JPH08109411A - Vacuum desulfurization refining of molten steel - Google Patents

Vacuum desulfurization refining of molten steel

Info

Publication number
JPH08109411A
JPH08109411A JP6245539A JP24553994A JPH08109411A JP H08109411 A JPH08109411 A JP H08109411A JP 6245539 A JP6245539 A JP 6245539A JP 24553994 A JP24553994 A JP 24553994A JP H08109411 A JPH08109411 A JP H08109411A
Authority
JP
Japan
Prior art keywords
molten steel
ladle
slag
cao
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6245539A
Other languages
Japanese (ja)
Other versions
JP3000864B2 (en
Inventor
Yoshihiko Higuchi
善彦 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6245539A priority Critical patent/JP3000864B2/en
Publication of JPH08109411A publication Critical patent/JPH08109411A/en
Application granted granted Critical
Publication of JP3000864B2 publication Critical patent/JP3000864B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE: To provide a melting method, by which extra-low sulfur and extra- clean treatment is executed without blowing CaO-containing flux and the heat loss is restricted to the min., at the time of melting an HIC resistant steel. CONSTITUTION: A single leg cylindrical immersion tube 14 is dipped into the molten steel 12 in a ladle 10 under the conditions of the undermentioned (i)-(iii) to execute a vacuum degassing treatment. (i) The composition of a ladle slag satisfies the following condition. 0.8<= (%CaO)/(%Al2 O3 ) <=2.5, (%SiO2 ) <=10 and (%FeO)+(%MnO) <=2.0. (ii) The stirring power per unit cross-sectional area shown in the following equation satisfies: ε/A=[4.18.Q.T.In(1+ρ.g.h/ Po )]-/(W.π.D1 <2> /4) and ε/A(watt/ton/m<2> )>=15, wherein, Q is flow rate of the stirring gas (Nm<3> /min), T is molten steel temp. (K), ρ is molten steel density (kg/cm<3> ), (g) is gravity acceleration (m/s<2> ), (h) is blowing depth of the stirring gas (m), Po is atmospheric pressure in a vacuum vessel (Pa), W is treated molten metal quantity (ton) and D1 is inner diameter of the immersion tube (m). (iii) Ratio (D1 /D2 ) of the inner diameter D1 of the immersion tube to the inner diameter D2 of the ladle is >=0.5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶鋼の真空脱硫精錬方
法、特に真空槽に長い吹込みランスを設けることなく効
率的な処理を可能とする真空脱硫精錬方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum desulfurization refining method for molten steel, and more particularly to a vacuum desulfurization refining method which enables efficient treatment without providing a long blowing lance in a vacuum tank.

【0002】[0002]

【従来の技術】今日、鋼材に対する要求特性が一層厳し
くなり、品質面からもまた製造コストの面からも多くの
改善がなされつつある。特に、S≦10ppm という低硫化
鋼の安価な製造方法が求められており、これまでにも多
くの提案がなされている。
2. Description of the Related Art Today, the characteristics required for steel materials are becoming more severe, and many improvements are being made in terms of quality and manufacturing costs. In particular, there is a demand for an inexpensive manufacturing method of low sulfide steel with S ≦ 10 ppm, and many proposals have been made so far.

【0003】特開昭56−98415 号公報では、「転炉か
ら取鍋へ出鋼中の溶鋼に生石灰を2〜8kg/T添加し、出
鋼後の取鍋表面スラグ層へAlを0.05〜0.40kg/T添加し、
脱ガス処理を施してから、溶鋼内へ浸漬した上吹きラン
スを通じてArガスを0.006 〜0.009 Nm3/min の条件で10
分以上供給して溶鋼を脱硫したのち、さらに該溶鋼にCa
分として0.125 〜0.500 kg/Tに相当するCa物質を添加す
ることを特徴とする鋼の製造方法」を提案している。
Japanese Unexamined Patent Publication No. 56-98415 discloses, "2 to 8 kg / T of lime is added to molten steel in a tapping steel from a converter to a ladle, and 0.05 to 0.05% of Al is added to a ladle surface slag layer after tapping. 0.40kg / T added,
After degassing, Ar gas was passed through the top blowing lance soaked in molten steel under the condition of 0.006 to 0.009 Nm 3 / min.
More than a minute to desulfurize the molten steel, and then add Ca to the molten steel.
The steel manufacturing method is characterized by adding a Ca substance corresponding to 0.125 to 0.500 kg / T.

【0004】特開昭56−9317号公報では、「取鍋内の
予め脱酸処理した溶鋼にCaO 含有フラックスをキャリア
ガスにより吹込み脱酸脱硫した後、引き続いて該溶鋼に
Ca合金を吹き込み、溶鋼中の硫化物形態を制御すること
を特徴とする硫化物の形態を制御した低酸素、低硫黄鋼
の製造方法」を提案している。
In Japanese Patent Laid-Open No. 56-9317, "a CaO-containing flux is blown into a molten steel which has been previously deoxidized in a ladle by a carrier gas for deoxidation and desulfurization, and then the molten steel is continuously treated.
We propose a method for producing low-oxygen, low-sulfur steel with controlled sulfide morphology, characterized by controlling the sulfide morphology in molten steel by injecting a Ca alloy.

【0005】ところで、上記では、脱ガス処理を施し
て溶鋼中水素濃度を低減しているが、その後に脱硫処理
を行うために、スラグ中の水分により溶鋼中水素濃度が
上昇してしまうという問題が生じてしまう。
By the way, in the above, although the degassing treatment is applied to reduce the hydrogen concentration in the molten steel, since the desulfurization treatment is performed after that, the water content in the slag increases the hydrogen concentration in the molten steel. Will occur.

【0006】また、上記においては、さらに吹込みCa
O 含有フラックスからの水素ピックアップも問題となっ
てしまうのである。そこで、今度はこれらの問題を解決
すべく、次のような従来技術が提案されている。
In addition, in the above, the injected Ca
Hydrogen pick-up from the O-containing flux also becomes a problem. Then, in order to solve these problems, the following conventional techniques have been proposed.

【0007】特開昭58−3913号公報では、「予め脱酸
処理した溶鋼にCaO 含有フラックスをキャリアガスによ
り吹込み脱酸脱硫した後、溶鋼にCa合金を吹き込んで溶
鋼中の硫化物形態を制御する低酸素低硫黄鋼の製造方法
において、前記CaO 含有フラックスを吹き込む工程とCa
合金を吹き込む工程との間に真空脱ガス処理を行うこと
を特徴とする硫化物形態を制御した低水素鋼の製造方
法」を提案し、CaO 含有フラックスを吹き込む工程で上
昇した水素濃度を低減するためにCa合金を吹き込む工程
の前に真空脱ガス処理を行っているのである。
In Japanese Patent Laid-Open No. 58-3913, "A CaO-containing flux is blown into a molten steel which has been previously deoxidized by a carrier gas for deoxidation and desulfurization, and then a Ca alloy is blown into the molten steel to determine the sulfide form in the molten steel. In the method of controlling low oxygen and low sulfur steel, the step of blowing the CaO-containing flux and the Ca
We propose a method for producing low-hydrogen steel with controlled sulfide morphology, which is characterized by performing vacuum degassing treatment during the step of injecting alloy, and reducing the hydrogen concentration increased in the step of injecting CaO-containing flux. Therefore, the vacuum degassing process is performed before the step of injecting the Ca alloy.

【0008】しかし、上記では、吹込み処理と真空脱
ガス処理とで異なる精錬装置を使用する必要がある。こ
のような複合処理では、それぞれの工程で溶鋼温度降下
があり、この温度を補償するため通常材に比べ著しく吹
き止め温度を高くする必要があること、また処理工程が
複雑になり、サイクルタイム延長による工程ネック、た
とえば連々鋳ができないなどの理由から生産性および歩
留低下等を招き大量処理には不向きとなる。そこで、単
一プロセスで極低硫、極清浄、Ca添加、極低水素を満た
すために、次のような提案もされている。
However, in the above, it is necessary to use different refining devices for the blowing process and the vacuum degassing process. In such a complex treatment, there is a temperature drop of molten steel in each process, and in order to compensate for this temperature, it is necessary to raise the blowing stop temperature significantly compared with ordinary materials, and the treatment process becomes complicated and the cycle time is extended. Due to the process bottleneck, for example, the fact that continuous casting cannot be performed, the productivity and the yield are lowered, which makes it unsuitable for large-scale processing. Therefore, the following proposals have been made to satisfy ultra-low sulfur, ultra-clean, Ca addition, and ultra-low hydrogen in a single process.

【0009】特開昭58−22320 号公報では、「真空脱
ガス槽と組み合わせた取鍋内の溶鋼に不活性ガス等のキ
ャリアガスで処理剤を吹き込み減圧精錬する方法におい
て、真空脱ガス槽内を減圧するとともに取鍋内に脱硫剤
を吹き込み、引き続いて真空脱ガス槽内を真空状態にし
たまま脱硫剤の添加を止めて不活性ガス等の吹込みだけ
を行い、次いで真空脱ガス槽内を大気圧に復圧したるの
ちCa合金またはCa化合物を吹き込むことを特徴とする取
鍋精錬方法」が提案されている。
In Japanese Patent Laid-Open No. 58-22320, "In a vacuum degassing tank, a method of injecting a processing agent into a molten steel in a ladle combined with a vacuum degassing tank with a carrier gas such as an inert gas and depressurizing Depressurize and blow the desulfurizing agent into the ladle, and then stop adding the desulfurizing agent while keeping the vacuum degassing tank in a vacuum state and only blow the inert gas, and then in the vacuum degassing tank. A ladle refining method characterized by injecting a Ca alloy or a Ca compound after the pressure is restored to atmospheric pressure has been proposed.

【0010】特開平4−99812 号公報では、「取鍋内
に予め脱酸処理した溶鋼を 0.1〜1TorrでCaO 1.5 〜4.
5 kg/TS 吹込み、その後大気圧下でCaSi 0.3〜0.7 kg/T
S 吹込み、溶鋼中の[Ca]、[Al]、[O] の濃度を制御する
ことを特徴とする優れた耐HIC特性を有する鋼の製造
方法」が提案されている。
In Japanese Patent Laid-Open No. 4-99812, "Melted steel pre-deoxidized in a ladle is CaO 1.5-4.0.1 at 0.1-1 Torr.
Inject 5 kg / TS, then CaSi 0.3 to 0.7 kg / T at atmospheric pressure
A method for producing a steel having excellent HIC resistance characteristics, which is characterized by controlling the concentration of [Ca], [Al], and [O] in the S steel and the molten steel has been proposed.

【0011】[0011]

【発明が解決しようとする課題】しかし、上述した従来
法およびにおいても以下のような問題点が生じてし
まう。従来法では、単一プロセスで極低硫、極清浄、
Ca添加、極低水素を満たすことが可能となったとしてい
る。ところが、CaO 含有フラックスの吹込みを前提とし
ているために、その実施例にあるように真空槽内に長大
な昇降ストロークを有するCaO フラックス吹込み用ラン
スが必要となり、その設備費は膨大なものとなる。ま
た、ランス長も長くなるためランスの折損の可能性が高
くなること、ストロークが大きいためランス交換の手間
も非常にかかり、安定操業が困難である。また、CaO 含
有フラックス吹込み中の温度降下は非常に大きく、従来
法のような単一プロセスにおいても熱ロスが大きくな
り、この熱ロスを補償するため通常材に比べ吹き止め温
度を高くすること、あるいは、取鍋精錬におけるAl添加
と酸素供給によるAl酸化反応熱での昇熱やアーク加熱・
プラズマ加熱等、が必要になってしまう。
However, the following problems also occur in the above-mentioned conventional method and method. In the conventional method, ultra low sulfur, ultra clean,
It is said that it becomes possible to add Ca and satisfy extremely low hydrogen. However, since it is assumed that CaO-containing flux is blown in, a CaO flux blowing lance with a long lifting stroke is required in the vacuum chamber as in the example, and the equipment cost is enormous. Become. Further, since the lance length is long, the possibility of breakage of the lance is high, and since the stroke is large, it takes much labor to replace the lance, and stable operation is difficult. In addition, the temperature drop during the injection of CaO-containing flux is extremely large, and even in a single process such as the conventional method, the heat loss becomes large. Alternatively, Al heating in ladle refining and Al heating by heat of Al oxidation reaction by oxygen supply and arc heating.
Plasma heating etc. will be required.

【0012】転炉吹き止め温度を高くする場合、転炉耐
火物溶損が増加し、炉寿命の低下による耐火物コストの
上昇・築炉頻度増加による耐火物施工コストの上昇を招
いてしまう。
When the blowing temperature of the converter is increased, the melting loss of the refractory material of the converter is increased, the cost of the refractory material is increased due to the shortening of the furnace life, and the cost of the refractory material construction is increased due to the increase in the frequency of furnace construction.

【0013】取鍋精錬において熱補償する場合、上記と
同一のプロセスで熱補償すると、処理溶鋼が同一のプロ
セスに滞留する時間が長くなり、サイクルタイムの延長
およびそれに伴う連々鋳数の制限等による生産性および
歩留低下等を招き大量処理には不向きとなってしまう。
In the case of heat compensation in ladle refining, if the heat compensation is carried out in the same process as described above, the treated molten steel stays in the same process for a long time, and the cycle time is prolonged and the number of castings is increased continuously. This leads to reduced productivity and yield, making it unsuitable for large-scale processing.

【0014】もしも、上記のプロセスと異なるプロセス
で熱補償するのであれば、昇熱用のプロセスを別個に設
けることにより設備費の二重投資になってしまう。従来
法においても、CaO 含有フラックスを吹き込むことは
同一であり、上記と同様の問題点を解決する必要があ
る。
If heat compensation is performed in a process different from the above process, a separate process for raising the temperature is required, resulting in a double investment in equipment cost. Even in the conventional method, blowing CaO-containing flux is the same, and it is necessary to solve the same problems as described above.

【0015】したがって、本発明の目的は、極低硫鋼ま
たは耐HIC鋼を溶製するに際して、単一プロセスにお
いてCaO 含有フラックスを吹き込むことなく、極低硫、
極清浄処理を行い、かつ、熱ロスを最小限にとどめる溶
製方法を提案することにある。より具体的には、本発明
の目的は、[S] ≦10ppm の耐HIC 鋼を溶製するための経
済的かつ効率的真空脱硫精錬法を提供することである。
Therefore, an object of the present invention is to produce an ultra-low sulfur content without melting CaO-containing flux in a single process in melting ultra-low-sulfur steel or HIC-resistant steel.
It is to propose a melting method that performs extremely clean treatment and minimizes heat loss. More specifically, an object of the present invention is to provide an economical and efficient vacuum desulfurization refining method for smelting [S] ≤ 10 ppm HIC resistant steel.

【0016】[0016]

【課題を解決するための手段】以上の課題を解決するた
めに、本発明者らは単一プロセスにおいてCaO 含有フラ
ックスを吹き込むことなく極低硫、極清浄 (Ca添加、極
低水素を含んでもよい) を行い、かつ、熱ロスを最小限
にとどめる溶製方法を鋭意検討した。
In order to solve the above-mentioned problems, the inventors of the present invention did not blow CaO-containing flux in a single process, and thus ultra-low sulfur, ultra-clean (including Ca and ultra-low hydrogen were included). )), And earnestly studied a melting method that minimizes heat loss.

【0017】その結果、CaO 含有フラックスを吹き込む
ことなく、極低硫、極清浄を得るためには、適切なスラ
グ組成の下で、適切なガス攪拌力を設定し、浸漬管径を
適切にする必要があることを見い出した。
As a result, in order to obtain extremely low sulfur and extremely clean without blowing CaO-containing flux, an appropriate gas stirring force is set under an appropriate slag composition and an immersion pipe diameter is made appropriate. I found a need.

【0018】ここに、本発明の要旨とするところは、取
鍋中溶鋼に1本足からなる筒状浸漬管を浸漬したのち、
該浸漬管内を減圧することにより溶鋼を浸漬管内に吸い
上げ、浸漬管の投影面下の取鍋内下部あるいは浸漬管内
壁に設けた羽口から攪拌ガスを吹き込むにあたり、 (i) 取鍋スラグ組成が以下の条件を満たして、 0.8 ≦ (%CaO)/(%Al2O3)≦ 2.5 (%SiO2) ≦ 10 (%FeO)+(%MnO) ≦ 2.0 ここで、(%CaO) :スラグ中CaO 濃度 (重量%)、(%Al2O
3):スラグ中Al2O3 濃度 (重量%)、(%SiO2) :スラグ中
SiO2濃度 (重量%)、(%FeO) :スラグ中FeO 濃度 (重量
%)、(%MnO) :スラグ中MnO 濃度 (重量%) (ii)さらに下式に示す単位断面積当たりの攪拌動力ε/A
(watt/ton/m2) が15以上の条件を満たして、 ε/A={4.18・Q・T・In(1+ρ・g・h/Po)}/(W・
π・D1 2/4) ここで、Q:攪拌ガス流量 (Nm3/min)、T:溶鋼温度
(K)、ρ:溶鋼密度 (kg/m3)、 g:重力加速度(m/
s2)、h:攪拌ガス吹込み深さ (m)、Po:真空槽雰囲気
圧力(Pa)、W:処理溶鋼量 (ton)、 D1:浸漬管内
径 (m)かつ、 (iii) 浸漬管内径D1と取鍋内径D2との比D1/D2 が0.5 以
上の条件を満たすことを特徴とする溶鋼の真空脱硫精錬
方法である。
Here, the gist of the present invention is that after immersing a tubular dipping tube consisting of one leg in molten steel in a ladle,
When the molten steel is sucked up into the dip tube by depressurizing the dip tube, and the stirring gas is blown from the tuyere provided in the lower part of the ladle below the projection surface of the dip tube or the inner wall of the dip tube, (i) the ladle slag composition is 0.8 ≦ (% CaO) / (% Al 2 O 3 ) ≦ 2.5 (% SiO 2 ) ≦ 10 (% FeO) + (% MnO) ≦ 2.0 where (% CaO): slag Medium CaO concentration (wt%), (% Al 2 O
3 ): Al 2 O 3 concentration in slag (% by weight), (% SiO 2 ): In slag
SiO 2 concentration (wt%), (% FeO): FeO concentration in slag (wt%
%), (% MnO): MnO concentration in slag (% by weight) (ii) Further, stirring power ε / A per unit cross-sectional area shown in the following formula
(watt / ton / m 2 ) satisfies the condition of 15 or more, and ε / A = {4.18 ・ Q ・ T ・ In (1 + ρ ・ g ・ h / Po)} / (W ・
π · D 1 2/4) where, Q: agitation gas flow rate (Nm 3 / min), T : temperature of molten steel
(K), ρ: Molten steel density (kg / m 3 ), g: Gravitational acceleration (m /
s 2 ), h: Stirring gas injection depth (m), Po: Vacuum chamber atmosphere pressure (Pa), W: Processed molten steel amount (ton), D 1 : Immersion pipe inner diameter (m) and (iii) Immersion the ratio D 1 / D 2 of the inner tube diameter D 1 and the ladle inner diameter D 2 is a vacuum desulfurization refining process of the molten steel characterized by satisfying the above 0.5.

【0019】[0019]

【作用】次に、本発明の操作を添付図面を参照しながら
簡単に説明し、次いで本発明において上述のように処理
条件を限定した理由をその作用とともに詳述する。添付
図面の図1は本発明にかかる方法を実施する1本足の筒
状浸漬管と取鍋との組合せ例の説明図であり、図中、転
炉 (図示せず)から取鍋10に出鋼した溶鋼12は、通常16
20〜1670℃程度であるが、これに1本足型の浸漬管14を
浸漬する。この浸漬管14には、図示例では、酸化性ガス
上吹きランス16、合金投入口18および適宜真空装置( 図
示せず)に接続された排気口20が設けられている。
Next, the operation of the present invention will be briefly described with reference to the accompanying drawings, and then the reason why the processing conditions are limited in the present invention as described above will be described in detail together with its operation. FIG. 1 of the accompanying drawings is an explanatory view of an example of a combination of a one-legged cylindrical dipping tube and a ladle for carrying out the method according to the present invention, in which a converter (not shown) changes to a ladle 10. The molten steel 12 that was tapped is usually 16
The temperature is about 20 to 1670 ° C, and the one-legged dipping tube 14 is dipped in this. In the illustrated example, the dipping pipe 14 is provided with an oxidizing gas top blowing lance 16, an alloy charging port 18, and an exhaust port 20 connected to a vacuum device (not shown) as appropriate.

【0020】取鍋内の溶鋼12には取鍋底部にポーラスプ
ラグまたは貫通孔プラグ24が設けられていて不活性ガス
を溶鋼内に吹き込んでいる。別法として不活性ガス吹き
込みランス (図示せず) が浸漬管14の投影面内に浸漬さ
れていてもよい。
The molten steel 12 in the ladle is provided with a porous plug or a through-hole plug 24 at the bottom of the ladle to blow an inert gas into the molten steel. Alternatively, an inert gas blowing lance (not shown) may be immersed in the projection plane of the dip tube 14.

【0021】まず、本発明は、取鍋10内に収容した溶鋼
12に1本足からなる筒状浸漬管14を浸漬し、この浸漬管
14内を真空排気して、浸漬管の投影面下の取鍋内下部か
らポーラスプラグ24または吹き込みランス (図示せず)
を経て不活性ガスを吹き込む方法である。Arガスなどの
この不活性ガスの吹き込みは、好ましくは取鍋精錬開始
から終了時点まで継続され、本発明における真空処理は
いずれもこの不活性ガスの吹き込みの下で行われる。こ
こに、本発明において溶製条件を上述のように規定した
理由について説明する。
First, according to the present invention, the molten steel contained in the ladle 10 is used.
A cylindrical dip tube 14 consisting of one leg is dipped in 12 and this dip tube
Evacuate the inside of 14 and insert the porous plug 24 or blowing lance (not shown) from the lower part of the ladle below the projection surface of the dipping tube.
It is a method of blowing an inert gas through the. Blowing of this inert gas such as Ar gas is preferably continued from the start to the end of ladle refining, and any vacuum treatment in the present invention is carried out under the blowing of this inert gas. Here, the reason for defining the melting conditions as described above in the present invention will be explained.

【0022】まず、CaO 含有フラックス吹込みなしで極
低硫鋼を得るためには、スラグ組成を最適範囲に制御す
ることが必須である。なぜなら、CaO 含有フラックスの
吹込み時には、フラックスが溶鋼中を浮遊する過程での
脱硫反応 (トランジトリー反応) が期待できるが、CaO
含有フラックス吹込みなしの場合には、スラグ−メタル
間反応 (パーマネント反応) のみで脱硫する必要がある
からである。
First, in order to obtain an ultra-low-sulfur steel without injecting CaO-containing flux, it is essential to control the slag composition within the optimum range. This is because when the CaO-containing flux is blown, a desulfurization reaction (transit reaction) in the process of the flux floating in molten steel can be expected.
This is because it is necessary to desulfurize only by the slag-metal reaction (permanent reaction) when the contained flux is not blown.

【0023】本発明におけるスラグ組成の最適条件は 0.8 ≦ (%CaO)/(%Al2O3)≦ 2.5、好ましくは、0.9 ≦
(%CaO)/(%Al2O3)≦2.0かつ、(%SiO2) ≦ 10 、好ましく
は、 (%SiO2)≦8かつ、(%FeO)+(%MnO) ≦ 2.0、好まし
くは、 (%FeO)+(%MnO)≦ 1.0である。
The optimum conditions of the slag composition in the present invention are 0.8 ≦ (% CaO) / (% Al 2 O 3 ) ≦ 2.5, preferably 0.9 ≦
(% CaO) / (% Al 2 O 3 ) ≦ 2.0 and (% SiO 2 ) ≦ 10, preferably (% SiO 2 ) ≦ 8 and (% FeO) + (% MnO) ≦ 2.0, preferably , (% FeO) + (% MnO) ≦ 1.0.

【0024】これ以外のスラグ組成では、本発明者の実
験によれば真空度や攪拌力の条件をどのように変化させ
ても [S]>10ppm のチャージをなくすことはできなかっ
た。脱硫反応では、スラグのS含有能力 (サルファイド
キャパシティ) を高めること、および、スラグの酸素ポ
テンシャルを低減することが重要となる。
With the slag composition other than this, according to the experiments of the present inventors, it was not possible to eliminate the charge of [S]> 10 ppm no matter how the conditions of vacuum degree and stirring force were changed. In the desulfurization reaction, it is important to increase the S-containing capacity (sulfide capacity) of the slag and to reduce the oxygen potential of the slag.

【0025】上記のように 0.8 ≦ (%CaO)/(%Al2O3)≦ 2.5 かつ (%SiO2) ≦ 10 としたのは、サルファイドキャパシティを高めるための
限定条件であり、 (%FeO)+(%MnO) ≦ 2.0 としたのは、スラグの酸素ポテンシャルを低減するため
の限定条件である。(%FeO)+(%MnO) は2%以下が限定条
件であるが、1%以下が一層望ましい。
As described above, 0.8 ≦ (% CaO) / (% Al 2 O 3 ) ≦ 2.5 and (% SiO 2 ) ≦ 10 are the limiting conditions for increasing the sulfide capacity. FeO) + (% MnO) ≦ 2.0 is a limiting condition for reducing the oxygen potential of slag. The limiting condition for (% FeO) + (% MnO) is 2% or less, but 1% or less is more desirable.

【0026】このようにスラグ組成を調整するには取鍋
への出鋼時あるいはその後に取鍋スラグにCaO の投入、
さらに必要によりAl2O3 あるいはCaO −Al2O3 系フラッ
クスの投入を行う。この場合にはフラックス添加によっ
ても溶鋼温度の低下は実質上みられない。
In order to adjust the slag composition as described above, CaO is added to the ladle slag at the time of tapping the ladle or thereafter.
Further performs the insertion of Al 2 O 3 or CaO -Al 2 O 3 based flux necessary. In this case, the molten steel temperature is not substantially lowered even by adding the flux.

【0027】このスラグ組成を上述の範囲に制御するこ
とにより [S]<10ppm の頻度は高まるが、それでもな
お、極低硫([S]<10ppm)を得ることができない場合があ
る。その原因は溶鋼の攪拌力不足にあることが分かり、
そのため本発明にあっては、さらに取鍋底吹きの攪拌力
を適正化するのである。
Although the frequency of [S] <10 ppm is increased by controlling the slag composition within the above range, there are still cases where extremely low sulfur ([S] <10 ppm) cannot be obtained. It turns out that the cause is the lack of stirring power of molten steel,
Therefore, in the present invention, the stirring power of the ladle bottom blow is further optimized.

【0028】CaO 含有フラックスを吹き込まずに、取鍋
フラックスを用いて真空下バブリングによって脱硫する
場合、前述のように吹込み粉体によるトランジトリー反
応が期待できないために、その脱硫速度はスラグメタル
の攪拌力に対応することを考案し、下式に示す単位断面
積当たりの攪拌動力ε/A(watt/ton/m2) で脱硫能力を評
価した。 ε/A={4.18・Q・T・In(1+ρ・g・h/Po)}/(W・
π・D1 2/4) ここで、Q、T、ρ、g、h、Po、W、S1は、すでに述
べた通りである。
When desulfurization is performed by bubbling under vacuum using a ladle flux without blowing CaO-containing flux, the desulfurization rate of the slag metal cannot be expected because the transitional reaction due to the blown powder cannot be expected as described above. It was devised to correspond to the stirring force, and the desulfurization ability was evaluated by the stirring power ε / A (watt / ton / m 2 ) per unit cross-sectional area shown in the following formula. ε / A = {4.18 ・ Q ・ T ・ In (1 + ρ ・ g ・ h / Po)} / (W ・
π · D 1 2/4) where, Q, T, ρ, g , h, Po, W, S 1 is as already mentioned.

【0029】この攪拌動力ε/Aを臨界値15 watt/ton/m2
以上に大きくすれば、粉体吹込みなしであっても、浸漬
管内のフラックスが微細に溶鋼中に分散し、分散したフ
ラックス粒子が吹き込み粉体と同様な作用をもたらし、
脱硫および清浄化能力を発揮するのである。このε/A
の上限値は特に規定しないが、実際上からは100watt/to
n/m2以下である。
This stirring power ε / A is adjusted to a critical value of 15 watt / ton / m 2
If it is made larger than the above, the flux in the immersion pipe is finely dispersed in the molten steel even without powder blowing, and the dispersed flux particles bring about the same effect as the blown powder,
It exhibits desulfurization and cleaning capabilities. This ε / A
The upper limit of is not specified, but from the practical point of view, 100watt / to
n / m 2 or less.

【0030】ここで、浸漬管内径D1が小さくなるほどこ
の攪拌動力の指標ε/Aは大きくなるが、それにともない
浸漬管内側の脱硫および清浄化処理に有効に寄与するス
ラグ量が減少してしまう。
Here, the smaller the inner diameter D 1 of the immersion pipe, the larger the index ε / A of the stirring power, but the amount of slag that effectively contributes to the desulfurization and cleaning treatment inside the immersion pipe decreases accordingly. .

【0031】そこで、有効スラグ量を確保するために必
要な浸漬管内径条件を種々検討した結果、浸漬管内径D1
と取鍋内径D2との比D1/D2が0.5 未満になると脱硫およ
び清浄化能力が低下することが判明した。D1/D2は0.5
以上であることが必要であり、0.6 以上であることが望
ましい。また、浸漬管は耐火物施工されているため、取
鍋内径まで大きくすることはできない。操業上、浸漬管
と取鍋とのクリアランスを確保することを考慮するとD1
/D2の上限は0.8 である。
Therefore, as a result of various studies on the conditions of the inner diameter of the immersion pipe required to secure the effective slag amount, the inner diameter of the immersion pipe D 1
It was found that when the ratio D 1 / D 2 between the ladle inner diameter D 2 and the ladle inner diameter D 2 is less than 0.5, the desulfurization and cleaning ability decreases. D 1 / D 2 is 0.5
It is necessary to be above, and it is desirable to be 0.6 or above. Also, since the dip pipe is made of refractory, it is not possible to increase the inner diameter of the ladle. Operationally, considering the clearance between the dip tube and ladle, D 1
The upper limit of / D 2 is 0.8.

【0032】このように処理することにより、CaO 含有
フラックス吹込みなしで処理することが可能となるた
め、前述の従来技術のように「CaO 含有フラックス吹
込み+バブリング」の2処理を「バブリング」の1処理
に統合することができる。
By performing the treatment as described above, it is possible to perform the treatment without CaO-containing flux blowing. Therefore, the two treatments of "CaO-containing flux blowing + bubbling" as in the above-mentioned prior art can be performed by "Bubbling". It can be integrated into one process.

【0033】ここで、取鍋スラグ中の組成のうち(%Ca
O)、(%Al2O3)、(%SiO2) は、転炉スラグの取鍋への流出
量、出鋼時のフラックス添加量、出鋼後のフラックス添
加量、あるいは、上記浸漬管内へのフラックス投入量に
より調整することができる。
Here, of the composition in the ladle slag ((% Ca
O), (% Al 2 O 3 ), and (% SiO 2 ) are the outflow amount of converter slag to the ladle, the amount of flux added at the time of tapping, the amount of flux added after tapping, or in the above dipping pipe. It can be adjusted by the amount of flux added to the.

【0034】さらに、取鍋スラグ成分のうち(%FeO)、(%
MnO)を低減するために、出鋼中あるいは出鋼後に溶鋼に
金属Alと発泡剤 (例えば、CaCO3)の混合物を添加し、発
泡剤によりスラグを攪拌しながら金属Alによりスラグ中
FeO、MnO の還元を促進してもよい。
In addition, (% FeO) and (%
To reduce MnO), add a mixture of metal Al and a foaming agent (for example, CaCO 3 ) to molten steel during or after tapping, and stir the slag with the foaming agent while slag with metal Al.
You may accelerate the reduction of FeO and MnO 2.

【0035】一方、出鋼中あるいは出鋼後には、取鍋下
部より攪拌ガスを流すことにより、取鍋スラグの攪拌・
滓化を促進することが望ましい。なぜなら、本発明にか
かる方法では耐火物で被われたシュノーケル、つまり1
本足浸漬管を溶鋼に浸漬するため、浸漬管内スラグの攪
拌は強力であるが、浸漬管外側のスラグの攪拌が内側に
比べて相対的に小さいからである。
On the other hand, during or after tapping, a stirring gas is flowed from the bottom of the ladle to stir the ladle slag.
It is desirable to promote slag formation. Because, in the method according to the present invention, the snorkel covered with the refractory material, that is, 1
Since the main leg immersion pipe is immersed in the molten steel, the stirring of the slag inside the immersion pipe is strong, but the stirring of the slag outside the immersion pipe is relatively smaller than that inside.

【0036】この攪拌ガスは、取鍋底部に設けたポーラ
スプラグあるいは貫通孔プラグ等から添加することがで
きる。また、出鋼中あるいは出鋼後にバブリングランス
を取鍋内溶鋼に浸漬し、攪拌を行ってもよい。
This stirring gas can be added from a porous plug or a through-hole plug provided at the bottom of the ladle. Further, the bubbling lance may be immersed in the molten steel in the ladle and stirred during or after tapping.

【0037】さらに、転炉出鋼後、取鍋にて脱硫処理す
る前あるいは後に、酸素供給による溶鋼昇熱や電気加熱
によって取鍋内溶鋼温度を補償して、転炉出鋼温度低下
を計ってもよい。
Further, after the steel is taken out of the converter and before or after the desulfurization treatment in the ladle, the temperature of the molten steel in the ladle is compensated by raising the temperature of the molten steel by supplying oxygen or by electric heating to measure the decrease in the temperature of the steel taken out of the converter. May be.

【0038】さらに「極低水素」を得るためには上記条
件に加えて、真空度2Torr以下で処理することが望まし
い。Ca処理が必要で、かつ、極低水素が必要な鋼種の場
合には、以下のような溶製手順が望ましい。
Further, in order to obtain "extremely low hydrogen", in addition to the above conditions, it is desirable to perform the treatment at a vacuum degree of 2 Torr or less. For steel grades that require Ca treatment and require extremely low hydrogen, the following melting procedure is desirable.

【0039】たとえば、真空度2Torr以下で脱硫・脱水
素同時処理を行い、その後、Ca処理を行ってもよい。あ
るいは、100 Torr以下の低真空度下で脱硫を行い、その
後、2Torr以下で脱水素を行い、その後、Ca処理を行っ
てもよい。
For example, simultaneous desulfurization / dehydrogenation treatment may be performed at a vacuum degree of 2 Torr or less, and then Ca treatment may be performed. Alternatively, desulfurization may be performed under a low vacuum degree of 100 Torr or less, followed by dehydrogenation at 2 Torr or less, and then Ca treatment.

【0040】Ca処理の雰囲気圧としては、大気圧とする
のが通例であるが、若干の加圧あるいは減圧下であって
もよい。ただし、減圧下でCa含有物質を添加する場合
は、Caの蒸気圧が高いために気化しやすいことを考慮す
ると、雰囲気圧力300 Torr以上であることが望ましい。
The atmospheric pressure for the Ca treatment is usually atmospheric pressure, but may be slightly increased or reduced pressure. However, when the Ca-containing substance is added under reduced pressure, it is preferable that the atmospheric pressure is 300 Torr or higher, considering that the vapor pressure of Ca is high and vaporization is easy.

【0041】また、Ca処理を必要とする鋼種を溶製する
場合には、添加するCa含有物質としては、Caが含有され
ていればよく、Ca−Si、Fe−Ca、Ca−Al、Ca−Ni、Fe−
Ca−Ni等の合金を用いればよい。また、Caを含有する金
属粉体とその他の金属粉とを混合したもの、あるいは、
混合後圧力成形したものを用いてもよい。また、これら
Ca含有物質にCaO 、Al2O3 、CaF2、CaO-Al2O3 、CaO-Ca
F2、CaO-Al2O3-CaF2フラックスを混合して用いてもよ
い。
Further, in the case of melting a steel type that requires Ca treatment, the Ca-containing substance to be added may be Ca-containing material, such as Ca-Si, Fe-Ca, Ca-Al and Ca. -Ni, Fe-
An alloy such as Ca-Ni may be used. Also, a mixture of a metal powder containing Ca and another metal powder, or
You may use what was pressure-formed after mixing. Also these
CaO, Al 2 O 3 , CaF 2 , CaO-Al 2 O 3 , CaO-Ca
F 2, CaO-Al 2 O 3 -CaF 2 flux may be mixed and used.

【0042】これらのフラックスを混合して添加する効
果は特開昭54−37019 号、特公昭59−22765 号、特開昭
64−75622 号、特開平3−47910 号の各公報に述べられ
ている通りである。
The effect of mixing and adding these fluxes is described in JP-A-54-37019, JP-B-59-22765, and JP-A-SHO-
This is as described in Japanese Patent Laid-Open Nos. 64-75622 and 3-47910.

【0043】その際のCa含有物質中のCa純度は50%以下
が必要であり、40%以下が望ましい。Caは反応性が高い
ために、純度が高すぎると、添加時の反応が激しくな
り、スプラッシュ発生が問題となるからである。逆に純
度が低すぎると、Ca以外の金属成分が多くなり、必要な
Ca純分を添加する際に必要となる、Ca含有物質の原単位
が大きくなり過ぎてしまうのである。
At that time, the purity of Ca in the Ca-containing substance must be 50% or less, preferably 40% or less. Since Ca is highly reactive, if the purity is too high, the reaction at the time of addition becomes vigorous, causing a problem of splash generation. On the other hand, if the purity is too low, the amount of metal components other than Ca increases,
The basic unit of the Ca-containing substance, which is necessary when adding the pure Ca, becomes too large.

【0044】Ca処理前の溶鋼中S濃度は10ppm 以下が望
ましい。これ以上であると、Ca含有物質の添加速度を低
減してもCaS 系介在物の生成を十分に抑制できないため
である。
The S concentration in the molten steel before Ca treatment is preferably 10 ppm or less. This is because if it is more than this, the formation of CaS-based inclusions cannot be sufficiently suppressed even if the addition rate of the Ca-containing substance is reduced.

【0045】Ca添加量あるいはCa原単位 (いずれも、Ca
純分換算) は1.0 kg/T以下であることが必要であり、0.
5 kg/T以下が望ましい。その理由は、Ca添加量が過剰に
なると、Ca添加速度を低減しても反応すべきAl2O3 系介
在物が減少あるいは消失し、CaO-Al2O3 系介在物中のCa
O 濃度が高くなりすぎてしまうためである。さらに、Ca
添加量が多すぎるとCaS 系介在物の生成も十分には抑制
できなくなってしまうからである。
The amount of Ca added or the basic unit of Ca (both are Ca
It should be 1.0 kg / T or less.
5 kg / T or less is desirable. The reason is that if the Ca addition amount becomes excessive, the Al 2 O 3 -based inclusions that should react will decrease or disappear even if the Ca addition rate is reduced, and Ca in the CaO-Al 2 O 3 -based inclusions will decrease.
This is because the O 2 concentration becomes too high. Furthermore, Ca
This is because if the added amount is too large, the formation of CaS-based inclusions cannot be sufficiently suppressed.

【0046】一方、Ca添加量あるいはCa原単位 (いずれ
も、Ca純分換算) は0.1 kg/T以上であることが必要であ
る。その理由は、Ca添加量が低すぎると、Al2O3 系介在
物が十分にCaO-Al2O3 系介在物になりきらずに、アルミ
ナクラスター系の介在物が残留してしまうからである。
さらに、Ca添加量が低すぎると、鋳造中の中心偏析によ
りMnの濃化した領域で耐HIC性能に悪影響のあるMnS
が生成してしまうからである。
On the other hand, the added amount of Ca or the basic unit of Ca (both in terms of pure Ca) must be 0.1 kg / T or more. The reason is that if the amount of Ca added is too low, the Al 2 O 3 -based inclusions do not become CaO-Al 2 O 3 -based inclusions sufficiently, and the alumina cluster-based inclusions remain. .
Further, if the amount of Ca added is too low, MnS which has a bad influence on the HIC resistance performance in the region where Mn is concentrated due to center segregation during casting.
Is generated.

【0047】[0047]

【実施例】本例では、図1に示す装置を用い、250 トン
取鍋に収容した1640℃の溶鋼中に1本足浸漬管を浸漬
し、浸漬管内を真空排気した状態で取鍋の底吹きプラグ
からアルゴンガスを2 Nm3/min吹き込んで、溶鋼のガス
攪拌を行い、脱硫処理を行った。
Example In this example, using the apparatus shown in FIG. 1, a one-legged dip pipe was immersed in molten steel at 1640 ° C. stored in a 250-ton ladle, and the bottom of the ladle was evacuated in vacuum. Argon gas was blown from the blow plug at 2 Nm 3 / min to stir the molten steel for desulfurization.

【0048】本例における処理前の溶鋼中硫黄濃度は20
〜50ppm 、処理前溶鋼中水素濃度は5〜15ppm であっ
た。出鋼中に生石灰を投入しスラグ中 (%CaO)/(%Al2O3)
を0.5〜9に調整した。(%CaO)/(%Al2O3) が2.5 を越え
るとスラグの滓化は著しく低下することが目視にて観察
された。
The sulfur concentration in the molten steel before the treatment in this example is 20
The hydrogen concentration in the molten steel before processing was 5 to 15 ppm. In the slag with quicklime added during tapping (% CaO) / (% Al 2 O 3 ).
Was adjusted to 0.5-9. It was visually observed that when (% CaO) / (% Al 2 O 3 ) exceeds 2.5, slag slag formation is significantly reduced.

【0049】また、出鋼中に転炉スラグの取鍋への流出
量を調整することにより取鍋スラグ中 (%SiO2)濃度を1
〜25%に調整した。出鋼時には金属Al含有物質を添加し
て、脱酸出鋼を行い、このAlによる還元でスラグ中の(%
FeO)、(%MnO)を低減せしめたが、転炉スラグの流出量が
多くて出鋼時の添加Alでは十分でない場合には、出鋼後
(Al+CaCO3)の混合物をスラグ上に添加した。
Further, the (% SiO 2 ) concentration in the ladle slag is set to 1 by adjusting the outflow amount of the converter slag to the ladle during tapping.
Adjusted to ~ 25%. At the time of tapping, a metal Al-containing substance is added to perform deoxidation tapping, and reduction by this Al ((%
FeO) and (% MnO) have been reduced, but if the added Al at the time of tapping is not sufficient due to the large outflow of converter slag, after tapping
A mixture of (Al + CaCO 3 ) was added on the slag.

【0050】なお、取鍋にて溶鋼へ金属Al含有物質を添
加し、酸素供給によって溶鋼昇熱した場合には、スラグ
中(%Al2O3)濃度が増加してしまうので、浸漬管内に追加
の生石灰を投入し、(%CaO)/(%Al2O3) を制御した。
When the metal Al-containing substance is added to the molten steel in the ladle and the molten steel is heated by supplying oxygen, the concentration in the slag (% Al 2 O 3 ) increases, so Additional quicklime was added to control (% CaO) / (% Al 2 O 3 ).

【0051】真空下のガス攪拌による脱硫時間は7〜15
分とした。これらの結果は、図3ないし図5にグラフで
示す。まず、図2にCaO-Al2O3-SiO2 3元状態図を示す
が、(%CaO)/(%Al2O3) =0.8 〜2.5 の範囲外あるいは
(%SiO2)>10では脱硫が進行しにくいことがわかる。
Desulfurization time by gas stirring under vacuum is 7 to 15
Minutes The results are shown graphically in Figures 3-5. First, Fig. 2 shows the CaO-Al 2 O 3 -SiO 2 3 state diagram, which is outside the range of (% CaO) / (% Al 2 O 3 ) = 0.8〜2.5 or
It can be seen that desulfurization does not proceed easily when (% SiO 2 )> 10.

【0052】図3に低級酸化物の影響を示すが、(%FeO)
+(%MnO)が2%以下では脱硫が進行し [S]<10ppm が得
られ、さらに(%FeO)+(%MnO)を低減し1%以下とすれ
ば、[S] <5ppm が得られることがわかる。
The effect of lower oxides is shown in FIG.
When + (% MnO) is 2% or less, desulfurization proceeds and [S] <10ppm is obtained. Further, if (% FeO) + (% MnO) is reduced to 1% or less, [S] <5ppm is obtained. You can see that

【0053】図4に攪拌力の影響を示すが、ε/Aが15以
上で脱硫促進効果が大きいことがわかる。図5に浸漬管
径の影響を示すが、D1/D2 が0.5 以上で脱硫促進効果が
大きいことがわかる。
FIG. 4 shows the influence of the stirring force. It can be seen that the effect of promoting desulfurization is large when ε / A is 15 or more. Fig. 5 shows the effect of the immersion pipe diameter. It can be seen that the effect of promoting desulfurization is large when D 1 / D 2 is 0.5 or more.

【0054】実施例1のうち脱硫処理後 [S]<10ppm の
Ca処理の必要な鋼種 (耐サワー性ラインパイプ材) の溶
鋼にCa−Si (Ca含有率30%) を溶鋼1ton 当たり0.8 kg
添加して、Ca処理を行った。その結果、得られた鋼材は
すべて鋼中 [H]<1ppm を達成しNACE条件を満足した。
なお、NACEのテスト条件は次に示すものであり、割れの
発生の有無を調整するものである。
After desulfurization treatment of Example 1, [S] <10 ppm
0.8 kg per ton of molten steel with Ca-Si (Ca content 30%) in molten steel of the steel type that requires Ca treatment (sour-resistant line pipe material)
After that, Ca treatment was performed. As a result, all of the obtained steel materials achieved [H] <1 ppm in the steel and satisfied the NACE conditions.
The NACE test conditions are as follows, and the presence or absence of cracks is adjusted.

【0055】NACEテスト条件: 溶液:5%NaCl+0.8 %CH3COOH 温度:24±2.8 ℃ pH:Max. 4.5 時間:96時間 H2S 濃度:H2S 飽和 H2S 流量:100 〜200 cc/min 試験片:幅20mm×長さ100 mm×(WF-2mm) 表面状況:#320ペーパー仕上げ 端面コーティング:不可NACE test conditions: Solution: 5% NaCl + 0.8% CH 3 COOH Temperature: 24 ± 2.8 ° C. pH: Max. 4.5 hours: 96 hours H 2 S concentration: H 2 S saturated H 2 S flow rate: 100-200 cc / min Test piece: Width 20 mm x Length 100 mm x (WF-2mm) Surface condition: # 320 Paper finish End surface coating: Not possible

【0056】[0056]

【発明の効果】本発明によれば、[S] ≦10ppm の極低硫
鋼の溶製が安価かつ効率的に行われ、さらにCa添加を併
用すれば、水素誘起割れが生ぜず、一層の鋼材品質の安
定化に寄与する。
EFFECTS OF THE INVENTION According to the present invention, extremely low-sulfur steel with [S] ≤ 10 ppm can be melted inexpensively and efficiently, and if Ca is also used, hydrogen-induced cracking does not occur and Contributes to stabilization of steel quality.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる方法を実施するための装置の概
略図である。
1 is a schematic view of an apparatus for carrying out the method according to the invention.

【図2】CaO-Al2O3-SiO2 3元素状態図である。FIG. 2 is a CaO—Al 2 O 3 —SiO 2 3 element phase diagram.

【図3】処理後[S] とスラグ中(%FeO)+(%MnO)の関係を
示すグラフである。
FIG. 3 is a graph showing a relationship between [S] after treatment and (% FeO) + (% MnO) in slag.

【図4】攪拌力と処理後[S] の関係を示すグラフであ
る。
FIG. 4 is a graph showing the relationship between stirring force and post-treatment [S].

【図5】浸漬管径の[S] に及ぼす影響を示すグラフであ
る。
FIG. 5 is a graph showing the effect of immersion pipe diameter on [S].

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 取鍋中溶鋼に1本足からなる筒状浸漬管
を浸漬したのち、該浸漬管内を減圧することにより溶鋼
を浸漬管内に吸い上げ、浸漬管の投影面下の取鍋内下部
あるいは浸漬管内壁に設けた羽口から攪拌ガスを吹き込
む溶鋼の真空脱硫精錬方法において、下記条件(i)ない
し(iii) を満足する取鍋スラグ組成、攪拌、および浸漬
管と取鍋形状の条件下で溶鋼を処理することを特徴とす
る方法。 (i) 取鍋スラグ組成: 0.8 ≦ (%CaO)/(%Al2O3)≦ 2.5 (%SiO2) ≦ 10 (%FeO)+(%MnO) ≦ 2.0 ここで、(%CaO) :スラグ中CaO 濃度 (重量%)、 (%Al2O3):スラグ中Al2O3 濃度 (重量%)、 (%SiO2) :スラグ中SiO2濃度 (重量%)、 (%FeO) :スラグ中FeO 濃度 (重量%)、 (%MnO) :スラグ中MnO 濃度 (重量%) (ii)単位断面積当たりの攪拌動力ε/A(watt/ton/m2) が
15以上: ε/A={4.18・Q・T・In(1+ρ・g・h/Po)}/(W・
π・D1 2/4) ここで、Q:攪拌ガス流量 (Nm3/min)、T:溶鋼温度
(K)、 ρ:溶鋼密度 (kg/m3)、 g:重力加速度(m/s2)、 h:攪拌ガス吹込み深さ (m)、Po:真空槽雰囲気圧力(P
a)、 W:処理溶鋼量 (ton)、 D1:浸漬管内径 (m) (iii) 浸漬管内径D1と取鍋内径D2との比D1/D2 が0.5 以
上。
1. A tubular dip tube consisting of one leg is immersed in molten steel in a ladle, and then the molten steel is sucked up into the dipping tube by depressurizing the inside of the dipping tube, and the lower part of the ladle is below the projection surface of the dipping tube. Alternatively, in the vacuum desulfurization refining method of molten steel in which stirring gas is blown from the tuyere provided on the inner wall of the dipping pipe, the ladle slag composition, stirring, and the conditions of the dipping pipe and ladle shape that satisfy the following conditions (i) to (iii) A method characterized by treating molten steel below. (i) Ladle slag composition: 0.8 ≤ (% CaO) / (% Al 2 O 3 ) ≤ 2.5 (% SiO 2 ) ≤ 10 (% FeO) + (% MnO) ≤ 2.0 where (% CaO): CaO concentration in slag (wt%), (% Al 2 O 3 ): Al 2 O 3 concentration in slag (wt%), (% SiO 2 ): SiO 2 concentration in slag (wt%), (% FeO): FeO concentration in slag (wt%), (% MnO): MnO concentration in slag (wt%) (ii) Stirring power ε / A (watt / ton / m 2 ) per unit cross-sectional area
15 or more: ε / A = {4.18 ・ Q ・ T ・ In (1 + ρ ・ g ・ h / Po)} / (W ・
π · D 1 2/4) where, Q: agitation gas flow rate (Nm 3 / min), T : temperature of molten steel
(K), ρ: Molten steel density (kg / m 3 ), g: Gravitational acceleration (m / s 2 ), h: Stirred gas injection depth (m), Po: Vacuum chamber atmosphere pressure (P
a), W: the processing amount of molten steel (ton), D 1: dip tube inside diameter (m) (iii) a dip tube inner diameter D 1 and the ladle inner diameter D 2 and the ratio D 1 / D 2 is 0.5 or more.
JP6245539A 1994-10-11 1994-10-11 Vacuum desulfurization refining method of molten steel Expired - Lifetime JP3000864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6245539A JP3000864B2 (en) 1994-10-11 1994-10-11 Vacuum desulfurization refining method of molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6245539A JP3000864B2 (en) 1994-10-11 1994-10-11 Vacuum desulfurization refining method of molten steel

Publications (2)

Publication Number Publication Date
JPH08109411A true JPH08109411A (en) 1996-04-30
JP3000864B2 JP3000864B2 (en) 2000-01-17

Family

ID=17135211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6245539A Expired - Lifetime JP3000864B2 (en) 1994-10-11 1994-10-11 Vacuum desulfurization refining method of molten steel

Country Status (1)

Country Link
JP (1) JP3000864B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000077264A1 (en) * 1999-06-16 2000-12-21 Nippon Steel Corporation Refining method and refining apparatus of molten steel
WO2002079522A1 (en) * 2001-04-02 2002-10-10 Nucor Corporation Ladle refining of steel
KR100398395B1 (en) * 1999-10-13 2003-09-19 주식회사 포스코 A method for desulfurizing the molten steel in the mini-mill process
KR100851179B1 (en) * 2001-12-03 2008-08-08 주식회사 포스코 Secondary refining method using adiabatic insulative agent
JP2018003042A (en) * 2016-06-27 2018-01-11 新日鐵住金株式会社 Molten steel desulfurization method
CN112126746A (en) * 2020-08-17 2020-12-25 石钢京诚装备技术有限公司 anti-H2Smelting method of S corrosion ultra-low sulfur steel
CN115044743A (en) * 2022-05-26 2022-09-13 江阴兴澄特种钢铁有限公司 Method for controlling desulfurization rate of low-carbon sulfur-containing steel in VD furnace

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100922562B1 (en) * 2002-09-24 2009-10-21 재단법인 포항산업과학연구원 A Method for Preparing CaCO3 With Desulfurization Slag and CO2

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000077264A1 (en) * 1999-06-16 2000-12-21 Nippon Steel Corporation Refining method and refining apparatus of molten steel
US6432164B1 (en) 1999-06-16 2002-08-13 Nippon Steel Corporation Method for refining molten steel and apparatus therefor
CN1316045C (en) * 1999-06-16 2007-05-16 新日本制铁株式会社 Refining method and refining appts. of moten steel
KR100398395B1 (en) * 1999-10-13 2003-09-19 주식회사 포스코 A method for desulfurizing the molten steel in the mini-mill process
WO2002079522A1 (en) * 2001-04-02 2002-10-10 Nucor Corporation Ladle refining of steel
US6547849B2 (en) 2001-04-02 2003-04-15 Nucor Corporation Ladle refining of steel
KR100851179B1 (en) * 2001-12-03 2008-08-08 주식회사 포스코 Secondary refining method using adiabatic insulative agent
JP2018003042A (en) * 2016-06-27 2018-01-11 新日鐵住金株式会社 Molten steel desulfurization method
CN112126746A (en) * 2020-08-17 2020-12-25 石钢京诚装备技术有限公司 anti-H2Smelting method of S corrosion ultra-low sulfur steel
CN115044743A (en) * 2022-05-26 2022-09-13 江阴兴澄特种钢铁有限公司 Method for controlling desulfurization rate of low-carbon sulfur-containing steel in VD furnace
CN115044743B (en) * 2022-05-26 2023-09-15 江阴兴澄特种钢铁有限公司 Method for controlling desulfurization rate of low-carbon sulfur-containing steel in VD furnace

Also Published As

Publication number Publication date
JP3000864B2 (en) 2000-01-17

Similar Documents

Publication Publication Date Title
KR101074895B1 (en) Method of denitrifying molten steel
KR101055899B1 (en) Ultra Low Sulfur Low Nitrogen High Cleanness Solvent Method
JP6645374B2 (en) Melting method of ultra low sulfur low nitrogen steel
JP3000864B2 (en) Vacuum desulfurization refining method of molten steel
JP5272479B2 (en) Method for desulfurizing and refining molten iron
JP2010248536A (en) Method for manufacturing high manganese content metal
JP4534734B2 (en) Melting method of low carbon high manganese steel
WO2010026775A1 (en) Process for desulfurization of molten pig iron
JP3319244B2 (en) Heated refining method for molten steel
JP5338124B2 (en) Method for desulfurizing and refining molten iron
JPH0153329B2 (en)
WO2022259806A1 (en) Molten steel denitrification method and steel production method
JP7468567B2 (en) Method for denitrification of molten steel
JP2897639B2 (en) Refining method for extremely low sulfur steel
JPH08225824A (en) Desulfurization of molten steel
RU2212453C1 (en) Method of making low-carbon constructional steel
JP2976849B2 (en) Method for producing HIC-resistant steel
JP3465801B2 (en) Method for refining molten Fe-Ni alloy
JP2962163B2 (en) Melting method of high clean ultra low carbon steel
JPH0941028A (en) Production of high purity ultra-low carbon steel
JP2000239727A (en) METHOD FOR DESULFURIZING MOLTEN STEEL WITH Mg
KR100347604B1 (en) Manufacturing method of high clean steel using hydrogen containing metal
JP2009249678A (en) Desulfurization refining method for molten
JPH08120325A (en) Production of high cleanness extra low carbon steel
JPH09111331A (en) Ladle reining apparatus

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 14

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term