JPH08111024A - Magnetic disk substrate and its production - Google Patents

Magnetic disk substrate and its production

Info

Publication number
JPH08111024A
JPH08111024A JP27064794A JP27064794A JPH08111024A JP H08111024 A JPH08111024 A JP H08111024A JP 27064794 A JP27064794 A JP 27064794A JP 27064794 A JP27064794 A JP 27064794A JP H08111024 A JPH08111024 A JP H08111024A
Authority
JP
Japan
Prior art keywords
magnetic disk
disk substrate
crystallized glass
quartz
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27064794A
Other languages
Japanese (ja)
Other versions
JP2628460B2 (en
Inventor
Naoyuki Gotou
直雪 後藤
Katsuhiko Yamaguchi
勝彦 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP6270647A priority Critical patent/JP2628460B2/en
Publication of JPH08111024A publication Critical patent/JPH08111024A/en
Application granted granted Critical
Publication of JP2628460B2 publication Critical patent/JP2628460B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0036Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
    • C03C10/0045Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents containing SiO2, Al2O3 and MgO as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0018Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
    • C03C10/0027Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents containing SiO2, Al2O3, Li2O as main constituents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Glass Compositions (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE: To obtain a disk substrate provided with a property suitable as a magnetic disk for a high density recording by controlling the crystal phase of a crystallized glass to be a prescribed composition and the particle size in the polished surface of a magnetic disk substrate to be a prescribed value. CONSTITUTION: The magnetic disk substrate is composed of the crystallized glass having a crystal structure improved in surface characteristic after polished, a magnetic disk is formed by applying a film forming, process to the substrate and the crystallized glass for producing the magnetic disk substrate has the crystal phase consisting of lithium oxide disilicate (Li2 O.2SiO2 ) and α-quartz (α-SiO2 ). The grown crystal particle of α-quartz has a spherical particle structure composed of respectively aggregated plural particles and the spherical particle is composed of the crystallized glass having 0.3-3.0μm particle diameter. And the surface roughness Ra of the polished surface of the magnetic disk substrate is controlled to 15-50Å. As a result, the magnetic disk substrate provided with the property suitable as the magnetic disk for high density recording is stably mass-produced at a low cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、研磨後の表面特性が改
善された結晶構造を有する結晶化ガラスからなる磁気デ
ィスク基板およびこの磁気ディスク基板に成膜プロセス
を施して形成される磁気ディスクならびに磁気ディスク
基板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic disk substrate made of crystallized glass having a crystal structure with improved surface characteristics after polishing, a magnetic disk formed by subjecting the magnetic disk substrate to a film forming process, and The present invention relates to a method for manufacturing a magnetic disk substrate.

【0002】[0002]

【従来の技術】磁気ディスクは大型コンピューター、パ
ーソナルコンピューター等の外部記憶媒体として近年需
要が増大しているため、その開発が急速に進んできてい
る。一般的にこの磁気ディスク用基板材には、次のよう
な特性が要望される。すなわち (1)磁気ディスクの始動/停止(CSS)特性におい
て、ディスクの表面粗度(Ra)が15Å以下の滑らか
な表面では、高速回転で起る接触抵抗の増大に共なうヘ
ッドとディスクの吸着が発生するため、表面粗度(R
a)は15Å以上であること、さらに表面粗度(Ra)
が50Å以上の粗い表面では、ヘッドの損傷やメディア
の破壊を発生する為、表面粗度(Ra)は50Å以下で
ある制御された表面特性を有すること。
2. Description of the Related Art The demand for magnetic disks as an external storage medium for large-sized computers, personal computers, etc. has been increasing in recent years, and the development thereof has been progressing rapidly. Generally, the following characteristics are required for this magnetic disk substrate material. That is, (1) In the start / stop (CSS) characteristics of the magnetic disk, if the disk has a smooth surface having a surface roughness (Ra) of 15 ° or less, the head and the disk are accompanied by an increase in contact resistance caused by high-speed rotation. Since adsorption occurs, the surface roughness (R
a) is 15 Å or more, and further the surface roughness (Ra)
The surface roughness (Ra) should be controlled to 50 Å or less because rough surface of 50 Å or more causes damage to the head or destruction of the medium.

【0003】(2)磁気ディスクの記録密度向上のた
め、ヘッド浮上量が0.1μm〜0.05μmと低減の
方向にあり、ディスク表面は、このヘッド浮上量を可能
にする程度に平坦かつ平滑であること。
(2) In order to improve the recording density of the magnetic disk, the flying height of the head is decreasing to 0.1 μm to 0.05 μm, and the disk surface is flat and smooth enough to allow the flying height of the head. That.

【0004】(3)磁気ディスク用基板材は、材料に結
晶異方性、欠陥がなく組織が緻密で均質、微細であるこ
と。
(3) The substrate material for a magnetic disk should be a material having no crystal anisotropy, no defects, and a dense, homogeneous and fine structure.

【0005】(4)高速回転やヘッドの接触に十分耐え
る機械的強度、硬度を有すること。
(4) Mechanical strength and hardness sufficient to withstand high-speed rotation and head contact.

【0006】(5)材料中にNa2 O成分を含有すると
Naイオンが成膜工程中に拡散し、膜の特性が悪化する
ため、基本的にNa2 O成分を含有しないこと。
[0006] (5) Since the material Na ion when containing Na 2 O component in diffuses into the film forming process, the characteristics of the film are deteriorated, essentially contains no Na 2 O component.

【0007】(6)種々の薬品による洗浄やエッチング
に耐え得る化学的耐久性を有すること。
(6) It has chemical durability enough to withstand cleaning and etching by various chemicals.

【0008】従来磁気ディスク基板材には、アルミニウ
ム合金が使用されているが、アルミニウム合金基板で
は、種々の材料欠陥の影響により、研磨工程における基
板表面の突起またはスボット状の凹凸を生じ、平坦性、
表面粗度の点で十分でなく、今日の情報量のより一層の
増大にともなう高密度記録化に対応できない。
Conventionally, an aluminum alloy has been used as a magnetic disk substrate material. However, in the aluminum alloy substrate, due to the influence of various material defects, protrusions or sbot-shaped irregularities are generated on the substrate surface in the polishing process, and the flatness is improved. ,
The surface roughness is not sufficient, and it is not possible to cope with high-density recording due to the further increase in today's information amount.

【0009】さらにアルミニウム合金板の問題点を解消
する材料として化学強化ガラス等の磁気ディスク用ガラ
ス基板が各種知られているが、この場合、 (1)研磨は化学強化後に行われ、ディスクの薄板化に
おける強化層の不安定要素が高い。
Various glass substrates for magnetic disks, such as chemically strengthened glass, are known as materials for solving the problems of aluminum alloy plates. In this case, (1) polishing is performed after the chemical strengthening, and a thin plate of the disk is used. The instability factor of the strengthening layer is high.

【0010】(2)基板には始動/停止(CSS)特性
向上のための機械的、メカニカルテクスチャーまたは、
化学的ケミカルテクスチャーを行う必要があり、製品の
低コスト安定量産性が難しい欠点がある。
(2) Mechanical or mechanical texture for improving start / stop (CSS) characteristics or
There is a disadvantage that it is necessary to carry out chemical chemical texture and it is difficult to mass-produce the product at low cost.

【0011】(3)ガラス中にNa2 O成分を必須成分
として含有するため、成膜特性が悪化し、表面コート処
理等が必要となる。また化学強化ガラスや結晶化ガラス
において始動/停止(CSS)特性向上のテクスチャー
処理の問題点を解消する手段として研磨工程での表面を
荒らす技術が近年行われているが、やはりこの技術もテ
クスチャー処理と同様に安定量産性に対しては不十分で
ある。
(3) Since the glass contains a Na 2 O component as an essential component, the film-forming characteristics are deteriorated, and a surface coating treatment or the like is required. In addition, a technique of roughening the surface in the polishing process has been recently performed as a means for solving the problem of texture treatment for improving start / stop (CSS) characteristics in chemically strengthened glass and crystallized glass. Similarly to the above, it is insufficient for stable mass productivity.

【0012】そこで、アルミニウム合金基板や化学強化
ガラス基板に対して前記のような要求のいくつかを満た
す結晶化ガラスが多数知られている。例えば、特開昭6
0−229234号公報記載のSiO2 −Al2 3
Li2 O系結晶化ガラスは、β−石英固溶体またはβ−
スポジュメン固溶体を析出させ結晶粒径が約0.1〜
1.0μmの粒状のものであり、また、特開昭62−7
2547号公報記載のSiO2 −Li2 O系結晶化ガラ
スは、主結晶として二珪酸リチウムおよびメタ珪酸リチ
ウムを析出させ、それぞれ結晶粒径が二珪酸リチウムは
約0.3〜1.5μmの板状およびメタ珪酸リチウムは
0.3〜0.5μmの粒状のものである。また、米国特
許第3,231,456号公報には、SiO2 −Li2
O−P2 5 −MgO系ガラスにCuO、SnO成分を
含有させ、主結晶相として二珪酸リチウム、副結晶とし
てα−クオーツが析出し得る結晶化ガラスが開示されて
いる。しかしながら、これらのガラスの結晶化温度は、
850〜1050℃と高温熱処理が必要とされるため、
後で詳述するように本発明におけるα−クオーツの凝集
した粒子の球状構造を有するものではない。また、上記
米国特許第3,231,456号公報中における結晶
相、結晶構造の議論は単に接着材料として良好なセラミ
ック材料を教示しているにすぎない。
Therefore, a large number of crystallized glasses that satisfy some of the above requirements for aluminum alloy substrates and chemically strengthened glass substrates are known. For example, JP
The publication No. 0-229234 SiO 2 -Al 2 O 3 -
Li 2 O-based crystallized glass is a β-quartz solid solution or a β-quartz solid solution.
Spodumene solid solution is precipitated and the crystal grain size is about 0.1
It has a particle size of 1.0 μm and is disclosed in JP-A-62-7.
SiO 2 -Li 2 O system crystallized glass 2547 JP primarily crystalline as to precipitate the lithium disilicate and metasilicate lithium, respectively grain size lithium disilicate about 0.3~1.5μm plate The shape and lithium metasilicate are granular with a size of 0.3 to 0.5 μm. Also, U.S. Pat. No. 3,231,456, SiO 2 -Li 2
O-P 2 O 5 CuO in -MgO based glass, is contained SnO component has lithium disilicate as main crystalline phase, crystallized glass as the sub crystalline α- quartz may be deposited is disclosed. However, the crystallization temperature of these glasses is
Because a high temperature heat treatment of 850 to 1050 ° C. is required,
As described later in detail, the present invention does not have a spherical structure of α-quartz aggregated particles. The discussion of the crystal phase and crystal structure in the above-mentioned US Pat. No. 3,231,456 merely teaches a good ceramic material as an adhesive material.

【0013】米国特許第3,977,857号公報に
は、金属接着用結晶化ガラスとして金属部材に直接接着
するために適当なSiO2 −Li2 O−MgO−P2
5 −(Na2 O+K2 O)系結晶化ガラスが開示されて
いる。この米国特許公報には得られる結晶化ガラスの主
結晶相はLi2 O・2SiO2 であることが記載されて
おり、本発明におけるようなα−クオーツの粒状構造と
しての凝集した粒子からなる球状粒状構造についてはな
んらの記載もない。
US Pat. No. 3,977,857 discloses a SiO 2 —Li 2 O—MgO—P 2 O suitable for directly bonding to a metal member as a crystallized glass for metal bonding.
A 5- (Na 2 O + K 2 O) -based crystallized glass is disclosed. The main crystalline phase of the crystallized glass obtained in this US patent publication is described to be a Li 2 O · 2SiO 2, spherical consisting aggregated particles as α- quartz grain structure as in the present invention There is no description of the granular structure.

【0014】特開昭63−210039号公報には磁気
ヘッド用基板として好適なSiO2−Li2 O−MgO
−P2 5 系結晶化ガラスが開示されている。この公報
には、得られる結晶化ガラスの主結晶相はLi2 O・2
SiO2 とα−クリストバライトであることが記載され
ており、本発明におけるようなα−クオーツの粒状構造
としての凝集した粒子からなる球状粒状構造については
なんらの記載もない。また、核形成温度は550℃〜8
00℃であり、さらにMgO成分はP2 5 成分との共
存により熱膨張係数の変化を抑えるために添加されてい
る。
JP-A-63-210039 discloses a SiO 2 —Li 2 O—MgO suitable as a substrate for a magnetic head.
-P 2 O 5 based crystallized glass is disclosed. In this publication, the main crystal phase of the obtained crystallized glass is Li 2 O · 2.
It describes that it is SiO 2 and α-cristobalite, and there is no description about a spherical granular structure composed of aggregated particles as a granular structure of α-quartz as in the present invention. The nucleation temperature is 550 ° C. to 8
The temperature was 00 ° C., and the MgO component was added to suppress the change in the coefficient of thermal expansion due to the coexistence with the P 2 O 5 component.

【0015】[0015]

【発明が解決しようとする課題】上記従来のLi2 O−
SiO2 系結晶化ガラス(特開昭62−72547号公
報、米国特許第3,231,456号公報、米国特許第
3,977,857号公報および特開昭63−2100
39号公報)においては、析出する結晶相は主結晶相と
してのLi2 O・2SiO2 と副結晶相としての小量の
SiO2 (α−クリストバライトまたはα−クオーツ)
である。これら従来の結晶化ガラスにおいて主たる機能
を発揮するのは主結晶相であるLi2 O・2SiO2
晶相でありα−クオーツまたはα−クリストバライト結
晶相ではない。これら従来の結晶化ガラスは、研磨後の
結晶化ガラス自身に内在する表面特性として、磁気ディ
スクの始動/停止(CSS)特性にとって必要な15Å
〜50Åの表面粗度を提供することができない。このた
め、磁気ディスク基板材として必要な始動/停止(CS
S)特性を向上させるために研磨加工後に結晶化ガラス
の表面を粗くするためのなんらかのテクスチュア処理工
程を施すことが必要不可欠であり、このため上記必要な
諸特性を備えた磁気ディスクを低コストで量産すること
を妨げている。
The above conventional Li 2 O—
SiO 2 -based crystallized glass (JP-A-62-72547, US Pat. No. 3,231,456, US Pat. No. 3,977,857 and JP-A-63-2100)
No. 39), the precipitated crystal phases are Li 2 O.2SiO 2 as a main crystal phase and a small amount of SiO 2 (α-cristobalite or α-quartz) as a sub-crystal phase.
Is. The main function of these conventional crystallized glasses is the Li 2 O.2SiO 2 crystal phase, which is the main crystal phase, and not the α-quartz or α-cristobalite crystal phase. These conventional crystallized glasses have a surface characteristic inherent to the crystallized glass after polishing, which is required for the start / stop (CSS) characteristics of the magnetic disk by 15 °.
Unable to provide a surface roughness of ~ 50Å. For this reason, the start / stop (CS
S) In order to improve the characteristics, it is indispensable to perform some texture processing step for roughening the surface of the crystallized glass after the polishing process. Therefore, a magnetic disk having the above-mentioned necessary characteristics can be produced at low cost. Prevent mass production.

【0016】本発明の目的は、前記従来技術にみられる
欠点を解消し、析出結晶の結晶構造および結晶粒子を制
御することにより研磨による表面特性に一段と優れた結
晶化ガラスからなる磁気ディスク基板およびその製造方
法を提供することにある。
An object of the present invention is to solve the above-mentioned drawbacks in the prior art, and to control the crystal structure and crystal grains of the precipitated crystal to make the magnetic disk substrate made of crystallized glass more excellent in surface characteristics by polishing. It is to provide a manufacturing method thereof.

【0017】本発明の他の目的は、この磁気ディスク基
板上に磁気媒体の被膜を形成してなる磁気ディスクを提
供することにある。
Another object of the present invention is to provide a magnetic disk having a magnetic medium coating formed on the magnetic disk substrate.

【0018】[0018]

【課題を解決するための手段】本発明者は、上記目的を
達成するために鋭意試験研究を重ねた結果、SiO2
Li2 O−P2 5 系においてMgO成分を必須成分と
し厳密に限られた熱処理温度範囲で得られた結晶化ガラ
スは、その結晶相が二珪酸リチウム(Li2 Si
2 5 )の均一に析出した相にα−クオーツ(α−Si
2 )の凝集球状粒子がランダムに析出した微細構造を
取り、この微細構造は、機械的、化学的に不安定な二珪
酸リチウム(Li2 Si2 5 )相と、機械的、化学的
に安定なα−クオーツ(α−SiO2 )の凝集球状粒子
の構成から成り、研磨加工で生じる機械的、化学的作用
に対応し表面の凹凸を生成することを見い出し、かつα
−クオーツ(α−SiO2 )の凝集球状粒子サイズを制
御することにより研磨して成る表面特性の優れた磁気デ
ィスク基板が得られることを見い出し本発明に至った。
SUMMARY OF THE INVENTION The present inventor has conducted extensive research to achieve the above object, SiO 2 -
The crystallized glass obtained in a Li 2 O—P 2 O 5 system containing MgO as an essential component and in a strictly limited heat treatment temperature range has a crystal phase of lithium disilicate (Li 2 Si).
The phases were uniformly precipitated in 2 O 5) α- quartz (alpha-Si
O 2 ) takes a microstructure in which agglomerated spherical particles are randomly precipitated, and this microstructure is composed of a mechanically and chemically unstable lithium disilicate (Li 2 Si 2 O 5 ) phase and a mechanical and chemical Of α-quartz (α-SiO 2 ) aggregated spherical particles that are stable to the surface, and have been found to produce surface irregularities in response to mechanical and chemical actions caused by polishing.
The present inventors have found that a magnetic disk substrate having excellent surface characteristics can be obtained by controlling the size of agglomerated spherical particles of quartz (α-SiO 2 ).

【0019】すなわち、上記本発明の目的を達成する磁
気ディスク基板は、結晶化ガラスの結晶相が二珪酸リチ
ウム(Li2 O・2SiO2 )およびα−クオーツ(α
−SiO2 )であって、該α−クオーツの成長結晶粒子
がそれぞれ凝集した複数の粒子からなる球状粒子構造を
有しており、該球状粒子は0.3μm〜3.0μmの範
囲内の径を有する結晶化ガラスからなり、磁気ディスク
基板の研磨してなる表面の粗度(Ra)が15Å〜50
Åの範囲内にあることを特徴とする。
That is, in the magnetic disk substrate for achieving the above object of the present invention, the crystallized glass has a crystal phase of lithium disilicate (Li 2 O.2SiO 2 ) and α-quartz (α).
—SiO 2 ), which has a spherical particle structure composed of a plurality of particles in which the α-quartz grown crystal particles are aggregated, and the spherical particles have a diameter in the range of 0.3 μm to 3.0 μm. And the roughness (Ra) of the polished surface of the magnetic disk substrate is from 15 ° to 50 °.
It is characterized by being within the range of Å.

【0020】本発明の一側面において、上記磁気ディス
ク基板は、重量百分率で、SiO265〜83%、Li
2 O 8〜13%、K2 O 0〜7%、MgO 0.5
〜5.5%、ZnO 0〜5%、PbO 0〜5%ただ
し、MgO+ZnO+PbO0.5〜5.5%、P2
5 1〜4%、Al2 3 0〜7%、As2 3 +S
2 3 0〜2%を含有するガラスを熱処理すること
により得られる。
In one aspect of the present invention, the magnetic disk substrate comprises 65-83% of SiO 2 ,
2 O 8-13%, K 2 O 0-7%, MgO 0.5
0 to 5.5%, ZnO 0 to 5%, PbO 0 to 5%, but MgO + ZnO + PbO 0.5 to 5.5%, P 2 O
5 1~4%, Al 2 O 3 0~7%, As 2 O 3 + S
obtained by heat-treating a glass containing b 2 O 3 0~2%.

【0021】本発明の他の側面において、上記磁気ディ
スク基板は、重量百分率で、SiO2 70〜82%、
Li2 O 8〜12%、K2 O 1〜6%、MgO 1
〜5%、ZnO 0.2〜5%、ただし、MgO+Zn
O 1.5〜5.5%、P25 1〜3%、Al2
3 1〜6%、As2 3 +Sb2 3 0〜2%を含
有するガラスを熱処理することにより得られる。
[0021] In another aspect of the present invention, the magnetic disk substrate has a SiO 2 content of 70-82% by weight.
Li 2 O 8-12%, K 2 O 1-6%, MgO 1
~ 5%, ZnO 0.2-5%, but MgO + Zn
O 1.5-5.5%, P 2 O 5 1-3%, Al 2 O
3 1-6%, obtained by heat-treating a glass containing As 2 O 3 + Sb 2 O 3 0~2%.

【0022】上記本発明の目的を達成する磁気ディスク
は、基板上に磁気媒体の被膜を形成してなる磁気ディス
クであって、該基板は、結晶化ガラスの結晶相が二珪酸
リチウム(Li2 O・2SiO2 )およびα−クオーツ
(α−SiO2 )であって、該α−クオーツの成長結晶
粒子がそれぞれ凝集した複数の粒子からなる球状粒子構
造を有しており、該球状粒子は0.3μm〜3.0μm
の範囲内の径を有する結晶化ガラスからなり、該基板の
研磨してなる表面の粗度(Ra)が15Å〜50Åの範
囲内にあることを特徴とする。
A magnetic disk for achieving the above object of the present invention is a magnetic disk having a magnetic medium film formed on a substrate, wherein the crystal phase of the crystallized glass is lithium disilicate (Li 2 O.2SiO 2 ) and α-quartz (α-SiO 2 ), each having a spherical particle structure composed of a plurality of particles in which the grown crystal particles of α-quartz are aggregated. 0.3 μm to 3.0 μm
Wherein the surface roughness of the polished surface of the substrate (Ra) is in the range of 15 ° to 50 °.

【0023】本発明の一側面において、該磁気ディスク
の基板は、重量百分率で、SiO265〜83%、Li
2 O 8〜13%、K2 O 0〜7%、MgO 0.5
〜5.5%、ZnO 0〜5%、PbO 0〜5%ただ
し、MgO+ZnO+PbO0.5〜5.5%、P2
5 1〜4%、Al2 3 0〜7%、As2 3 +S
2 3 0〜2%を含有するガラスを熱処理すること
により得られる。
In one aspect of the present invention, the substrate of the magnetic disk comprises 65 to 83% of SiO 2 ,
2 O 8-13%, K 2 O 0-7%, MgO 0.5
0 to 5.5%, ZnO 0 to 5%, PbO 0 to 5%, but MgO + ZnO + PbO 0.5 to 5.5%, P 2 O
5 1~4%, Al 2 O 3 0~7%, As 2 O 3 + S
obtained by heat-treating a glass containing b 2 O 3 0~2%.

【0024】本発明の他の側面において、該磁気ディス
クの基板は、重量百分率で、SiO2 70〜82%、
Li2 O 8〜12%、K2 O 1〜6%、MgO 1
〜5%、ZnO 0.2〜5%、ただし、MgO+Zn
O 1.5〜5.5%、P25 1〜3%、Al2
3 1〜6%、As2 3 +Sb2 3 0〜2%を含
有するガラスを熱処理することにより得られる。
In another aspect of the present invention, the substrate of the magnetic disk comprises 70 to 82% by weight of SiO 2 ,
Li 2 O 8-12%, K 2 O 1-6%, MgO 1
~ 5%, ZnO 0.2-5%, but MgO + Zn
O 1.5-5.5%, P 2 O 5 1-3%, Al 2 O
3 1-6%, obtained by heat-treating a glass containing As 2 O 3 + Sb 2 O 3 0~2%.

【0025】本発明の上記目的を達成する磁気ディスク
基板の製造方法は、重量百分率で、SiO2 65〜8
3%、Li2 O 8〜13%、K2 O 0〜7%、Mg
O0.5〜5.5%、ZnO 0〜5%、PbO 0〜
5%ただし、MgO+ZnO+PbO 0.5〜5.5
%、P2 5 1〜4%、Al2 3 0〜7%、As
2 3 +Sb2 3 0〜2%を含有するガラスを溶解
し、成形した後加熱昇温し、450℃〜540℃の範囲
の核形成熱処理を行い、次いで700℃〜840℃の範
囲の結晶化熱処理を行った後表面を15Å〜50Åの範
囲の表面粗度に研磨することを特徴とする。
The method for manufacturing a magnetic disk substrate achieving the above object of the present invention, in% by weight, SiO 2 sixty-five to eight
3%, Li 2 O 8~13% , K 2 O 0~7%, Mg
O 0.5-5.5%, ZnO 0-5%, PbO 0
5%, but MgO + ZnO + PbO 0.5 to 5.5
%, P 2 O 5 1~4% , Al 2 O 3 0~7%, As
2 O 3 + Sb 2 O 3 Glass containing 0 to 2% is melted, heated after forming, and subjected to heat treatment for nucleation in the range of 450 ° C to 540 ° C, and then in the range of 700 ° C to 840 ° C. After the crystallization heat treatment, the surface is polished to a surface roughness in the range of 15Å to 50Å.

【0026】本発明の磁気ディスク基板を製造するため
の原ガラスとして種々の組成のものが使用可能である
が、以下にその好ましい一例について説明する。
Various compositions can be used as a raw glass for producing the magnetic disk substrate of the present invention, and a preferred example thereof will be described below.

【0027】本発明の磁気ディスク基板を構成する結晶
化ガラスの組成は、原ガラスと同様酸化物基準で表示し
得る。上記好ましい一例において原ガラスの組成を特定
の範囲に限定した理由について以下に述べる。
The composition of the crystallized glass constituting the magnetic disk substrate of the present invention can be expressed on an oxide basis, similarly to the original glass. The reason why the composition of the raw glass is limited to a specific range in the above preferred example will be described below.

【0028】SiO2 成分は、原ガラスの熱処理によ
り、結晶相としてα−クオーツ(α−SiO2 )および
二珪酸リチウム(Li2 O・2SiO2 )を生成するき
わめて重要な成分であるが、その量が65%未満では、
得られる結晶化ガラスの析出結晶が不安定で組織が粗大
化しやすく、また、83%を超えると原ガラスの溶融が
困難になる。実験の結果、特に好ましい範囲は70〜8
2%であることが判った。
The SiO 2 component is a very important component which produces α-quartz (α-SiO 2 ) and lithium disilicate (Li 2 O.2SiO 2 ) as a crystal phase by heat treatment of the raw glass. If the amount is less than 65%,
Precipitated crystals of the obtained crystallized glass are unstable and the structure tends to become coarse, and if it exceeds 83%, melting of the raw glass becomes difficult. As a result of the experiment, a particularly preferable range is 70 to 8
It was found to be 2%.

【0029】Li2 O成分は、ガラスの加熱処理により
結晶相として二珪酸リチウム(Li2 O・2SiO2
を生成する重要な成分であるが、その量が8%未満で
は、上記結晶の析出が困難となると同時に、原ガラスの
溶融が困難となり、また、13%を超えると得られる結
晶化ガラスの析出結晶が不安定で組織が粗大化しやすい
うえ、化学的耐久性および硬度が悪化する。特に好まし
い範囲は8〜11%である。
The Li 2 O component is lithium disilicate (Li 2 O.2SiO 2 ) as a crystal phase produced by heat treatment of glass.
However, if the amount is less than 8%, it becomes difficult to precipitate the above-mentioned crystals, and at the same time, it becomes difficult to melt the raw glass, and if it exceeds 13%, the obtained crystallized glass precipitates. Crystals are unstable and the structure tends to become coarse, and the chemical durability and hardness deteriorate. A particularly preferable range is 8 to 11%.

【0030】K2 O成分はガラスの溶融性を向上させる
成分であり、7%まで含有させることができる。特に好
ましい範囲は1〜6%である。
The K 2 O component is a component for improving the melting property of glass, and can be contained up to 7%. A particularly preferable range is 1 to 6%.

【0031】MgO成分は、本発明において主結晶相と
してのα−クオーツ(α−SiO2)の結晶を凝集した
粒子の球状結晶としてガラス中に全体にランダムに析出
させることが見い出された重要な成分であるが、その量
が0.5%未満では上記効果が得られず、また5.5%
を超えると所望の結晶が析出し難くなる。特に好ましい
範囲は1〜5%である。
It is important that the MgO component is found in the present invention to randomly precipitate crystals of α-quartz (α-SiO 2 ) as a main crystal phase throughout the glass as spherical crystals of aggregated particles. If the amount is less than 0.5%, the above effects cannot be obtained, and 5.5%
If it exceeds 300, it is difficult to deposit desired crystals. A particularly preferable range is 1 to 5%.

【0032】またZnOおよびPbO成分もMgOと同
等の効果があるので添加し得るが、その量が各々5%を
超えると所望の結晶が析出し難くなる。ZnOの特に好
ましい範囲は0.2〜5%である。
Also, ZnO and PbO components can be added because they have the same effect as MgO. However, if their amounts exceed 5%, desired crystals hardly precipitate. A particularly preferable range of ZnO is 0.2 to 5%.

【0033】ただし上記MgO、ZnOおよびPbO成
分の合計量は、同様の理由で0.5〜5.5%とすべき
である。
However, the total amount of the MgO, ZnO and PbO components should be 0.5 to 5.5% for the same reason.

【0034】P2 5 成分は本発明において、ガラスの
結晶核形成剤として不可欠であるが、その量が1%未満
では、所望の結晶を生成させることができず、また4%
を超えると得られる結晶化ガラスの析出結晶が不安定で
粗大化しやすいうえ、原ガラスの失透性が悪化する。特
に好ましい範囲は1〜3%である。
In the present invention, the P 2 O 5 component is indispensable as a crystal nucleating agent for glass. If the amount is less than 1%, desired crystals cannot be formed, and 4%
When it exceeds, the crystallized glass to be obtained is unstable in crystallized crystals and is likely to coarsen, and the devitrification of the raw glass is deteriorated. A particularly preferred range is 1 to 3%.

【0035】Al2 3 成分は、結晶化ガラスの化学的
耐久性を向上させる有効な成分であるがその含有量が7
%を超えると溶融性が悪化し、主結晶としてのα−クオ
ーツ(α−SiO2 )の結晶析出量が低下する。特に好
ましい範囲は1〜6%である。
The Al 2 O 3 component is an effective component for improving the chemical durability of crystallized glass, but its content is 7
%, The meltability deteriorates, and the amount of α-quartz (α-SiO 2 ) crystal precipitation as the main crystal decreases. A particularly preferable range is 1 to 6%.

【0036】As2 3 および/またはSb2 3 成分
は、ガラス溶融の際の清澄剤として添加し得るが、これ
らの1種または2種の合計量は2%以下で十分である。
The As 2 O 3 and / or Sb 2 O 3 components can be added as a fining agent in melting the glass, but a total amount of one or two of these components of 2% or less is sufficient.

【0037】なお、本発明においては、使用するガラス
に上記成分の他に所望の特性を損なわない範囲で少量の
2 3 、CaO、SrO、BaO、TiO2 、SnO
2 およびZrO2 の各成分を含有させることができる。
In the present invention, a small amount of B 2 O 3 , CaO, SrO, BaO, TiO 2 , SnO is added to the glass to be used in addition to the above components, as long as desired properties are not impaired.
2 and ZrO 2 can be contained.

【0038】上記組成範囲の原ガラスから磁気ディスク
基板を製造するには、上記の組成を有するガラスを溶解
し、熱間成形および/または冷間成形を行った後450
〜540℃の範囲の温度で約1〜5時間熱処理して結晶
核を形成し、続いて700〜840℃の範囲の温度で約
1〜5時間熱処理して結晶化を行う。
In order to manufacture a magnetic disk substrate from the raw glass having the above composition range, the glass having the above composition is melted, and then hot-formed and / or cold-formed, and then 450 ° C.
Heat treatment is performed at a temperature in the range of ˜540 ° C. for about 1 to 5 hours to form crystal nuclei, and then heat treatment is performed at a temperature in the range of 700 to 840 ° C. for about 1 to 5 hours for crystallization.

【0039】核形成温度が450℃未満ではP2 5
よる分相によってひき起される核形成が不充分であり、
一方核形成温度が540℃を超えると、結晶核として析
出するLi2 O・SiO2 の微結晶が均一に析出しない
のと同時に粗大な結晶核となるため、その後析出するα
−クオーツの凝集粒子を分散させα−クオーツを単一粒
子としてしまう。
When the nucleation temperature is lower than 450 ° C., the nucleation caused by the phase separation by P 2 O 5 is insufficient,
On the other hand, if the nucleation temperature exceeds 540 ° C., the fine crystals of Li 2 O.SiO 2 which are deposited as crystal nuclei are not uniformly deposited, and at the same time become coarse crystal nuclei.
-Dispersing aggregated particles of quartz into α-quartz as a single particle.

【0040】また、結晶化温度はMgO成分の効果と相
いまってα−クオーツ(α−SiO2 )の結晶を凝集し
た粒子の球状構造の制御に重要な温度であるが、その温
度が700℃未満では、α−クオーツ(α−SiO2
結晶が充分に析出し難く、また、840℃を超えるとα
−クオーツ(α−SiO2 )の凝集した粒子の球状構造
を保つことができなくなり、上記効果が得られなくな
る。
The crystallization temperature is an important temperature for controlling the spherical structure of particles obtained by aggregating α-quartz (α-SiO 2 ) crystals in combination with the effect of the MgO component. If the temperature is lower than ℃, α-quartz (α-SiO 2 )
It is difficult for crystals to sufficiently precipitate, and when the temperature exceeds 840 ° C., α
-The spherical structure of the aggregated particles of quartz (α-SiO 2 ) cannot be maintained, and the above effects cannot be obtained.

【0041】次にこの熱処理結晶化したガラスを常法に
よりラッピングした後ポリシングすることにより、表面
粗度(Ra)が15Å〜50Åの範囲の磁気ディスク基
板が得られる。
Next, the heat-crystallized glass is lapped by a conventional method and then polished to obtain a magnetic disk substrate having a surface roughness (Ra) in the range of 15 ° to 50 °.

【0042】[0042]

【実施例】つぎに本発明にかかる好適な実施例につき説
明する。表1〜表5は本発明の磁気ディスク基板の実施
組成例(No.1〜No.13)と比較組成例としての
従来のSiO2 −Li2 O−Al2 3 −P2 5 系結
晶化ガラス(特開昭62−72547号公報、比較例
1)、SiO2 −Li2 O−MgO−P2 5 系結晶化
ガラス(米国特許第3,231,456号公報、比較例
2)およびSiO2 −Li2 O−MgO−P2 5 系結
晶化ガラス(特開昭63−210039、比較例3)を
これらの結晶化ガラスの熱処理温度、熱処理時間、α−
クオーツの成長結晶粒子の結晶粒径、結晶相および研磨
後の表面粗度(Ra)の測定結果とともに示したもので
ある。表中α−Qはα−クオーツ(SiO2 )、α−C
riはα−クリストバライト(SiO2 )を示す。
Next, preferred embodiments according to the present invention will be described. Tables 1 to 5 show practical composition examples (No. 1 to No. 13) of the magnetic disk substrate of the present invention and a conventional SiO 2 —Li 2 O—Al 2 O 3 —P 2 O 5 system as a comparative composition example. Crystallized glass (JP-A-62-72547, Comparative Example 1), SiO 2 —Li 2 O—MgO—P 2 O 5 -based crystallized glass (US Pat. No. 3,231,456, Comparative Example 2) ) And SiO 2 —Li 2 O—MgO—P 2 O 5 -based crystallized glass (JP-A-63-210039, Comparative Example 3) were subjected to heat treatment temperature, heat treatment time, α-
It is shown together with the measurement results of the crystal grain size of the grown crystal grains of quartz, the crystal phase and the surface roughness (Ra) after polishing. In the table, α-Q is α-quartz (SiO 2 ), α-C
ri represents α-cristobalite (SiO 2 ).

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【表2】 [Table 2]

【0045】[0045]

【表3】 [Table 3]

【0046】[0046]

【表4】 [Table 4]

【0047】[0047]

【表5】 [Table 5]

【0048】また添付図面において、図1は上記実施例
4の結晶化ガラスの研摩後の表面粗度(Ra)を、図2
は上記比較例1の結晶化ガラスの研磨後の表面粗度(R
a)を、また図3は上記比較例2の結晶化ガラスの研磨
後の表面粗度(Ra)を対比して示すグラフである。ま
た図4、図5(拡大写真)は上記実施例4の、図6は上
記比較例1の、図7、図8(拡大写真)は上記比較例2
の各々の結晶化ガラスのHFエッチング処理を行った結
晶形状の走査型電顕写真を対比して示すものである。ま
た、図9は、上記実施例5の結晶化ガラスのα−クオー
ツ(α−SiO2 )凝集粒子の結晶化温度範囲と表面粗
度(Ra)の関係を示すグラフである。さらに、図10
は実施例5において表面粗度(Ra)が32Åの研摩後
のAFM(Atomic Force Microscope) による三次元立体
像を示す写真で、α−クオーツ(α−SiO2 )の凝集
した複数の粒子の球状構造が基板表面全体に微細で滑ら
かな突起を形成していることを示すものである。
In the attached drawings, FIG. 1 shows the surface roughness (Ra) of the crystallized glass of Example 4 after polishing, as shown in FIG.
Is the surface roughness after polishing the crystallized glass of Comparative Example 1 (R
3A is a graph showing the surface roughness (Ra) of the crystallized glass of Comparative Example 2 after polishing, in contrast to FIG. 4 and 5 (enlarged photographs) show Example 4 above, FIG. 6 shows Comparative Example 1 above, and FIGS. 7 and 8 (enlarged photographs) show Comparative Example 2 above.
3A and 3B show scanning electron micrographs of crystal shapes obtained by subjecting each of the crystallized glasses of FIGS. FIG. 9 is a graph showing the relationship between the crystallization temperature range of the α-quartz (α-SiO 2 ) aggregated particles of the crystallized glass of Example 5 and the surface roughness (Ra). Furthermore, FIG.
Is a photograph showing a three-dimensional three-dimensional image by AFM (Atomic Force Microscope) after polishing having a surface roughness (Ra) of 32Å in Example 5, which is a spherical shape of a plurality of α-quartz (α-SiO 2 ) aggregated particles. The structure shows that fine and smooth projections are formed on the entire surface of the substrate.

【0049】本発明の上記実施例のガラスは、いずれも
酸化物、炭酸塩、硝酸塩等の原料を混合し、これを通常
の溶融装置を用いて約1350〜1500℃の温度で溶
融し、攪拌均質化した後所望の形状に成形して、冷却
し、ガラス成形体を得た。その後これを450〜540
℃で約1〜5時間熱処理して結晶核形成後、700〜8
40℃の各結晶化温度で約1〜5時間保持して、所望の
結晶化ガラスを得た。次いで15Å〜50Åの表面粗度
(Ra)を有する磁気ディスク基板を製造するため、上
記結晶化ガラスを平均粒径9〜12μmの砥粒にて約1
0分〜20分間ラッピングし、その後平均粒径1〜2μ
mの酸化セリュームにて約30分〜40分間ポリシング
して仕上げた。
The glass of the above embodiment of the present invention is prepared by mixing raw materials such as oxides, carbonates and nitrates, melting them at a temperature of about 1350 to 1500 ° C. using a usual melting apparatus, and stirring. After homogenization, it was molded into a desired shape and cooled to obtain a glass molded body. Then, add this to 450-540
After forming a crystal nucleus by heat treatment for about 1 to 5 hours at
It was kept at each crystallization temperature of 40 ° C. for about 1 to 5 hours to obtain a desired crystallized glass. Next, in order to manufacture a magnetic disk substrate having a surface roughness (Ra) of 15 ° to 50 °, the crystallized glass was subjected to polishing for about 1 hour using abrasive grains having an average particle size of 9 to 12 μm.
Wrap for 0-20 minutes, then average particle size 1-2μ
m oxide cerium for about 30 to 40 minutes and finished by polishing.

【0050】結晶化ガラス基板は、磁気ディスクとして
の成膜プロセスを経て、高記録密度用磁気ディスクとな
る。すなわち、この結晶化ガラス基板を、真空状態で加
熱し、その後、スパッタリングによりCrの中間層、C
o合金の磁性層、Cの保護層を成膜し、その上に潤滑材
層の塗布を行うことによって磁気ディスクが得られる。
The crystallized glass substrate becomes a high recording density magnetic disk through a film forming process as a magnetic disk. That is, the crystallized glass substrate is heated in a vacuum state, and thereafter, an intermediate layer of Cr, C
A magnetic disk can be obtained by forming a magnetic layer of an o-alloy and a protective layer of C and applying a lubricant layer thereon.

【0051】表2および表5に示すとおり、実施例4の
磁気ディスク基板は所望の表面粗度を有しているが、比
較例1〜3のものはこのような所望の表面粗度を有して
いない。また図1〜3から明らかなように、実施例4の
磁気ディスク基板は所望の表面粗度を有しているが比較
例1、2のものは所望の表面粗度を有していない。図4
〜6のSEM像から明らかなように、実施例4の磁気デ
ィスク基板は凝集した複数の粒子からなる球状粒子構造
が基板表面から突出しているのに対し、比較例1の結晶
粒子は針状または棒状の粒子構造を示し所望の表面粗度
が得られないことを示している。同様に、図示はしてい
ないが、比較例3の結晶粒子も針状または棒状の粒子構
造を有しており、所望の表面粗度は得られない。さら
に、図7および図8(拡大写真)に示すように、比較例
2の結晶粒子は粒子の凝集が見られない単球構造を示し
ており、この構造では所望の表面粗度は得られず、また
本発明のように粒径を自由に制御することは不可能であ
る。図8に示すとおり本発明によれば、粒径は熱処理条
件を変更することにより0.3μm〜3μmの範囲内で
自由に調節することができる。すなわち15Å〜50Å
の範囲内の所望の表面粗度を自在に得ることができるの
である。
As shown in Tables 2 and 5, the magnetic disk substrate of Example 4 has a desired surface roughness, whereas those of Comparative Examples 1 to 3 have such a desired surface roughness. I haven't. As is clear from FIGS. 1 to 3, the magnetic disk substrate of Example 4 has a desired surface roughness, but the magnetic disk substrates of Comparative Examples 1 and 2 do not have the desired surface roughness. FIG.
As is clear from the SEM images of Comparative Examples 1 to 6, the magnetic disk substrate of Example 4 had a spherical particle structure composed of a plurality of aggregated particles protruding from the substrate surface, whereas the crystal particles of Comparative Example 1 had needle-like or It shows a rod-like particle structure, indicating that a desired surface roughness cannot be obtained. Similarly, although not shown, the crystal particles of Comparative Example 3 also have a needle-like or rod-like particle structure, and a desired surface roughness cannot be obtained. Further, as shown in FIG. 7 and FIG. 8 (enlarged photograph), the crystal particles of Comparative Example 2 have a monocyte structure in which no aggregation of particles is observed, and this structure does not provide a desired surface roughness. Moreover, it is impossible to freely control the particle size as in the present invention. As shown in FIG. 8, according to the present invention, the particle size can be freely adjusted within the range of 0.3 μm to 3 μm by changing the heat treatment conditions. That is, 15Å to 50Å
The desired surface roughness within the range can be freely obtained.

【0052】ここで本発明におけるα−クオーツの凝集
した粒子からなる球状粒子構造と比較例2のα−クオー
ツの非凝集単球粒子構造の差異およびこの構造上の差異
が本発明の効果に及ぼす影響についてさらに詳細に説明
する。
Here, the difference between the spherical particle structure composed of agglomerated particles of α-quartz in the present invention and the non-agglomerated monocyte particle structure of α-quartz in Comparative Example 2 and the difference in this structure exerts an effect on the present invention. The effect will be described in more detail.

【0053】本発明のα−クオーツ粒子は、図5に示す
実施例4の走査型電子顕微鏡写真からも明らかなよう
に、微細な粒子が凝集し球状の粒子を構成している。
又、これらの粒子は、図4に示すように、二珪酸リチウ
ム(Li2 O・2SiO2 )の微細粒子(写真中平坦な
部分)中にランダムに点在している。この状態は、研磨
によって得られる表面粗度制御特性に大きな効果をもた
らしている。これに対して図7、8の走査型電子顕微鏡
写真に示す比較例2の結晶化ガラスは、X線回析から二
珪酸リチウム(Li2 O・2SiO2 )とα−クオーツ
(α−SiO2 )の析出が確認されているが、その二珪
酸リチウム(Li2 O・2SiO2 )とα−クオーツ
(α−SiO2 )の析出状態の区別が本発明におけるよ
うに明確ではなく、かつそれらの結晶粒子の形状は不定
形である。
As is clear from the scanning electron micrograph of Example 4 shown in FIG. 5, the α-quartz particles of the present invention are aggregated into fine particles to form spherical particles.
Further, as shown in FIG. 4, these particles are randomly scattered in fine particles of lithium disilicate (Li 2 O.2SiO 2 ) (flat portions in the photograph). This state has a great effect on the surface roughness control characteristics obtained by polishing. On the other hand, the crystallized glass of Comparative Example 2 shown in the scanning electron micrographs of FIGS. 7 and 8 shows that lithium disilicate (Li 2 O.2SiO 2 ) and α-quartz (α-SiO 2 ) were obtained by X-ray diffraction. ) Has been confirmed, but the distinction between the precipitation states of lithium disilicate (Li 2 O.2SiO 2 ) and α-quartz (α-SiO 2 ) is not clear as in the present invention, and these are not clear. The shape of the crystal grains is irregular.

【0054】本発明にかかる磁気ディスク基板の表面粗
度制御特性は、物理的、化学的に二珪酸リチウム(Li
2 O・2SiO2 )よりも本質的に強いα−クオーツの
凝集した複数の小粒子からなる球状結晶粒子が物理的、
化学的に弱い二珪酸リチウムの結晶粒子中にランダムに
析出してなる特定の結晶構造によって得られるものであ
る。この結晶構造のために、研磨工程において、二珪酸
リチウムの結晶粒子はα−クオーツの結晶粒子よりも迅
速に研削され、その結果研磨工程が進行するにつれて、
α−クオーツの結晶粒子は二珪酸リチウムの結晶粒子の
表面に比較的に顕著に突出することにより、15Å〜5
0Åという比較的に大きな価の表面粗度(Ra)が得ら
れるのである。図10のAFM三次元立体像から、物理
的、化学的に強いα−クオーツの凝集した粒子が研磨面
全体にランダムに突起していることが判る。
The surface roughness control characteristics of the magnetic disk substrate according to the present invention are physically and chemically controlled by lithium disilicate (Li).
Spherical crystal particles composed of a plurality of agglomerated small particles of α-quartz, which are essentially stronger than 2 O · 2SiO 2 )
It is obtained by a specific crystal structure formed by randomly depositing in chemically weak lithium disilicate crystal particles. Due to this crystal structure, in the polishing step, lithium disilicate crystal grains are ground more rapidly than α-quartz crystal grains, and as a result, as the polishing step proceeds,
The crystal particles of α-quartz are projected to the surface of the crystal particles of lithium disilicate relatively significantly, so that 15 Å ~ 5
A relatively large surface roughness (Ra) of 0 ° is obtained. From the three-dimensional AFM image of FIG. 10, it can be seen that physically and chemically strong α-quartz aggregated particles randomly project over the entire polished surface.

【0055】本発明の磁気ディスク基板を構成する結晶
化ガラスにおいてα−クオーツの凝集した粒子からなる
球状粒子構造から得られる他の利点は、結晶化温度の変
化により球状粒子の粒径を微細に制御することができ、
これによって所望の粒径を任意に得ることができる点で
ある。これは、本発明においては、α−クオーツの結晶
粒子の析出は小さい結晶粒子の凝集の度合に大きく依存
しており、この凝集の度合は採用される結晶化温度に依
存するからである。このような粒径の微妙な制御は二珪
酸リチウムとα−クオーツが析出してもα−クオーツの
結晶粒子が単球からなり不特定な構造である比較例2に
おいてはとうてい達成できない。
Another advantage of the crystallized glass constituting the magnetic disk substrate of the present invention obtained from the spherical particle structure composed of agglomerated particles of α-quartz is that the particle diameter of the spherical particles can be reduced by changing the crystallization temperature. Can be controlled,
Thereby, a desired particle size can be arbitrarily obtained. This is because, in the present invention, the precipitation of α-quartz crystal particles largely depends on the degree of aggregation of small crystal particles, and the degree of aggregation depends on the employed crystallization temperature. Even if lithium disilicate and α-quartz are precipitated, such fine control of the particle size cannot be attained in Comparative Example 2 in which α-quartz crystal particles are monocytes and have an unspecified structure.

【0056】[0056]

【発明の効果】以上述べたように、本発明によれば、結
晶化ガラスの結晶相が二珪酸リチウム(Li2 O・2S
iO2 )およびα−クオーツ(α−SiO2 )であっ
て、該α−クオーツの成長結晶粒子がそれぞれ凝集した
複数の粒子からなる球状粒子構造を有しており、該球状
粒子は0.3μm〜3.0μmの範囲内の径を有する結
晶化ガラスからなり、磁気ディスク基板の研磨してなる
表面の粗度(Ra)が15Å〜50Åの範囲内にあるこ
とにより、磁気ディスクの始動/停止(CSS)特性向
上のため従来の結晶化ガラスからなる磁気ディスク基板
において必要であった機械的または化学的テクスチャー
処理をまったく施すことなく必要な表面粗度を有する磁
気ディスク基板を得ることができる。しかも上記範囲内
の所望の表面粗度を熱処理条件を変えるだけで容易に得
ることができる。したがって、高密度記録用磁気ディス
クとして好適な特性を備えた磁気ディスク基板を低コス
トでかつ安定して量産することができる。
As described above, according to the present invention, the crystal phase of the crystallized glass is lithium disilicate (Li 2 O · 2S).
iO 2 ) and α-quartz (α-SiO 2 ), each having a spherical particle structure composed of a plurality of particles in which the grown crystal particles of α-quartz are aggregated. Start / stop of the magnetic disk due to the fact that the magnetic disk substrate is made of crystallized glass having a diameter within the range of 3.0 to 3.0 μm and the roughness (Ra) of the polished surface of the magnetic disk substrate is within the range of 15 ° to 50 °. A magnetic disk substrate having a required surface roughness can be obtained without performing any mechanical or chemical texturing required for a conventional magnetic disk substrate made of crystallized glass for improving the (CSS) characteristics. Moreover, a desired surface roughness within the above range can be easily obtained only by changing the heat treatment conditions. Therefore, it is possible to stably mass-produce a magnetic disk substrate having suitable characteristics as a magnetic disk for high density recording at low cost.

【0057】また、本発明の磁気ディスク基板の製造方
法によれば重量百分率で、SiO265〜83%、Li
2 O 8〜13%、K2 O 0〜7%、MgO 0.5
〜5.5%、ZnO 0〜5%、PbO 0〜5%ただ
し、MgO+ZnO+PbO0.5〜5.5%、P2
5 1〜4%、Al2 3 0〜7%、As2 3 +S
2 3 0〜2%を含有するガラスを溶解し、成形し
た後加熱昇温し、450℃〜540℃の範囲の核形成熱
処理を行い、次いで700℃〜840℃の範囲の結晶化
熱処理を行った後表面を15Å〜50Åの範囲の表面粗
度に研磨することにより、上記本発明の磁気ディスク基
板を得ることができる。
According to the method of manufacturing a magnetic disk substrate of the present invention, 65 to 83% of SiO 2 ,
2 O 8-13%, K 2 O 0-7%, MgO 0.5
0 to 5.5%, ZnO 0 to 5%, PbO 0 to 5%, but MgO + ZnO + PbO 0.5 to 5.5%, P 2 O
5 1~4%, Al 2 O 3 0~7%, As 2 O 3 + S
b 2 O 3 was dissolved glass containing 0 to 2%, the temperature was heated to raise after molding, 450 ° C. to 540 perform nucleation heat treatment in the range of ° C., then crystallization heat treatment in the range of 700 ℃ ~840 ℃ Then, the surface is polished to a surface roughness in the range of 15 ° to 50 ° to obtain the magnetic disk substrate of the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の結晶化ガラスの表面粗度を示
すグラフである。
FIG. 1 is a graph showing the surface roughness of a crystallized glass according to an example of the present invention.

【図2】従来の結晶化ガラスの表面粗度を示すグラフで
ある。
FIG. 2 is a graph showing the surface roughness of a conventional crystallized glass.

【図3】従来の結晶化ガラスの表面粗度を示すグラフで
ある。
FIG. 3 is a graph showing the surface roughness of a conventional crystallized glass.

【図4】本発明の実施例の結晶化ガラスのHF2 エッチ
ング後の結晶粒子の走査型電顕写真である。
FIG. 4 is a scanning electron micrograph of crystal grains after HF 2 etching of the crystallized glass of the example of the present invention.

【図5】図4の実施例の拡大電顕写真である。FIG. 5 is an enlarged electron microscope photograph of the embodiment of FIG.

【図6】従来の結晶化ガラスの結晶粒子の走査型電顕写
真である。
FIG. 6 is a scanning electron micrograph of crystal particles of a conventional crystallized glass.

【図7】従来の他の結晶化ガラスの結晶粒子の走査型電
顕写真である。
FIG. 7 is a scanning electron micrograph of crystal particles of another conventional crystallized glass.

【図8】図7の結晶化ガラスの拡大電顕写真である。8 is an enlarged electron micrograph of the crystallized glass of FIG.

【図9】本発明の実施例の結晶化ガラスのα−クオーツ
凝集粒子の結晶化温度範囲と表面粗度の関係を示すグラ
フである。
FIG. 9 is a graph showing the relationship between the crystallization temperature range of α-quartz aggregated particles of crystallized glass and the surface roughness of the example of the present invention.

【図10】本発明の実施例の研磨後のAFMによる三次
元立体像を示す写真である。
FIG. 10 is a photograph showing a three-dimensional image by AFM after polishing in the example of the present invention.

【手続補正書】[Procedure amendment]

【提出日】平成7年4月3日[Submission date] April 3, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図10[Name of item to be corrected] Fig. 10

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図10】 本発明の実施例の研磨後の基板表面がAF
(AtomicForce Microscope)
三次元立体像による粒子構造を示す写真である。 ─────────────────────────────────────────────────────
FIG. 10 shows that the substrate surface after polishing according to the embodiment of the present invention is AF.
M (AtomicForce Microscope)
3 is a photograph showing a particle structure based on a three-dimensional stereoscopic image. ─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年4月3日[Submission date] April 3, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0048[Correction target item name] 0048

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0048】 また添付図面において、図1は上記実施
例4の結晶化ガラスの研摩後の表面粗度(Ra)を、図
2は上記比較例1の結晶化ガラスの研磨後の表面粗度
(Ra)を、また図3は上記比較例2の結晶化ガラスの
研磨後の表面粗度(Ra)を対比して示すグラフであ
る。また図4、図5(拡大写真)は上記実施例4の、図
6は上記比較例1の、図7、図8(拡大写真)は上記比
較例2の各々の結晶化ガラスのHFエッチング処理を行
った結晶形状の走査型電顕写真を対比して示すものであ
る。また、図9は、上記実施例5の結晶化ガラスのα−
クオーツ(α−SiO)凝集粒子の結晶化温度範囲と
表面粗度(Ra)の関係を示すグラフである。さらに、
図10は実施例5において研磨後の表面粗度(Ra)が
32Åの基板表面がAFM(Atomic Force
Microscope)三次元立体像による粒子構
を示す写真で、α−クオーツ(α−SiO)の凝集
した複数の粒子の球状構造が基板表面全体に微細で滑ら
かな突起を形成していることを示すものである。
In the accompanying drawings, FIG. 1 shows the surface roughness (Ra) of the crystallized glass of Example 4 after polishing, and FIG. 2 shows the surface roughness (Ra) of the crystallized glass of Comparative Example 1 after polishing. FIG. 3 is a graph showing the surface roughness (Ra) of the crystallized glass of Comparative Example 2 after polishing. Further, FIGS. 4 and 5 (enlarged photographs) show the HF etching treatment of the crystallized glass of Example 4, FIG. 6 shows the comparative example 1 and FIGS. 7 and 8 (enlarged photographs) show the comparative example 2 of the crystallized glass. It is shown in comparison with the scanning electron micrograph of the crystal shape obtained. Further, FIG. 9 shows α- of the crystallized glass of Example 5 above.
It is a graph showing the relationship between the crystallization temperature range and the surface roughness of the quartz (α-SiO 2) aggregated particles (Ra). further,
FIG. 10 shows that in Example 5, the surface of the substrate having a surface roughness (Ra) of 32 ° after polishing was AFM (Atomic Force).
Particle structure by three-dimensional image of the Microscope)
The photographs showing the structure show that the spherical structure of a plurality of agglomerated particles of α-quartz (α-SiO 2 ) forms fine and smooth protrusions on the entire surface of the substrate.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 結晶化ガラスの結晶相が二珪酸リチウム
(Li2 O・2SiO2 )およびα−クオーツ(α−S
iO2 )であって、該α−クオーツの成長結晶粒子がそ
れぞれ凝集した複数の粒子からなる球状粒子構造を有し
ており、該球状粒子は0.3μm〜3.0μmの範囲内
の径を有する結晶化ガラスからなり、磁気ディスク基板
の研磨してなる表面の粗度(Ra)が15Å〜50Åの
範囲内にあることを特徴とする磁気ディスク基板。
The crystal phases of the crystallized glass are lithium disilicate (Li 2 O.2SiO 2 ) and α-quartz (α-S).
iO 2 ) and has a spherical particle structure composed of a plurality of particles obtained by aggregating the grown crystal particles of α-quartz, and the spherical particles have a diameter in the range of 0.3 μm to 3.0 μm. A magnetic disk substrate comprising the crystallized glass of the present invention, wherein the surface roughness (Ra) of the polished magnetic disk substrate is in the range of 15Å to 50Å.
【請求項2】 重量百分率で、SiO2 65〜83
%、Li2 O 8〜13%、K2 O 0〜7%、MgO
0.5〜5.5%、ZnO 0〜5%、PbO 0〜
5%ただし、MgO+ZnO+PbO 0.5〜5.5
%、P2 51〜4%、Al2 3 0〜7%、As2
3 +Sb2 3 0〜2%を含有するガラスを熱処理
することにより得られることを特徴とする請求項1記載
の磁気ディスク基板。
2. SiO 2 65-83 in weight percentage.
%, Li 2 O 8 to 13%, K 2 O 0 to 7%, MgO
0.5-5.5%, ZnO 0-5%, PbO 0
5%, but MgO + ZnO + PbO 0.5 to 5.5
%, P 2 O 5 1~4% , Al 2 O 3 0~7%, As 2
O 3 + Sb 2 O 3 magnetic disk substrate according to claim 1, wherein a obtained by heat-treating the glass containing 0 to 2%.
【請求項3】 重量百分率で、SiO2 70〜82
%、Li2 O 8〜12%、K2 O 1〜6%、MgO
1〜5%、ZnO 0.2〜5%、ただし、MgO+
ZnO 1.5〜5.5%、P2 5 1〜3%、Al
2 3 1〜6%、As2 3 +Sb2 3 0〜2%
を含有するガラスを熱処理することにより得られること
を特徴とする請求項1記載の磁気ディスク基板。
3. SiO 2 70-82 by weight percentage.
%, Li 2 O 8-12%, K 2 O 1-6%, MgO
1-5%, ZnO 0.2-5%, but MgO +
ZnO 1.5~5.5%, P 2 O 5 1~3%, Al
2 O 3 1 to 6%, As 2 O 3 + Sb 2 O 3 0 to 2%
The magnetic disk substrate according to claim 1, which is obtained by heat-treating a glass containing the.
【請求項4】 基板上に磁気媒体の被膜を形成してなる
磁気ディスクにおいて、該基板は、結晶化ガラスの結晶
相が二珪酸リチウム(Li2 O・2SiO2)およびα
−クオーツ(α−SiO2 )であって、該α−クオーツ
の成長結晶粒子がそれぞれ凝集した複数の粒子からなる
球状粒子構造を有しており、該球状粒子は0.3μm〜
3.0μmの範囲内の径を有する結晶化ガラスからな
り、該基板の研磨してなる表面の粗度(Ra)が15Å
〜50Åの範囲内にあることを特徴とする磁気ディス
ク。
4. A magnetic disk in which a magnetic medium film is formed on a substrate, wherein the crystal phase of the crystallized glass is lithium disilicate (Li 2 O.2SiO 2 ) and α.
-Quartz (α-SiO 2 ), which has a spherical particle structure composed of a plurality of agglomerated particles of the α-quartz grown crystal, and the spherical particles have a particle size of 0.3 μm to
It is made of crystallized glass having a diameter in the range of 3.0 μm, and the surface roughness (Ra) of the polished surface of the substrate is 15 °.
A magnetic disk characterized by being in the range of up to 50 °.
【請求項5】 該基板は、重量百分率で、SiO2
5〜83%、Li2O 8〜13%、K2 O 0〜7
%、MgO 0.5〜5.5%、ZnO 0〜5%、P
bO 0〜5%ただし、MgO+ZnO+PbO 0.
5〜5.5%、P2 5 1〜4%、Al2 3 0〜
7%、As2 3 +Sb2 3 0〜2%を含有するガ
ラスを熱処理することにより得られることを特徴とする
請求項4記載の磁気ディスク基板。
5. The method according to claim 1, wherein the substrate is made of SiO 2 6 by weight percentage.
5 to 83%, Li 2 O 8 to 13%, K 2 O 0 to 7
%, MgO 0.5-5.5%, ZnO 0-5%, P
bO 0-5% where MgO + ZnO + PbO
5~5.5%, P 2 O 5 1~4 %, Al 2 O 3 0~
7%, As 2 O 3 + Sb 2 O 3 magnetic disk substrate according to claim 4, characterized in that it is obtained by heat-treating the glass containing 0 to 2%.
【請求項6】 該基板は、重量百分率で、SiO2
0〜82%、Li2O 8〜12%、K2 O 1〜6
%、MgO 1〜5%、ZnO 0.2〜5%、ただ
し、MgO+ZnO 1.5〜5.5%、P2 5
〜3%、Al2 3 1〜6%、As2 3 +Sb2
3 0〜2%を含有するガラスを熱処理することにより
得られることを特徴とする請求項4記載の磁気ディスク
基板。
6. The substrate is SiO 2 7 by weight percentage.
0~82%, Li 2 O 8~12% , K 2 O 1~6
%, MgO 1~5%, ZnO 0.2~5 %, however, MgO + ZnO 1.5~5.5%, P 2 O 5 1
33%, Al 2 O 3 66%, As 2 O 3 + Sb 2 O
5. The magnetic disk substrate according to claim 4, wherein the magnetic disk substrate is obtained by heat-treating a glass containing 30 to 2%.
【請求項7】 重量百分率で、SiO2 65〜83
%、Li2 O 8〜13%、K2 O 0〜7%、MgO
0.5〜5.5%、ZnO 0〜5%、PbO 0〜
5%ただし、MgO+ZnO+PbO 0.5〜5.5
%、P2 51〜4%、Al2 3 0〜7%、As2
3 +Sb2 3 0〜2%を含有するガラスを溶解
し、成形した後加熱昇温し、450℃〜540℃の範囲
の核形成熱処理を行い、次いで700℃〜840℃の範
囲の結晶化熱処理を行った後表面を15Å〜50Åの範
囲の表面粗度に研磨することを特徴とする磁気ディスク
基板の製造方法。
7. SiO 2 65 to 83 in weight percentage.
%, Li 2 O 8 to 13%, K 2 O 0 to 7%, MgO
0.5-5.5%, ZnO 0-5%, PbO 0
5%, but MgO + ZnO + PbO 0.5 to 5.5
%, P 2 O 5 1~4% , Al 2 O 3 0~7%, As 2
A glass containing 0 to 2% of O 3 + Sb 2 O 3 is melted, molded, heated and heated to a nucleation heat treatment in a range of 450 ° C. to 540 ° C., and then a crystal in a range of 700 ° C. to 840 ° C. A method for producing a magnetic disk substrate, comprising: after polishing heat treatment, polishing the surface to a surface roughness in the range of 15 ° to 50 °.
JP6270647A 1994-10-07 1994-10-07 Magnetic disk substrate and method of manufacturing the same Expired - Fee Related JP2628460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6270647A JP2628460B2 (en) 1994-10-07 1994-10-07 Magnetic disk substrate and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6270647A JP2628460B2 (en) 1994-10-07 1994-10-07 Magnetic disk substrate and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH08111024A true JPH08111024A (en) 1996-04-30
JP2628460B2 JP2628460B2 (en) 1997-07-09

Family

ID=17489010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6270647A Expired - Fee Related JP2628460B2 (en) 1994-10-07 1994-10-07 Magnetic disk substrate and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2628460B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10139479A (en) * 1996-11-14 1998-05-26 Ohara Inc Glass ceramic substrate for magnetic information recording medium
EP0875886A2 (en) * 1997-04-28 1998-11-04 Kabushiki Kaisha Ohara A glass-ceramic substrate for a magnetic information storage medium
US6329309B1 (en) 1998-09-30 2001-12-11 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Glass with high specific rigidity for recording medium
US6383404B1 (en) 1998-08-19 2002-05-07 Hoya Corporation Glass substrate for magnetic recording medium, magnetic recording medium, and method of manufacturing the same
CN114450258A (en) * 2019-09-25 2022-05-06 株式会社哈斯 Microcrystalline glass with plasma corrosion resistance and dry etching process part comprising microcrystalline glass

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001097740A (en) 1999-09-29 2001-04-10 Ngk Insulators Ltd Crystallized glass, substrate for magnetic disk and magnetic disk

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10139479A (en) * 1996-11-14 1998-05-26 Ohara Inc Glass ceramic substrate for magnetic information recording medium
EP0875886A2 (en) * 1997-04-28 1998-11-04 Kabushiki Kaisha Ohara A glass-ceramic substrate for a magnetic information storage medium
EP0875886A3 (en) * 1997-04-28 2000-02-02 Kabushiki Kaisha Ohara A glass-ceramic substrate for a magnetic information storage medium
US6120922A (en) * 1997-04-28 2000-09-19 Goto; Naoyuki Glass-ceramic substrate for a magnetic information storage medium
US6383404B1 (en) 1998-08-19 2002-05-07 Hoya Corporation Glass substrate for magnetic recording medium, magnetic recording medium, and method of manufacturing the same
US6548139B2 (en) 1998-08-19 2003-04-15 Hoya Corporation Glass substrate for magnetic recording medium, magnetic recording medium, and method of manufacturing the same
US6329309B1 (en) 1998-09-30 2001-12-11 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Glass with high specific rigidity for recording medium
CN114450258A (en) * 2019-09-25 2022-05-06 株式会社哈斯 Microcrystalline glass with plasma corrosion resistance and dry etching process part comprising microcrystalline glass
JP2022549846A (en) * 2019-09-25 2022-11-29 ハス カンパニー リミテッド Crystallized glass with plasma corrosion resistance and parts for dry etching process including the same

Also Published As

Publication number Publication date
JP2628460B2 (en) 1997-07-09

Similar Documents

Publication Publication Date Title
US5626935A (en) Magnetic disk substrate and method for manufacturing the same
JP2516553B2 (en) Crystallized glass for magnetic disk and manufacturing method thereof
US5567217A (en) Method for manufacturing a crystalized glass magnetic disk substrate
JP2736869B2 (en) Method of manufacturing magnetic disk substrate
JP4462724B2 (en) Glass ceramics
JP4467597B2 (en) Inorganic composition article
JP4680347B2 (en) High rigidity glass ceramic substrate
JP2799544B2 (en) Crystallized glass for information recording disks
JP5053948B2 (en) Crystallized glass
JP3311308B2 (en) Glass ceramic substrate for perpendicular magnetic recording media
JP3131138B2 (en) Crystallized glass substrate for magnetic disk
JP3416033B2 (en) Crystallized glass substrate for magnetic head and method of manufacturing the same
JP2002097037A (en) Glass ceramic
JP2007223884A (en) Inorganic composition
JP3440214B2 (en) Glass ceramic substrate for information storage media
JP2628460B2 (en) Magnetic disk substrate and method of manufacturing the same
JP2000119042A (en) Glass ceramic substrate for magnetic information recording medium
JP3022524B1 (en) High-rigidity glass ceramic substrate for information magnetic storage media
JP4323597B2 (en) Crystallized glass for information recording disk and method for producing the same
JP3011703B1 (en) High-rigidity glass ceramic substrate for information magnetic storage media
JP3130800B2 (en) Glass composition for magnetic disk substrate and magnetic disk substrate
JP4266095B2 (en) Glass ceramics
JP2001148114A (en) Glass ceramic substrate for information magnetic storage medium
JP4043171B2 (en) Method for producing crystallized glass for information recording disk
JP3152905B2 (en) Crystallized glass substrate for magnetic disk

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees