steps are performed simultaneously using a mask, the optical element is made Si with an optical axis shift amount of about 1/10 as compared with the conventional method of forming the optical waveguide and the optical axis adjustment mark on the Si substrate one after another. It could be fixed on the substrate.

【0028】このようにして形成されたハイブリッド光
集積回路は、最後に光ファイバが接続されて光伝送モジ
ュールとなる。この光伝送モジュールは図4に示すよう
に、Siベンチ31にLD(レーザダイオード)などの
半導体光源32や、PD(ホトディテクタ)などの半導
体光検出器33が既述したように位置合せして搭載さ
れ、これらはSiベンチ31に臨ませたコア36の端部
と光軸結合される。一方、ハイブリッド光集積回路端に
は光ファイバ34がコネクタ35によって接続され、コ
ア36の端部と光軸結合される。光素子と光導波路素子
とが高精度に結合されたハイブリッド光集積回路を使用
するため、精度の高い光伝送モジュールを構成できる。
In the hybrid optical integrated circuit thus formed, an optical fiber is finally connected to form an optical transmission module. As shown in FIG. 4, this optical transmission module is arranged by aligning a semiconductor light source 32 such as an LD (laser diode) and a semiconductor photodetector 33 such as a PD (photodetector) on the Si bench 31 as described above. They are mounted, and these are optically coupled with the end of the core 36 facing the Si bench 31. On the other hand, an optical fiber 34 is connected to the end of the hybrid optical integrated circuit by a connector 35, and is optically coupled to the end of the core 36. Since the hybrid optical integrated circuit in which the optical element and the optical waveguide element are coupled with high accuracy is used, a highly accurate optical transmission module can be configured.

【0029】[0029]

【発明の効果】本発明のハイブリッド光集積回路によれ
ば、Si基板上に形成したSi基板側光軸調整用マーク
と光導波路素子の光軸との相対位置精度が±0.5μm
以下であるため、光素子と光導波路素子との光軸位置ず
れ量をサブミクロン以下とすることができ、高精度のハ
イブリッド光集積回路が得られる。
According to the hybrid optical integrated circuit of the present invention, the relative positional accuracy between the Si substrate side optical axis adjusting mark formed on the Si substrate and the optical axis of the optical waveguide element is ± 0.5 μm.
Since it is below, the amount of optical axis position deviation between the optical element and the optical waveguide element can be made submicron or less, and a highly accurate hybrid optical integrated circuit can be obtained.

【0030】本発明のハイブリッド光集積回路の製造方
法によれば、Si基板側光軸調整用マークを形成するた
めのマークパターニングと、コアを形成するためのコア
パターニングとを同時に行うようにしたので、相前後し
てパターニングする従来方法に比べ、Si基板上に形成
するSi基板側光軸調整用マークを極めて高い精度で形
成することができる。したがって、高性能かつ低価格な
ハイブリッド光集積回路を得ることができる。
According to the method of manufacturing the hybrid optical integrated circuit of the present invention, the mark patterning for forming the Si substrate side optical axis adjusting mark and the core patterning for forming the core are simultaneously performed. The Si substrate side optical axis adjusting mark formed on the Si substrate can be formed with extremely high accuracy as compared with the conventional method in which patterning is performed successively. Therefore, a high performance and low cost hybrid optical integrated circuit can be obtained.

【0031】本発明の光伝送モジュールによれば、光素
子と光導波路素子とが高精度に位置合せされたハイブリ
ッド光集積回路を用いているので、高精度の光伝送モジ
ュールが得られる。
According to the optical transmission module of the present invention, since the hybrid optical integrated circuit in which the optical element and the optical waveguide element are aligned with high precision is used, a high precision optical transmission module can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例によるハイブリッド光集積回路
の製造方法の工程図。
FIG. 1 is a process drawing of a method for manufacturing a hybrid optical integrated circuit according to an embodiment of the present invention.

【図2】本実施例の製造方法により製造された光素子の
搭載される前のハイブリッド光集積回路の平面図であ
る。
FIG. 2 is a plan view of a hybrid optical integrated circuit before mounting an optical element manufactured by the manufacturing method of this embodiment.

【図3】本発明の実施例によるハイブリッド光集積回路
の組立て斜視図。
FIG. 3 is an assembled perspective view of a hybrid optical integrated circuit according to an embodiment of the present invention.

【図4】本発明の実施例による光伝送モジュールの斜視
図。
FIG. 4 is a perspective view of an optical transmission module according to an exemplary embodiment of the present invention.

【符号の説明】[Explanation of symbols]

20 Si基板 21 Siベンチ 22 SiO2 のガラス膜 23 バッファ層 24 コアガラス膜 25 コア 26 Si基板側光軸調整用マークのパターン 27 Si基板側光軸調整用マーク 28 クラッド層 29 光素子搭載用ピット部 30 光導波路素子20 Si substrate 21 Si bench 22 SiO 2 glass film 23 Buffer layer 24 Core glass film 25 Core 26 Si substrate side optical axis adjusting mark pattern 27 Si substrate side optical axis adjusting mark 28 Clad layer 29 Optical element mounting pit Part 30 Optical waveguide device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 寺岡 達夫 茨城県日立市日高町5丁目1番1号 日立 電線株式会社オプトロシステム研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tatsuo Teraoka 5-1-1 Hidaka-cho, Hitachi-shi, Ibaraki Hitachi Cable Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】光導波路素子を設けたSi基板上にSi基
板側光軸調整用マークを形成し、該Si基板側光軸調整
用マークと光素子に形成した光素子側光軸調整用マーク
とを位置合せすることによって、Si基板上に前記光導
波路素子と光軸結合する光素子を搭載したハイブリッド
光集積回路において、前記Si基板上に形成した前記S
i基板側光軸調整用マークと前記光導波路素子の光軸と
の相対位置精度が±0.5μm以下であることを特徴と
するハイブリッド光集積回路。
1. A Si substrate side optical axis adjusting mark is formed on a Si substrate provided with an optical waveguide element, and the Si substrate side optical axis adjusting mark and the optical element side optical axis adjusting mark formed on the optical element. In the hybrid optical integrated circuit in which an optical element for optical axis coupling with the optical waveguide element is mounted on the Si substrate by aligning S and S, the S formed on the Si substrate
A hybrid optical integrated circuit, wherein the relative positional accuracy between the i-substrate side optical axis adjusting mark and the optical axis of the optical waveguide element is ± 0.5 μm or less.
【請求項2】光導波路素子のコアをSi基板上に形成す
るためのコアパターニング工程と、前記Si基板上に光
素子を位置合せして搭載するためのSi基板側光軸調整
用マークのパターンを形成するためのマークパターニン
グ工程とを備え、前記Si基板上に前記光素子を搭載す
る際、該光素子に形成した光素子側光軸調整用マークと
前記Si基板上に形成したSi基板側光軸調整マークと
を位置合せすることによって、前記光素子と前記光導波
路素子のコアとを光軸結合させるハイブリッド光集積回
路の製造方法であって、前記Si基板上にSi基板側光
軸調整用マークを形成するためのマークパターニング工
程と、前記コアを形成するためのコアパターニング工程
とを同時に行うことを特徴とするハイブリッド光集積回
路の製造方法。
2. A core patterning step for forming a core of an optical waveguide element on a Si substrate, and a pattern of a Si substrate side optical axis adjusting mark for aligning and mounting an optical element on the Si substrate. And a mark patterning step for forming an optical element on the Si substrate, the optical element side optical axis adjusting mark formed on the optical element and the Si substrate side formed on the Si substrate when the optical element is mounted on the Si substrate. A method for manufacturing a hybrid optical integrated circuit in which the optical element and the core of the optical waveguide element are optically coupled by aligning the optical axis adjustment mark with each other, and the optical axis adjustment on the Si substrate side is performed on the Si substrate. A method for manufacturing a hybrid optical integrated circuit, wherein a mark patterning step for forming a use mark and a core patterning step for forming the core are performed at the same time.
【請求項3】請求項2に記載のハイブリッド光集積回路
の製造方法において、Si基板上に形成する前記Si基
板側光軸調整用マークパターンと前記コアパターンと
が、同一ホトリソグラフィ用マスクに描画されているこ
とを特徴とするハイブリッド光集積回路の製造方法。
3. The hybrid optical integrated circuit manufacturing method according to claim 2, wherein the Si substrate side optical axis adjusting mark pattern and the core pattern formed on a Si substrate are drawn on the same photolithography mask. And a method for manufacturing a hybrid optical integrated circuit.
【請求項4】請求項2または3に記載のハイブリッド光
集積回路の製造方法において、前記光素子に形成した光
素子側光軸調整用マークと、Si基板上に形成したSi
基板側光軸調整用マークとをそれぞれ赤外線顕微鏡で検
出して位置合せすることを特徴とするハイブリッド光集
積回路。
4. The hybrid optical integrated circuit manufacturing method according to claim 2, wherein the optical element side optical axis adjusting mark formed on the optical element and the Si formed on the Si substrate.
A hybrid optical integrated circuit characterized in that the substrate side optical axis adjusting marks are respectively detected and aligned by an infrared microscope.
【請求項5】請求項1に記載のハイブリッド光集積回路
において、ハイブリッド光集積回路端部に光ファイバを
さらに接続したことを特徴とする光伝送モジュール。
5. The optical transmission module according to claim 1, further comprising an optical fiber connected to an end of the hybrid optical integrated circuit.
JP24543894A 1994-10-11 1994-10-11 Method for manufacturing hybrid optical integrated circuit Expired - Lifetime JP3208555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24543894A JP3208555B2 (en) 1994-10-11 1994-10-11 Method for manufacturing hybrid optical integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24543894A JP3208555B2 (en) 1994-10-11 1994-10-11 Method for manufacturing hybrid optical integrated circuit

Publications (2)

Publication Number Publication Date
JPH08111518A true JPH08111518A (en) 1996-04-30
JP3208555B2 JP3208555B2 (en) 2001-09-17

Family

ID=17133670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24543894A Expired - Lifetime JP3208555B2 (en) 1994-10-11 1994-10-11 Method for manufacturing hybrid optical integrated circuit

Country Status (1)

Country Link
JP (1) JP3208555B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022414A (en) * 2000-07-10 2002-01-23 Hitachi Chem Co Ltd Step inspecting apparatus and method of manufacturing optical guide device
KR100757233B1 (en) * 2006-06-08 2007-09-10 한국전자통신연구원 Optical waveguide platform and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022414A (en) * 2000-07-10 2002-01-23 Hitachi Chem Co Ltd Step inspecting apparatus and method of manufacturing optical guide device
KR100757233B1 (en) * 2006-06-08 2007-09-10 한국전자통신연구원 Optical waveguide platform and method of manufacturing the same

Also Published As

Publication number Publication date
JP3208555B2 (en) 2001-09-17

Similar Documents

Publication Publication Date Title
US7184630B2 (en) Optical coupling module with self-aligned etched grooves and method for fabricating the same
US6118917A (en) Optical fiber passive alignment apparatus using alignment platform
JP2565094B2 (en) Optical coupling structure
JPH06347665A (en) Production of optical device
US20090116803A1 (en) Optical waveguide device and manufacturing method thereof
JP2964941B2 (en) Manufacturing method and mounting structure of optical device
JP2823044B2 (en) Optical coupling circuit and method of manufacturing the same
KR100456672B1 (en) Optical waveguide platform and manufacturing method thereof
US5849204A (en) Coupling structure for waveguide connection and process for forming the same
US6400857B1 (en) Method for making integrated and composite optical devices utilizing prefabricated optical fibers and such devices
EP1021739B1 (en) Hybrid chip process
JP2771167B2 (en) Optical integrated circuit mounting method
JP3208555B2 (en) Method for manufacturing hybrid optical integrated circuit
JP3201864B2 (en) Method for manufacturing quartz optical waveguide component
JP3100698B2 (en) Manufacturing method of waveguide type optical device
JPS6325644B2 (en)
JP2982861B2 (en) Optical coupler and method of manufacturing the same
JP3208744B2 (en) Manufacturing method of optical waveguide
JPH0727888B2 (en) Dry etching method
JP2663841B2 (en) Manufacturing method of optical coupling structure
JP3457850B2 (en) Method of forming optical waveguide
JPH05257035A (en) Production of waveguide device
JP3264256B2 (en) Manufacturing method and mounting structure of optical device
JPH08236747A (en) Manufacture of hybrid light integrated circuit
KR100687738B1 (en) Fabrication method of optical module for enabling passive alignment between optical waveguide and optical fiber

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010529

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term