JPH08109449A - Nonoriented silicon steel sheet high in magnetic flux density and low in core loss, its production and motor core using the same - Google Patents

Nonoriented silicon steel sheet high in magnetic flux density and low in core loss, its production and motor core using the same

Info

Publication number
JPH08109449A
JPH08109449A JP9890095A JP9890095A JPH08109449A JP H08109449 A JPH08109449 A JP H08109449A JP 9890095 A JP9890095 A JP 9890095A JP 9890095 A JP9890095 A JP 9890095A JP H08109449 A JPH08109449 A JP H08109449A
Authority
JP
Japan
Prior art keywords
magnetic flux
flux density
less
annealing
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9890095A
Other languages
Japanese (ja)
Inventor
Tomoyuki Abe
智之 阿部
Ryutaro Kawamata
竜太郎 川又
Tsutomu Kaido
力 開道
Takeshi Kubota
猛 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9890095A priority Critical patent/JPH08109449A/en
Publication of JPH08109449A publication Critical patent/JPH08109449A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

PURPOSE: To produce a nonoriented silicon steel sheet high in magnetic flux density and low in core loss by incorporating a small amt. of Ni into a steel having a specified compsn. and regulating the grain size of the hot rolled sheet to certain value or above by annealing. CONSTITUTION: A steel contg., by weight, 0.010% C, 0.1 to <1.9% Si, 0.1 to <1.0% Mn, 1 to <1.9% Al, Si+Al<2, 0.1 to 3% Ni, and the balance Fe is subjected to hot rolling and is thereafter subjected to hot rolled sheet annealing or self annealing to regulate the average grain size of the hot rolled sheet to >=100μm. Next, it is subjected to cold rolling for one time or two or more times including process annealing and is subjected to continuous annealing. Thus, the nonoriented silicon steel sheet in which the value of B50 in the C direction is higher than the value of B50cal(C) prescribed by the formula of B50cal(C)=6.500×10<-3> ×Ni-1.350×10<-2> ×-(Mn+0.116)<2> -5.590×10<-3> ×(Si+2.406)<2> --0.055×Al+1.797 and having high magnetic flux density and low core loss can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気機器鉄心材料とし
て使用される磁束密度が高く、かつ鉄損が低い無方向性
電磁鋼板及びその製造方法ならびに該電気機器に使用さ
れる高磁束密度無方向性電磁鋼板を使用したモータコア
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-oriented electrical steel sheet having a high magnetic flux density and a low iron loss, which is used as a core material for electric equipment, a method for producing the same, and a high magnetic flux density material used for the electric equipment. The present invention relates to a motor core using a grain-oriented electrical steel sheet.

【0002】[0002]

【従来の技術】近年、電気機器の高効率化は、世界的な
電力・エネルギー節減の動きの中で強く要望されてい
る。また、電気機器の小型化で、磁性材料の高磁束密度
化の要望が高まっている。このため、回転機、及び中小
型変圧器などの鉄心材料に広く使用されている無方向性
電磁鋼板においても、高磁束密度化及び低鉄損化の要望
がますます強くなってきている。
2. Description of the Related Art In recent years, there has been a strong demand for higher efficiency of electric equipment in a global movement for saving electric power and energy. Further, with the miniaturization of electric devices, there is an increasing demand for higher magnetic flux density of magnetic materials. Therefore, even in non-oriented electrical steel sheets which are widely used for iron core materials such as rotating machines and small and medium-sized transformers, there is an increasing demand for higher magnetic flux density and lower iron loss.

【0003】従来の無方向性電磁鋼板では、鉄損を低く
する手段として、一般に固有抵抗増加による渦電流損低
下の観点から、SiあるいはAl等の含有量を高める方
法が用いられてきた。しかし、この方法では、磁束密度
の低下を免れることができないという本質的な問題があ
った。
In the conventional non-oriented electrical steel sheet, a method of increasing the content of Si, Al or the like has been generally used as a means for reducing the iron loss from the viewpoint of reducing the eddy current loss due to an increase in the specific resistance. However, this method has an essential problem that it cannot avoid a decrease in magnetic flux density.

【0004】また、単にSiあるいはAlの含有量を高
めるのみだけでなく、Cの低減、Sの低減、あるいは、
特開昭58−15143号公報に記載されているよう
な、Bの添加等の成分的な処理や、仕上げ焼鈍前の冷延
圧下率を高くすること、仕上げ焼鈍温度を高くすること
などの製造プロセス的な工夫がなされてきたが、いずれ
も鉄損の低下を図ることができても、磁束密度の向上に
ついてはそれほどの効果が無く、磁束密度が高く、かつ
鉄損が低い無方向性電磁鋼板を製造する要請に応えるこ
とができなかった。
In addition to simply increasing the content of Si or Al, it is also possible to reduce C, S, or
Manufacture of component treatment such as addition of B, increasing cold rolling reduction before finish annealing, and increasing finish annealing temperature, as described in JP-A-58-15143. Although the process has been devised, in either case, the iron loss can be reduced, but it is not so effective in improving the magnetic flux density, and the non-directional electromagnetic having a high magnetic flux density and a low iron loss. We were unable to meet the request to manufacture steel sheets.

【0005】[0005]

【発明が解決しようとする課題】上記問題点に鑑み、本
発明は磁束密度が高く、かつ鉄損が低い無方向性電磁鋼
板及びその製造方法ならびにこの鋼板を用いたモータコ
アを提供することを目的とするものである。
In view of the above problems, it is an object of the present invention to provide a non-oriented electrical steel sheet having a high magnetic flux density and a low iron loss, a method for manufacturing the same, and a motor core using the steel sheet. It is what

【0006】[0006]

【課題を解決するための手段】本発明者らは、製造プロ
セス条件の工夫と、組み合わせによる微量添加元素の積
極的活用により、高磁束密度、かつ低鉄損の無方向性電
磁鋼板が得られないかとの観点から鋭意検討を重ねてき
た。その結果、鋼にNiを少量含有させ、かつ熱延板焼
鈍もしくは自己焼鈍により熱延板の結晶粒径をある一定
値以上に大きくすることにより、磁束密度を高くし、か
つ鉄損を低くできることを究明した。
The inventors of the present invention have obtained a non-oriented electrical steel sheet having a high magnetic flux density and a low iron loss by devising manufacturing process conditions and positively utilizing a trace amount of additive elements in combination. We have been making intensive studies from the perspective of whether or not there is any. As a result, it is possible to increase the magnetic flux density and reduce the iron loss by containing a small amount of Ni in steel and increasing the crystal grain size of the hot-rolled sheet to a certain value or more by hot-rolled sheet annealing or self-annealing. Investigated.

【0007】Niを含有することを示す発明として、特
開平3−281758号公報、特開平5−186833
号公報、特開平5−186834号公報があげられる。
特開平3−281758号公報では、Al+Si:2〜
5%を含有することを開示している。Si及びAlは飽
和磁束密度を下げる働きがあるので、この程度含有して
しまうと、本質的に磁束密度の高い電磁鋼板をつくるこ
とができない。また、製造方法も、脱炭を前提としてい
るため、製造コストが非常に高くなる。
As inventions showing that Ni is contained, JP-A-3-281758 and JP-A-5-186833 are available.
Japanese Patent Laid-Open No. 5-186834.
In JP-A-3-281758, Al + Si: 2 to
It is disclosed to contain 5%. Since Si and Al have a function of lowering the saturation magnetic flux density, if they are contained in this amount, it is essentially impossible to produce a magnetic steel sheet having a high magnetic flux density. Further, the manufacturing method is also premised on decarburization, so that the manufacturing cost becomes very high.

【0008】Niが無方向性電磁鋼板に含まれる例とし
て、特開昭63−317627号公報、特開平1−13
9721号公報がある。これらはいずれもMn量を1%
以上とし、MnとNiの相乗効果により特性を改善する
ことを目的としており、この技術により製造された鋼板
では磁束密度が十分ではない。その他、耐食性や、高抗
張力という特性を得る目的で、無方向性電磁鋼板にNi
を添加した特開平5−255817号公報、特開昭64
−226号公報があるが、いずれもCr,Mo等を耐食
性及び鋼板強度の向上を目的として複合添加するもので
あって、本発明とは成分範囲及び目的が異なっている。
このように、従来の技術では、磁束密度が十分ではな
い。
[0008] As an example in which Ni is contained in a non-oriented electrical steel sheet, JP-A-63-317627 and JP-A-1-13 are cited.
There is a 9721 publication. These all have a Mn content of 1%
As described above, the purpose is to improve the characteristics by the synergistic effect of Mn and Ni, and the magnetic flux density is not sufficient in the steel sheet manufactured by this technique. In addition, Ni is used for the non-oriented electrical steel sheet for the purpose of obtaining the characteristics of corrosion resistance and high tensile strength.
JP-A-5-255817 and Japanese Patent Application Laid-Open No. 64-64817
No. 226 is available, all of them add Cr, Mo and the like in combination for the purpose of improving the corrosion resistance and the strength of the steel sheet, and the component range and purpose are different from the present invention.
As described above, the magnetic flux density is not sufficient in the conventional technique.

【0009】また、特開平5−186833号公報、特
開平5−186834号公報は、仕上げ焼鈍をγ域で行
い、かつ焼鈍サイクルに工夫を凝らすことにより{11
1}/{100}方位の比を小さくすることを目的とし
た製造方法に関する発明が提案されているが、Niを強
度集合組織改善に積極的に利用しているのではなく、単
にMn,Cr,Moと同様に強度を高めるために用いて
いるだけである。
In Japanese Patent Laid-Open No. 5-186833 and Japanese Patent Laid-Open No. 5-186834, finish annealing is performed in the γ region, and the annealing cycle is elaborated so that {11
Although an invention relating to a manufacturing method aiming at reducing the ratio of 1} / {100} orientations has been proposed, Ni is not positively utilized for improving the texture texture, but only Mn, Cr is used. , Mo, just used to increase the strength.

【0010】さらに、コアに電磁鋼板が使用されている
技術の例は以下に見られる。特開平4−361508号
公報では、コアに表面粗度Rmax で3.5μm以上で板
間に含浸材を挿入し、Si:4.9〜7.1wt%の低
磁歪材料を用いることにより磁歪によるコア振動を抑制
することを特徴としている。また、特開平4−3681
03号公報では、コアの一部にSi:4.5〜7wt%
の低磁歪材料を用いることにより磁歪によるコア全体の
振動を抑制することを特徴としている。上記二つの技術
は6.5%前後という高Siを含有することから飽和磁
化が低くなり、本質的に磁束密度を高めることができな
い。
Further, examples of the technique in which the magnetic steel sheet is used for the core are found below. In Japanese Unexamined Patent Publication No. 4-361508, a core is filled with an impregnating material having a surface roughness Rmax of 3.5 μm or more, and a low magnetostrictive material of Si: 4.9 to 7.1 wt% is used to cause magnetostriction. It is characterized by suppressing core vibration. In addition, JP-A-4-3681
No. 03 publication, Si: 4.5 to 7 wt% in a part of the core.
It is characterized by suppressing the vibration of the entire core due to the magnetostriction by using the low magnetostrictive material. Since the above two techniques contain Si as high as around 6.5%, the saturation magnetization becomes low, and the magnetic flux density cannot be essentially increased.

【0011】また、特開平6−45131号公報では、
幅方向の磁気特性が長さ方向よりも優れている材料を用
いることを特徴としているが、これを満たす材料の製造
にはコストがかかる。このように以上の技術では安価に
高磁束密度電磁鋼板を得ることができない。
Further, in Japanese Patent Laid-Open No. 6-45131,
It is characterized by using a material having better magnetic properties in the width direction than in the length direction, but it is costly to manufacture a material satisfying this. As described above, it is not possible to inexpensively obtain a high magnetic flux density magnetic steel sheet with the above techniques.

【0012】これに対して、本発明では、Si+Alが
2%未満の本質的に磁束密度の高い鋼に、Niを微量添
加して、Niを集合組織改善に積極的に利用する事によ
り、安価に高磁束密度、かつ低鉄損の無方向性電磁鋼板
が得ることができる。すなわち、熱延板焼鈍もしくは自
己焼鈍により、熱延板の結晶粒径を100μm以上に大
きくするという製造プロセスの工夫と、微量添加元素で
あるNiの積極的活用との組み合わせが磁束密度を高く
し、かつ鉄損を低くすることに有効であることを見いだ
したのである。
On the other hand, in the present invention, by adding a small amount of Ni to steel having an essentially high magnetic flux density of Si + Al of less than 2% and positively utilizing Ni for texture improvement, it is possible to reduce the cost. A non-oriented electrical steel sheet having a high magnetic flux density and a low iron loss can be obtained. That is, the combination of the manufacturing process devised to increase the crystal grain size of the hot-rolled sheet to 100 μm or more by hot-rolled sheet annealing or self-annealing and the positive utilization of Ni, which is a trace additive element, increases the magnetic flux density. It was also found to be effective in reducing iron loss.

【0013】本発明はこれら知見に基づいてなされたも
のであり、その第一の要旨は、重量%で、C :0.0
10%以下、 Si:0.1%以上1.9%未満、
Mn:0.1%以上1%未満、 Al:0.1%以上
1.9%未満、Si+Al:2%未満、 Ni:
0.1%以上3%以下、を含有し、残部Fe及び不可避
不純物元素よりなり、C方向のB50値が、下記(1)
式で規定されるB50cal (C)の値よりも大きいこと
を特徴とする磁束密度が高く、かつ鉄損が低い無方向性
電磁鋼板にある。 B50cal (C)=6.500×10-3×Ni−1.350×10-2 ×(Mn+0.116)2 −5.590×10-3×(Si+2.406)2 −0.055×Al+1.797・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(1)
The present invention has been made on the basis of these findings. The first gist of the present invention is C: 0.0 by weight%.
10% or less, Si: 0.1% or more and less than 1.9%,
Mn: 0.1% or more and less than 1%, Al: 0.1% or more and less than 1.9%, Si + Al: less than 2%, Ni:
0.1% or more and 3% or less, and the balance is Fe and unavoidable impurity elements, and the B50 value in the C direction is as follows (1).
A non-oriented electrical steel sheet having a high magnetic flux density and a low iron loss, which is characterized by being larger than the value of B50cal (C) defined by the formula. B50cal (C) = 6.500 × 10 −3 × Ni−1.350 × 10 −2 × (Mn + 0.116) 2 −5.590 × 10 −3 × (Si + 2.406) 2 −0.055 × Al + 1 .797 ・ ・ ・ ・ ・ ・ ・ ・ (1)

【0014】本発明の第二の要旨は、重量%で、C :
0.010%以下、 Si:0.1%以上1.9%
未満、Mn:0.1%以上1%未満、 Al:0.1%
以上1.9%未満、Si+Al:2%未満、 N
i:0.1%以上3%以下、残部Fe及び不可避不純物
元素よりなり、L+CのB50値が、下記(2)式で規
定されるB50cal (L+C)の値よりも大きいことを
特徴とする磁束密度が高く、かつ鉄損が低い無方向性電
磁鋼板にある。 B50cal (L+C)=2.221×10-2×Ni−1.350×10-2 ×(Mn+0.116)2 −5.590×10-3×(Si+2.406)2 −0.055×Al+1.805・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(2)
A second aspect of the present invention is, in wt%, C:
0.010% or less, Si: 0.1% or more and 1.9%
Less than, Mn: 0.1% or more and less than 1%, Al: 0.1%
Or more and less than 1.9%, Si + Al: less than 2%, N
i: 0.1% or more and 3% or less, the balance being Fe and inevitable impurity elements, and the B50 value of L + C being larger than the value of B50cal (L + C) defined by the following formula (2). It is a non-oriented electrical steel sheet with high density and low iron loss. B50cal (L + C) = 2.221 × 10 −2 × Ni−1.350 × 10 −2 × (Mn + 0.116) 2 −5.590 × 10 −3 × (Si + 2.406) 2 −0.055 × Al + 1 805 ・ ・ ・ ・ ・ ・ ・ ・ (2)

【0015】本発明の第三の要旨は、Ni:1%を超
え、3%以下を含有することを特徴とする第一の要旨ま
たは第二の要旨の磁束密度が高く、かつ鉄損が低い無方
向性電磁鋼板にある。
A third aspect of the present invention is that the content of Ni is more than 1% and not more than 3%, and the magnetic flux density of the first or second aspect is high and the iron loss is low. It is in non-oriented electrical steel sheet.

【0016】また、本発明の第四の要旨は、前記成分を
含有する鋼を、熱間圧延後、熱延板焼鈍もしくは自己焼
鈍を施して熱延板の平均粒径を100μm以上にし、次
いで1回または中間焼鈍を挟む2回以上の冷間圧延を
し、連続焼鈍することを特徴とする磁束密度が高く、か
つ鉄損が低い無方向性電磁の製造方法にある。
The fourth gist of the present invention is to subject the steel containing the above components to hot rolling, followed by hot-rolled sheet annealing or self-annealing to make the average grain size of the hot-rolled sheet 100 μm or more, It is a method for producing a non-directional electromagnetic having a high magnetic flux density and a low iron loss, which is characterized by performing continuous annealing by performing cold rolling once or twice or more with intermediate annealing interposed.

【0017】本発明の第五の要旨は、電磁鋼板を使用し
た回転機のステータ及び/またはロータのコアにおい
て、重量%で、C :0.01%以下、 Si:
0.1%以上2.0%以下、Al:2.0%以下、
Mn:1%以下、Ni:0.1%以上3%以下、
残部Fe及び不可避不純物元素よりなる電磁鋼板を用い
ることにより、コア特性を大幅に改善し、高磁束密度か
つ低コストのコアを得ることにある。
A fifth gist of the present invention is, in a stator and / or rotor core of a rotating machine using an electromagnetic steel plate, in weight%, C: 0.01% or less, Si:
0.1% or more and 2.0% or less, Al: 2.0% or less,
Mn: 1% or less, Ni: 0.1% or more and 3% or less,
By using an electrical steel sheet composed of the balance Fe and unavoidable impurity elements, the core characteristics are significantly improved, and a high magnetic flux density and low cost core is obtained.

【0018】以下に本発明の詳細を説明する。まず、本
発明の限定理由について述べる。Cは、鉄損を高める有
害な成分で、磁気時効の原因となるので、0.010%
以下とする。Siは周知のように鉄損を低下させるのに
有効な元素であり、この効果を得るためには0.1%以
上含有させる必要がある。一方、その含有量が増えると
前述のように磁束密度が低下し、また、圧延作業性が劣
化し、さらにはコスト高ともなるので1.9%未満とす
る。
The details of the present invention will be described below. First, the reasons for limitation of the present invention will be described. C is a harmful component that increases iron loss and causes magnetic aging, so 0.010%
The following is assumed. As is well known, Si is an element effective in reducing iron loss, and in order to obtain this effect, it is necessary to contain Si by 0.1% or more. On the other hand, if the content increases, the magnetic flux density decreases as described above, rolling workability deteriorates, and the cost also increases, so the content is made less than 1.9%.

【0019】Mnも固有抵抗を高めて鉄損を下げる効果
があるが、その効果を得るためには0.1%以上含有さ
せる必要がある。一方、本発明に必要不可欠なNiはフ
ェライト・オーステナイト変態温度を下げる元素である
ため、Mn含有量が増えすぎると、Niと相まって、フ
ェライト・オーステナイト変態温度が下がりすぎて、無
方向性電磁鋼板の仕上げ焼鈍の一般条件であるフェライ
ト域での仕上げ焼鈍が長時間必要となり、生産性が劣化
する。また、製鋼での作業性を劣化させ、さらにはコス
ト高にもなるので、1%未満とする。
Mn also has the effect of increasing the specific resistance and decreasing the iron loss, but in order to obtain this effect, it is necessary to contain Mn in an amount of 0.1% or more. On the other hand, Ni, which is indispensable to the present invention, is an element that lowers the ferrite-austenite transformation temperature. Therefore, if the Mn content is too high, the ferrite-austenite transformation temperature will be too low, and Ni will cause a decrease in the strength of the non-oriented electrical steel sheet. Finish annealing in the ferrite region, which is a general condition for finish annealing, is required for a long time, which deteriorates productivity. Further, it lowers the workability in steelmaking and further increases the cost, so it is made less than 1%.

【0020】AlはSiと同様に、固有抵抗を高めて鉄
損を低減させる効果があるため、0.1%以上含有させ
る必要があり、また、Al含有量が増えると、Siと同
様に磁束密度が低下するため、1.9%未満とする。上
記のようにAl及びSiは、本質的に磁束密度を下げる
元素であるので、Si+Alは2%未満とする。
Al, like Si, has the effect of increasing the specific resistance and reducing the iron loss, so it is necessary to contain Al in an amount of 0.1% or more. When the Al content increases, the magnetic flux becomes the same as Si. Since the density decreases, it is set to less than 1.9%. As described above, Al and Si are elements that essentially reduce the magnetic flux density, so Si + Al is set to less than 2%.

【0021】Niは、0.1%以上含有することで、磁
束密度を高くし、かつ鉄損を低くする作用を奏すること
ができる。一方、この含有量が増えると、コスト的に製
造が困難になるので、3%以下とする。上記成分以外は
鉄及び不可避不純物元素である。
When Ni is contained in an amount of 0.1% or more, the magnetic flux density can be increased and the iron loss can be reduced. On the other hand, if the content is increased, manufacturing becomes difficult in terms of cost, so the content is made 3% or less. Other than the above components, they are iron and inevitable impurity elements.

【0022】本発明の特徴とするNiの作用及び、熱延
板の平均結晶粒径との関係について以下に説明する。ま
ず、Niの作用についてであるが、表1に示した成分
(熱延板の成分で示した。)の鋼のスラブを熱間圧延
後、850℃で2.5分の熱延板焼鈍を行い、次いで、
0.50mm厚みに冷間圧延した後、850℃で30秒間
連続仕上げ焼鈍を施し、その後、エプスタイン試料に剪
断し、750℃で2時間歪み取り焼鈍を行い、磁気特性
を測定したその結果を表2に示す。尚表1中T−Al,
T−NのTはTotalの略である。
The relationship between the action of Ni, which is a feature of the present invention, and the average crystal grain size of the hot-rolled sheet will be described below. First, regarding the action of Ni, the slabs of steel having the components shown in Table 1 (shown as the components of the hot rolled sheet) were hot rolled, and then hot rolled sheet annealing was performed at 850 ° C. for 2.5 minutes. Done, then
After cold rolling to a thickness of 0.50 mm, continuous finishing annealing was performed at 850 ° C for 30 seconds, then Epstein samples were sheared, strain relief annealing was performed at 750 ° C for 2 hours, and the magnetic properties were measured. 2 shows. In Table 1, T-Al,
T in T-N is an abbreviation for Total.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】表2より、Niを0.1%以上添加したN
o.2の試料は、Niを添加しなかったNo.1よりも鉄
損値が低く、磁束密度(B50値)も高い。Niの添加
量を増やすに従って、鉄損値が低く、磁束密度(B50
値)も高くなり、この傾向はNi量3%まで続くことを
実験により確認した。
From Table 2, N containing 0.1% or more of Ni was added.
o. The sample of No. 2 has no Ni added thereto. The iron loss value is lower than 1 and the magnetic flux density (B50 value) is also higher. As the added amount of Ni is increased, the iron loss value becomes lower and the magnetic flux density (B50
It was confirmed by an experiment that the value) also becomes higher and this tendency continues up to a Ni content of 3%.

【0026】No.1,No.3の試料の仕上げ焼鈍後の集
合組織を図2(a),(b)に示す。図2より、(b)
図のNo.3の試料は、(a)図のNo.1の集合組織に比
べ、{111}強度が極度に弱まり、{110}強度が
極度に強まることがわかる。このように、Niには集合
組織を改善する効果があるため、磁気特性が大幅に改善
される。ところで、表2より、Niの範囲はNi:1.
0%よりも多く、3.0%以下の場合に磁束密度(B5
0値)が1.78T以上という大きな値になり、特性の
向上が顕著となる。そのため、Ni:1.0%よりも多
く、3.0%以下の範囲が最適となる。
No. 1, No. Textures after finish annealing of the sample of No. 3 are shown in FIGS. 2 (a) and 2 (b). From FIG. 2, (b)
No. in the figure Sample No. 3 is No. 3 in FIG. It can be seen that the {111} strength is extremely weak and the {110} strength is extremely strong as compared with the texture of 1. Thus, since Ni has the effect of improving the texture, the magnetic properties are significantly improved. By the way, from Table 2, the range of Ni is Ni: 1.
When it is more than 0% and less than 3.0%, the magnetic flux density (B5
(0 value) becomes a large value of 1.78 T or more, and the characteristics are remarkably improved. Therefore, the optimum range is Ni: more than 1.0% and not more than 3.0%.

【0027】以上より、本発明の特徴は、Niを添加す
ることにより、集合組織を大幅に改善し、磁束密度が高
く、鉄損が低い無方向性電磁鋼板を製造することにあ
る。そして、このNi添加の効果は、以下に示すよう
に、熱延板の結晶粒径をある一定以上に成長させること
によってはじめて享受される。
From the above, the feature of the present invention is to produce a non-oriented electrical steel sheet having a significantly improved texture, a high magnetic flux density and a low iron loss by adding Ni. Then, the effect of the addition of Ni is enjoyed only by growing the crystal grain size of the hot-rolled sheet to a certain level or more, as shown below.

【0028】図1は、上述のNo.2〜7の試料を熱延条
件を変化させることにより、その結晶粒径を変化させた
ときの、熱延板結晶粒径と、製品板の磁気特性の関係に
ついて、示したものである。尚、冷間圧延以降の条件
は、上述の場合と同様で、つまり、0.50mm厚みに冷
間圧延した後、850℃で30秒間連続仕上げ焼鈍を施
し、その後、エプスタイン試料に剪断し、750℃で2
時間歪み取り焼鈍を行い、磁気特性の測定を行った。図
1から明らかなように、熱延板の平均結晶粒径が、10
0μm以上の場合に著しく磁気特性が向上し、高磁束密
度かつ低鉄損が達成できることがわかる。
FIG. 1 shows the above-mentioned No. It shows the relationship between the hot-rolled plate crystal grain size and the magnetic properties of the product plate when the hot-rolled conditions of the samples 2 to 7 are changed to change the crystal grain size. The conditions after cold rolling are the same as those described above, that is, after cold rolling to a thickness of 0.50 mm, continuous finishing annealing is performed at 850 ° C. for 30 seconds, and then the Epstein sample is sheared and 750 2 at ℃
Temporal strain relief annealing was performed and the magnetic properties were measured. As is clear from FIG. 1, the average grain size of the hot-rolled sheet is 10
It can be seen that when it is 0 μm or more, the magnetic properties are remarkably improved, and high magnetic flux density and low iron loss can be achieved.

【0029】次に、表1に示した成分の鋼のスラブを熱
間圧延後、800℃で1分の熱延板焼鈍を行い、次い
で、0.50mm厚みに冷間圧延した後、800℃で30
秒間連続仕上げ焼鈍を施し、その後、エプスタイン試料
に剪断し、750℃で2時間歪み取り焼鈍を行い、磁束
密度(B50値)を測定した。その結果を表3に示す。
Next, the steel slabs having the components shown in Table 1 were hot-rolled, hot-rolled sheet annealed at 800 ° C. for 1 minute, then cold-rolled to a thickness of 0.50 mm, and then 800 ° C. 30
A continuous finish annealing was performed for 2 seconds, and then the Epstein sample was sheared and subjected to strain relief annealing at 750 ° C. for 2 hours, and the magnetic flux density (B50 value) was measured. Table 3 shows the results.

【0030】[0030]

【表3】 [Table 3]

【0031】表3に、C方向及びL+Cの磁気特性につ
いて示し、詳細を以下の通りに示す。C方向のB50に
ついては、Niが0.00wt%の時のC方向の磁束密
度(B50値)の実測値は1.719T、また、計算値
は1.737Tで、(1)式による磁束密度(B50
値)の計算値が実測値よりも0.018T大きくなって
いる。一方、Ni:0.10wt%以上では、(1)式
による磁束密度(B50値)の計算値よりも、C方向の
磁束密度(B50値)の実測値が大きくなる。
Table 3 shows the magnetic characteristics in the C direction and L + C, and the details are as follows. Regarding B50 in the C direction, the measured value of the magnetic flux density (B50 value) in the C direction when Ni is 0.00 wt% is 1.719 T, and the calculated value is 1.737 T, which is the magnetic flux density according to the equation (1). (B50
The calculated value of (value) is 0.018 T larger than the measured value. On the other hand, when Ni: 0.10 wt% or more, the actually measured value of the magnetic flux density (B50 value) in the C direction is larger than the calculated value of the magnetic flux density (B50 value) by the equation (1).

【0032】L+C特性についても、Niが0.00w
t%の時のL+Cの磁束密度(B50値)の実測値は
1.733T、また、計算値は1.745Tで、(2)
式による磁束密度(B50値)の計算値が実測値よりも
0.012T大きくなっている。一方、Ni:0.10
wt%以上では、(2)式による磁束密度(B50値)
の計算値よりも、L+C方向の磁束密度(B50値)の
実測値が大きくなる。これらのことは、Niの添加によ
り、集合組織が大幅に改善され、磁束密度が改善された
ことを意味する。
As for the L + C characteristic, Ni is 0.00 w.
The measured value of the magnetic flux density (B50 value) of L + C at t% is 1.733T, and the calculated value is 1.745T.
The calculated value of the magnetic flux density (B50 value) by the formula is 0.012 T larger than the actually measured value. On the other hand, Ni: 0.10.
At more than wt%, the magnetic flux density (B50 value) according to equation (2)
The measured value of the magnetic flux density (B50 value) in the L + C direction is larger than the calculated value of. These means that the addition of Ni significantly improved the texture and improved the magnetic flux density.

【0033】(1)式,(2)式は、多くの実験データ
に基づいて設定したものであり、それぞれC方向及びL
+Cの磁束密度(B50値)の最低限度を計算する。す
なわち本発明において、Ni添加によって得られる磁束
密度(B50値)は、(1)式及び(2)式で表される
値よりも大きな値で得られることを意味する。(1)
式,(2)式中の、Ni,Mn,Si,Alは、各元素
のwt%を示す。尚、本発明中の磁束密度の指標をB5
0値で代表させて考えることとする。
The equations (1) and (2) are set based on a lot of experimental data, and are set in the C direction and L direction, respectively.
Calculate the minimum magnetic flux density (B50 value) of + C. That is, in the present invention, it means that the magnetic flux density (B50 value) obtained by adding Ni is obtained at a value larger than the values expressed by the equations (1) and (2). (1)
In formulas (2), Ni, Mn, Si, and Al represent wt% of each element. The index of the magnetic flux density in the present invention is B5.
Let us consider it as a 0 value.

【0034】以下、本発明の製造方法について説明す
る。前記成分からなる鋼は、転炉あるいは電気炉などで
溶製され、連続鋳造あるいは造塊後、分塊圧延によりス
ラブとされる。次いで、熱間圧延後、熱延板焼鈍もしく
は自己焼鈍を施して、熱延板の平均結晶粒径を100μ
m以上にする。熱延板の平均結晶粒径が100μm未満
では、既に図1で説明したように、Niの添加効果が少
なく、磁束密度を高くし、かつ鉄損を低くする作用が少
ない。次いで、1回の冷間圧延または中間焼鈍をはさん
で2回以上の冷間圧延により、所定の板厚にされ、再結
晶及び結晶粒成長のための連続仕上げ焼鈍を施す。本発
明の鋼板をモータコアに使用することにより、モータの
励磁電流を減少させることができる。
The manufacturing method of the present invention will be described below. The steel composed of the above components is melted in a converter or an electric furnace, and after continuous casting or ingot casting, slab rolling is performed to form a slab. Then, after hot rolling, hot-rolled sheet annealing or self-annealing is performed to make the average grain size of the hot-rolled sheet 100 μm.
m or more. If the average crystal grain size of the hot-rolled sheet is less than 100 μm, the effect of adding Ni is small, the magnetic flux density is high, and the iron loss is low, as already described in FIG. Next, a predetermined plate thickness is obtained by performing cold rolling twice or more with one cold rolling or intermediate annealing, and continuous finish annealing for recrystallization and grain growth is performed. By using the steel sheet of the present invention for the motor core, the exciting current of the motor can be reduced.

【0035】[0035]

【実施例1】表4に示したような成分の鋼を、熱間圧延
後、同表に示す熱処理条件で熱延板焼鈍し、次いで0.
50mm厚みに冷間圧延した後、850℃で、30秒間連
続仕上げ焼鈍を施し、その後、エプスタイン試料に剪断
し、750℃×2時間の歪み取り焼鈍を行い、磁気特性
を測定した。その結果も併せて表4に示す。このよう
に、本発明により、著しく磁束密度が高く、かつ鉄損が
低い無方向性電磁鋼板の製造が可能であることが明白で
ある。
Example 1 Steels having the components shown in Table 4 were hot-rolled, annealed by hot rolling under the heat treatment conditions shown in the table, and then 0.
After cold-rolling to a thickness of 50 mm, continuous finish annealing was performed at 850 ° C. for 30 seconds, then the Epstein sample was sheared, and strain relief annealing was performed at 750 ° C. for 2 hours to measure magnetic properties. The results are also shown in Table 4. As described above, it is apparent that the present invention makes it possible to manufacture a non-oriented electrical steel sheet having a significantly high magnetic flux density and a low iron loss.

【0036】[0036]

【実施例2】Niを含有するコアを用いた場合、コアの
励磁電流を測定することにより、コア性能を評価するこ
とを目的に、インナーコアを励磁コアとした時の磁化力
と、アウターコアに発生する磁束密度を測定し、その結
果を図3に示した。その際、アウターコアとインナーコ
アの空隙は1mmとし、磁化力100Oeでの発生磁束密
度を測定した。その結果、Niを0.1%含有したコア
では、含有しなかった場合に比較してアウターコアに発
生する磁束密度が大幅に増加している。Niの含有量が
増加するに従って、発生する磁束密度がNi量3%まで
増加している。従って、本発明のコアを用いることによ
り、励磁電流を一定にした場合、コアの高磁束密度化が
実現でき、モータの小型化、高出力化、高効率化に対応
できる。
[Example 2] When a core containing Ni was used, the magnetizing force when the inner core was used as an exciting core and the outer core for the purpose of evaluating the core performance by measuring the exciting current of the core. The magnetic flux density generated in was measured, and the results are shown in FIG. At that time, the gap between the outer core and the inner core was set to 1 mm, and the generated magnetic flux density at a magnetizing force of 100 Oe was measured. As a result, in the core containing 0.1% of Ni, the magnetic flux density generated in the outer core is significantly increased as compared with the case of not containing Ni. As the Ni content increases, the generated magnetic flux density increases up to a Ni content of 3%. Therefore, by using the core of the present invention, when the exciting current is kept constant, the magnetic flux density of the core can be increased, and the motor can be downsized, the output can be increased, and the efficiency can be improved.

【0037】[0037]

【表4】 [Table 4]

【0038】[0038]

【発明の効果】以上のように、本発明によれば、磁束密
度が高く、かつ鉄損が低い無方向性電磁鋼板が得られ、
またこのような本発明材をモータコアに使用すれば、モ
ータの励磁電力を減少させることができる。その結果、
電気機器の効率化、小型化に伴い、その鉄心材料として
用いられる無方向性電磁鋼板に対する要望に十分に答え
ることができ、その工業的効果は非常に大きい。
As described above, according to the present invention, a non-oriented electrical steel sheet having a high magnetic flux density and a low iron loss can be obtained.
If such a material of the present invention is used for a motor core, the exciting power of the motor can be reduced. as a result,
As electrical equipment becomes more efficient and smaller, the demand for non-oriented electrical steel sheets used as iron core materials can be sufficiently met, and its industrial effect is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】上述のNo.2〜7の試料を熱延条件を変化させ
ることにより、その結晶粒径を変化させたときの、熱延
板結晶粒径と、製品板の磁気特性の関係について示す。
FIG. 1 shows the above No. The relationship between the crystal grain size of the hot-rolled sheet and the magnetic properties of the product sheet when the crystal grain size of the samples 2 to 7 is changed by changing the hot-rolling conditions is shown.

【図2】(a)はNo.1の試料、(b)はNo.3の試料
について仕上げ焼鈍後の集合組織を示す。
FIG. 2 (a) is No. No. 1 sample, (b) is No. The textures of the samples of No. 3 after finish annealing are shown.

【図3】Niを含有するコアを用いた場合、インナーコ
アを励磁コアとした時の磁化力と、アウターコアに発生
する磁束密度を測定した結果を示す。
FIG. 3 shows the results of measuring the magnetizing force and the magnetic flux density generated in the outer core when the inner core is an exciting core when a core containing Ni is used.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 久保田 猛 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takeshi Kubota 1-1 Tobahata-cho, Tobata-ku, Kitakyushu, Fukuoka Prefecture New Nippon Steel Corporation Yawata Works

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.010%以下、 Si:0.1%以上1.9%未満、 Mn:0.1%以上1%未満、 Al:0.1%以上1.9%未満、 Si+Al:2%未満、 Ni:0.1%以上3%以下、残部Fe及び不可避不純
物元素よりなり、C方向のB50値が、下記(1)式で
規定されるB50cal (C)の値よりも大きいことを特
徴とする磁束密度が高く、かつ鉄損が低い無方向性電磁
鋼板。 B50cal (C)=6.500×10-3×Ni−1.350×10-2 ×(Mn+0.116)2 −5.590×10-3×(Si+2.406)2 −0.055×Al+1.797・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(1)
1. C .: 0.010% or less, Si: 0.1% or more and less than 1.9%, Mn: 0.1% or more and less than 1%, Al: 0.1% or more and 1. Less than 9%, Si + Al: less than 2%, Ni: 0.1% or more and 3% or less, and the balance Fe and unavoidable impurity elements, and the B50 value in the C direction is B50cal (C) defined by the following formula (1). A non-oriented electrical steel sheet having a high magnetic flux density and a low iron loss, which is characterized by being larger than the value of. B50cal (C) = 6.500 × 10 −3 × Ni−1.350 × 10 −2 × (Mn + 0.116) 2 −5.590 × 10 −3 × (Si + 2.406) 2 −0.055 × Al + 1 .797 ・ ・ ・ ・ ・ ・ ・ ・ (1)
【請求項2】 重量%で、 C :0.010%以下、 Si:0.1%以上1.9%未満、 Mn:0.1%以上1%未満、 Al:0.1%以上1.9%未満、 Si+Al:2%未満、 Ni:0.1%以上3%以下、残部Fe及び不可避不純
物元素よりなり、L+CのB50値が、下記(2)式で
規定されるB50cal (L+C)の値よりも大きいこと
を特徴とする磁束密度が高く、かつ鉄損が低い無方向性
電磁鋼板。 B50cal (L+C)=2.221×10-2×Ni−1.350×10-2 ×(Mn+0.116)2 −5.590×10-3×(Si+2.406)2 −0.055×Al+1.805・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(2)
2. C .: 0.010% or less, Si: 0.1% or more and less than 1.9%, Mn: 0.1% or more and less than 1%, Al: 0.1% or more and 1. Less than 9%, Si + Al: less than 2%, Ni: 0.1% or more and 3% or less, balance Fe and unavoidable impurity elements, and the B50 value of L + C is B50cal (L + C) defined by the following formula (2). A non-oriented electrical steel sheet having a high magnetic flux density and a low iron loss, which is characterized by being larger than the value. B50cal (L + C) = 2.221 × 10 −2 × Ni−1.350 × 10 −2 × (Mn + 0.116) 2 −5.590 × 10 −3 × (Si + 2.406) 2 −0.055 × Al + 1 805 ・ ・ ・ ・ ・ ・ ・ ・ (2)
【請求項3】 重量%でNi:1%超,3%以下を含有
することを特徴とする請求項1または2記載の磁束密度
が高く、かつ鉄損が低い無方向性電磁鋼板。
3. A non-oriented electrical steel sheet having a high magnetic flux density and a low iron loss according to claim 1 or 2, characterized in that it contains more than 1% and less than 3% by weight of Ni.
【請求項4】 請求項1あるいは2または3に記載の組
成を有する鋼を、熱間圧延後、熱延板焼鈍もしくは自己
焼鈍を施して熱延板の平均粒径を100μm以上にし、
次いで1回または中間焼鈍を挟む2回以上の冷間圧延を
し、連続焼鈍することを特徴とする磁束密度が高く、か
つ鉄損が低い無方向性電磁の製造方法。
4. A steel having the composition according to claim 1, 2 or 3 is hot-rolled and then subjected to hot-rolled sheet annealing or self-annealing to make the average grain size of the hot-rolled sheet 100 μm or more,
Then, a method for producing a non-directional electromagnetic having a high magnetic flux density and a low iron loss, which is characterized by performing continuous annealing by performing cold rolling once or twice or more with intermediate annealing interposed therebetween.
【請求項5】 請求項1あるいは2または3に記載の組
成を有する鋼を、回転機のステータ及び/またはロータ
のコアに用いることを特徴とする高磁束密度電磁鋼板を
使用したモータコア。
5. A motor core using a high magnetic flux density electromagnetic steel sheet, characterized in that the steel having the composition according to claim 1, 2 or 3 is used for a core of a stator and / or a rotor of a rotating machine.
JP9890095A 1994-08-18 1995-04-24 Nonoriented silicon steel sheet high in magnetic flux density and low in core loss, its production and motor core using the same Withdrawn JPH08109449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9890095A JPH08109449A (en) 1994-08-18 1995-04-24 Nonoriented silicon steel sheet high in magnetic flux density and low in core loss, its production and motor core using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP19412394 1994-08-18
JP6-194123 1994-08-18
JP9890095A JPH08109449A (en) 1994-08-18 1995-04-24 Nonoriented silicon steel sheet high in magnetic flux density and low in core loss, its production and motor core using the same

Publications (1)

Publication Number Publication Date
JPH08109449A true JPH08109449A (en) 1996-04-30

Family

ID=26439992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9890095A Withdrawn JPH08109449A (en) 1994-08-18 1995-04-24 Nonoriented silicon steel sheet high in magnetic flux density and low in core loss, its production and motor core using the same

Country Status (1)

Country Link
JP (1) JPH08109449A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6743304B2 (en) 2000-12-11 2004-06-01 Nippon Steel Corporation Non-oriented electrical steel sheet with ultra-high magnetic flux density and production method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6743304B2 (en) 2000-12-11 2004-06-01 Nippon Steel Corporation Non-oriented electrical steel sheet with ultra-high magnetic flux density and production method thereof

Similar Documents

Publication Publication Date Title
JP4319889B2 (en) Non-oriented electrical steel sheet with excellent all-round magnetic properties and method for producing the same
JP2008127659A (en) Non-oriented electromagnetic steel sheet with less anisotropy
JP4358550B2 (en) Method for producing non-oriented electrical steel sheet with excellent rolling direction and perpendicular magnetic properties in the plate surface
JP2000129410A (en) Nonoriented silicon steel sheet high in magnetic flux density
JP4422220B2 (en) Non-oriented electrical steel sheet with high magnetic flux density and low iron loss and method for producing the same
JP3375998B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP3497431B2 (en) Low iron loss non-oriented electrical steel sheet having good workability and manufacturing method thereof
JPH0849044A (en) Monoriented silicon steel sheet for electric automobile and its production
JP4186384B2 (en) Non-oriented electrical steel sheet
JP3483265B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JPH086135B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JPH0443981B2 (en)
JP3533655B2 (en) Method for producing low-grade electrical steel sheet with small magnetic anisotropy and low-grade electrical steel sheet with small magnetic anisotropy
JP2970436B2 (en) Manufacturing method of full process non-oriented electrical steel sheet
JPH08109449A (en) Nonoriented silicon steel sheet high in magnetic flux density and low in core loss, its production and motor core using the same
JP2874564B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JPH0657332A (en) Manufacture of non-oriented silicon steel sheet having high magnetic flux density and low iron loss
JPS6333518A (en) Non-oriented electrical steel sheet having low iron loss and excellent magnetic flux density and its production
JPH08143960A (en) Production of nonoriented silicon steel sheet having high magnetic flux density and reduced in iron loss
JPH08246108A (en) Nonoriented silicon steel sheet reduced in anisotropy and its production
JP2501219B2 (en) Non-oriented electrical steel sheet manufacturing method
JPH02149622A (en) Manufacture of nonoriented silicon steel sheet having superior magnetic property
JPH0737651B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JP4320794B2 (en) Method for producing electrical steel sheet with excellent magnetic properties in the rolling direction
JP3531779B2 (en) Method for producing low-grade electrical steel sheet with small magnetic anisotropy and low-grade electrical steel sheet with small magnetic anisotropy

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020702